201
|
Shuey A, Patricelli C, Oxford JT, Pu X. Effects of doxorubicin on autophagy in fibroblasts. Hum Exp Toxicol 2024; 43:9603271241231947. [PMID: 38324556 DOI: 10.1177/09603271241231947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Objectives: Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers, such as solid tumors, leukemia, lymphomas and breast cancer. It can also cause injuries to multiple organs, including the heart, liver, and brain or kidney, although cardiotoxicity is the most prominent side effect of DOX. In this study, we examined the potential effects of DOX on autophagy activity in two different mouse fibroblasts.Methods: Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX to assess changes in the expression of two commonly used autophagy protein markers, LC3II and p62. We also examined the effects of DOX the on expression of key genes that encode components of the molecular machinery and regulators modulating autophagy in response to both extracellular and intracellular signals.Results: We observed that LC3II levels increased and p62 levels decreased following the DOX treatment in NIH3T3 cells. However, similar effects were not observed in primary cardiac fibroblasts. In addition, DOX treatment induced the upregulation of a significant number of genes involved in autophagy in NIH3T3 cells, but not in primary cardiac fibroblasts.Conclusions: Taken together, these results indicate that DOX upregulates autophagy in fibroblasts in a cell-specific manner.
Collapse
Affiliation(s)
- Anna Shuey
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Conner Patricelli
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Julia T Oxford
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
- Biomolecular Research Center, Boise State University, Boise, ID, USA
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, USA
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| |
Collapse
|
202
|
McCormick JJ, McManus MK, King KE, Goulet N, Kenny GP. The intensity-dependent effects of exercise and superimposing environmental heat stress on autophagy in peripheral blood mononuclear cells from older men. Am J Physiol Regul Integr Comp Physiol 2024; 326:R29-R42. [PMID: 37955130 DOI: 10.1152/ajpregu.00163.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Autophagy is a vital cellular process, essential to maintaining cellular function during acute physiological stressors including exercise and heat stress. We previously showed that autophagy occurs during exercise in an intensity-dependent manner in peripheral blood mononuclear cells (PBMCs) from young men, with elevated responses in the heat. However, given autophagy declines with age, it is unclear whether a similar pattern of response occurs in older adults. Therefore, we evaluated autophagy and the cellular stress response [i.e., apoptosis, inflammation, and the heat shock response (HSR)] in PBMCs from 10 healthy older men [mean (SD): aged 70 yr (5)] in response to 30 min of semirecumbent cycling at low, moderate, and vigorous intensities [40, 55, and 70% maximal oxygen consumption (V̇o2max), respectively] in a temperate (25°C) environment, with an additional vigorous-intensity bout (70% of V̇o2max) performed in a hot environment (40°C). Responses were evaluated before and after exercise, as well as throughout a 6-h seated recovery period performed in the same environmental conditions as the respective exercise bout. Proteins were assessed via Western blot. Although we observed elevations in mean body temperature with each increase in exercise intensity, autophagy was only stimulated during vigorous-intensity exercise, where we observed elevations in LC3-II (P < 0.05). However, when the same exercise was performed in the heat, the LC3-II response was attenuated, which was accompanied by significant p62 accumulation (P < 0.05). Altogether, our findings demonstrate that older adults exhibit autophagic impairments when the same vigorous-intensity exercise is performed in hot environments, potentially underlying heat-induced cellular vulnerability in older men.NEW & NOTEWORTHY We demonstrate that autophagic stimulation occurs in response to short-duration (30-min) vigorous-intensity exercise in peripheral blood mononuclear cells from older adults; however, no changes in autophagy occur during low- or moderate-intensity exercise. Moreover, older adults exhibit autophagic impairments when the same vigorous-intensity exercise is performed in hot ambient conditions. When paired with an attenuated heat shock response, as well as elevated apoptotic responses, older men may exhibit greater cellular vulnerability to exertional heat stress.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan K McManus
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
203
|
Sun Y, Dong J, Chai X, Wang J, Li B, Yang J. Semaphorin‑3A alleviates cardiac hypertrophy by regulating autophagy. Exp Ther Med 2024; 27:38. [PMID: 38125367 PMCID: PMC10731408 DOI: 10.3892/etm.2023.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/13/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiac hypertrophy, characterized by cardiomyocyte enlargement, is an adaptive response of the heart to certain hypertrophic stimuli; however, prolonged hypertrophy results in cardiac dysfunction and can ultimately cause heart failure. The present study evaluated the role of semaphorin-3A (Sema3A), a neurochemical inhibitor, in cardiac hypertrophy, utilizing an isoproterenol (ISO) induced H9c2 cell model. Cells were stained with rhodamine-phalloidin to assess the cell surface area and reverse transcription-quantitative PCR was performed to quantify mRNA expression levels of Sema3A, brain natriuretic factor (BNF) and β-myosin heavy chain (β-MHC). The protein expression levels of the autophagy-related proteins light chain 3 (LC3), p62 and Beclin-1, and the Akt/mTOR signaling pathway associated proteins Akt, phosphorylated (p)-Akt, mTOR, p-mTOR, 4E-binding protein 1 (4EBP1) and p-4EBP1 were semi-quantified using western blotting. Rapamycin, a canonical autophagy inducer, was administered to H9c2 cells to elucidate the regulatory mechanism of Sema3A. The results indicated significantly increased cell surface area and elevated BNF and β-MHC mRNA expression levels, increased LC3II/I ratio and Beclin-1 protein expression levels and significantly decreased p62 protein expression levels after treatment of H9c2 cardiomyocytes with ISO for 24 h. Sema3A overexpression improved ISO-induced hypertrophy in H9c2 cells, indicated by decreased cell surface area and reduced BNF and β-MHC mRNA expression levels. Moreover, Sema3A overexpression inhibited ISO-induced autophagy in H9c2 cells, indicated by decreased LC3II/I ratio and Beclin-1 protein expression levels and increased p62 protein expression levels. The autophagy activator rapamycin partially inhibited the protective effect of Sema3A on ISO-induced hypertrophy. Sema3A overexpression suppressed the decrease of the protein expression levels of p-Akt, mTOR and their downstream target 4EBP1, which is induced by ISO. Collectively, these results suggested Sema3A prevented ISO-induced cardiac hypertrophy by inhibiting autophagy via the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu Sun
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Jin Dong
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Xiaohong Chai
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Jingping Wang
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jinjing Yang
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
204
|
Hu X, Ju Y, Zhang YK. Ivermectin as a potential therapeutic strategy for glioma. J Neurosci Res 2024; 102:e25254. [PMID: 37814994 DOI: 10.1002/jnr.25254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Ivermectin (IVM), a semi-synthetic macrolide parasiticide, has demonstrated considerable effectiveness in combating internal and external parasites, particularly nematodes and arthropods. Its remarkable ability to control parasites has earned it significant recognition, culminating in Satoshi Omura and William C. Campbell's receipt of the 2015 Nobel Prize in Physiology or Medicine for their contributions to the development of IVM. In recent years, investigations have revealed that IVM possesses antitumor properties. It can suppress the growth of various cancer cells, including glioma, through a multitude of mechanisms such as selective targeting of tumor-specific proteins, inducing programmed cell death, and modulation of tumor-related signaling pathways. Hence, IVM holds tremendous potential as a novel anticancer drug. This review seeks to provide an overview of the underlying mechanisms that enable IVM's capacity to suppress glioma. Furthermore, it aims to elucidate the challenges and prospects associated with utilizing IVM as a new anticancer agent.
Collapse
Affiliation(s)
- Xing Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yan Ju
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yue-Kang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
205
|
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, Fang Y, Lu Z, Wu X, Pan Z, Peng J, Lin J. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy 2024; 20:114-130. [PMID: 37615625 PMCID: PMC10761097 DOI: 10.1080/15548627.2023.2249762] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Bevacizumab plays an important role in the first and second line treatment for metastatic colorectal cancer (CRC). And induction of hypoxia and the tumors response to it plays an important role in determining the efficacy of antiangiogenic therapy while the connection between them remains unclear. Here, we found that lactate accumulated in the tumor environment of CRC and acted as substrates for histone lactylation, and this process was further induced by cellular enhanced glycolysis in hypoxia. We determined that CRC patients resistant to bevacizumab treatment presented with elevated levels of histone lactylation and inhibition of histone lactylation efficiently suppressed CRC tumorigenesis, progression and survival in hypoxia. Histone lactylation promoted the transcription of RUBCNL/Pacer, facilitating autophagosome maturation through interacting with BECN1 (beclin 1) and mediating the recruitment and function of the class III phosphatidylinositol 3-kinase complex, which had a crucial role in hypoxic cancer cells proliferation and survival. Moreover, combining inhibition of histone lactylation and macroautophagy/autophagy with bevacizumab treatment demonstrated remarkable treatment efficacy in bevacizumab-resistance patients-derived pre-clinical models. These findings delivered a new exploration and important supplement of metabolic reprogramming-epigenetic regulation, and provided a new strategy for improving clinical efficacy of bevacizumab in CRC by inhibition of histone lactylation.Abbreviations: 2-DG: 2-deoxy-D-glucose; BECN1: beclin 1; CQ: chloroquine; CRC: colorectal cancer; DMOG: dimethyloxalylglycine; H3K18la: histone H3 lysine 18 lactylation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nala: sodium lactate; PDO: patient-derived orgnoid; PDX: patient-derived xenograft; RUBCNL/Pacer: rubicon like autophagy enhancer; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Weihao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chi Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Long Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenlin Hou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lingheng Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yanbo Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiahua He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jin Lan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qingjian Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yujing Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenhai Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhizhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianhong Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junzhong Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
206
|
Chen J, Huang M. Intensive care unit-acquired weakness: Recent insights. JOURNAL OF INTENSIVE MEDICINE 2024; 4:73-80. [PMID: 38263973 PMCID: PMC10800771 DOI: 10.1016/j.jointm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 01/25/2024]
Abstract
Intensive care unit-acquired weakness (ICU-AW) is a common complication in critically ill patients and is associated with a variety of adverse outcomes. These include the need for prolonged mechanical ventilation and ICU stay; higher ICU, in-hospital, and 1-year mortality; and increased in-hospital costs. ICU-AW is associated with multiple risk factors including age, underlying disease, severity of illness, organ failure, sepsis, immobilization, receipt of mechanical ventilation, and other factors related to critical care. The pathological mechanism of ICU-AW remains unclear and may be considerably varied. This review aimed to evaluate recent insights into ICU-AW from several aspects including risk factors, pathophysiology, diagnosis, and treatment strategies; this provides new perspectives for future research.
