201
|
A Human DUB Protein Array for Clarification of Linkage Specificity of Polyubiquitin Chain and Application to Evaluation of Its Inhibitors. Biomedicines 2020; 8:biomedicines8060152. [PMID: 32512835 PMCID: PMC7344921 DOI: 10.3390/biomedicines8060152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Protein ubiquitinations play pivotal roles in many cellular processes, including homeostasis, responses to various stimulations, and progression of diseases. Deubiquitinating enzymes (DUBs) remove ubiquitin molecules from ubiquitinated proteins and cleave the polyubiquitin chain, thus negatively regulating numerous ubiquitin-dependent processes. Dysfunctions of many DUBs reportedly cause various diseases; therefore, DUBs are considered as important drug targets, although the biochemical characteristics and cellular functions of many DUBs are still unclear. Here, we established a human DUB protein array to detect the activity and linkage specificity of almost all human DUBs. Using a wheat cell-free protein synthesis system, 88 full-length recombinant human DUB proteins were prepared and termed the DUB array. In vitro DUB assays were performed with all of these recombinant DUBs, using eight linkage types of diubiquitins as substrates. As a result, 80 DUBs in the array showed DUB activities, and their linkage specificities were determined. These 80 DUBs included many biochemically uncharacterized DUBs in the past. In addition, taking advantage of these active DUB proteins, we applied the DUB array to evaluate the selectivities of DUB inhibitors. We successfully developed a high-throughput and semi-quantitative DUB assay based on AlphaScreen technology, and a model study using two commercially available DUB inhibitors revealed individual selectivities to 29 DUBs, as previously reported. In conclusion, the DUB array established here is a powerful tool for biochemical analyses and drug discovery for human DUBs.
Collapse
|
202
|
Zhang P, Li C, Li H, Yuan L, Dai H, Peng Z, Deng Z, Chang Z, Cui CP, Zhang L. Ubiquitin ligase CHIP regulates OTUD3 stability and suppresses tumour metastasis in lung cancer. Cell Death Differ 2020; 27:3177-3195. [PMID: 32483383 DOI: 10.1038/s41418-020-0571-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
Ovarian tumour domain-containing protein 3 (OTUD3), a key OTU (ovarian tumour protease) family deubiquitylase, plays context-dependent roles in cancers. It suppresses tumorigenesis in breast, colon, liver and cervical cancer through stabilizing PTEN (phosphatase and tension homologue deleted on chromosome 10) while promotes lung tumorigenesis through stabilizing GRP78 (The glucose-regulated protein 78 kDa). The regulation especially post-translational modification of OTUD3 remains unclear. Here, we report that the carboxyl terminus of Hsc70-interacting protein (CHIP) is a ubiquitin ligase for OTUD3. CHIP interacts with, polyubiquitylates OTUD3 and promotes OTUD3 degradation. Knockdown of CHIP stabilizes OTUD3 which leads to elevated GRP78 levels in lung cancer cells. CHIP-knockdown lung cancer cells exhibit increased invasion in OTUD3 and GRP78 dependent manner. Further study demonstrates that CHIP-knockdown lung cancer cells are more prone to metastasize to mice lung when injected intravenously or subcutaneously. Moreover, the expression of CHIP is low in human lung cancer tissues and inversely correlates with OTUD3 expression and GRP78 expression. Furthermore, we identified CHIP mutations in human lung cancers, which reduce CHIP catalytic activity. These findings demonstrate that CHIP is a negative regulator of OTUD3 and CHIP suppresses lung cancer metastasis through inhibiting OTUD3-GRP78 signaling axis.
