201
|
Morris ER, Kunzelmann S, Caswell SJ, Purkiss AG, Kelly G, Taylor IA. Probing the Catalytic Mechanism and Inhibition of SAMHD1 Using the Differential Properties of R p- and S p-dNTPαS Diastereomers. Biochemistry 2021; 60:1682-1698. [PMID: 33988981 PMCID: PMC8173608 DOI: 10.1021/acs.biochem.0c00944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SAMHD1 is a fundamental regulator of cellular dNTPs that catalyzes their hydrolysis into 2'-deoxynucleoside and triphosphate, restricting the replication of viruses, including HIV-1, in CD4+ myeloid lineage and resting T-cells. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome (AGS) and certain cancers. More recently, SAMHD1 has been linked to anticancer drug resistance and the suppression of the interferon response to cytosolic nucleic acids after DNA damage. Here, we probe dNTP hydrolysis and inhibition of SAMHD1 using the Rp and Sp diastereomers of dNTPαS nucleotides. Our biochemical and enzymological data show that the α-phosphorothioate substitution in Sp-dNTPαS but not Rp-dNTPαS diastereomers prevents Mg2+ ion coordination at both the allosteric and catalytic sites, rendering SAMHD1 unable to form stable, catalytically active homotetramers or hydrolyze substrate dNTPs at the catalytic site. Furthermore, we find that Sp-dNTPαS diastereomers competitively inhibit dNTP hydrolysis, while Rp-dNTPαS nucleotides stabilize tetramerization and are hydrolyzed with similar kinetic parameters to cognate dNTPs. For the first time, we present a cocrystal structure of SAMHD1 with a substrate, Rp-dGTPαS, in which an Fe-Mg-bridging water species is poised for nucleophilic attack on the Pα. We conclude that it is the incompatibility of Mg2+, a hard Lewis acid, and the α-phosphorothioate thiol, a soft Lewis base, that prevents the Sp-dNTPαS nucleotides coordinating in a catalytically productive conformation. On the basis of these data, we present a model for SAMHD1 stereospecific hydrolysis of Rp-dNTPαS nucleotides and for a mode of competitive inhibition by Sp-dNTPαS nucleotides that competes with formation of the enzyme-substrate complex.
Collapse
Affiliation(s)
- Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Andrew G Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
202
|
Tang Z, Kanagal-Shamanna R, Tang G, Patel K, Medeiros LJ, Toruner GA. Analytical and clinical performance of chromosomal microarrays compared with FISH panel and conventional karyotyping in patients with chronic lymphocytic leukemia. Leuk Res 2021; 108:106616. [PMID: 34022744 DOI: 10.1016/j.leukres.2021.106616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
In this single center retrospective analysis on 102 CLL patients, we assessed analytical and clinical performance of CMA against a targeted FISH panel (ATM, TP53, CEP12, D13S319 and LAMP1 loci) and karyotyping. CMA yielded additional information compared to karyotype in 39 cases (38 %). On the other hand, while CMA detected aberrations were also detected by FISH in all 31 cases (30 %), aberrations with low clonal size (<30 %) detected by FISH were missed by CMA. When evaluated with National Cancer Center Network (NCCN) guidelines, the capture rate of prognostic relevant cytogenetic information for FISH only, FISH + Chromosomes and FISH + CMA analyses were 95, 96 and 100 % respectively. With Cancer Cytogenomics Consortium (CGC) Criteria, these figures for FISH only, FISH + Chromosomes and FISH + CMA were 88 %, 92 and 100 % respectively. In conclusion, CMA provides additional analytical information to FISH and karyotyping, but this information has a clinical utility only in a small number of patients. Limit of detection (LOD) issues preclude replacement of FISH by CMA, but CMA may be a viable alternative to karyotyping. Further research is warranted.
Collapse
Affiliation(s)
- Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Keyur Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Gokce A Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
203
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
204
|
Pérez-Carretero C, González-Gascón-y-Marín I, Rodríguez-Vicente AE, Quijada-Álamo M, Hernández-Rivas JÁ, Hernández-Sánchez M, Hernández-Rivas JM. The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics (Basel) 2021; 11:diagnostics11050853. [PMID: 34068813 PMCID: PMC8151186 DOI: 10.3390/diagnostics11050853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.
Collapse
Affiliation(s)
- Claudia Pérez-Carretero
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Ana E. Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Miguel Quijada-Álamo
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José-Ángel Hernández-Rivas
- Department of Hematology, Infanta Leonor University Hospital, 28031 Madrid, Spain; (I.G.-G.-y-M.); (J.-Á.H.-R.)
- Department of Medicine, Complutense University, 28040 Madrid, Spain
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| | - Jesús María Hernández-Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| |
Collapse
|
205
|
Brieghel C, Aarup K, Torp MH, Andersen MA, Yde CW, Tian X, Wiestner A, Ahn IE, Niemann CU. Clinical Outcomes in Patients with Multi-Hit TP53 Chronic Lymphocytic Leukemia Treated with Ibrutinib. Clin Cancer Res 2021; 27:4531-4538. [PMID: 33963002 DOI: 10.1158/1078-0432.ccr-20-4890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE TP53 aberration (TP53 mutation and/or 17p deletion) is the most important predictive marker in chronic lymphocytic leukemia (CLL). Although each TP53 aberration is considered an equal prognosticator, the prognostic value of carrying isolated (single-hit) or multiple (multi-hit) TP53 aberrations remains unclear, particularly in the context of targeted agents. PATIENTS AND METHODS We performed deep sequencing of TP53 using baseline samples collected from 51 TP53 aberrant patients treated with ibrutinib in a phase II study (NCT01500733). RESULTS We identified TP53 mutations in 43 patients (84%) and del(17p) in 47 (92%); 9 and 42 patients carried single-hit and multi-hit TP53, respectively. The multi-hit TP53 subgroup was enriched with younger patients who had prior treatments and unmutated immunoglobulin heavy-chain variable region gene status. We observed significantly shorter overall survival, progression-free survival (PFS), and time-to-progression (TTP) in patients with multi-hit TP53 compared with those with single-hit TP53. Clinical outcomes were similar in patient subgroups stratified by 2 or >2 TP53 aberrations. In multivariable analyses, multi-hit TP53 CLL was independently associated with inferior PFS and TTP. In sensitivity analyses, excluding mutations below 1% VAF demonstrated similar outcome. Results were validated in an independent population-based cohort of 112 patients with CLL treated with ibrutinib. CONCLUSIONS In this study, single-hit TP53 defines a distinct subgroup of patients with an excellent long-term response to single-agent ibrutinib, whereas multi-hit TP53 is independently associated with shorter PFS. These results warrant further investigations on prognostication and management of multi-hit TP53 CLL.See related commentary by Bomben et al., p. 4462.
Collapse
Affiliation(s)
- Christian Brieghel
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kathrine Aarup
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mathias H Torp
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael A Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina W Yde
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
206
|
Skórka K, Chojnacki M, Masternak M, Karczmarczyk A, Subocz E, Wawrzyniak E, Giannopoulos K. The Predominant Prognostic Significance of NOTCH1 Mutation Defined by Emulsion PCR in Chronic Lymphocytic Leukemia. Cancer Manag Res 2021; 13:3663-3674. [PMID: 33986614 PMCID: PMC8110254 DOI: 10.2147/cmar.s302245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose NOTCH1mut represents a new prognostic marker in chronic lymphocytic leukaemia (CLL). The low sensitivity of the current methods may increase the risk of false-negative results, particularly in patients with low NOTCH1mut allelic burden. This study compared two methods of the NOTCH1mut assessment including droplet digital PCR (ddPCR) and amplification-refractory mutation system PCR (ARMS-PCR) untreated CLL patients. Patients and Methods This study included 319 untreated CLL patients. Two PCR-based methods; ddPCR and ARMS-PCR were performed to assess the mutational status of NOTCH1. The Mann–Whitney, Fisher’s exact test, Kruskal–Wallis, Kaplan–Meier, Log rank tests and multivariate Cox proportional hazard regression model were used to analyze collected data. Results We proved that ddPCR increased the detectability of the NOTCH1mut compared to ARMS-PCR in CLL (18.55% vs 6%). We showed a shorter time to first treatment (TTFT) in the NOTCH1mut group of patients compared to the NOTCH1wt defined by ddPCR (1.5 vs 33 months, p=0.01). The TTFT survival curves analysis in subgroups divided according to the mutational status of IGHV and NOTCH1 assessed by ddPCR discriminated group with the best prognosis: IGHVmutNOTCH1wt. Multivariate analysis revealed that the mutational status of IGHV represented an independent prognostic factor for TTFT, while NOTCH1mut determined by ddPCR constituted as a dependent prognostic factor for TTFT. Conclusion The selection of the precise method of NOTCH1mut detection as ddPCR might significantly improve prognostic stratification of CLL patient. Assessment of IGHV might be relevant to more accurate discrimination of prognostic groups of CLL patients, especially in harboring NOTCH1mut irrespective of the quantity of allelic burden.