Collapse
Affiliation(s)
- Juan Chen
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
207
|
Ding X, Zhu C, Wang W, Li M, Ma C, Gao B. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res 2024; 199:106957. [PMID: 37820856 DOI: 10.1016/j.phrs.2023.106957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoqing Ding
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wenhong Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Mengying Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chunwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Binghong Gao
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
208
|
Huang Y, Han M, Shi Q, Li X, Mo J, Liu Y, Chu Z, Li W. Li, P HY-021068 alleviates cerebral ischemia-reperfusion injury by inhibiting NLRP1 inflammasome and restoring autophagy function in mice. Exp Neurol 2024; 371:114583. [PMID: 37884189 DOI: 10.1016/j.expneurol.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a severe pathological condition that involves oxidative stress, inflammatory response, and neuronal damage. HY-021068 belongs to a new drug of chemical class 1, which is a potential thromboxane synthase inhibitor. Our preliminary experiment found that HY-021068 has significant anti-neuroinflammatory and neuroprotective effects. However, the protective effect and mechanism of HY-021068 in CIRI remain unclear. To investigate the protective effect and mechanism of HY-021068 in CIRI mice. In mice, CIRI was induced by bilateral common carotid artery occlusion and reperfusion. Mice were treated with HY-021068 or LV-NLRP1-shRNA (lentivirus-mediated shRNA transfection to knock down NLRP1 expression). The locomotor activity, neuronal damage, pathological changes, postsynaptic density protein-95 (PSD-95) expression, NLRP1 inflammasome activation, autophagy markers, and apoptotic proteins were assessed in CIRI mice. In this study, treatment with HY-021065 and LV-NLRP1-shRNA significantly improved motor dysfunction and neuronal damage after CIRI in mice. HY-021065 and NLRP1 knockdown significantly ameliorated the pathological damage and increased PSD-95 expression in the cortex and hippocampus CA1 and CA3 regions. The further studies showed that compared with the CIRI model group, HY-021065 and NLRP1 knockdown treatment inhibited the expressions of NLRP1, ASC, caspase-1, and IL-1β, restored the expressions of p-AMPK/AMPK, Beclin1, LC3II/LC3I, p-mTOR/m-TOR and P62, and regulated the expressions of BCL-2, Caspase3, and BAX in brain tissues of CIRI mice in CIRI mice. These results suggest that HY-021068 exerts a protective role in CIRI mice by inhibiting NLRP1 inflammasome activation and regulating autophagy function and neuronal apoptosis. HY-021068 is expected to become a new therapeutic drug for CIRI.
Collapse
Affiliation(s)
- Ye Huang
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Min Han
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Qifeng Shi
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Jiajia Mo
- Hefei Industrial and Pharmaceutical Co., Ltd, Hefei 230200, Anhui, China
| | - Yan Liu
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Zhaoxing Chu
- Hefei Industrial and Pharmaceutical Co., Ltd, Hefei 230200, Anhui, China.
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
209
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Molecular mechanism of autophagy and apoptosis in endometriosis: Current understanding and future research directions. Reprod Med Biol 2024; 23:e12577. [PMID: 38645639 PMCID: PMC11031673 DOI: 10.1002/rmb2.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Background Endometriosis is a common gynecological condition, with symptoms including pain and infertility. Regurgitated endometrial cells into the peritoneal cavity encounter hypoxia and nutrient starvation. Endometriotic cells have evolved various adaptive mechanisms to survive in this inevitable condition. These adaptations include escape from apoptosis. Autophagy, a self-degradation system, controls apoptosis during stress conditions. However, to date, the mechanisms regulating the interplay between autophagy and apoptosis are still poorly understood. In this review, we summarize the current understanding of the molecular characteristics of autophagy in endometriosis and discuss future therapeutic challenges. Methods A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. Results Autophagy may be dynamically regulated through various intrinsic (e.g., PI3K/AKT/mTOR signal transduction network) and extrinsic (e.g., hypoxia and iron-mediated oxidative stress) pathways, contributing to the development and progression of endometriosis. Upregulation of mTOR expression suppresses apoptosis via inhibiting the autophagy pathway, whereas hypoxia or excess iron often inhibits apoptosis via promoting autophagy. Conclusion Endometriotic cells may have acquired antiapoptotic mechanisms through unique intrinsic and extrinsic autophagy pathways to survive in changing environments.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Chiharu Yoshimoto
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of Obstetrics and GynecologyNara Prefecture General Medical CenterNaraJapan
| | - Sho Matsubara
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of MedicineKei Oushin ClinicNishinomiyaJapan
| | - Hiroshi Shigetomi
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of Gynecology and Reproductive MedicineAska Ladies ClinicNaraJapan
| |
Collapse
|
210
|
Chen X, Zhong R, Hu B. Mitochondrial dysfunction in the pathogenesis of acute pancreatitis. Hepatobiliary Pancreat Dis Int 2023:S1499-3872(23)00246-1. [PMID: 38212158 DOI: 10.1016/j.hbpd.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
The mechanism of cell damage during acute pancreatitis (AP) has not been fully elucidated, and there is still a lack of specific or effective treatments. Increasing evidence has implicated mitochondrial dysfunction as a key event in the pathophysiology of AP. Mitochondrial dysfunction is closely related to calcium (Ca2+) overload, intracellular adenosine triphosphate depletion, mitochondrial permeability transition pore openings, loss of mitochondrial membrane potential, mitophagy damage and inflammatory responses. Mitochondrial dysfunction is an early triggering event in the initiation and development of AP, and this organelle damage may precede the release of inflammatory cytokines, intracellular trypsin activation and vacuole formation of pancreatic acinar cells. This review provides further insight into the role of mitochondria in both physiological and pathophysiological aspects of AP, aiming to improve our understanding of the underlying mechanism which may lead to the development of therapeutic and preventive strategies for AP.
Collapse
Affiliation(s)
- Xia Chen
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, PR China
| | - Rui Zhong
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, PR China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
211
|
Cheng X, Xia T, Sun X, Liang G, Liu X, Liang G. Atg4B and Cathepsin B-Triggered in Situ Luciferin Formation for Precise Cancer Autophagy Bioluminescence Imaging. ACS CENTRAL SCIENCE 2023; 9:2251-2256. [PMID: 38161373 PMCID: PMC10755845 DOI: 10.1021/acscentsci.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Autophagy plays a crucial role in tumorigenesis and progression, but current approaches to visualize it in vivo show limited precision due to their single-analyte-responsive mode. Hence, by simultaneously employing dual autophagy enzymes Atg4B and cathepsin B to trigger the in situ formation of luciferin, we herein propose a strategy for precise autophagy bioluminescence imaging. An Atg4B-responsive peptide Ac-Thr-Phe-Gly-d-Cys (TFGC) and a cathepsin B-activatable compound Ac-Lys-Gly-Arg-Arg-CBT (KGRR-CBT) were rationally designed. During tumor autophagy, these two compounds were uptaken by cancer cells and cleaved by their corresponding enzymes to yield d-cysteine and 2-cyano-6-aminobenzothiazole, respectively, which underwent a CBT-Cys click reaction to yield d-aminoluciferin, turning the bioluminescence "on". The responsiveness of these two compounds toward the two enzymes was tested in vitro, and the ability to turn bioluminescence "on" was validated in living cancer cells and in vivo. We anticipate that our precise autophagy imaging strategy could be further applied for the diagnosis of autophagy-related diseases in the near future.
Collapse
Affiliation(s)
| | | | - Xianbao Sun
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guowei Liang
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
212
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
213
|
Ke C, Huang Y, Mao Z, Ke Z, Wang Z, Li R, Long S, Guo Y, Wang F, Qian M, Zhao R, Zheng J, Xie S. Calcineurin suppresses rat H9c2 cardiomyocyteprotective autophagy under chronic intermittent hypoxia by downregulating the AMPK pathway. Exp Cell Res 2023; 433:113850. [PMID: 37926341 DOI: 10.1016/j.yexcr.2023.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Calcineurin plays a key role in cardiovascular pathogenesis by exerting pro-apoptotic effects in cardiomyocytes. However, whether calcineurin can regulate cardiomyocyte autophagy under conditions of chronic intermittent hypoxia (CIH) remains unclear. Here, we showed that CIH induced calcineurin activity in H9c2 cells, which attenuated adenosine monophosphate-activated protein kinase (AMPK) signaling and inhibited autophagy. In H9c2 cells, autophagy levels, LC3 expression, and AMPK phosphorylation were significantly elevated under conditions of CIH within 3 days. However, after 5 days of CIH, these effects were reversed and calcineurin activity and apoptosis were significantly increased. The calcineurin inhibitor 17-Allyl-1,14-dihydroxy-12-[2-(4-hydroxy-3-methoxycyclohexyl) -1-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo- [22.3.1.04,9]octacos-18- ene-2,3,10,16-tetrone (FK506) restored AMPK activation and LC3 expression and attenuated CIH-induced H9c2 cell apoptosis. In contrast, calcineurin overexpression significantly attenuated the increase in LC3 expression and enhanced H9c2 cell apoptosis under conditions of CIH. Calcineurin inhibition failed to induce autophagy or alleviate apoptosis in H9c2 cells expressing a kinase-dead K45R AMPK mutant. Autophagy inhibition abrogated the protective effects of FK506-mediated calcineurin inhibition. These results indicate that calcineurin suppresses adaptive autophagy during CIH by downregulating AMPK activation. Our findings reveal the underlying mechanism of calcineurin and autophagy regulation during H9c2 cell survival under conditions of CIH and may provide a new strategy for preventing CIH-induced cardiomyocyte damage.