Collapse
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Chaonan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Hongchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Lin Yuan
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Hongmiao Dai
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Zhikang Deng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| |
Collapse
|
203
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
204
|
LDB1 Enforces Stability on Direct and Indirect Oncoprotein Partners in Leukemia. Mol Cell Biol 2020; 40:MCB.00652-19. [PMID: 32229578 DOI: 10.1128/mcb.00652-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/14/2020] [Indexed: 12/22/2022] Open
Abstract
The LMO2/LDB1 macromolecular complex is critical in hematopoietic stem and progenitor cell specification and in the development of acute leukemia. This complex is comprised of core subunits of LMO2 and LDB1 as well as single-stranded DNA-binding protein (SSBP) cofactors and DNA-binding basic helix-loop-helix (bHLH) and GATA transcription factors. We analyzed the steady-state abundance and kinetic stability of LMO2 and its partners via Halo protein tagging in conjunction with variant proteins deficient in binding their respective direct protein partners. We discovered a hierarchy of protein stabilities (with half-lives in descending order) as follows: LDB1 > SSBP > LMO2 > TAL1. Importantly, LDB1 is a remarkably stable protein that confers enhanced stability upon direct and indirect partners, thereby nucleating the formation of the multisubunit protein complex. The data imply that free subunits are more rapidly degraded than those incorporated within the LMO2/LDB1 complex. Our studies provided significant insights into LMO2/LDB1 macromolecular protein complex assembly and stability, which has implications for understanding its role in blood cell formation and for therapeutically targeting this complex in human leukemias.
Collapse
|
205
|
Zheng Q, Wang T, Chu GC, Zuo C, Zhao R, Sui X, Ye L, Yu Y, Chen J, Wu X, Zhang W, Deng H, Shi J, Pan M, Li YM, Liu L. An E1-Catalyzed Chemoenzymatic Strategy to Isopeptide-N-Ethylated Deubiquitylase-Resistant Ubiquitin Probes. Angew Chem Int Ed Engl 2020; 59:13496-13501. [PMID: 32346954 DOI: 10.1002/anie.202002974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Indexed: 12/22/2022]
Abstract
Triazole-based deubiquitylase (DUB)-resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain-specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB-resistant Ub probes is reported based on isopeptide-N-ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one-pot, ubiquitin-activating enzyme (E1)-catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi-milligram scale. Proteomic studies using label-free quantitative (LFQ) MS indicated that the isopeptide-N-ethylated Ub probes may complement the triazole-based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.
Collapse
Affiliation(s)
- Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tian Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guo-Chao Chu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Rui Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Sui
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Linzhi Ye
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Yu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingnan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangwei Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Shi
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
206
|
Rut W, Zmudzinski M, Snipas SJ, Bekes M, Huang TT, Drag M. Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes. Chem Sci 2020; 11:6058-6069. [PMID: 32953009 PMCID: PMC7477763 DOI: 10.1039/d0sc01347a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Herein we present a workflow for design and synthesis of novel selective Ub-based tools for DUBs. Selectivity is achieved by incorporation of unnatural amino acids into the Ub C-terminal epitope.
Deubiquitinating enzymes (DUBs) are responsible for removing ubiquitin (Ub) from its protein conjugates. DUBs have been implicated as attractive therapeutic targets in the treatment of viral diseases, neurodegenerative disorders and cancer. The lack of selective chemical tools for the exploration of these enzymes significantly impairs the determination of their roles in both normal and pathological states. Commercially available fluorogenic substrates are based on the C-terminal Ub motif or contain Ub coupled to a fluorophore (Z-LRGG-AMC, Ub-AMC); therefore, these substrates suffer from lack of selectivity. By using a hybrid combinatorial substrate library (HyCoSuL) and a defined P2 library containing a wide variety of nonproteinogenic amino acids, we established a full substrate specificity profile for two DUBs—MERS PLpro and human UCH-L3. Based on these results, we designed and synthesized Ub-based substrates and activity-based probes (ABPs) containing selected unnatural amino acids located in the C-terminal Ub motif. Biochemical analysis and cell lysate experiments confirmed the activity and selectivity of engineered Ub-based substrates and probes. Using this approach, we propose that for any protease that recognizes Ub and Ub-like substrates, a highly active and selective unnatural substrate or probe can be engineered.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland . ;
| | - Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland . ;
| | - Scott J Snipas
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Miklos Bekes
- Department of Biochemistry & Molecular Pharmacology , New York University School of Medicine , New York , NY 10016 , USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology , New York University School of Medicine , New York , NY 10016 , USA