Collapse
Affiliation(s)
- Katarzyna Skórka
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Michał Chojnacki
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Marta Masternak
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | | | - Edyta Subocz
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland.,Department of Hematology, St. John's Cancer Centre, Lublin, Poland
| |
Collapse
|
207
|
Ebrahimi S, Nonacs P. Genetic diversity through social heterosis can increase virulence in RNA viral infections and cancer progression. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202219. [PMID: 34035948 PMCID: PMC8097216 DOI: 10.1098/rsos.202219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 05/04/2023]
Abstract
In viral infections and cancer tumours, negative health outcomes often correlate with increasing genetic diversity. Possible evolutionary processes for such relationships include mutant lineages escaping host control or diversity, per se, creating too many immune system targets. Another possibility is social heterosis where mutations and replicative errors create clonal lineages varying in intrinsic capability for successful dispersal; improved environmental buffering; resource extraction or effective defence against immune systems. Rather than these capabilities existing in one genome, social heterosis proposes complementary synergies occur across lineages in close proximity. Diverse groups overcome host defences as interacting 'social genomes' with group genetic tool kits exceeding limited individual plasticity. To assess the possibility of social heterosis in viral infections and cancer progression, we conducted extensive literature searches for examples consistent with general and specific predictions from the social heterosis hypothesis. Numerous studies found supportive patterns in cancers across multiple tissues and in several families of RNA viruses. In viruses, social heterosis mechanisms probably result from long coevolutionary histories of competition between pathogen and host. Conversely, in cancers, social heterosis is a by-product of recent mutations. Investigating how social genomes arise and function in viral quasi-species swarms and cancer tumours may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Saba Ebrahimi
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90024, USA
| | - Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90024, USA
| |
Collapse
|
208
|
BCOR gene alterations in hematological diseases. Blood 2021; 138:2455-2468. [PMID: 33945606 DOI: 10.1182/blood.2021010958] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The BCL6 co-repressor (BCOR) is a transcription factor involved in the control of embryogenesis, mesenchymal stem cells function, hematopoiesis and lymphoid development. Recurrent somatic clonal mutations of the BCOR gene and its homologue BCORL1 have been detected in several hematological malignancies and aplastic anemia. They are scattered across the whole gene length and mostly represent frameshifts (deletions, insertions), nonsense and missence mutations. These disruptive events lead to the loss of full-length BCOR protein and to the lack or low expression of a truncated form of the protein, both consistent with the tumor suppressor role of BCOR. BCOR and BCORL1 mutations are similar to those causing two rare X-linked diseases: the oculo-facio-cardio-dental (OFCD) and the Shukla-Vernon syndromes, respectively. Here, we focus on the structure and function of normal BCOR and BCORL1 in normal hematopoietic and lymphoid tissues and review the frequency and clinical significance of the mutations of these genes in malignant and non-malignant hematological diseases. Moreover, we discuss the importance of mouse models to better understand the role of Bcor loss, alone and combined with alterations of other genes (e.g. Dnmt3a and Tet2), in promoting hematological malignancies and in providing a useful platform for the development of new targeted therapies.
Collapse
|
209
|
Low-burden TP53 mutations in CLL: Clinical impact and clonal evolution within the context of different treatment options. Blood 2021; 138:2670-2685. [PMID: 33945616 PMCID: PMC8703362 DOI: 10.1182/blood.2020009530] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) patients with TP53 mutations experience chemo-refractory disease and are therefore indicated for targeted therapy. However, the significance of low-burden TP53 mutations with <10% variant allele frequency (VAF) remains a matter of debate. Here we describe clonal evolution scenarios of low-burden TP53 mutations and analyzed their clinical impact in a "real-world" CLL cohort. TP53 status was assessed by targeted NGS in 511 patients entering first-line treatment with chemo/immunotherapy and 159 relapsed patients treated with targeted agents. Within the pre-therapy cohort, 16% of patients carried low-burden TP53 mutations (0.1-10% VAF). While their presence did not significantly shorten event-free survival after first-line therapy, it affected overall survival (OS). For a subgroup with TP53 mutations of 1-10% VAF, the impact on OS was only observed in patients with unmutated IGHV that had not received targeted therapy, as patients benefited from switching to targeted agents regardless of initial TP53 mutational status. Analysis of the clonal evolution of low-burden TP53 mutations showed that the highest expansion rates were associated with FCR in both first and second-line treatment (median VAF increase 14.8x and 11.8x, respectively) in contrast to treatment with less intense chemo/immunotherapy regimens (1.6x) and without treatment (0.8x). In the relapsed cohort, 33% of patients carried low-burden TP53 mutations, which did not expand significantly upon targeted treatment (median VAF change 1x). Sporadic cases of TP53-mut clonal shifts were connected with the development of resistance-associated mutations. Altogether, our data support the incorporation of low-burden TP53 variants in clinical decision-making.
Collapse
|
210
|
Abstract
Haematopoietic stem and progenitor cells (HSPCs) are defined as unspecialized cells that give rise to more differentiated cells. In a similar way, leukaemic stem and progenitor cells (LSPCs) are defined as unspecialized leukaemic cells, which can give rise to more differentiated cells. Leukaemic cells carry leukaemic mutations/variants and have clear differentiation abnormalities. Pre-leukaemic HSPCs (PreL-HSPCs) carry pre-leukaemic mutations/variants (pLMs) and are capable of producing mature functional cells, which will carry the same variants. Under the roof of LSPCs, one can find a broad range of cell types genetic and disease phenotypes. Present-day knowledge suggests that this phenotypic heterogeneity is the result of interactions between the cell of origin, the genetic background and the microenvironment background. The combination of these attributes will define the LSPC phenotype, frequency, differentiation capacity and evolutionary trajectory. Importantly, as LSPCs are leukaemia-initiating cells that sustain clinical remission and are the source of relapse, an improved understanding of LSPCs phenotype would offer better clinical opportunities for the treatment and hopefully prevention of human leukaemia. The current review will focus on LSPCs attributes in the context of human haematologic malignancies.
Collapse
Affiliation(s)
- L I Shlush
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - T Feldman
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
211
|
Schwenger E, Steidl U. An evolutionary approach to clonally complex hematologic disorders. Blood Cancer Discov 2021; 2:201-215. [PMID: 34027415 PMCID: PMC8133502 DOI: 10.1158/2643-3230.bcd-20-0219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging clonal complexity has brought into question the way in which we perceive and, in turn, treat disorders of the hematopoietic system. Former models of cell-intrinsic clonal dominance driven by acquisition of driver genes in a stereotypic sequence are often insufficient in explaining observations such as clonal hematopoiesis, and new paradigms are in order. Here, we review the evidence both within the hematologic malignancy field and also borrow from perspectives rooted in evolutionary biology to reframe pathogenesis of hematologic disorders as dynamic processes involving complex interplays of genetic and non-genetic subclones and the tissue microenvironment in which they reside.
Collapse
Affiliation(s)
- Emily Schwenger
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, New York
- Departments of Cell Biology and Medicine (Oncology), Albert Einstein Cancer Center, Bronx, New York
- Blood Cancer Institute, Albert Einstein Cancer Center, Bronx, New York
- Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Ulrich Steidl
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, New York.
- Departments of Cell Biology and Medicine (Oncology), Albert Einstein Cancer Center, Bronx, New York.
- Blood Cancer Institute, Albert Einstein Cancer Center, Bronx, New York.
- Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
212
|
Spinello A, Borišek J, Pavlin M, Janoš P, Magistrato A. Computing Metal-Binding Proteins for Therapeutic Benefit. ChemMedChem 2021; 16:2034-2049. [PMID: 33740297 DOI: 10.1002/cmdc.202100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Over one third of biomolecules rely on metal ions to exert their cellular functions. Metal ions can play a structural role by stabilizing the structure of biomolecules, a functional role by promoting a wide variety of biochemical reactions, and a regulatory role by acting as messengers upon binding to proteins regulating cellular metal-homeostasis. These diverse roles in biology ascribe critical implications to metal-binding proteins in the onset of many diseases. Hence, it is of utmost importance to exhaustively unlock the different mechanistic facets of metal-binding proteins and to harness this knowledge to rationally devise novel therapeutic strategies to prevent or cure pathological states associated with metal-dependent cellular dysfunctions. In this compendium, we illustrate how the use of a computational arsenal based on docking, classical, and quantum-classical molecular dynamics simulations can contribute to extricate the minutiae of the catalytic, transport, and inhibition mechanisms of metal-binding proteins at the atomic level. This knowledge represents a fertile ground and an essential prerequisite for selectively targeting metal-binding proteins with small-molecule inhibitors aiming to (i) abrogate deregulated metal-dependent (mis)functions or (ii) leverage metal-dyshomeostasis to selectively trigger harmful cells death.
Collapse
Affiliation(s)
- Angelo Spinello
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Jure Borišek
- National Institute of Chemistry Institution Hajdrihova ulica 19, 1000, Ljubljana, Slovenia
| | - Matic Pavlin
- Laboratory of Microsensor Structures and Electronics Faculty of Electrical Engineering, University of Ljubljana Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Pavel Janoš
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
213
|
Ren C, Wu C, Wang N, Lian C, Yang C. Clonal Architectures Predict Clinical Outcome in Gastric Adenocarcinoma Based on Genomic Variation, Tumor Evolution, and Heterogeneity. Cell Transplant 2021; 30:963689721989606. [PMID: 33900127 PMCID: PMC8085378 DOI: 10.1177/0963689721989606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stomach adenocarcinoma (STAD) is a highly heterogeneous disease. Due to the lack of effective molecular markers and personalized treatment, the prognosis of gastric cancer patients is still very poor. The ABSOLUTE algorithm and cancer cell fraction were used to evaluate the clonal and subclonal status of 349 TCGA (The Cancer Genome Cancer Atlas)-STAD patients. Non-negative matrix factorization was used to identify the mutation characteristics of the samples. Univariate Cox regression analysis was used to determine the relationship between clonal/subclonal events and prognosis, and the Spearman correlation was used to evaluate the relationship of clonal/subclonal events to tumor mutation burden (TMB) and neoantigens. The evolution pattern of STAD demonstrated great tumor heterogeneity. TP53, USH2A, and GLI3 appeared earliest in STAD and may drive STAD. CTNNB1, LRP1B, and ERBB4 appeared the latest in STAD, and may be related to STAD’s progress. Univariate Cox regression analysis identified four early genes, eight intermediate genes, and seven late genes significantly associated with overall survival. The number of subclonal events in the T stage was significantly different. The N stage, gender, and histological type were significantly different for clonal events, and there was a significant correlation between clonal/subclonal events and TMB/neoantigens. Our results highlight the importance of systematic evaluation of evolutionary models in the clinical management of STAD and personalized gastric cancer treatment.