Collapse
Affiliation(s)
- Changjiang Ke
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Yongjun Huang
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenghua Ke
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Zeng Wang
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Ruyou Li
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Shenghua Long
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Yuping Guo
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Fei Wang
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Meng Qian
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Ruxia Zhao
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Juan Zheng
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Sheng Xie
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China.
| |
Collapse
|
214
|
Sun QY, Wang XY, Huang ZP, Song J, Zheng ED, Gong FH, Huang XW. Depletion of gut microbiota facilitates fibroblast growth factor 21-mediated protection against acute pancreatitis in diabetic mice. World J Diabetes 2023; 14:1824-1838. [PMID: 38222783 PMCID: PMC10784798 DOI: 10.4239/wjd.v14.i12.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 11/25/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21), primarily secreted by the pancreas, liver, and adipose tissues, plays a pivotal role in regulating glucose and lipid metabolism. Acute pancreatitis (AP) is a common inflammatory disease with specific clinical manifestations. Many patients with diabetes present with concurrent inflammatory symptoms. Diabetes exacerbates intestinal permeability and intestinal inflammation, thus leading to the progression to AP. Our previous study indicated that FGF21 significantly attenuated susceptibility to AP in mice. AIM To investigate the potential protective role of FGF21 against AP in diabetic mice. METHODS In the present study, a mouse model of AP was established in diabetic (db)/db diabetic mice through ceruletide injections. Thereafter, the protective effects of recombinant FGF21 protein against AP were evaluated, with an emphasis on examining serum amylase (AMS) levels and pancreatic and intestinal inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor-alpha (TNF-), and intestinal IL-1β]. Additionally, the impact of this treatment on the histopathologic changes of the pancreas and small intestinal was examined to elucidate the role of FGF21 in diabetic mice with AP. An antibiotic (Abx) cocktail was administered in combination with FGF21 therapy to investigate whether the effect of FGF21 on AP in diabetic mice with AP was mediated through the modulation of the gut microbiota. Subsequently, the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), a bioinformatics software package, was used to predict different pathways between the groups and to explore the potential mechanisms by which the gut microbiota influenced the protective effect of FGF21. RESULTS The results indicated that FGF21 notably diminished the levels of serum AMS (944.5 ± 15.9 vs 1732 ± 83.9, P < 0.01) and inflammatory factors including IL-6 (0.2400 ± 0.55 vs 1.233 ± 0.053, P < 0.01), TNF- (0.7067 ± 0.22 vs 1.433 ± 0.051, P < 0.01), and IL-1β (1.377 ± 0.069 vs 0.3328 ± 0.02542, P < 0.01) in diabetic mice with AP. Moreover, notable signs of recovery were observed in the pancreatic structure of the mice. The histologic evidence of inflammation in the small intestine, including edema and villous damage, was significantly alleviated. FGF21 also significantly altered the composition of the gut microbiota, reestablishing the Bacteroidetes/Firmicutes ratio. Upon treatment with an Abx cocktail to deplete the gut microbiota, the FGF21 + Abx group showed lower levels of serum AMS (0.9328 ± 0.075 vs 0.2249 ± 0.023, P < 0.01) and inflammatory factors (1.083 ± 0.12 vs 0.2799 ± 0.032, p < 0.01) than the FGF21 group. Furthermore, the FGF21 + Abx group exhibited diminished injury to the pancreatic and small intestinal tissues, accompanied by a significant decrease in blood glucose levels (17.50 ± 1.1 vs 9.817 ± 0.69 mmol/L, P < 0.001). These findings underscored the superior protective effects of the combination therapy involving an Abx cocktail with FGF21 over the FGF21 treatment alone in diabetic mice with AP. The gut microbiota composition across different groups was further characterized, and a differential expression analysis of gene functions was undertaken using the PICRUSt2 prediction method. These findings suggested that FGF21 could potentially confer therapeutic effects on diabetic mice with AP by modulating the sulfate reduction I pathway and the superpathway of n-acetylceramide degradation in the gut microbiota. CONCLUSION This study reveals the potential of FGF21 in improving pancreatic and intestinal damage recovery, reducing blood glucose levels, and reshaping gut microbiota composition in diabetic mice with AP. Notably, the protective effects of FGF21 are augmented when combined with the Abx cocktail.
Collapse
Affiliation(s)
- Qi-Yan Sun
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- Zhejiang Medical Products Service Center, Hangzhou 310012, Zhejiang Province, China
| | - Xu-Ye Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zu-Pin Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| | - Jing Song
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| | - En-Dong Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| | - Fang-Hua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| | - Xiao-Wang Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| |
Collapse
|
215
|
Liao Z, Liu X, Fan D, Sun X, Zhang Z, Wu P. Autophagy-mediated nanomaterials for tumor therapy. Front Oncol 2023; 13:1194524. [PMID: 38192627 PMCID: PMC10773885 DOI: 10.3389/fonc.2023.1194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/30/2023] [Indexed: 01/10/2024] Open
Abstract
Autophagy is a lysosomal self-degradation pathway that plays an important protective role in maintaining intracellular environment. Deregulation of autophagy is related to several diseases, including cancer, infection, neurodegeneration, aging, and heart disease. In this review, we will summarize recent advances in autophagy-mediated nanomaterials for tumor therapy. Firstly, the autophagy signaling pathway for tumor therapy will be reviewed, including oxidative stress, mammalian target of rapamycin (mTOR) signaling and autophagy-associated genes pathway. Based on that, many autophagy-mediated nanomaterials have been developed and applied in tumor therapy. According to the different structure of nanomaterials, we will review and evaluate these autophagy-mediated nanomaterials' therapeutic efficacy and potential clinical application.
Collapse
Affiliation(s)
- Zijian Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xingjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
216
|
Zhai H, Wang T, Liu D, Pan L, Sun Y, Qiu HJ. Autophagy as a dual-faced host response to viral infections. Front Cell Infect Microbiol 2023; 13:1289170. [PMID: 38125906 PMCID: PMC10731275 DOI: 10.3389/fcimb.2023.1289170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy selectively degrades viral particles or cellular components, either facilitating or inhibiting viral replication. Conversely, most viruses have evolved strategies to escape or exploit autophagy. Moreover, autophagy collaborates with the pattern recognition receptor signaling, influencing the expression of adaptor molecules involved in the innate immune response and regulating the expression of interferons (IFNs). The intricate relationship between autophagy and IFNs plays a critical role in the host cell defense against microbial invasion. Therefore, it is important to summarize the interactions between viral infections, autophagy, and the host defense mechanisms against viruses. This review specifically focuses on the interactions between autophagy and IFN pathways during viral infections, providing a comprehensive summary of the molecular mechanisms utilized or evaded by different viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
217
|
Mann D, Fromm SA, Martinez-Sanchez A, Gopaldass N, Choy R, Mayer A, Sachse C. Atg18 oligomer organization in assembled tubes and on lipid membrane scaffolds. Nat Commun 2023; 14:8086. [PMID: 38057304 DOI: 10.1038/s41467-023-43460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Autophagy-related protein 18 (Atg18) participates in the elongation of early autophagosomal structures in concert with Atg2 and Atg9 complexes. How Atg18 contributes to the structural coordination of Atg2 and Atg9 at the isolation membrane remains to be understood. Here, we determined the cryo-EM structures of Atg18 organized in helical tubes, Atg18 oligomers in solution as well as on lipid membrane scaffolds. The helical assembly is composed of Atg18 tetramers forming a lozenge cylindrical lattice with remarkable structural similarity to the COPII outer coat. When reconstituted with lipid membranes, using subtomogram averaging we determined tilted Atg18 dimer structures bridging two juxtaposed lipid membranes spaced apart by 80 Å. Moreover, lipid reconstitution experiments further delineate the contributions of Atg18's FRRG motif and the amphipathic helical extension in membrane interaction. The observed structural plasticity of Atg18's oligomeric organization and membrane binding properties provide a molecular framework for the positioning of downstream components of the autophagy machinery.
Collapse
Affiliation(s)
- Daniel Mann
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Simon A Fromm
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Martinez-Sanchez
- Department of Information and Communications Engineering, Faculty of Computers Sciences, University of Murcia, Murcia, Spain
| | - Navin Gopaldass
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ramona Choy
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Andreas Mayer
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Carsten Sachse
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany.
| |
Collapse
|
218
|
Chen T, Bao S, Chen J, Zhang J, Wei H, Hu X, Liang Y, Li J, Yan S. Xiaojianzhong decoction attenuates aspirin-induced gastric mucosal injury via the PI3K/AKT/mTOR/ULK1 and AMPK/ULK1 pathways. PHARMACEUTICAL BIOLOGY 2023; 61:1234-1248. [PMID: 37602379 PMCID: PMC10443964 DOI: 10.1080/13880209.2023.2243998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Xiaojianzhong decoction (XJZD), classically prescribed in Chinese medicine, has protective and healing effects on gastric mucosal injury. However, the exact mechanism behind this effect remains unclear. OBJECTIVE To investigate the effect of XJZD on gastric mucosal injury and explore its underlying mechanisms. MATERIALS AND METHODS C57BL/6 mice were randomized into six groups (n = 10): the control group receiving sterile water, the model (aspirin 300 mg/kg), the XJZD high-dose (12 g/kg), XJZD medium-dose (6 g/kg), XJZD low-dose (3 g/kg) and omeprazole (20 mg/kg) groups, by gavage daily for 14 days. The area of gastric mucosal injury, mucosal injury index and degree of histopathological damage were analysed. Gastric mucosal epithelial cell apoptosis was detected. Epithelial cell autophagy was observed. The expression levels of tight junction proteins and proteins related to apoptosis, autophagy and the pentose phosphate pathway were analysed. RESULTS The results showed that after treatment with XJZD (12, 6 and 3 g/kg), the mucosal injury area was reduced (83.4%, 22.6% and 11.3%), the expression level of ZO-1 and occludin was up-regulated, the apoptosis rate of epithelial cells was reduced (40.8%, 25.4% and 8.7%), the expression of autophagy-related proteins LC3 and Beclin1 was decreased and the expression of p62 was increased, the PI3K/AKT/mTOR/ULK1(ser757) signalling pathway was activated, and the AMPK/ULK1(ser317) signalling pathway was inhibited. In addition, XJZD can antagonize the imbalance of redox homeostasis caused by aspirin and protect the gastric mucosa. DISCUSSION AND CONCLUSIONS XJZD protects against aspirin-induced gastric mucosal injury, implying it to be a potential therapeutic agent.