Collapse
Affiliation(s)
- Chenxia Ren
- Central Laboratory, 74652Changzhi Medical College, Shanxi Province, China
| | - Cuiling Wu
- Faculty of Basic Medicine, 74652Changzhi Medical College, Shanxi Province, China
| | - Niuniu Wang
- Central Laboratory, 74652Changzhi Medical College, Shanxi Province, China
| | - Changhong Lian
- Department of General Surgery, 117875Heping Hospital Affiliated to Changzhi Medical College, Shanxi Province, China
| | - Changqing Yang
- Department of Gastroenterology, 117875Heping Hospital Affiliated to Changzhi Medical College, Shanxi Province, China
| |
Collapse
|
214
|
Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution. Front Med 2021; 15:551-561. [PMID: 33893983 DOI: 10.1007/s11684-020-0760-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Glioma is the most common lethal tumor of the human brain. The median survival of patients with primary World Health Organization grade IV glioma is only 14.6 months. The World Health Organization classification of tumors of the central nervous system categorized gliomas into lower-grade gliomas and glioblastomas. Unlike primary glioblastoma that usually develop de novo in the elderly, secondary glioblastoma enriched with an isocitrate dehydrogenase mutant typically progresses from lower-grade glioma within 5-10 years from the time of diagnosis. Based on various evolutional trajectories brought on by clonal and subclonal alterations, the evolution patterns of glioma vary according to different theories. Some important features distinguish the normal brain from other tissues, e.g., the composition of the microenvironment around the tumor cells, the presence of the blood-brain barrier, and others. The underlying mechanism of glioma recurrence and evolution patterns of glioma are different from those of other types of cancer. Several studies correlated tumor recurrence with tumor heterogeneity and the immune microenvironment. However, the detailed reasons for the progression and recurrence of glioma remain controversial. In this review, we introduce the different mechanisms involved in glioma progression, including tumor heterogeneity, the tumor microenvironment and drug resistance, and their pre-clinical implements in clinical trials. This review aimed to provide new insights into further clinical strategies for the treatment of patients with recurrent and secondary glioma.
Collapse
|
215
|
Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J, Deshwar AG, Yu K, Rubanova Y, Macintyre G, Demeulemeester J, Vázquez-García I, Kleinheinz K, Livitz DG, Malikic S, Donmez N, Sengupta S, Anur P, Jolly C, Cmero M, Rosebrock D, Schumacher SE, Fan Y, Fittall M, Drews RM, Yao X, Watkins TBK, Lee J, Schlesner M, Zhu H, Adams DJ, McGranahan N, Swanton C, Getz G, Boutros PC, Imielinski M, Beroukhim R, Sahinalp SC, Ji Y, Peifer M, Martincorena I, Markowetz F, Mustonen V, Yuan K, Gerstung M, Spellman PT, Wang W, Morris QD, Wedge DC, Van Loo P. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 2021; 184:2239-2254.e39. [PMID: 33831375 PMCID: PMC8054914 DOI: 10.1016/j.cell.2021.03.009] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.
Collapse
Affiliation(s)
- Stefan C Dentro
- Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK; Big Data Institute, University of Oxford, Oxford OX3 7LF, UK
| | | | - Kerstin Haase
- Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Maxime Tarabichi
- Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Jeff Wintersinger
- University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, Toronto, ON M5G 1L7, Canada
| | - Amit G Deshwar
- University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, Toronto, ON M5G 1L7, Canada
| | - Kaixian Yu
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yulia Rubanova
- University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, Toronto, ON M5G 1L7, Canada
| | - Geoff Macintyre
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Jonas Demeulemeester
- Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Ignacio Vázquez-García
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK; University of Cambridge, Cambridge CB2 0QQ, UK; Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
| | - Kortine Kleinheinz
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | | | - Salem Malikic
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nilgun Donmez
- Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | - Pavana Anur
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97231, USA
| | - Clemency Jolly
- Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marek Cmero
- University of Melbourne, Melbourne, VIC 3010, Australia; Walter + Eliza Hall Institute, Melbourne, VIC 3000, Australia
| | | | | | - Yu Fan
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Fittall
- Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ruben M Drews
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Xiaotong Yao
- Weill Cornell Medicine, New York, NY 10065, USA; New York Genome Center, New York, NY 10013, USA
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Juhee Lee
- University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Hongtu Zhu
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David J Adams
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6BT, UK; Cancer Genome Evolution Research Group, University College London Cancer Institute, London WC1E 6DD, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6BT, UK; Department of Medical Oncology, University College London Hospitals, London NW1 2BU, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; Massachusetts General Hospital, Department of Pathology, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Paul C Boutros
- University of Toronto, Toronto, ON M5S 3E1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcin Imielinski
- Weill Cornell Medicine, New York, NY 10065, USA; New York Genome Center, New York, NY 10013, USA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - S Cenk Sahinalp
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yuan Ji
- NorthShore University HealthSystem, Evanston, IL 60201, USA; The University of Chicago, Chicago, IL 60637, USA
| | - Martin Peifer
- Department of Translational Genomics, Center for Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | | | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ke Yuan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
| | - Moritz Gerstung
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge CB10 1SD, UK; European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Paul T Spellman
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97231, USA
| | - Wenyi Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Quaid D Morris
- University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David C Wedge
- Big Data Institute, University of Oxford, Oxford OX3 7LF, UK; Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, UK; Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
216
|
Baudoin NC, Bloomfield M. Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes (Basel) 2021; 12:558. [PMID: 33921421 PMCID: PMC8068843 DOI: 10.3390/genes12040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of cellular evolution. For this cellular evolution to take place, a population of cells must contain functional heterogeneity and an assessment of this heterogeneity in the form of natural selection. Cancer cells from advanced malignancies are genomically and functionally very different compared to the healthy cells from which they evolved. Genomic alterations include aneuploidy (numerical and structural changes in chromosome content) and polyploidy (e.g., whole genome doubling), which can have considerable effects on cell physiology and phenotype. Likewise, conditions in the tumor microenvironment are spatially heterogeneous and vastly different than in healthy tissues, resulting in a number of environmental niches that play important roles in driving the evolution of tumor cells. While a number of studies have documented abnormal conditions of the tumor microenvironment and the cellular consequences of aneuploidy and polyploidy, a thorough overview of the interplay between karyotypically abnormal cells and the tissue and tumor microenvironments is not available. Here, we examine the evidence for how this interaction may unfold during tumor evolution. We describe a bidirectional interplay in which aneuploid and polyploid cells alter and shape the microenvironment in which they and their progeny reside; in turn, this microenvironment modulates the rate of genesis for new karyotype aberrations and selects for cells that are most fit under a given condition. We conclude by discussing the importance of this interaction for tumor evolution and the possibility of leveraging our understanding of this interplay for cancer therapy.
Collapse
Affiliation(s)
- Nicolaas C. Baudoin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
217
|
Kwon M, An M, Klempner SJ, Lee H, Kim KM, Sa JK, Cho HJ, Hong JY, Lee T, Min YW, Kim TJ, Min BH, Park WY, Kang WK, Kim KT, Kim ST, Lee J. Determinants of Response and Intrinsic Resistance to PD-1 Blockade in Microsatellite Instability-High Gastric Cancer. Cancer Discov 2021; 11:2168-2185. [PMID: 33846173 DOI: 10.1158/2159-8290.cd-21-0219] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Sequence alterations in microsatellites and an elevated mutational burden are observed in 20% of gastric cancers and associated with clinical response to anti-PD-1 antibodies. However, 50% of microsatellite instability-high (MSI-H) cancers are intrinsically resistant to PD-1 therapies. We conducted a phase II trial of pembrolizumab in patients with advanced MSI-H gastric cancer and included serial and multi-region tissue samples in addition to serial peripheral blood analyses. The number of whole-exome sequencing (WES)-derived nonsynonymous mutations correlated with antitumor activity and prolonged progression-free survival (PFS). Coupling WES to single-cell RNA sequencing, we identified dynamic tumor evolution with greater on-treatment collapse of mutational architecture in responders. Diverse T-cell receptor repertoire was associated with longer PFS to pembrolizumab. In addition, an increase in PD-1+ CD8+ T cells correlated with durable clinical benefit. Our findings highlight the genomic, immunologic, and clinical outcome heterogeneity within MSI-H gastric cancer and may inform development of strategies to enhance responsiveness. SIGNIFICANCE: This study highlights response heterogeneity within MSI-H gastric cancer treated with pembrolizumab monotherapy and underscores the potential for extended baseline and early on-treatment biomarker analyses to identify responders. The observed markers of intrinsic resistance have implications for patient stratification to inform novel combinations among patients with intrinsically resistant features.See related commentary by Fontana and Smyth, p. 2126.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Minsuk Kwon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minae An
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Samuel J Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hyuk Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Hee Jin Cho
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Taehyang Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yang Won Min
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Jun Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Hoon Min
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu-Tae Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
218
|
To portray clonal evolution in blood cancer, count your stem cells. Blood 2021; 137:1862-1870. [PMID: 33512426 DOI: 10.1182/blood.2020008407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Clonal evolution, the process of expansion and diversification of mutated cells, plays an important role in cancer development, resistance, and relapse. Although clonal evolution is most often conceived of as driven by natural selection, recent studies uncovered that neutral evolution shapes clonal evolution in a significant proportion of solid cancers. In hematological malignancies, the interplay between neutral evolution and natural selection is also disputed. Because natural selection selects cells with a greater fitness, providing a growth advantage to some cells relative to others, the architecture of clonal evolution serves as indirect evidence to distinguish natural selection from neutral evolution and has been associated with different prognoses for the patient. Linear architecture, when the new mutant clone grows within the previous one, is characteristic of hematological malignancies and is typically interpreted as being driven by natural selection. Here, we discuss the role of natural selection and neutral evolution in the production of linear clonal architectures in hematological malignancies. Although it is tempting to attribute linear evolution to natural selection, we argue that a lower number of contributing stem cells accompanied by genetic drift can also result in a linear pattern of evolution, as illustrated by simulations of clonal evolution in hematopoietic stem cells. The number of stem cells contributing to long-term clonal evolution is not known in the pathological context, and we advocate that estimating these numbers in the context of cancer and aging is crucial to parsing out neutral evolution from natural selection, 2 processes that require different therapeutic strategies.
Collapse
|
219
|
From Biomarkers to Models in the Changing Landscape of Chronic Lymphocytic Leukemia: Evolve or Become Extinct. Cancers (Basel) 2021; 13:cancers13081782. [PMID: 33917885 PMCID: PMC8068228 DOI: 10.3390/cancers13081782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course. Thus, predicting the outcome of patients with this disease is a topic of special interest. The rapidly changing treatment landscape of CLL has questioned the value of classical biomarkers and prognostic models. Herein we examine the current state-of-the-art of prognostic and predictive biomarkers in the setting of new oral targeted agents with special focus on the most controversial findings over the last years. We also discuss the available information on the role of “old” and “new” prognostic models in the era of oral small molecules. Abstract Chronic lymphocytic leukemia (CLL) is an extremely heterogeneous disease. With the advent of oral targeted agents (Tas) the treatment of CLL has undergone a revolution, which has been accompanied by an improvement in patient’s survival and quality of life. This paradigm shift also affects the value of prognostic and predictive biomarkers and prognostic models, most of them inherited from the chemoimmunotherapy era but with a different behavior with Tas. This review discusses: (i) the role of the most relevant prognostic and predictive biomarkers in the setting of Tas; and (ii) the validity of classic and new scoring systems in the context of Tas. In addition, a critical point of view about predictive biomarkers with special emphasis on 11q deletion, novel resistance mutations, TP53 abnormalities, IGHV mutational status, complex karyotype and NOTCH1 mutations is stated. We also go over prognostic models in early stage CLL such as IPS-E. Finally, we provide an overview of the applicability of the CLL-IPI for patients treated with Tas, as well as the emergence of new models, generated with data from patients treated with Tas.
Collapse
|
220
|
Bailey C, Black JRM, Reading JL, Litchfield K, Turajlic S, McGranahan N, Jamal-Hanjani M, Swanton C. Tracking Cancer Evolution through the Disease Course. Cancer Discov 2021; 11:916-932. [PMID: 33811124 PMCID: PMC7611362 DOI: 10.1158/2159-8290.cd-20-1559] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
During cancer evolution, constituent tumor cells compete under dynamic selection pressures. Phenotypic variation can be observed as intratumor heterogeneity, which is propagated by genome instability leading to mutations, somatic copy-number alterations, and epigenomic changes. TRACERx was set up in 2014 to observe the relationship between intratumor heterogeneity and patient outcome. By integrating multiregion sequencing of primary tumors with longitudinal sampling of a prospectively recruited patient cohort, cancer evolution can be tracked from early- to late-stage disease and through therapy. Here we review some of the key features of the studies and look to the future of the field. SIGNIFICANCE: Cancers evolve and adapt to environmental challenges such as immune surveillance and treatment pressures. The TRACERx studies track cancer evolution in a clinical setting, through primary disease to recurrence. Through multiregion and longitudinal sampling, evolutionary processes have been detailed in the tumor and the immune microenvironment in non-small cell lung cancer and clear-cell renal cell carcinoma. TRACERx has revealed the potential therapeutic utility of targeting clonal neoantigens and ctDNA detection in the adjuvant setting as a minimal residual disease detection tool primed for translation into clinical trials.
Collapse
Affiliation(s)
- Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - James R M Black
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
| | - James L Reading
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | - Kevin Litchfield
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, University College London Cancer Institute, University College London, London, UK
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
221
|
Krause A, Roma L, Lorber T, Dietsche T, Perrina V, Müller DC, Lardinois D, Ruiz C, Savic Prince S, Piscuoglio S, Ng CKY, Bubendorf L. Genomic evolutionary trajectory of metastatic squamous cell carcinoma of the lung. Transl Lung Cancer Res 2021; 10:1792-1803. [PMID: 34012793 PMCID: PMC8107762 DOI: 10.21037/tlcr-21-48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The extent of inter- and intratumoral genomic heterogeneity and the clonal evolution of metastatic squamous cell carcinoma of the lung (LUSC) are poorly understood. Genomic studies of LUSC are challenged by their low tumor cell content. We sought to define the genomic landscape and evolutionary trajectories of metastatic LUSC combining nuclei-flow sorting and whole exome sequencing. METHODS Five patients with primary LUSC and six matched metastases were investigated. Tumor nuclei were sorted based on ploidy and expression of cytokeratin to enrich for tumor cells for whole exome sequencing. RESULTS Flow-sorting increased the mean tumor purity from 26% (range, 12-50%) to 73% (range, 42-93%). Overall, primary LUSCs and their matched metastases shared a median of 79% (range, 67-85%) of copy number aberrations (CNAs) and 74% (range, 65-94%) of non-synonymous mutations, including in tumor suppressor genes such as TP53. Furthermore, the ploidy of the tumors remained unchanged between primary and metastasis in 4/5 patients over time. We found differences in the mutational signatures of shared mutations compared to the private mutations in the primary or metastasis. CONCLUSIONS Our results demonstrate a close genomic relationship between primary LUSCs and their matched metastases, suggesting late dissemination of the metastases from the primary tumors during tumor evolution.
Collapse
Affiliation(s)
- Arthur Krause
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Luca Roma
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thomas Lorber
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tanja Dietsche
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Valeria Perrina
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David C. Müller
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Christian Ruiz
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Spasenija Savic Prince
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Charlotte K. Y. Ng
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
222
|
Bhattacharya S, Mohanty A, Achuthan S, Kotnala S, Jolly MK, Kulkarni P, Salgia R. Group Behavior and Emergence of Cancer Drug Resistance. Trends Cancer 2021; 7:323-334. [PMID: 33622644 PMCID: PMC8500356 DOI: 10.1016/j.trecan.2021.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Drug resistance is a major impediment in cancer. Although it is generally thought that acquired drug resistance is due to genetic mutations, emerging evidence indicates that nongenetic mechanisms also play an important role. Resistance emerges through a complex interplay of clonal groups within a heterogeneous tumor and the surrounding microenvironment. Traits such as phenotypic plasticity, intercellular communication, and adaptive stress response, act in concert to ensure survival of intermediate reversible phenotypes, until permanent, resistant clones can emerge. Understanding the role of group behavior, and the underlying nongenetic mechanisms, can lead to more efficacious treatment designs and minimize or delay emergence of resistance.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sourabh Kotnala
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
223
|
Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, Hong AL, Howard TP, Bandopadhayay P, Wechsler CS, Fung I, Warren AC, Dempster JM, Krill-Burger JM, Paolella BR, Moh P, Jha N, Tang A, Montgomery P, Boehm JS, Hahn WC, Roberts CWM, McFarland JM, Tsherniak A, Golub TR, Vazquez F, Stegmaier K. A first-generation pediatric cancer dependency map. Nat Genet 2021; 53:529-538. [PMID: 33753930 PMCID: PMC8049517 DOI: 10.1038/s41588-021-00819-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023]
Abstract
Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational-burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations, which often encode proteins considered challenging drug targets. To address this, we created a first-generation pediatric cancer dependency map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to that in adult models. Findings from the pediatric cancer dependency map provide preclinical support for ongoing precision medicine clinical trials. The vulnerabilities observed in pediatric cancers were often distinct from those in adult cancer, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.
Collapse
Affiliation(s)
- Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillaume Kugener
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Lillian M Guenther
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew L Hong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Emory University and Department of Hematology and Oncology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Thomas P Howard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline S Wechsler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Iris Fung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Phoebe Moh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Maryland, College Park, MD, USA
| | - Nishant Jha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles W M Roberts
- Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Todd R Golub
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francisca Vazquez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
224
|
Sohail MS, Louie RHY, McKay MR, Barton JP. MPL resolves genetic linkage in fitness inference from complex evolutionary histories. Nat Biotechnol 2021; 39:472-479. [PMID: 33257862 PMCID: PMC8044047 DOI: 10.1038/s41587-020-0737-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Genetic linkage causes the fate of new mutations in a population to be contingent on the genetic background on which they appear. This makes it challenging to identify how individual mutations affect fitness. To overcome this challenge, we developed marginal path likelihood (MPL), a method to infer selection from evolutionary histories that resolves genetic linkage. Validation on real and simulated data sets shows that MPL is fast and accurate, outperforming existing inference approaches. We found that resolving linkage is crucial for accurately quantifying selection in complex evolving populations, which we demonstrate through a quantitative analysis of intrahost HIV-1 evolution using multiple patient data sets. Linkage effects generated by variants that sweep rapidly through the population are particularly strong, extending far across the genome. Taken together, our results argue for the importance of resolving linkage in studies of natural selection.
Collapse
Affiliation(s)
- Muhammad Saqib Sohail
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Raymond H Y Louie
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
225
|
Akimova E, Gassner FJ, Schubert M, Rebhandl S, Arzt C, Rauscher S, Tober V, Zaborsky N, Greil R, Geisberger R. SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining. Nucleic Acids Res 2021; 49:2598-2608. [PMID: 33591315 PMCID: PMC7969033 DOI: 10.1093/nar/gkab051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.
Collapse
Affiliation(s)
- Ekaterina Akimova
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Stefan Rebhandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Claudia Arzt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Stefanie Rauscher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Vanessa Tober
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
226
|
Llaó-Cid L, Roessner PM, Chapaprieta V, Öztürk S, Roider T, Bordas M, Izcue A, Colomer D, Dietrich S, Stilgenbauer S, Hanna B, Martín-Subero JI, Seiffert M. EOMES is essential for antitumor activity of CD8 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:3152-3162. [PMID: 33731848 PMCID: PMC8550953 DOI: 10.1038/s41375-021-01198-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies identified a single-nucleotide polymorphism (SNP) affecting the transcription factor Eomesodermin (EOMES) associated with a significantly increased risk to develop chronic lymphocytic leukemia (CLL). Epigenetic analyses, RNA sequencing, and flow cytometry revealed that EOMES is not expressed in CLL cells, but in CD8+ T cells for which EOMES is a known master regulator. We thus hypothesized that the increased CLL risk associated with the EOMES SNP might be explained by its negative impact on CD8+ T-cell-mediated immune control of CLL. Flow cytometry analyses revealed a higher EOMES expression in CD8+ T cells of CLL patients compared to healthy individuals, and an accumulation of PD-1+ EOMES+ CD8+ T cells in lymph nodes rather than blood or bone marrow in CLL. This was in line with an observed expansion of EOMES+ CD8+ T cells in the spleen of leukemic Eµ-TCL1 mice. As EOMES expression was highest in CD8+ T cells that express inhibitory receptors, an involvement of EOMES in T-cell exhaustion and dysfunction seems likely. Interestingly, Eomes-deficiency in CD8+ T cells resulted in their impaired expansion associated with decreased CLL control in mice. Overall, these observations suggest that EOMES is essential for CD8+ T-cell expansion and/or maintenance, and therefore involved in adaptive immune control of CLL.