Collapse
Affiliation(s)
- Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Jiaxiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Hailiang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Department of General Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Xin Hu
- State Forestry and Grassland Administration Engineering Research Center of Fu tea, Xianyang, PR China
| | - Yan Liang
- State Forestry and Grassland Administration Engineering Research Center of Fu tea, Xianyang, PR China
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Department of Infectious Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| |
Collapse
|
219
|
Song Y, Yang H, Kim J, Lee Y, Kim SH, Do IG, Park CY. Gemigliptin, a DPP4 inhibitor, ameliorates nonalcoholic steatohepatitis through AMP-activated protein kinase-independent and ULK1-mediated autophagy. Mol Metab 2023; 78:101806. [PMID: 37739179 PMCID: PMC10542016 DOI: 10.1016/j.molmet.2023.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
OBJECTIVE Abnormal autophagic function and activated inflammasomes are typical features in the liver of patients with non-alcoholic steatohepatitis (NASH). Here, we explored whether gemigliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor for treatment of type 2 diabetes, can induce autophagy and regulate inflammasome activation as a potential NASH treatment independent of its anti-diabetic effect. METHODS Expression analysis was performed using human liver samples obtained from 18 subjects who underwent hepatectomy. We explored the function and mechanism of gemigliptin using a methionine- and choline-deficient diet (MCD)-induced NASH mouse model and HepG2 cells cultured in MCD-mimicking medium. RESULTS Autophagy was suppressed by marked decreases in the expression of ULK1 and LC3II/LC3I ratio in human NAFLD/NASH patients, a NASH mouse model, and HepG2 cells cultured with MCD-mimicking media. Surprisingly, we found that the expression of p-AMPK decreased in liver tissues from patients with steatosis but was restored in NASH patients. The expression of p-AMPK in the NASH mouse model was similar to that of the control group. Hence, these results indicate that autophagy was reduced in NASH via an AMPK-independent pathway. However, gemigliptin treatment attenuated lipid accumulation, inflammation, and fibrosis in the liver of MCD diet-fed mice with restoration of ULK1 expression and autophagy induction. In vitro, gemigliptin alleviated inflammasome activation through induction of ULK1-dependent autophagy. Furthermore, gemigliptin treatment upregulated ULK1 expression and activated AMPK even after siRNA-mediated knockdown of AMPKα1/2 and ULK1, respectively. CONCLUSIONS Collectively, these results suggest that gemigliptin ameliorated NASH via AMPK-independent, ULK1-mediated effects on autophagy.
Collapse
Affiliation(s)
- Youngmi Song
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyekyung Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Juhee Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoonjin Lee
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung-Ho Kim
- LG Chem Life Sciences, Gangseo-gu, Seoul, South Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Cheol-Young Park
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
220
|
Azimirad M, Noori M, Amirkamali S, Nasiri G, Asadzadeh Aghdaei H, Yadegar A, Klionsky DJ, Zali MR. Clostridioides difficile PCR ribotypes 001 and 084 can trigger autophagy process in human intestinal Caco-2 cells. Microb Pathog 2023; 185:106450. [PMID: 37979713 DOI: 10.1016/j.micpath.2023.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Autophagy is a homeostatic process that can promote cell survival or death. However, the exact role of autophagy in Clostridioides difficile infection (CDI) is still not precisely elucidated. Here, we investigate the role of distinct C. difficile ribotypes (RTs) in autophagy induction using Caco-2 cells. The expression analysis of autophagy-associated genes and related miRNAs were examined following treatment of Caco-2 cells with C. difficile after 4 and 8 h using RT-qPCR. Toxin production was assessed using enzyme-linked immunosorbent assay (ELISA). Immunofluorescence analysis was performed to detect MAP1LC3B/LC3B, followed by an autophagic flux analysis. C. difficile significantly reduced the viability of Caco-2 cells in comparison with untreated cells. Elevated levels of LC3-II and SQSTM1/p62 by C. difficile RT001 and RT084 in the presence of E64d/leupeptin confirmed the induction of autophagy activity. Similarly, the immunofluorescence analysis demonstrated that C. difficile RT001 and RT084 significantly increased the amount of LC3-positive structures in Caco-2 cells. The induction of autophagy was further demonstrated by increased levels of LC3B, ULK1, ATG12, PIK3C3/VPS34, BECN1 (beclin 1), ATG5, and ATG16L1 transcripts and reduced levels of AKT and MTOR gene expression. The expression levels of MIR21 and MIR30B, microRNAs that suppress autophagy, were differentially affected by C. difficile. In conclusion, the present work revealed that C. difficile bacteria can induce autophagy through both toxin-dependent and -independent mechanisms. Also, our results suggest the potential role of other C. difficile virulence factors in autophagy modulation using intestinal cells in vitro.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Amirkamali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gelareh Nasiri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
221
|
Yin J, Wang S, Ren S, Liang Z, Ge J, Sun Y, Yin X, Wang X. TMP269, a small molecule inhibitor of class IIa HDAC, suppresses RABV replication in vitro. Front Microbiol 2023; 14:1284439. [PMID: 38107853 PMCID: PMC10722228 DOI: 10.3389/fmicb.2023.1284439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
TMP269, a small molecular inhibitor of IIa histone deacetylase, plays a vital role in cancer therapeutic. However, the effect of TMP269 on the regulation of viral replication has not been studied. In the present study, we found that TMP269 treatment significantly inhibited RABV replication at concentrations without significant cytotoxicity in a dose-dependent manner. In addition, TMP269 can reduce the viral titers and protein levels of RABV at an early stage in the viral life cycle. RNA sequencing data revealed that immune-related pathways and autophagy-related genes were significantly downregulated after RABV infection treated with TMP269. Further exploration shows that autophagy enhances RABV replication in HEK-293T cells, while TMP269 can inhibit autophagy to decrease RABV replication. Together, these results provide a novel treatment strategy for rabies.
Collapse
Affiliation(s)
- Juanbin Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengji Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junwei Ge
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
222
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
223
|
Yoo JG, Lee YK, Lee KH. Enhancing autophagy leads to increased cell death in radiation-treated cervical cancer cells. J OBSTET GYNAECOL 2023; 43:2171281. [PMID: 36757356 DOI: 10.1080/01443615.2023.2171281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This study was carried out to determine the effect of autophagy modulation in radiation treatment of cervical cancer cells. HeLa and CaSki cells were irradiated with γ-rays (2 Gy/min) after treatment with an autophagy inducer (rapamycin) and inhibitor (3-MA). Expression of LC3 and cell death in two cell preparations were examined. In addition, expression of Caspase-3 and PARP were examined after radiation alone and with autophagy inhibitor treatment. A notable increment of LC3 expression was detected after radiation in both cell lines. Cell viability was observed to decrease in 3-MA-treated cells compared to radiation alone, and even further in rapamycin-treated cells. Apoptosis was confirmed to occur later than autophagy in radiation treatment, and inhibition of autophagy derived a decrease in apoptosis. In conclusion, radiation-induced autophagy may be regulated by modulators, and autophagy augmentation yields an increase in cervical cancer cell death under radiation.Impact statementWhat is already known on this subject? Autophagy is known to contribute both to tumour cell survival and death against radiation therapy. The effect of induction or inhibition of radiation-induced autophagy on cervical cancer cell death is not clear.What the results of this study add? Cell viability was observed to decrease in 3-MA-treated cells compared to radiation alone, and even further in rapamycin-treated cells. Apoptosis occurred later than autophagy in radiation treatment, and inhibition of autophagy derived a decrease in apoptosis.What the implications are of these findings for clinical practice and/or further research? Our results suggest that radiation-induced autophagy may be regulated by modulators, and autophagy augmentation yields an increase in cervical cancer cell death under radiation.
Collapse
Affiliation(s)
- Ji Geun Yoo
- Department of Obstetrics and Gynecology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Yoon Kyung Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun Ho Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
224
|
Wang TT, Zhang LC, Qin Z, Chen SJ, Zeng JM, Li JY, An L, Wang CY, Gao Y, Wang LM, Zhao ZX, Liu ZQ, Wang SG. Decreased syntaxin17 expression contributes to the pathogenesis of acute pancreatitis in murine models by impairing autophagic degradation. Acta Pharmacol Sin 2023; 44:2445-2454. [PMID: 37580492 PMCID: PMC10692237 DOI: 10.1038/s41401-023-01139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/09/2023] [Indexed: 08/16/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the exocrine pancreas. Disruptions in organelle homeostasis, including macroautophagy/autophagy dysfunction and endoplasmic reticulum (ER) stress, have been implicated in human and rodent pancreatitis. Syntaxin 17 (STX17) belongs to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) subfamily. The Qa-SNARE STX17 is an autophagosomal SNARE protein that interacts with SNAP29 (Qbc-SNARE) and the lysosomal SNARE VAMP8 (R-SNARE) to drive autophagosome-lysosome fusion. In this study, we investigated the role of STX17 in the pathogenesis of AP in male mice or rats induced by repeated intraperitoneal injections of cerulein. We showed that cerulein hyperstimulation induced AP in mouse and rat models, which was characterized by increased serum amylase and lipase activities, pancreatic edema, necrotic cell death and the infiltration of inflammatory cells, as well as markedly decreased pancreatic STX17 expression. A similar reduction in STX17 levels was observed in primary and AR42J pancreatic acinar cells treated with CCK (100 nM) in vitro. By analyzing autophagic flux, we found that the decrease in STX17 blocked autophagosome-lysosome fusion and autophagic degradation, as well as the activation of ER stress. Pancreas-specific STX17 knockdown using adenovirus-shSTX17 further exacerbated pancreatic edema, inflammatory cell infiltration and necrotic cell death after cerulein injection. These data demonstrate a critical role of STX17 in maintaining pancreatic homeostasis and provide new evidence that autophagy serves as a protective mechanism against AP.
Collapse
Affiliation(s)
- Tian-Tian Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li-Chun Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhen Qin
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shu-Jun Chen
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing-Min Zeng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing-Yan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin An
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Cai-Yan Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li-Ming Wang
- School of Biomedical Science, Hunan University, Changsha, 410082, China
| | - Zhong-Xiang Zhao
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shao-Gui Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
225
|
Xue R, Fan XL, Yang Q, Yu C, Lu TY, Wan GM. Protective effect of ethyl ferulate against hypoxic injury in retinal cells and retinal neovascularization in an oxygen-induced retinopathy model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155097. [PMID: 37778248 DOI: 10.1016/j.phymed.2023.155097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Pathological neovascularization is a major cause of visual impairment in hypoxia-induced retinopathy. Ethyl ferulate (EF), the natural ester derivative of ferulic acid commonly found in Ferula and Angelica Sinensis, has been shown to exert antioxidant, neuroprotective, and anti-inflammatory properties. However, whether EF exerts a protective effect on retinal neovascularization and the underlying mechanisms are not well known. PURPOSE The aim of the study was to investigate the effect of EF on retinal neovascularization and explore its underlying molecular mechanisms. STUDY-DESIGN/METHODS We constructed hypoxia models induced by cobalt chloride (CoCl2) in ARPE-19 cells and Rhesus choroid-retinal vascular endothelial (RF/6A) cells in vitro, as well as a retinal neovascularization model in oxygen-induced retinopathy (OIR) mice in vivo. RESULTS In this work, we demonstrated that EF treatment inhibited hypoxia-induced vascular endothelial growth factor A (VEGFA) expression in ARPE-19 cells and abrogated hypoxia-induced tube formation in RF/6A cells. As expected, intravitreal injection of EF significantly suppressed retinal neovascularization in a dose-dependent manner in OIR retinas. We also found that hypoxia increased VEGFA expression by blocking autophagic flux, whereas EF treatment enhanced autophagic flux, thereby reducing VEGFA expression. Furthermore, EF activated the sequestosome 1 (p62) / nuclear factor E2-related factor 2 (Nrf-2) pathway via upregulating oxidative stress-induced growth inhibitor 1 (OSGIN1) expression, thus alleviating oxidative stress and reducing VEGFA expression. CONCLUSION As a result of our findings, EF has an inhibitory effect on retinal neovascularization, implying a potential therapeutic strategy for hypoxia-induced retinopathy.