Collapse
Affiliation(s)
- Laura Llaó-Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Hematopathology Section, Hospital Clinic, Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.,Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Bola Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
227
|
Parrott AM, Murty VV, Walsh C, Christiano A, Bhagat G, Alobeid B. Interphase fluorescence in situ hybridization analysis of CD19-selected cells: Utility in detecting disease in post-therapy samples of B-cell neoplasms. Cancer Med 2021; 10:2680-2689. [PMID: 33724696 PMCID: PMC8026942 DOI: 10.1002/cam4.3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Context The detection of low‐level persistent or relapsed B‐cell neoplasms, particularly post‐therapy, can be challenging, often requiring multiple testing modalities. Objective Here we investigate the utility of CD19‐based selection of neoplastic B‐cells (CD19S) as an enrichment strategy to improve the detection rate of cytogenetic abnormalities in post‐therapy samples of B‐cell neoplasms, especially those with low‐level disease. Design In a cohort largely comprised of post‐therapy B‐ALL and CLL samples, we performed fluorescence in situ hybridization (FISH) analysis on CD19‐selected cells (CD19S FISH) in 128 specimens from 88 patients, and on non‐selected cells (NS FISH) in a subset of cases. The FISH findings were compared with the concurrent flow cytometry (FC) results in all samples and molecular analysis in a subset. Results CD19S FISH was able to detect cytogenetic aberrations in 86.0% of post‐therapy samples with evidence of disease as determined by routine or MRD FC, compared to 59.1% of samples by NS FISH. CD19S FISH detected significantly higher percentages of positive cells compared to NS FISH (p < 0.001). Importantly, CD19S FISH enabled the detection of emergent subclones (clonal evolution) associated with poor prognosis. Conclusions CD19S FISH can be useful in daily diagnostic practice. Compared to NS FISH, CD19S FISH is quantitatively and qualitatively superior for the detection of cytogenetic aberrations in B‐cell neoplasms, which are important for risk stratification and optimal management of patients with B‐cell neoplasms, especially in the relapsed setting. Although CD19S FISH has a diagnostic sensitivity inferior to that of MRD FC, the sensitivity of this modality is comparable to routine FC for the evaluation of low‐level disease in the post‐therapy setting. Moreover, CD19S samples are invaluable for additional molecular and genetic analyses.
Collapse
Affiliation(s)
- Andrew M Parrott
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Vundavalli V Murty
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Caitlin Walsh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Alecia Christiano
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
228
|
Zapatka M, Tausch E, Öztürk S, Yosifov DY, Seiffert M, Zenz T, Schneider C, Blöhdorn J, Döhner H, Mertens D, Lichter P, Stilgenbauer S. Clonal evolution in chronic lymphocytic leukemia is scant in relapsed but accelerated in refractory cases after chemo(immune)therapy. Haematologica 2021; 107:604-614. [PMID: 33691380 PMCID: PMC8883533 DOI: 10.3324/haematol.2020.265777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
Clonal evolution is involved in the progression of chronic lymphocytic leukemia (CLL). In order to link evolutionary patterns to different disease courses, we performed a long-term longitudinal mutation profiling study of CLL patients. Tracking somatic mutations and their changes in allele frequency over time and assessing the underlying cancer cell fraction revealed highly distinct evolutionary patterns. Surprisingly, in long-term stable disease and in relapse after long-lasting clinical response to treatment, clonal shifts are minor. In contrast, in refractory disease major clonal shifts occur although there is little impact on leukemia cell counts. As this striking pattern in refractory cases is not linked to a strong contribution of known CLL driver genes, the evolution is mostly driven by treatment-induced selection of sub-clones, underlining the need for novel, non-genotoxic treatment regimens.
Collapse
Affiliation(s)
- Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University Hospital Ulm, 89081, Germany
| | - Selcen Öztürk
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Deyan Yordanov Yosifov
- Department of Internal Medicine III, Ulm University Hospital Ulm, 89081, Germany; Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Thorsten Zenz
- University Hospital and University of Zürich, 8091, Switzerland
| | - Christof Schneider
- Department of Internal Medicine III, Ulm University Hospital Ulm, 89081, Germany
| | - Johannes Blöhdorn
- Department of Internal Medicine III, Ulm University Hospital Ulm, 89081, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital Ulm, 89081, Germany
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University Hospital Ulm, 89081, Germany; Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, 69120, Germany.
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Hospital Ulm, 89081, Germany.
| |
Collapse
|
229
|
The future of laboratory testing in chronic lymphocytic leukaemia. Pathology 2021; 53:377-384. [PMID: 33678426 DOI: 10.1016/j.pathol.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 01/24/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is a malignant lymphoproliferative disorder characterised by the accumulation of dysfunctional B-lymphocytes in the blood and lymphoid tissues. It is a clonally complex disease with a high degree of both intra-tumoural and inter-patient heterogeneity. This variability leads to a wide range of clinical outcomes and highlights the critical need for accurate prognostic tests in CLL. With the advent of a range of new targeted agents for CLL in recent years, there is also a clinical need for improved predictive tests to therapy. This review of laboratory testing in CLL focuses on emerging technologies for prognostication including single nucleotide polymorphism microarray for karyotypic analysis, targeted next generation sequencing analysis of the immunoglobulin heavy chain variable region gene as well as genes recurrently mutated in the disease such as TP53, and detection of minimal residual disease.
Collapse
|
230
|
Shetty K, Ott PA. Personal Neoantigen Vaccines for the Treatment of Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2021. [DOI: 10.1146/annurev-cancerbio-060820-111701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer vaccines can generate and amplify tumor-specific T cell responses with the promise to provide long-term control of cancer. All cancer cells harbor genetic alterations encoding neoantigens that are specific to the tumor and not present in normal tissue. Similar to foreign antigens targeted by T cells in infectious disease settings, neoantigens represent the long elusive immunogens for cancer vaccination. Since the vast majority of mutations are unique to individual tumors, neoantigen vaccines require custom design for each patient. The availability of rapid and cost-effective genome sequencing, along with advanced bioinformatics tools, now allows neoantigen-target discovery and vaccine manufacturing in sufficient time for the treatment of cancer patients. Clinical trials in melanoma and glioblastoma have demonstrated the feasibility, immunogenicity, and signals of efficacy of this personalized immunotherapy approach. Key unresolved areas include identification of the most effective vaccine delivery platforms, validation and consensus of neoantigen target selection, and optimal strategies for partnering immunotherapies. Given the universal presence of mutations in cancer and the patient-tailored paradigm, personalized neoantigen vaccines have potential applicability for all cancer patients.
Collapse
Affiliation(s)
- Keerthi Shetty
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Patrick A. Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
231
|
Sutton LA, Ljungström V, Enjuanes A, Cortese D, Skaftason A, Tausch E, Stano Kozubik K, Nadeu F, Armand M, Malcikova J, Pandzic T, Forster J, Davis Z, Oscier D, Rossi D, Ghia P, Strefford JC, Pospisilova S, Stilgenbauer S, Davi F, Campo E, Stamatopoulos K, Rosenquist R, On Behalf Of The European Research Initiative On Cll Eric. Comparative analysis of targeted next-generation sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study. Haematologica 2021; 106:682-691. [PMID: 32273480 PMCID: PMC7927885 DOI: 10.3324/haematol.2019.234716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2-99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.
Collapse
Affiliation(s)
- Lesley-Ann Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Viktor Ljungström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Enjuanes
- Institut d’Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain and Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Diego Cortese
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University,Ulm, Germany
| | - Katerina Stano Kozubik
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain and Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marine Armand
- AP-HP, Hopital Pitie-Salpetriere, Department of Hematology, Sorbonne Université, Paris, France
| | - Jikta Malcikova
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jade Forster
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Zadie Davis
- Department of Hematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - David Oscier
- Department of Hematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Davide Rossi
- Hematology Department, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Paolo Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sarka Pospisilova
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Frederic Davi
- AP-HP, Hopital Pitie-Salpetriere, Department of Hematology, Sorbonne Université, Paris, France
| | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain and Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greec
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
232
|
Koedoot E, van Steijn E, Vermeer M, González-Prieto R, Vertegaal ACO, Martens JWM, Le Dévédec SE, van de Water B. Splicing factors control triple-negative breast cancer cell mitosis through SUN2 interaction and sororin intron retention. J Exp Clin Cancer Res 2021; 40:82. [PMID: 33648524 PMCID: PMC7919097 DOI: 10.1186/s13046-021-01863-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic opportunities. Recently, splicing factors have gained attention as potential targets for cancer treatment. Here we systematically evaluated the role of RNA splicing factors in TNBC cell proliferation. METHODS In this study, we performed an RNAi screen targeting 244 individual splicing factors to systematically evaluate their role in TNBC cell proliferation. For top candidates, mechanistic insight was gained using amongst others western blot, PCR, FACS, molecular imaging and cloning. Pulldown followed by mass spectrometry were used to determine protein-protein interactions and patient-derived RNA sequencing data was used relate splicing factor expression levels to proliferation markers. RESULTS We identified nine splicing factors, including SNRPD2, SNRPD3 and NHP2L1, of which depletion inhibited proliferation in two TNBC cell lines by deregulation of sister chromatid cohesion (SCC) via increased sororin intron 1 retention and down-regulation of SMC1, MAU2 and ESPL1. Protein-protein interaction analysis of SNRPD2, SNRPD3 and NHP2L1 identified that seven out of the nine identified splicing factors belong to the same spliceosome complex including novel component SUN2 that was also critical for efficient sororin splicing. Finally, sororin transcript levels are highly correlated to various proliferation markers in BC patients. CONCLUSION We systematically determined splicing factors that control proliferation of breast cancer cells through a mechanism that involves effective sororin splicing and thereby appropriate sister chromatid cohesion. Moreover, we identified SUN2 as an important new spliceosome complex interacting protein that is critical in this process. We anticipate that deregulating sororin levels through targeting of the relevant splicing factors might be a potential strategy to treat TNBC.
Collapse
Affiliation(s)
- Esmee Koedoot
- Division of Drug Discovery and Safety, LACDR, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eline van Steijn
- Division of Drug Discovery and Safety, LACDR, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marjolein Vermeer
- Division of Drug Discovery and Safety, LACDR, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Román González-Prieto
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, LACDR, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, LACDR, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
233
|
Fang W, Jin H, Zhou H, Hong S, Ma Y, Zhang Y, Su X, Chen L, Yang Y, Xu S, Liao Y, He Y, Zhao H, Huang Y, Gao Z, Zhang L. Intratumoral heterogeneity as a predictive biomarker in anti-PD-(L)1 therapies for non-small cell lung cancer. Mol Cancer 2021; 20:37. [PMID: 33622313 PMCID: PMC7901210 DOI: 10.1186/s12943-021-01331-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Haoxuan Jin
- Cancer Research Institute of YuceBio, Shenzhen, China.,YuceBio Technology Co., Ltd., Shenzhen, China
| | - Huaqiang Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Shaodong Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Yuxiang Ma
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Yaxiong Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Xiaofan Su
- Cancer Research Institute of YuceBio, Shenzhen, China.,YuceBio Technology Co., Ltd., Shenzhen, China
| | - Longyun Chen
- Cancer Research Institute of YuceBio, Shenzhen, China.,YuceBio Technology Co., Ltd., Shenzhen, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Shengqiang Xu
- Cancer Research Institute of YuceBio, Shenzhen, China.,YuceBio Technology Co., Ltd., Shenzhen, China
| | - Yuwei Liao
- Yangjiang Key Laboratory of Respiratory Diseases, Yangjiang People's Hospital, Yangjiang, China
| | - Yuming He
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Hongyun Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Zhibo Gao
- Cancer Research Institute of YuceBio, Shenzhen, China. .,YuceBio Technology Co., Ltd., Shenzhen, China.
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
234
|
Pfisterer U, Bräunig J, Brattås P, Heidenblad M, Karlsson G, Fioretos T. Single-cell sequencing in translational cancer research and challenges to meet clinical diagnostic needs. Genes Chromosomes Cancer 2021; 60:504-524. [PMID: 33611828 DOI: 10.1002/gcc.22944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to capture alterations in the genome or transcriptome by next-generation sequencing has provided critical insight into molecular changes and programs underlying cancer biology. With the rapid technological development in single-cell sequencing, it has become possible to study individual cells at the transcriptional, genetic, epigenetic, and protein level. Using single-cell analysis, an increased resolution of fundamental processes underlying cancer development is obtained, providing comprehensive insights otherwise lost by sequencing of entire (bulk) samples, in which molecular signatures of individual cells are averaged across the entire cell population. Here, we provide a concise overview on the application of single-cell analysis of different modalities within cancer research by highlighting key articles of their respective fields. We furthermore examine the potential of existing technologies to meet clinical diagnostic needs and discuss current challenges associated with this translation.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Julia Bräunig
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Per Brattås
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Markus Heidenblad
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
235
|
Yuan G, Flores NM, Hausmann S, Lofgren SM, Kharchenko V, Angulo-Ibanez M, Sengupta D, Lu X, Czaban I, Azhibek D, Vicent S, Fischle W, Jaremko M, Fang B, Wistuba II, Chua KF, Roth JA, Minna JD, Shao NY, Jaremko Ł, Mazur PK, Gozani O. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 2021; 590:504-508. [PMID: 33536620 PMCID: PMC7895461 DOI: 10.1038/s41586-020-03170-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023]
Abstract
Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Biology, Stanford University, Stanford, CA 94305, USA,These authors contributed equally to the work
| | - Natasha M. Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA,These authors contributed equally to the work
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shane M. Lofgren
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vladlena Kharchenko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Maria Angulo-Ibanez
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | - Xiaoyin Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Iwona Czaban
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dulat Azhibek
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Silvestre Vicent
- University of Navarra, Center for Applied Medical Research, Pamplona, 31008, Spain
| | - Wolfgang Fischle
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katrin F. Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research and Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau SAR, China,To whom correspondence should be addressed: ; ; ;
| | - Łukasz Jaremko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia,To whom correspondence should be addressed: ; ; ;
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA,To whom correspondence should be addressed: ; ; ;
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA,To whom correspondence should be addressed: ; ; ;
| |
Collapse
|
236
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
237
|
Haffner MC, Zwart W, Roudier MP, True LD, Nelson WG, Epstein JI, De Marzo AM, Nelson PS, Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol 2021; 18:79-92. [PMID: 33328650 PMCID: PMC7969494 DOI: 10.1038/s41585-020-00400-w] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
From a clinical, morphological and molecular perspective, prostate cancer is a heterogeneous disease. Primary prostate cancers are often multifocal, having topographically and morphologically distinct tumour foci. Sequencing studies have revealed that individual tumour foci can arise as clonally distinct lesions with no shared driver gene alterations. This finding demonstrates that multiple genomically and phenotypically distinct primary prostate cancers can be present in an individual patient. Lethal metastatic prostate cancer seems to arise from a single clone in the primary tumour but can exhibit subclonal heterogeneity at the genomic, epigenetic and phenotypic levels. Collectively, this complex heterogeneous constellation of molecular alterations poses obstacles for the diagnosis and treatment of prostate cancer. However, advances in our understanding of intra-tumoural heterogeneity and the development of novel technologies will allow us to navigate these challenges, refine approaches for translational research and ultimately improve patient care.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Pathology, University of Washington, Seattle, WA, USA,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - William G. Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan I. Epstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
238
|
Qi M, Xie L, Duan G. Adriamycin-resistant cells are significantly less fit than adriamycin-sensitive cells in cervical cancer. Open Life Sci 2021; 16:53-60. [PMID: 33817298 PMCID: PMC7874629 DOI: 10.1515/biol-2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/15/2022] Open
Abstract
Adriamycin (ADR) is an important chemotherapy agent in many advanced cancers, but the emergence of drug resistance during treatment is a major limitation to its successful use. Recent studies have suggested that drug-resistant cells become less fit and their growth could be inhibited by parental cells without cytotoxic treatment. In this study, we examined the fitness differences between HeLa and HeLa/ADR cells. Compared with the parental cell line, HeLa/ADR cells showed significantly lower growth rates, both in vitro and in vivo. There was no difference in the apoptosis rate between them, but G1 arrest and reduced DNA synthesis were found in HeLa/ADR cells. Further study indicated that HeLa/ADR cells failed to compete for space and nutrition against parental cells in vivo. Taken together, we demonstrate that HeLa/ADR cells are less fit and their growth can be inhibited by parental cells in the absence of ADR; therefore, the maintenance of a certain amount of ADR-sensitive cells during treatment may facilitate the control of the development of ADR resistance.
Collapse
Affiliation(s)
- Min Qi
- Department of Radiology, The Third People's Hospital of Kunming City, The Sixth Affiliated Hospital of Dali University, Kunming 650041, China
| | - Lijuan Xie
- Department of Infection, First Affiliated Hospital of Kunming Medical University, Kunming 650332, China
| | - Guihua Duan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| |
Collapse
|
239
|
Walker JS, Hing ZA, Harrington B, Baumhardt J, Ozer HG, Lehman A, Giacopelli B, Beaver L, Williams K, Skinner JN, Cempre CB, Sun Q, Shacham S, Stromberg BR, Summers MK, Abruzzo LV, Rassenti L, Kipps TJ, Parikh S, Kay NE, Rogers KA, Woyach JA, Coppola V, Chook YM, Oakes C, Byrd JC, Lapalombella R. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J Hematol Oncol 2021; 14:17. [PMID: 33451349 PMCID: PMC7809770 DOI: 10.1186/s13045-021-01032-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood. METHODS We performed a large, multi-center retrospective analysis of CLL cases (N = 1286) to correlate nonsynonymous mutations in XPO1 (predominantly E571K or E571G; n = 72) with genetic and epigenetic features contributing to the overall outcomes in these patients. We then established a mouse model with over-expression of wildtype (wt) or mutant (E571K or E571G) XPO1 restricted to the B cell compartment (Eµ-XPO1). Eµ-XPO1 mice were then crossed with the Eµ-TCL1 CLL mouse model. Lastly, we determined crystal structures of XPO1 (wt or E571K) bound to several selective inhibitors of nuclear export (SINE) molecules (KPT-185, KPT-330/Selinexor, and KPT-8602/Eltanexor). RESULTS We report that nonsynonymous mutations in XPO1 associate with high risk genetic and epigenetic features and accelerated CLL progression. Using the newly-generated Eµ-XPO1 mouse model, we found that constitutive B-cell over-expression of wt or mutant XPO1 could affect development of a CLL-like disease in aged mice. Furthermore, concurrent B-cell expression of XPO1 with E571K or E571G mutations and TCL1 accelerated the rate of leukemogenesis relative to that of Eµ-TCL1 mice. Lastly, crystal structures of E571 or E571K-XPO1 bound to SINEs, including Selinexor, are highly similar, suggesting that the activity of this class of compounds will not be affected by XPO1 mutations at E571 in patients with CLL. CONCLUSIONS These findings indicate that mutations in XPO1 at E571 can drive leukemogenesis by priming the pre-neoplastic lymphocytes for acquisition of additional genetic and epigenetic abnormalities that collectively result in neoplastic transformation.