Collapse
Affiliation(s)
- Rong Xue
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, No.1 East Jianshe Road, Zhengzhou, Henan 450052, PR China
| | - Xia-Lian Fan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, No.1 East Jianshe Road, Zhengzhou, Henan 450052, PR China
| | - Qian Yang
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, No.1 East Jianshe Road, Zhengzhou, Henan 450052, PR China
| | - Chuan Yu
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, No.1 East Jianshe Road, Zhengzhou, Henan 450052, PR China
| | - Tai-Ying Lu
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, Henan 450052, PR China.
| | - Guang-Ming Wan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, No.1 East Jianshe Road, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
226
|
Li K, Liu Z, Wu P, Chen S, Wang M, Liu W, Zhang L, Guo S, Liu Y, Liu P, Zhang B, Tao L, Ding H, Qian H, Fu Q. Micro electrical fields induced MSC-sEVs attenuate neuronal cell apoptosis by activating autophagy via lncRNA MALAT1/miR-22-3p/SIRT1/AMPK axis in spinal cord injury. J Nanobiotechnology 2023; 21:451. [PMID: 38012570 PMCID: PMC10680254 DOI: 10.1186/s12951-023-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic condition of the central nervous system that causes paralysis of the limbs. Micro electric fields (EF) have been implicated in a novel therapeutic approach for nerve injury repair and regeneration, but the effects of human umbilical cord mesenchymal stem cell-derived small extracellular vesicles that are induced by micro electric fields (EF-sEVs) stimulation on SCI remain unknown. The aim of the present study was to investigate whether EF-sEVs have therapeutic effects a rat model of SCI. EF-sEVs and normally conditioned human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (CON-sEVs) were collected and injected intralesionally into SCI model rats to evaluate the therapeutic effects. We detect the expression of candidate long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA-MALAT1) in EF-sEVs and CON-sEVs. The targets and downstream effectors of lncRNA-MALAT1 were investigated using luciferase reporter assays. Using both in vivo and in vitro experiments, we demonstrated that EF-sEVs increased autophagy and decreased apoptosis after SCI, which promoted the recovery of motor function. We further confirmed that the neuroprotective effects of EF-sEVs in vitro and in vivo correlated with the presence of encapsulated lncRNA-MALAT1 in sEVs. lncRNA-MALAT1 targeted miR-22-3p via sponging, reducing miR-22-3p's suppressive effects on its target, SIRT1, and this translated into AMPK phosphorylation and increased levels of the antiapoptotic protein Bcl-2. Collectively, the present study identified that the lncRNA-MALAT1 in EF-sEVs plays a neuroprotective role via the miRNA-22-3p/SIRT1/AMPK axis and offers a fresh perspective and a potential therapeutic approach using sEVs to improve SCI.
Collapse
Affiliation(s)
- Kewei Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shenyuan Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenhui Liu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Leilei Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Song Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanbin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Beiting Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lin Tao
- Department of Orthopaedics, Dehong Hospital of Traditional Chinese Medicine, Dehong, 678400, Yunnan, China
| | - Hua Ding
- Department of Orthopaedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
227
|
Meng C, Yang Y, Feng W, Ma P, Bai R. Exosomal miR-331-3p derived from chemoresistant osteosarcoma cells induces chemoresistance through autophagy. J Orthop Surg Res 2023; 18:892. [PMID: 37993925 PMCID: PMC10666460 DOI: 10.1186/s13018-023-04338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Osteosarcoma is a common malignant bone tumor, and chemotherapy can effectively improve the prognosis. MicroRNA-331 (MiR-331) is associated with poor cancer outcomes. However, the role of miR-331 in osteosarcoma remains to be explored. METHODS Drug-resistant osteosarcoma cells were cultured, and their exosomes were purified. The secretion and uptake of exosomes by drug-resistant osteosarcoma and osteosarcoma cells were confirmed using a fluorescence tracking assay and Transwell experiments. The effects of drug-resistant exosomes on cell proliferation were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. siRNA-Drosha and neutral sphingomyelinase inhibitor GW4869 were used to determine the transfer of miRNAs. qRT-PCR and western blotting were used to detect the role of autophagy in the regulation of drug-resistant cell-derived exosomal miR-331-3p. RESULTS Exosomal miR-331-3p levels in drug-resistant cells were higher than in exosomes from osteosarcoma cells. The exosomes secreted by the drug-resistant osteosarcoma cells could be absorbed by osteosarcoma cells, leading to acquired drug resistance in previously non-resistance cells. Inhibition of miRNAs resulted in reduced transmission of drug resistance transmission by exosomes. Exosomes from drug-resistant osteosarcoma cells transfected with siRNA-Drosha or treated by GW4869 could not enhance the proliferation of MG63 and HOS cells. Finally, miR-331-3p in the exosomes secreted by drug-resistant osteosarcoma cells could induce autophagy of osteosarcoma cells, allowing them to acquire drug resistance. The inhibition of miR-331-3p decreased drug resistance of osteosarcoma cells. CONCLUSION Exosomes secreted from chemoresistant osteosarcoma cells promote drug resistance through miR-331-3p and autophagy. Inhibition of miR-331-3p could be used to alleviate drug resistance in osteosarcoma.
Collapse
Affiliation(s)
- Chenyang Meng
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yun Yang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wei Feng
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Penglei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Rui Bai
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
228
|
Fan Z, Wan LX, Jiang W, Liu B, Wu D. Targeting autophagy with small-molecule activators for potential therapeutic purposes. Eur J Med Chem 2023; 260:115722. [PMID: 37595546 DOI: 10.1016/j.ejmech.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Autophagy is well-known to be a lysosome-mediated catabolic process for maintaining cellular and organismal homeostasis, which has been established with many links to a variety of human diseases. Compared with the therapeutic strategy for inhibiting autophagy, activating autophagy seems to be another promising therapeutic strategy in several contexts. Hitherto, mounting efforts have been made to discover potent and selective small-molecule activators of autophagy to potentially treat human diseases. Thus, in this perspective, we focus on summarizing the complicated relationships between defective autophagy and human diseases, and further discuss the updated progress of a series of small-molecule activators targeting autophagy in human diseases. Taken together, these inspiring findings would provide a clue on discovering more small-molecule activators of autophagy as targeted candidate drugs for potential therapeutic purposes.
Collapse
Affiliation(s)
- Zhichao Fan
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dongbo Wu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
229
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
230
|
Li P, Cheng B, Yao Y, Yu W, Liu L, Cheng S, Zhang L, Ma M, Qi X, Liang C, Chu X, Ye J, Sun S, Jia Y, Guo X, Wen Y, Zhang F. WISP1 Is Involved in the Pathogenesis of Kashin-Beck Disease via the Autophagy Pathway. Int J Mol Sci 2023; 24:16037. [PMID: 38003226 PMCID: PMC10671535 DOI: 10.3390/ijms242216037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Kashin-Beck disease (KBD) is a kind of endemic and chronic osteochondropathy in China. This study aims to explore the functional relevance and potential mechanism of Wnt-inducible signaling pathway protein 1 (WISP1) in the pathogenesis of KBD. DESIGN KBD and control cartilage specimens were collected for tissue section observation and primary chondrocyte culture. Firstly, the morphological and histopathological observations were made under a light and electron microscope. Then, the expression levels of WISP1 as well as molecular markers related to the autophagy pathway and extracellular matrix (ECM) synthesis were detected in KBD and control chondrocytes by qRT-PCR, Western blot, and immunohistochemistry. Furthermore, the lentiviral transfection technique was applied to make a WISP1 knockdown cell model based on KBD chondrocytes. In vitro intervention experiments were conducted on the C28/I2 human chondrocyte cell line using human recombinant WISP1 (rWISP1). RESULTS The results showed that the autolysosome appeared in the KBD chondrocytes. The expression of WISP1 was significantly higher in KBD chondrocytes. Additionally, T-2 toxin, a risk factor for KBD onset, could up-regulate the expression of WISP1 in C28/I2. The autophagy markers ATG4C and LC3II were upregulated after the low-concentration treatment of T-2 toxin and downregulated after the high-concentration treatment. After knocking down WISP1 expression in KBD chondrocytes, MAP1LC3B decreased while ATG4C and COL2A1 increased. Moreover, the rWISP1 protein treatment in C28/I2 chondrocytes could upregulate the expression of ATG4C and LC3II at the beginning and downregulate them then. CONCLUSIONS Our study suggested that WISP1 might play a role in the pathogenesis of KBD through autophagy.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Wenxing Yu
- Department of Joint Surgery, Xi’an Honghui Hospital, Health Science Center, Xi’an Jiaotong University, Xi’an 710054, China;
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Shiquan Sun
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| |
Collapse
|
231
|
Temby M, Boye TL, Hoang J, Nielsen OH, Gubatan J. Kinase Signaling in Colitis-Associated Colon Cancer and Inflammatory Bowel Disease. Biomolecules 2023; 13:1620. [PMID: 38002302 PMCID: PMC10669043 DOI: 10.3390/biom13111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer is a known complication of chronic inflammation of the colon ("colitis-associated colon cancer"). Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract. Patients with IBD are at increased risk of colon cancer compared to the general population. Kinase signaling pathways play critical roles in both the inflammation and regulating cellular processes such as proliferation and survival that contribute to cancer development. Here we review the interplay of kinase signaling pathways (mitogen-activated protein kinases, cyclin-dependent kinases, autophagy-activated kinases, JAK-STAT, and other kinases) and their effects on colitis-associated colon cancer. We also discuss the role of JAK-STAT signaling in the pathogenesis of IBD and the therapeutic landscape of JAK inhibitors for the treatment of IBD.
Collapse
Affiliation(s)
- Michelle Temby
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA; (M.T.); (J.H.)
| | - Theresa L. Boye
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark; (T.L.B.); (O.H.N.)
| | - Jacqueline Hoang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA; (M.T.); (J.H.)
| | - Ole H. Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark; (T.L.B.); (O.H.N.)
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA; (M.T.); (J.H.)
| |
Collapse
|
232
|
Ma H, Cui J, Liu Z, Fang W, Lu S, Cao S, Zhang Y, Chen JA, Lu L, Xie Q, Wang Y, Huang Y, Li K, Tong H, Huang J, Lu W. Blockade of de novo pyrimidine biosynthesis triggers autophagic degradation of oncoprotein FLT3-ITD in acute myeloid leukemia. Oncogene 2023; 42:3331-3343. [PMID: 37752234 DOI: 10.1038/s41388-023-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The internal tandem duplication of the FMS-like tyrosine kinase 3 (FLT3-ITD) is one of the most frequent genetic alterations in acute myeloid leukemia (AML). Limited and transient clinical benefit of FLT3 kinase inhibitors (FLT3i) emphasizes the need for alternative therapeutic options for this subset of myeloid malignancies. Herein, we showed that FLT3-ITD mutant (FLT3-ITD+) AML cells were susceptible toward inhibitors of DHODH, a rate-limiting enzyme of de novo pyrimidine biosynthesis. Genetic and pharmacological blockade of DHODH triggered downregulation of FLT3-ITD protein, subsequently suppressed activation of downstream ERK and STAT5, and promoted cell death of FLT3-ITD+ AML cells. Mechanistically, DHODH blockade triggered autophagy-mediated FLT3-ITD degradation via inactivating mTOR, a potent autophagy repressor. Notably, blockade of DHODH synergized with an FDA-approved FLT3i quizartinib in significantly impairing the growth of FLT3-ITD+ AML cells and improving tumor-bearing mice survival. We further demonstrated that DHODH blockade exhibited profound anti-proliferation effect on quizartinib-resistant cells in vitro and in vivo. In summary, this study demonstrates that the induction of degradation of FLT3-ITD protein by DHODH blockade may offer a promising therapeutic strategy for AML patients harboring FLT3-ITD mutation.
Collapse
Affiliation(s)
- Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Jiayan Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Zehui Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Wenqing Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Sisi Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Shuying Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Yuanyuan Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Lixue Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Ying Huang
- NMPA Key Laboratory of Rapid Drug Inspection Technology, Guangdong Institute for Drug Control, 510663, Guangzhou, China
| | - Kongfei Li
- Department of Hematology, People's Hospital Affiliated to Ningbo University, 315000, Ningbo, China
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, 310003, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, 310003, Hangzhou, China
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China.
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
233
|
Zhao J, Liang Q, Fu C, Cong D, Wang L, Xu X. Autophagy in sepsis-induced acute lung injury: Friend or foe? Cell Signal 2023; 111:110867. [PMID: 37633477 DOI: 10.1016/j.cellsig.2023.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening syndrome with high mortality and morbidity, resulting in a heavy burden on family and society. As a key factor that maintains cellular homeostasis, autophagy is regarded as a self-digesting process by which damaged organelles and useless proteins are recycled for cell metabolism, and it thus plays a crucial role during physiological and pathological processes. Recent studies have indicated that autophagy is involved in the pathophysiological process of sepsis-induced ALI, including cell apoptosis, inflammation, and mitochondrial dysfunction, which indicates that regulating autophagy may be beneficial for this disease. However, the role of autophagy in the etiology and treatment of sepsis-induced ALI is not well characterized. This review summarizes the autophagy-related signaling pathways in sepsis-induced ALI, as well as focuses on the dual role of autophagy and its regulation by non-coding RNAs during disease progression, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Jiayao Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chenfei Fu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Didi Cong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Long Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoxin Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
234
|
Liu H, Lai W, Nie H, Shi Y, Zhu L, Yang L, Tian L, Li K, Bian L, Xi Z, Lin B. PM 2.5 triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-β1/Smad3 axis promoting pulmonary fibrosis. ENVIRONMENT INTERNATIONAL 2023; 181:108290. [PMID: 37924604 DOI: 10.1016/j.envint.2023.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Air pollution is highly associated with respiratory diseases. However, the influence and mechanism of particulate matter with aerodynamic equal to or less than 2.5 μm (PM2.5) in lung homeostasis remain unclear. Herein, we demonstrated the induction of pulmonary fibrosis (PF) by PM2.5 exposure. The animal model showed that PM2.5 exposure could activate the oxidative stress and inflammation response, promoting epithelial-mesenchymal transition and accumulation of collagen, high expression of pro-fibrotic factors, and pathological characteristics of fibrosis. The proteomic analysis indicated that PM2.5 exposure decreased the expression of caveolin-1 (Cav-1), and many differential proteins were enriched in the TGF-β1/Smad, endoplasmic reticulum stress (ERS) and autophagy pathways. Combining in vivo and in vitro experiments, it was found that PM2.5 exposure could reduce Cav-1 protein levels and activate TGF-β1/Smad3 signaling pathways through ERS and autophagy pathways, thereby inducing cell apoptosis and promoting pulmonary fibrosis. However, inhibiting ERS could alleviate the occurrence of autophagy, and blocking the autophagy system could increase the level of Cav-1 protein and inhibit TGF- β 1/Smad3 signaling pathway to improve pulmonary fibrosis. Therefore, we demonstrated that the exposure of PM2.5 could enhance the ERS induced-autophagy-mediated Cav-1 degradation, thus activating the TGF-β1/Smad3 axis to promote pneumonocytes apoptosis and overproduction of extracellular matrix (ECM), finally aggravating PF. Moreover, our findings revealed that intermittent exposure to high doses of PM2.5 was more toxic than continuous exposure to low dose.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lina Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Linhui Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
235
|
Salemkour Y, Yildiz D, Dionet L, ‘t Hart DC, Verheijden KA, Saito R, Mahtal N, Delbet JD, Letavernier E, Rabant M, Karras A, van der Vlag J, Nijenhuis T, Tharaux PL, Lenoir O. Podocyte Injury in Diabetic Kidney Disease in Mouse Models Involves TRPC6-mediated Calpain Activation Impairing Autophagy. J Am Soc Nephrol 2023; 34:1823-1842. [PMID: 37678257 PMCID: PMC10631601 DOI: 10.1681/asn.0000000000000212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
SIGNIFICANCE STATEMENT Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.
Collapse
Affiliation(s)
| | - Dilemin Yildiz
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Léa Dionet
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Daan C. ‘t Hart
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kim A.T. Verheijden
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ryuta Saito
- Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | - Jean-Daniel Delbet
- Université Paris Cité, Inserm, PARCC, Paris, France
- Pediatric Nephrology Department, Armand Trousseau Hospital, DMU Origyne, APHP, Paris and French Reference Center for Rare Diseases MARHEA, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, Hôpital Tenon, Paris, France
- INSERM UMR S 1155, Hôpital Tenon, Paris, France
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, Paris, France
| | - Marion Rabant
- Pathology Department, Necker-Enfants Malades Hospital - Paris, Paris, France
| | - Alexandre Karras
- Université Paris Cité, Inserm, PARCC, Paris, France
- Nephrology Unit, Georges Pompidou European Hospital - Paris, Paris, France
| | - Johan van der Vlag
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
236
|
Jiang F, Li XX, Xie ZY, Liu L, Wu XT, Wang YT. Scientific Bibliometric and Visual Analysis of Studies on Autophagy in Intervertebral Disc Degeneration Based on Web of Science. World Neurosurg 2023; 179:e601-e613. [PMID: 37708973 DOI: 10.1016/j.wneu.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To analyze the current research trends and potential mechanisms related to the role of autophagy in intervertebral disc degeneration (IVDD) and to provide new ideas for future research in this field. METHODS All articles on IVDD and autophagy were retrieved and extracted from the Web of Science (WoS) core collection database. The results were evaluated and visualized using the bibliometric Web site, CiteSpace, and VOSviewer software, including annual articles published, countries, institutions, authors, journals, research areas, funding agencies, citations, and keywords. RESULTS From January 1, 2011, to December 31, 2022, 323 reviews and original articles were included, and the overall trend in the number of articles was increasing rapidly. China and the United States were the countries with the most scientific research achievements. The 323 articles received a total number of citations of 6949, with an H index of 43 and an average citation of 21.51. The top publication country, institution, author, journal, research area, and funding agency were China, Huazhong University of Science and Technology, Cao Yang of Tongji Medical College, Oxidative Medicine and Cellular Longevity, cell biology, and National Natural Science Foundation of China, respectively. Most of the keywords were associated with the mechanisms and regulatory networks of autophagy. In addition, with increasing evidence showing the key role of autophagy in IVDD, therapy, signaling pathway, and mitophagy are emerging as new research hot spots that should be paid more attention. CONCLUSIONS This study provided a scientific perspective on autophagy in IVDD and elucidated the current research status and hot spots in this field. The mechanism of autophagy and the application of regulating autophagy in the treatment of IVDD deserve further research.
Collapse
Affiliation(s)
- Feng Jiang
- Southeast University Medical College, Nanjing, Jiangsu, China
| | - Xin-Xin Li
- Southeast University Medical College, Nanjing, Jiangsu, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Southeast University ZhongDa Hospital, Nanjing, Jiangsu, China
| | - Lei Liu
- Department of Spine Surgery, Southeast University ZhongDa Hospital, Nanjing, Jiangsu, China
| | - Xiao-Tao Wu
- Southeast University Medical College, Nanjing, Jiangsu, China; Department of Spine Surgery, Southeast University ZhongDa Hospital, Nanjing, Jiangsu, China
| | - Yun-Tao Wang
- Southeast University Medical College, Nanjing, Jiangsu, China; Department of Spine Surgery, Southeast University ZhongDa Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
237
|
Chen H, Su Z, Pan X, Zheng X, Li H, Ye Z, Tang B, Lu Y, Zheng G, Lu C. Phytochemicals: Targeting autophagy to treat psoriasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155041. [PMID: 37678054 DOI: 10.1016/j.phymed.2023.155041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.