Collapse
Affiliation(s)
- Janek S Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Zachary A Hing
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Bonnie Harrington
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jordan Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Lehman
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jordan N Skinner
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Casey B Cempre
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Qingxiang Sun
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lynne V Abruzzo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Laura Rassenti
- Department of Medicine, Division of Hematology, University of California-San Diego School of Medicine, San Diego, CA, USA
| | - Thomas J Kipps
- Department of Medicine, Division of Hematology, University of California-San Diego School of Medicine, San Diego, CA, USA
| | - Sameer Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kerry A Rogers
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, USA
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
240
|
Chen AP, Kummar S, Moore N, Rubinstein LV, Zhao Y, Williams PM, Palmisano A, Sims D, O'Sullivan Coyne G, Rosenberger CL, Simpson M, Raghav KPS, Meric-Bernstam F, Leong S, Waqar S, Foster JC, Konaté MM, Das B, Karlovich C, Lih CJ, Polley E, Simon R, Li MC, Piekarz R, Doroshow JH. Molecular Profiling-Based Assignment of Cancer Therapy (NCI-MPACT): A Randomized Multicenter Phase II Trial. JCO Precis Oncol 2021; 5:PO.20.00372. [PMID: 33928209 PMCID: PMC8078898 DOI: 10.1200/po.20.00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
This trial assessed the utility of applying tumor DNA sequencing to treatment selection for patients with advanced, refractory cancer and somatic mutations in one of four signaling pathways by comparing the efficacy of four study regimens that were either matched to the patient's aberrant pathway (experimental arm) or not matched to that pathway (control arm). MATERIALS AND METHODS Adult patients with an actionable mutation of interest were randomly assigned 2:1 to receive either (1) a study regimen identified to target the aberrant pathway found in their tumor (veliparib with temozolomide or adavosertib with carboplatin [DNA repair pathway], everolimus [PI3K pathway], or trametinib [RAS/RAF/MEK pathway]), or (2) one of the same four regimens, but chosen from among those not targeting that pathway. RESULTS Among 49 patients treated in the experimental arm, the objective response rate was 2% (95% CI, 0% to 10.9%). One of 20 patients (5%) in the experimental trametinib cohort had a partial response. There were no responses in the other cohorts. Although patients and physicians were blinded to the sequencing and random assignment results, a higher pretreatment dropout rate was observed in the control arm (22%) compared with the experimental arm (6%; P = .038), suggesting that some patients may have had prior tumor mutation profiling performed that led to a lack of participation in the control arm. CONCLUSION Further investigation, better annotation of predictive biomarkers, and the development of more effective agents are necessary to inform treatment decisions in an era of precision cancer medicine. Increasing prevalence of tumor mutation profiling and preference for targeted therapy make it difficult to use a randomized phase II design to evaluate targeted therapy efficacy in an advanced disease setting.
Collapse
Affiliation(s)
- Alice P. Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Nancy Moore
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Yingdong Zhao
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - P. Mickey Williams
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Alida Palmisano
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
- General Dynamics Information Technology (GDIT), Falls Church, VA
| | - David Sims
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Mel Simpson
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kanwal P. S. Raghav
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Funda Meric-Bernstam
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Saiama Waqar
- Department of Medical Oncology, Washington University School of Medicine, St Louis, MO
| | - Jared C. Foster
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Mariam M. Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Biswajit Das
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Chris Karlovich
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Chih-Jian Lih
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Eric Polley
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Richard Simon
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Ming-Chung Li
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Richard Piekarz
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
241
|
Hampel PJ, Parikh SA, Call TG. Incorporating molecular biomarkers into the continuum of care in chronic lymphocytic leukemia. Leuk Lymphoma 2021; 62:1289-1301. [PMID: 33410372 DOI: 10.1080/10428194.2020.1869966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a mature B-cell malignancy characterized by marked heterogeneity. Discoveries in disease biology over the past two decades have helped explain clinical variability and heralded the arrival of the targeted therapy era. In this article, we review improvements in risk stratification which have coincided with this progress, including individual biomarkers and their incorporation into prognostic models. Amidst an ever-expanding list of biomarkers, we seek to bring focus to the essential tests to improve patient care and counseling at particular times in the disease course, beginning with prognosis at diagnosis. The majority of patients do not require treatment at the time of diagnosis, making time-to-first-treatment a key initial prognostic concern. Prognostic and predictive biomarkers are then considered at subsequent major junctures, including at the time of treatment initiation, while on therapy, and at the time of relapse on novel agents.
Collapse
Affiliation(s)
- Paul J Hampel
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Call
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
242
|
Building a network of TP53 and IGHV testing reference centers across Spain: the Red53 initiative. Ann Hematol 2021; 100:825-830. [PMID: 33409623 PMCID: PMC7914181 DOI: 10.1007/s00277-020-04331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/28/2020] [Indexed: 12/02/2022]
Abstract
Among the different biomarkers predicting response in chronic lymphocytic leukemia (CLL), the most influential parameters are the mutational status of the IGHV genes and the presence of TP53 gene disruptions. Nevertheless, these important assessments are not readily available in most centers dealing with CLL patients. To provide this molecular testing across the country, the Spanish Cooperative Group on CLL (GELLC) established a network of four analytical reference centers. A total of 2153 samples from 256 centers were analyzed over a period of 30 months. In 9% of the patients, we found pathological mutations in the TP53 gene, whereas 48.96% were classified as IGHV unmutated. Results of the satisfaction survey of the program showed a Net Promoter Score of 85.15. Building a national network for molecular testing in CLL allowed the CLL population a broad access to complex biomarkers analysis that should translate into a more accurate and informed therapeutic decision-making.
Collapse
|
243
|
Borišek J, Casalino L, Saltalamacchia A, Mays SG, Malcovati L, Magistrato A. Atomic-Level Mechanism of Pre-mRNA Splicing in Health and Disease. Acc Chem Res 2021; 54:144-154. [PMID: 33317262 DOI: 10.1021/acs.accounts.0c00578] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intron removal from premature-mRNA (pre-mRNA splicing) is an essential part of gene expression and regulation that is required for the production of mature, protein-coding mRNA. The spliceosome (SPL), a majestic machine composed of five small nuclear RNAs and hundreds of proteins, behaves as an eminent transcriptome tailor, efficiently performing splicing as a protein-directed metallo-ribozyme. To select and excise long and diverse intronic sequences with single-nucleotide precision, the SPL undergoes a continuous compositional and conformational remodeling, forming eight distinct complexes throughout each splicing cycle. Splicing fidelity is of paramount importance to preserve the integrity of the proteome. Mutations in splicing factors can severely compromise the accuracy of this machinery, leading to aberrant splicing and altered gene expression. Decades of biochemical and genetic studies have provided insights into the SPL's composition and function, but its complexity and plasticity have prevented an in-depth mechanistic understanding. Single-particle cryogenic electron microscopy techniques have ushered in a new era for comprehending eukaryotic gene regulation, providing several near-atomic resolution structures of the SPL from yeast and humans. Nevertheless, these structures represent isolated snapshots of the splicing process and are insufficient to exhaustively assess the function of each SPL component and to unravel particular facets of the splicing mechanism in a dynamic environment.In this Account, building upon our contributions in this field, we discuss the role of biomolecular simulations in uncovering the mechanistic intricacies of eukaryotic splicing in health and disease. Specifically, we showcase previous applications to illustrate the role of atomic-level simulations in elucidating the function of specific proteins involved in the architectural reorganization of the SPL along the splicing cycle. Moreover, molecular dynamics applications have uniquely contributed to decrypting the channels of communication required for critical functional transitions of the SPL assemblies. They have also shed light on the role of carcinogenic mutations in the faithful selection of key intronic regions and the molecular mechanism of splicing modulators. Additionally, we emphasize the role of quantum-classical molecular dynamics in unraveling the chemical details of pre-mRNA cleavage in the SPL and in its evolutionary ancestors, group II intron ribozymes. We discuss methodological pitfalls of multiscale calculations currently used to dissect the splicing mechanism, presenting future challenges in this field. The results highlight how atomic-level simulations can enrich the interpretation of experimental results. We envision that the synergy between computational and experimental approaches will aid in developing innovative therapeutic strategies and revolutionary gene modulation tools to fight the over 200 human diseases associated with splicing misregulation, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Jure Borišek
- Theory Department, National Institute of Chemistry, Ljubljana 1001, Slovenia
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | | | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
- Department of Hematology, IRCCS S. Matteo Hospital Foundation, Pavia 27100, Italy
| | | |
Collapse
|
244
|
Magnes T, Wagner S, Thorner AR, Neureiter D, Klieser E, Rinnerthaler G, Weiss L, Huemer F, Zaborsky N, Steiner M, Weis S, Greil R, Egle A, Melchardt T. Clonal evolution in diffuse large B-cell lymphoma with central nervous system recurrence. ESMO Open 2021; 6:100012. [PMID: 33399078 PMCID: PMC7807834 DOI: 10.1016/j.esmoop.2020.100012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The prognosis of patients with secondary central nervous system lymphoma (SCNSL) is poor and despite massive advances in understanding the mutational landscape of primary diffuse large B-cell lymphoma (DLBCL), the genetic comparison to SCNSL is still lacking. We therefore collected paired samples from six patients with DLBCL with available biopsies from a lymph node (LN) at primary diagnosis and the central nervous system (CNS) at recurrence. PATIENTS AND METHODS A targeted, massively parallel sequencing approach was used to analyze 216 genes recurrently mutated in DLBCL. Healthy tissue from each patient was also sequenced in order to exclude germline mutations. The results of the primary biopsies were compared with those of the CNS recurrences to depict the genetic background of SCNSL and evaluate clonal evolution. RESULTS Sequencing was successful in five patients, all of whom had at least one discordant mutation that was not detected in one of their samples. Four patients had mutations that were found in the CNS but not in the primary LN. Discordant mutations were found in genes known to be important in lymphoma biology such as MYC, CARD11, EP300 and CCND3. Two patients had a Jaccard similarity coefficient below 0.5 indicating substantial genetic differences between the primary LN and the CNS recurrence. CONCLUSIONS This analysis gives an insight into the genetic landscape of SCNSL and confirms the results of our previous study on patients with systemic recurrence of DLBCL with evidence of substantial clonal diversification at relapse in some patients, which might be one of the mechanisms of treatment resistance.