Collapse
Affiliation(s)
- Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuqing Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin Pan
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuwei Zheng
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongxia Li
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeting Ye
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
238
|
Zhuang X, Lin X, Xu R, Zhang Z, Zhou B, Deng F. ATG7-mediated autophagy protects human gingival myofibroblasts from irradiation-induced apoptosis. J Oral Pathol Med 2023; 52:996-1003. [PMID: 37876026 DOI: 10.1111/jop.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Apoptosis resistance of myofibroblasts is critical in pathology of irradiation-induced fibrosis and osteoradionecrosis of the jaw (ORNJ). However, molecular mechanism of apoptosis resistance induced by irradiation in oral myofibroblasts remains largely obscure. METHODS Matched ORNJ fibroblasts and normal fibroblasts pairs from gingival were primarily cultured, and myofibroblast markers of α-SMA and FAP were evaluated by qRT-PCR and western blot. CCK8 assay and flow cytometric analysis were performed to investigate the cell viability and apoptosis under irradiation treatment. Autophagy-related protein LC3 and ATG7, and punctate distribution of LC3 localization were further detected. After inhibition of autophagy with inhibitor CQ and 3-MA, as well as transfected ATG7-siRNA, cell viability and apoptosis of ORNJ and normal fibroblasts were further assessed. RESULTS Compared with normal fibroblasts, ORNJ fibroblasts exhibited significantly higher α-SMA and FAP expression, increased cell, viability and decreased apoptosis under irradiation treatment. LC3-II and ATG7 were up-regulated in ORNJ fibroblasts with irradiation stimulation. After inhibition of irradiation-induced autophagic flux with lysosome inhibitor CQ, LC3-II protein was accumulated and punctate distribution of LC3 localization was increased in ORNJ fibroblasts. Moreover, autophagy inhibitor CQ and 3-MA enhanced the irradiation-induced apoptosis but inhibited viability of ORNJ fibroblasts. Silencing ATG7 with siRNA could obviously weaken irradiation-induced LC3-II expression, and promoted irradiation-induced apoptosis of ORNJ fibroblasts. After knockdown of ATG7, finally, p-AKT(Ser473) and p-mTOR(Ser2448) levels of ORNJ fibroblasts were significantly increased under irradiation. CONCLUSION Compared with normal fibroblasts, human gingival myofibroblasts are resistant to irradiation-induced apoptosis via autophagy activation. Silencing ATG7 may evidently inhibit activation of autophagy, and promote apoptosis of gingival myofibroblasts via Akt/mTOR pathway.
Collapse
Affiliation(s)
- Xiumei Zhuang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxuan Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Zhou
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
239
|
Mishra A, Varshney A, Mishra S. Regulation of Atg8 membrane deconjugation by cysteine proteases in the malaria parasite Plasmodium berghei. Cell Mol Life Sci 2023; 80:344. [PMID: 37910326 PMCID: PMC11073460 DOI: 10.1007/s00018-023-05004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
During macroautophagy, the Atg8 protein is conjugated to phosphatidylethanolamine (PE) in autophagic membranes. In Apicomplexan parasites, two cysteine proteases, Atg4 and ovarian tumor unit (Otu), have been identified to delipidate Atg8 to release this protein from membranes. Here, we investigated the role of cysteine proteases in Atg8 conjugation and deconjugation and found that the Plasmodium parasite consists of both activities. We successfully disrupted the genes individually; however, simultaneously, they were refractory to deletion and essential for parasite survival. Mutants lacking Atg4 and Otu showed normal blood and mosquito stage development. All mice infected with Otu KO sporozoites became patent; however, Atg4 KO sporozoites either failed to establish blood infection or showed delayed patency. Through in vitro and in vivo analysis, we found that Atg4 KO sporozoites invade and normally develop into early liver stages. However, nuclear and organelle differentiation was severely hampered during late stages and failed to mature into hepatic merozoites. We found a higher level of Atg8 in Atg4 KO parasites, and the deconjugation of Atg8 was hampered. We confirmed Otu localization on the apicoplast; however, parasites lacking Otu showed no visible developmental defects. Our data suggest that Atg4 is the primary deconjugating enzyme and that Otu cannot replace its function completely because it cleaves the peptide bond at the N-terminal side of glycine, thereby irreversibly inactivating Atg8 during its recycling. These findings highlight a role for the Atg8 deconjugation pathway in organelle biogenesis and maintenance of the homeostatic cellular balance.
Collapse
Affiliation(s)
- Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
240
|
Guo Y, Huang C, Xu C, Qiu L, Yang F. Dysfunction of ZNF554 promotes ROS-induced apoptosis and autophagy in Fetal Growth Restriction via the p62-Keap1-Nrf2 pathway. Placenta 2023; 143:34-44. [PMID: 37804692 DOI: 10.1016/j.placenta.2023.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Fetal growth restriction (FGR) is one of the most common complications of an abnormal pregnancy. Placental dysplasia has been established as a significant contributing factor to FGR. Zinc finger protein 554 (ZNF554) is a member of the Krüppel-associated box domain zinc finger protein subfamily, primarily expressed in the placenta and essential for maintaining normal pregnancy outcomes. However, its precise role in FGR remains uncertain. In this study, we confirmed that ZNF554 was low expressed in the placenta of the FGR pregnancy. To further elucidate the impact of ZNF554 on trophoblasts, we conducted experiments using siRNA and overexpression plasmids on HTR8/SVneo and JEG3 cells. Our findings revealed that silencing ZNF554 increased apoptosis and inhibited migration and invasion, while overexpression reduced apoptosis and promoted migration and invasion. Notably, ZNF554 knockdown decreased cellular antioxidant capacity and elevated the production of reactive oxygen species (ROS). Conversely, ZNF554 activated the nuclear factor E2-related factor 2 (NRF2) signaling pathway, exerting its antioxidant effects. Additionally, ZNF554 knockdown promoted cellular autophagy by suppressing P62 and enhancing LC3-II/LC3-I expression. Importantly, the antioxidant N-acetylcysteine (NAC) partially mitigated the impact of ZNF554 knockdown on mitochondrial ROS in trophoblast cells and subsequent effects on cellular autophagy and apoptosis. In conclusion, our results suggest that ZNF554 plays a pivotal role in modulating trophoblast cell invasion and may serve as a prognostic marker and potential therapeutic target for FGR.
Collapse
Affiliation(s)
- Yanyan Guo
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chuyi Huang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Cailing Xu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Liyan Qiu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Fang Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
241
|
Ma X, Liu Y, Sun L, Hanif Q, Qu K, Liu J, Zhang J, Huang B, Lei C. A novel SNP of TECPR2 gene associated with heat tolerance in Chinese cattle. Anim Biotechnol 2023; 34:1050-1057. [PMID: 34877906 DOI: 10.1080/10495398.2021.2011305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heat stress affects the animal production and causes serious economic losses to the husbandry. Tectonin beta-propeller repeat containing 2 (TECPR2) gene plays an important role in autophagy which may affect the temperature sensation in animals. A missense mutation (XM_024981840.1:c.3989 G > A p.Arg1330His) of the transcripts X4 in the bovine TECPR2 gene was identified. In this study, the c.3989 G > A variant in TECPR2 gene was genotyped in a total of 25 cattle breeds (520 individuals). Our results indicated that the frequency of A allele showed a decreasing pattern from southern cattle to northern cattle, while the frequency of G allele showed the opposite pattern, which was consistent with the climate distribution of China. Compared with the GG genotype, southern cattle carried more the AA and AG genotypes. Furthermore, the association results carried out that the frequencies of genotypes (GG, AG, AA) and the value of climate parameters (mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) were significantly correlated (p < 0.01). Hence, we speculated that the c.3989 G > A variant of TECPR2 gene was associated with the heat tolerance trait in Chinese cattle and the locus may be considered as a molecular marker for Chinese cattle breeding.
Collapse
Affiliation(s)
- Xiaohui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangkai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Luyang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
242
|
Levra S, Rosani U, Gnemmi I, Brun P, Leonardi A, Carriero V, Bertolini F, Balbi B, Profita M, Ricciardolo FLM, Di Stefano A. Impaired autophagy in the lower airways and lung parenchyma in stable COPD. ERJ Open Res 2023; 9:00423-2023. [PMID: 38111541 PMCID: PMC10726222 DOI: 10.1183/23120541.00423-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/24/2023] [Indexed: 12/20/2023] Open
Abstract
Background There is increasing evidence of autophagy activation in COPD, but its role is complex and probably regulated through cell type-specific mechanisms. This study aims to investigate the autophagic process at multiple levels within the respiratory system, using different methods to clarify conflicting results reported so far. Methods This cross-sectional study was performed on bronchial biopsies and peripheral lung samples obtained from COPD patients (30 and 12 per sample type, respectively) and healthy controls (25 and 22 per sample type, respectively), divided by smoking history. Subjects were matched for age and smoking history. We analysed some of the most important proteins involved in autophagosome formation, such as LC3 and p62, as well as some molecules essential for lysosome function, such as lysosome-associated membrane protein 1 (LAMP1). Immunohistochemistry was used to assess the autophagic process in both sample types. ELISA and transcriptomic analysis were performed on lung samples. Results We found increased autophagic stimulus in smoking subjects, regardless of respiratory function. This was revealed by immunohistochemistry through a significant increase in LC3 (p<0.01) and LAMP1 (p<0.01) in small airway bronchiolar epithelium, alveolar septa and alveolar macrophages. Similar results were obtained in bronchial biopsy epithelium by evaluating LC3B (p<0.05), also increased in homogenate lung tissue using ELISA (p<0.05). Patients with COPD, unlike the others, showed an increase in p62 by ELISA (p<0.05). No differences were found in transcriptomics analysis. Conclusions Different techniques, applied at post-transcriptional level, confirm that cigarette smoke stimulates autophagy at multiple levels inside the respiratory system, and that autophagy failure may characterise COPD.