Collapse
Affiliation(s)
- T Magnes
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - S Wagner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - A R Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, USA
| | - D Neureiter
- Department of Pathology, Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria
| | - E Klieser
- Department of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - G Rinnerthaler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria
| | - L Weiss
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria
| | - F Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria
| | - N Zaborsky
- Cancer Cluster Salzburg, Salzburg, Austria; Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria
| | - M Steiner
- Cancer Cluster Salzburg, Salzburg, Austria; Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria
| | - S Weis
- Division of Neuropathology, Department of Pathology and Neuropathology, Kepler University Hospital and School of Medicine, Johannes Kepler University, Linz, Austria
| | - R Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria; Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria
| | - A Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria; Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria
| | - T Melchardt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria; Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria.
| |
Collapse
|
245
|
Eichhorst B, Robak T, Montserrat E, Ghia P, Niemann CU, Kater AP, Gregor M, Cymbalista F, Buske C, Hillmen P, Hallek M, Mey U. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2021; 32:23-33. [PMID: 33091559 DOI: 10.1016/j.annonc.2020.09.019] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- B Eichhorst
- Department I Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, University of Cologne, Cologne, Germany
| | - T Robak
- Department of Hematology, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - E Montserrat
- Institute of Hematology and Oncology, Department of Hematology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - P Ghia
- Strategic Research Program on CLL, Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - C U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - A P Kater
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - M Gregor
- Hematology, Luzerner Kantonsspital, Luzern, Switzerland
| | - F Cymbalista
- Hematology Biology, Hôpital Avicenne, Assistance Publique Hopitaux de Paris, UMR U978 INSERM, Bobigny, France
| | - C Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Center, University Hospital of Ulm, Ulm, Germany
| | - P Hillmen
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Leeds, UK
| | - M Hallek
- Department I Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, University of Cologne, Cologne, Germany; Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - U Mey
- Department of Oncology and Haematology, Kantonsspital Graubuenden, Chur, Switzerland
| |
Collapse
|
246
|
Nweke EE, Thimiri Govinda Raj DB. Drug Sensitivity and Drug Repurposing Platform for Cancer Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:47-53. [PMID: 33629259 DOI: 10.1007/5584_2021_622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the critical Global challenges in achieving the UN Sustainable Development Goals 3 Good Health and Well Being is optimizing drug discovery and translational research for unmet medical need in both communicable and non-communicable diseases. Recently, the WHO reports there has been a shift from communicable diseases to non-communicable diseases with respect to being the leading cause of death globally and particularly in low- and middle-income countries such as South Africa. Hence, there is current drive to establish functional precision medicine program that addresses the unmet medical need using high throughput drug sensitivity and drug repurposing platform. Here, this paper serves as a perspective to showcase the recent development in high throughput drug sensitivity screening platform for the cancer precision medicine. We also elaborate on the benefit and applications of high-throughput drug screening platform for Precision Medicine. From a future perspective, this paper aims to showcase the possibility to integrate existing high-throughput drug sensitivity screening platform with the newly developed platform technologies such as microfluidics based single cell drug screening.
Collapse
Affiliation(s)
- Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines Group, ERA Synthetic Biology, Centre for Synthetic Biology and Precision Medicine, Council for Scientific and Industrial Research, Pretoria, South Africa. .,Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa.
| |
Collapse
|
247
|
Larsen NA. The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors. Subcell Biochem 2021; 96:409-432. [PMID: 33252738 DOI: 10.1007/978-3-030-58971-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In this chapter, the essential role of the SF3b multi-protein complex will be discussed in the context of the overall spliceosome. SF3b is critical during spliceosome assembly for recognition of the branch point (BP) adenosine and, by de facto, selection of the 3' splice site. This complex is highly dynamic, undergoing significant conformational changes upon loading of the branch duplex RNA and in its relative positioning during spliceosomal remodeling from the A, pre-B, B, Bact and B* complexes. Ultimately, during the spliceosome activation phase, SF3b must be displaced to unmask the branch point adenosine for the first splicing reaction to occur. In certain cancers, such as the hematological malignancies CML, CLL and MDS, the SF3b subunit SF3B1 is frequently mutated. Recent studies suggest these mutations lead to inappropriate branch point selection and mis-splicing events that appear to be drivers of disease. Finally, the SF3b complex is the target for at least three different classes of natural product-based inhibitors. These inhibitors bind in the BP adenosine-binding pocket and demonstrate a pre-mRNA competitive mechanism of action resulting in either intron retention or exon skipping. These compounds are extremely useful as chemical probes to isolate and characterize early stages of spliceosome assembly. They are also being explored preclinically and clinically as possible agents for hematological cancers.
Collapse
|
248
|
Kretzmer H, Biran A, Purroy N, Lemvigh CK, Clement K, Gruber M, Gu H, Rassenti L, Mohammad AW, Lesnick C, Slager SL, Braggio E, Shanafelt TD, Kay NE, Fernandes SM, Brown JR, Wang L, Li S, Livak KJ, Neuberg DS, Klages S, Timmermann B, Kipps TJ, Campo E, Gnirke A, Wu CJ, Meissner A. Preneoplastic Alterations Define CLL DNA Methylome and Persist through Disease Progression and Therapy. Blood Cancer Discov 2021; 2:54-69. [PMID: 33604581 PMCID: PMC7888194 DOI: 10.1158/2643-3230.bcd-19-0058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023] Open
Abstract
Most human cancers converge to a deregulated methylome with reduced global levels and elevated methylation at select CpG islands. To investigate the emergence and dynamics of the cancer methylome, we characterized genome-wide DNA methylation in pre-neoplastic monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), including serial samples collected across disease course. We detected the aberrant tumor-associated methylation landscape at CLL diagnosis and found no significantly differentially methylated regions in the high-count MBL-to-CLL transition. Patient methylomes showed remarkable stability with natural disease and post-therapy progression. Single CLL cells were consistently aberrantly methylated, indicating a homogeneous transition to the altered epigenetic state, and a distinct expression profile together with MBL cells compared to normal B cells. Our longitudinal analysis reveals the cancer methylome to emerge early, which may provide a platform for subsequent genetically-driven growth dynamics and together with its persistent presence suggests a central role in the normal-to-cancer transition.
Collapse
Affiliation(s)
- Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anat Biran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Noelia Purroy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Camilla K Lemvigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kendell Clement
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Michaela Gruber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Haematology and Haemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Hongcang Gu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Laura Rassenti
- Division of Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | | | - Connie Lesnick
- Mayo Clinic, Division of Hematology, Rochester, Minnesota
| | - Susan L Slager
- Mayo Clinic, Division of Hematology, Rochester, Minnesota
| | | | | | - Neil E Kay
- Mayo Clinic, Division of Hematology, Rochester, Minnesota
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, California
| | - Shuqiang Li
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kenneth J Livak
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Donna S Neuberg
- Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas J Kipps
- Division of Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Elias Campo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Section, Hospital Clínic; Departament d'Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
249
|
Condoluci A, Rossi D. Genomic Instability and Clonal Evolution in Chronic Lymphocytic Leukemia: Clinical Relevance. J Natl Compr Canc Netw 2020; 19:227-233. [PMID: 33383567 DOI: 10.6004/jnccn.2020.7623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022]
Abstract
Genomic instability and clonal heterogeneity can influence cancer progression, response to therapy, and relapse. Chronic lymphocytic leukemia (CLL) harbors a variety of clones and subclones that will evolve differently according to intrinsic (microenvironment) and extrinsic (therapy) pressures. Different patterns of clonal evolution have been described, providing insights into the CLL leukemic cell, dynamics, selection, and treatment refractoriness. With the help of genomic technologies allowing a granular resolution of CLL clones, novel synergic therapeutic strategies can be tested with the aim of reaching a genomic-epigenomic ultrapersonalized, tailored approach. These efforts should consider the presence of targetable alterations, continuous cancer reshaping conferring disease refractoriness, and intratumoral clonal equilibrium to possibly avoid clonal selection.
Collapse
Affiliation(s)
- Adalgisa Condoluci
- 1Division of Hematology, Oncology Institute of Southern Switzerland, and.,2Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Rossi
- 1Division of Hematology, Oncology Institute of Southern Switzerland, and.,2Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| |
Collapse
|
250
|
Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature 2020; 590:498-503. [PMID: 33361816 PMCID: PMC7889650 DOI: 10.1038/s41586-020-03069-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 10/27/2020] [Indexed: 01/05/2023]
Abstract
The NSD family histone methyltransferases, including NSD1, NSD2 and NSD3, play crucial roles in chromatin regulation and are implicated in oncogenesis1,2. NSD enzymes exhibit an auto-inhibitory state that is relieved by nucleosome engagement, allowing for H3K36 di-methylation catalysis3–7. However, the molecular basis underlying this mechanism is largely unknown. Here, we have solved the cryo-EM structures of NSD2 and NSD3 bound to mononucleosomes at atomic resolution. We find that NSD2/3 mononucleosome engagement causes DNA near the linker region to unwrap, which facilitates insertion of their catalytic core in-between the histone octamer and the unwrapped segment of DNA. A network of DNA- and histone-specific contacts between the nucleosome and NSD2/3 precisely define the enzymes’ position on the nucleosome, explaining the methylation specificity for H3K36. Further, NSD-nucleosome intermolecular contacts are altered by several recurrent cancer-associated NSD2/3 mutations. NSDs harboring these mutations are catalytically hyperactive in vitro and in cells, and their ectopic expression promotes cancer cell proliferation and xenograft tumor growth. Together, our research provides molecular insights into the nucleosome-based recognition and modification mechanisms of NSD2 and NSD3, which should uncover strategies for therapeutic targeting of the NSD family of proteins.
Collapse
|