Collapse
Affiliation(s)
- Stefano Levra
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Padua, Italy
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno (Novara), Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padua, Italy
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padua, Italy
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Mirella Profita
- Section of Palermo, Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
| | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Section of Palermo, Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Turin, Italy
- These authors contributed equally
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno (Novara), Italy
- These authors contributed equally
| |
Collapse
|
243
|
Son SH, Lee J, Cho SN, Choi JA, Kim J, Nguyen TD, Lee SA, Son D, Song CH. Herp regulates intracellular survival of Mycobacterium tuberculosis H37Ra in macrophages by regulating reactive oxygen species-mediated autophagy. mBio 2023; 14:e0153523. [PMID: 37800958 PMCID: PMC10653826 DOI: 10.1128/mbio.01535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Several studies have suggested that endoplasmic reticulum (ER) stress is important in the pathogenesis of infectious diseases; however, the precise function of ER stress regulation and the role of Herp as a regulator in Mtb H37Ra-induced ER stress remain elusive. Therefore, our study investigated ER stress and autophagy associated with Herp expression in Mycobacterium tuberculosis-infected macrophages to determine the role of Herp in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| | - Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| | - Jaewhan Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Tam Doan Nguyen
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Seong-Ahn Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Doyi Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
244
|
Ahmed U, Ong SK, Khan KM, Siddiqui R, Khan NA, Shaikh MF, Alawfi BS, Anwar A. Effect of embelin on inhibition of cell growth and induction of apoptosis in Acanthamoeba castellanii. Arch Microbiol 2023; 205:360. [PMID: 37898989 DOI: 10.1007/s00203-023-03698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Acanthamoeba castellanii is the causative agent of fatal encephalitis and blinding keratitis. Current therapies remain a challenge, hence there is a need to search for new therapeutics. Here, we tested embelin (EMB) and silver nanoparticles doped with embelin (EMB-AgNPs) against A. castellanii. Using amoebicidal assays, the results revealed that both compounds inhibited the viability of Acanthamoeba, having an IC50 of 27.16 ± 0.63 and 13.63 ± 1.08 μM, respectively, while causing minimal cytotoxicity against HaCaT cells in vitro. The findings suggest that both samples induced apoptosis through the mitochondria-mediated pathway. Differentially expressed genes analysis showed that 652 genes were uniquely expressed in treated versus untreated cells, out of which 191 were significantly regulated in the negative control vs. conjugate. Combining the analysis, seven genes (ARIH1, RAP1, H3, SDR16C5, GST, SRX1, and PFN) were highlighted as the most significant (Log2 (FC) value ± 4) for the molecular mode of action in vitro. The KEGG analysis linked most of the genes to apoptosis, the oxidative stress signaling pathway, cytochrome P450, Rap1, and the oxytocin signaling pathways. In summary, this study provides a thorough framework for developing therapeutic agents against microbial infections using EMB and EMB-AgNPs.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, Australia
| | - Bader Saleem Alawfi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| |
Collapse
|
245
|
Garofalo M, Payros D, Taieb F, Oswald E, Nougayrède JP, Oswald IP. From ribosome to ribotoxins: understanding the toxicity of deoxynivalenol and Shiga toxin, two food borne toxins. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 37862145 DOI: 10.1080/10408398.2023.2271101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Frederic Taieb
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
246
|
Guo P, Li H, Wang X, Li X, Li X. PG545 Prevents Osteoarthritis Development by Regulating PI3K/AKT/mTOR Signaling and Activating Chondrocyte Autophagy. Pharmacology 2023; 108:576-588. [PMID: 37820587 DOI: 10.1159/000532078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/16/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a degenerative disease common in the elderly and is characterized by joint pain, swelling, and restricted movement. In recent years, heparanase has been reported to play an important role in the development of osteoarthritic cartilage. PG545 is a heparan sulfate mimetic with heparanase inhibitory activity. In this study, the therapeutic effects and possible mechanisms of PG545 were investigated in a chondrocyte injury model induced by interleukin-1β (IL -1β). METHODS Following treatment with PG545 or the autophagy inhibitor 3-methyladenine (3-MA), chondrocyte viability was detected using Cell Counting Kit-8 and fluorescein diacetate/propidium iodide double staining. The apoptosis rate of chondrocytes was determined by flow cytometry. Expression of light chain 3 and P62 was monitored by immunofluorescence labeling. Western blot, lentivirus infection with red fluorescent protein and green fluorescent protein, and quantitative real-time polymerase chain reaction were used to determine the expression levels of chondrocyte markers, apoptosis-related factors, autophagy proteins, and key proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. The expression and activity of stress-specific enzymes such as malondialdehyde, superoxide dismutase, and catalase (CAT) were investigated. Chondrocytes with ATG5 knockdown were used to investigate the relationship between the therapeutic effect of PG545 and autophagy. The therapeutic effect of PG545 was verified in vivo. RESULTS PG545 had a significant protective effect on chondrocytes by reducing oxidative stress, apoptosis, and degradation of chondrocytes and increasing chondrocyte proliferation. PG545 was effective in inducing autophagy in IL-1β-treated cells, while 3-MA attenuated the effect. The PI3K/Akt/mTOR pathway may be involved in the promotion of autophagy and OA treatment by PG545. CONCLUSION PG545 was able to restore impaired autophagy and autophagic flux via the PI3K/Akt/mTOR pathway, thereby delaying the progression of OA, suggesting that PG545 may be a novel therapeutic approach for OA.
Collapse
Affiliation(s)
- Peiyu Guo
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua Li
- Department of Sport Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuming Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingguo Li
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Li
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
247
|
Chen J, Cao W, Huang X, Chen Q, Ye S, Qu J, Liu Y, Guo X, Yao S, Zhang E, He J, Li A, Yang L, Cai Z. TRIM21 enhances bortezomib sensitivity in multiple myeloma by halting prosurvival autophagy. Blood Adv 2023; 7:5752-5770. [PMID: 37083684 PMCID: PMC10561007 DOI: 10.1182/bloodadvances.2022008241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/22/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023] Open
Abstract
Bortezomib (bort) is an effective therapeutic agent for patients with multiple myeloma (MM); however, most patients develop drug resistance. Autophagy, a highly conserved process that recycles cytosol or entire organelles via lysosomal activity, is essential for the survival, homeostasis, and drug resistance in MM. Growing evidence has highlighted that E3 ligase tripartite motif-containing protein 21 (TRIM21) not only interacts with multiple autophagy regulators but also participates in drug resistance in various cancers. However, to date, the direct substrates and additional roles of TRIM21 in MM remain unexplored. In this study, we demonstrated that low TRIM21 expression is a factor for relapse in MM. TRIM21 knockdown (KD) made MM cells more resistant to bort, whereas TRIM21 overexpression (OE) resulted in increased MM sensitivity to bort. Proteomic and phosphoproteomic studies of TRIM21 KD MM cells showed that bort resistance was associated with increased oxidative stress and elevated prosurvival autophagy. Our results showed that TRIM21 KD MM cell lines induced prosurvival autophagy after bort treatment, suppressing autophagy by 3-methyladenine treatment or by the short hairpin RNA of autophagy-related gene 5 (ATG5)-restored-bort sensitivity. Indeed, ATG5 expression was increased and decreased by TRIM21 KD and OE, respectively. TRIM21 affected autophagy by ubiquitinating ATG5 through K48 for proteasomal degradation. Importantly, we confirmed that TRIM21 could potentiate the antimyeloma effect of bort through in vitro and in vivo experiments. Overall, our findings define the key role of TRIM21 in MM bort resistance and provide a foundation for a novel targeted therapeutic approach.
Collapse
Affiliation(s)
- Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuting Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shunnan Yao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anqi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
248
|
Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: Regulator of cell death. Cell Death Dis 2023; 14:648. [PMID: 37794028 PMCID: PMC10551038 DOI: 10.1038/s41419-023-06154-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Autophagy is the process by which cells degrade and recycle proteins and organelles to maintain intracellular homeostasis. Generally, autophagy plays a protective role in cells, but disruption of autophagy mechanisms or excessive autophagic flux usually leads to cell death. Despite recent progress in the study of the regulation and underlying molecular mechanisms of autophagy, numerous questions remain to be answered. How does autophagy regulate cell death? What are the fine-tuned regulatory mechanisms underlying autophagy-dependent cell death (ADCD) and autophagy-mediated cell death (AMCD)? In this article, we highlight the different roles of autophagy in cell death and discuss six of the main autophagy-related cell death modalities, with a focus on the metabolic changes caused by excessive endoplasmic reticulum-phagy (ER-phagy)-induced cell death and the role of mitophagy in autophagy-mediated ferroptosis. Finally, we discuss autophagy enhancement in the treatment of diseases and offer a new perspective based on the use of autophagy for different functional conversions (including the conversion of autophagy and that of different autophagy-mediated cell death modalities) for the clinical treatment of tumors.
Collapse
Affiliation(s)
- ShiZuo Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Yao
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Huan Yang
- The Second School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - YanJiao Wang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
249
|
Minciuna I, Gallage S, Heikenwalder M, Zelber-Sagi S, Dufour JF. Intermittent fasting-the future treatment in NASH patients? Hepatology 2023; 78:1290-1305. [PMID: 37057877 DOI: 10.1097/hep.0000000000000330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
NASH is one of the leading causes of chronic liver disease with the potential of evolving towards end-stage liver disease and HCC, even in the absence of cirrhosis. Apart from becoming an increasingly prevalent indication for liver transplantation in cirrhotic and HCC patients, its burden on the healthcare system is also exerted by the increased number of noncirrhotic NASH patients. Intermittent fasting has recently gained more interest in the scientific community as a possible treatment approach for different components of metabolic syndrome. Basic science and clinical studies have shown that apart from inducing body weight loss, improving cardiometabolic parameters, namely blood pressure, cholesterol, and triglyceride levels; insulin and glucose metabolism; intermittent fasting can reduce inflammatory markers, endoplasmic reticulum stress, oxidative stress, autophagy, and endothelial dysfunction, as well as modulate gut microbiota. This review aims to further explore the main NASH pathogenetic metabolic drivers on which intermittent fasting can act upon and improve the prognosis of the disease, and summarize the current clinical evidence.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology Octavian Fodor, Cluj-Napoca, Romania
- University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
| | - Mathias Heikenwalder
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
250
|
Zhao J, Liu GW, Tao C. Hotspots and future trends of autophagy in Traditional Chinese Medicine: A Bibliometric analysis. Heliyon 2023; 9:e20142. [PMID: 37780780 PMCID: PMC10539644 DOI: 10.1016/j.heliyon.2023.e20142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Objective To discuss the hotspots and future trends of autophagy in traditional Chinese medicine (TCM) and provide a reference for researchers in this field. Method Using visual analysis tools, metrological statistics and visual research on the pertinent literature in the area of autophagy use in TCM were undertaken in the core collection database of the Web of Science. By examining the authors, keywords, research circumstances, research hotspots, and trends of linked research, the use of autophagy in TCM was investigated. Results and Conclusions A total of 916 studies were included, among which Beijing University Chinese Medicine was the largest number of advantageous research institutions, followed by Shanghai University Traditional Chinese Medicine and Guangzhou University Chinese Medicine.The keywords of literature research primarily comprise apoptosis, activation, inhibition, pathway, mechanism, oxidative stress, proliferation, NF-κB, cancer, mtor, etc. At present, the research on autophagy in the field of TCM is increasing on a year-to-year basis. The research has focused on the role played by TCM in malignant tumors, atherosclerosis, Alzheimer's disease through autophagy, and the regulation of autophagy signaling pathways (e.g., PI3K/AKT/mTOR signaling pathway, TLR4 signaling pathway,nrf2 signaling pathway and NF-κB signaling pathway). In the future, the therapeutic effect of TCM on chemotherapy-resistant tumor cells through autophagy pathway, the role of TCM mediating mitophagy and activating autophagy function, and the therapeutic effect of TCM components represented by luteolin on tumors, asthma, myocardial injury and other diseases through autophagy mechanism will be the research hotspots in the future.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Guang-wei Liu
- Department of Gastrointestinal surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Cheng Tao
- Scientific Research Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|