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland . ; .,Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA
| |
Collapse
|
207
|
Mukherjee S, Kumar R, Tsakem Lenou E, Basrur V, Kontoyiannis DL, Ioakeimidis F, Mosialos G, Theiss AL, Flavell RA, Venuprasad K. Deubiquitination of NLRP6 inflammasome by Cyld critically regulates intestinal inflammation. Nat Immunol 2020; 21:626-635. [PMID: 32424362 DOI: 10.1038/s41590-020-0681-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
The inflammasome NLRP6 plays a crucial role in regulating inflammation and host defense against microorganisms in the intestine. However, the molecular mechanisms by which NLRP6 function is inhibited to prevent excessive inflammation remain unclear. Here, we demonstrate that the deubiquitinase Cyld prevents excessive interleukin 18 (IL-18) production in the colonic mucosa by deubiquitinating NLRP6. We show that deubiquitination inhibited the NLRP6-ASC inflammasome complex and regulated the maturation of IL-18. Cyld deficiency in mice resulted in elevated levels of active IL-18 and severe colonic inflammation following Citrobacter rodentium infection. Further, in patients with ulcerative colitis, the concentration of active IL-18 was inversely correlated with CYLD expression. Thus, we have identified a novel regulatory mechanism that inhibits the NLRP6-IL-18 pathway in intestinal inflammation.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ritesh Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Elviche Tsakem Lenou
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Dimitris L Kontoyiannis
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Fotis Ioakeimidis
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, School of Medicine at the Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Richard A Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - K Venuprasad
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
208
|
Mass Spectrometry Technologies for Deciphering the Ubiquitin Code. Trends Biochem Sci 2020; 45:820-821. [PMID: 32423745 DOI: 10.1016/j.tibs.2020.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
|
209
|
Wu HQ, Baker D, Ovaa H. Small molecules that target the ubiquitin system. Biochem Soc Trans 2020; 48:479-497. [PMID: 32196552 PMCID: PMC7200645 DOI: 10.1042/bst20190535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Eukaryotic life depends upon the interplay between vast networks of signaling pathways composed of upwards of 109-1010 proteins per cell. The integrity and normal operation of the cell requires that these proteins act in a precise spatial and temporal manner. The ubiquitin system is absolutely central to this process and perturbation of its function contributes directly to the onset and progression of a wide variety of diseases, including cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infectious diseases, and muscle dystrophies. Whilst the individual components and the overall architecture of the ubiquitin system have been delineated in some detail, how ubiquitination might be successfully targeted, or harnessed, to develop novel therapeutic approaches to the treatment of disease, currently remains relatively poorly understood. In this review, we will provide an overview of the current status of selected small molecule ubiquitin system inhibitors. We will further discuss the unique challenges of targeting this ubiquitous and highly complex machinery, and explore and highlight potential ways in which these challenges might be met.
Collapse
Affiliation(s)
- Hai Qiu Wu
- Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - David Baker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Huib Ovaa
- Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
210
|
Sivakumar D, Kumar V, Naumann M, Stein M. Activation and selectivity of OTUB-1 and OTUB-2 deubiquitinylases. J Biol Chem 2020; 295:6972-6982. [PMID: 32265297 DOI: 10.1074/jbc.ra120.013073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
The ovarian tumor domain (OTU) deubiquitinylating cysteine proteases OTUB1 and OTUB2 (OTU ubiquitin aldehyde binding 1 and 2) are representative members of the OTU subfamily of deubiquitinylases. Deubiquitinylation critically regulates a multitude of important cellular processes, such as apoptosis, cell signaling, and growth. Moreover, elevated OTUB expression has been observed in various cancers, including glioma, endometrial cancer, ovarian cancer, and breast cancer. Here, using molecular dynamics simulation approaches, we found that both OTUB1 and OTUB2 display a catalytic triad characteristic of proteases but differ in their configuration and protonation states. The OTUB1 protein had a prearranged catalytic site, with strong electrostatic interactions between the active-site residues His265 and Asp267 In OTUB2, however, the arrangement of the catalytic triad was different. In the absence of ubiquitin, the neutral states of the catalytic-site residues in OTUB2 were more stable, resulting in larger distances between these residues. Only upon ubiquitin binding did the catalytic triad in OTUB2 rearrange and bring the active site into a catalytically feasible state. An analysis of water access channels revealed only a few diffusion trajectories for the catalytically active form of OTUB1, whereas in OTUB2 the catalytic site was solvent-accessible, and a larger number of water molecules reached and left the binding pocket. Interestingly, in OTUB2, the catalytic residues His224 and Asn226 formed a stable hydrogen bond. We propose that the observed differences in activation kinetics, protonation states, water channels, and active-site accessibility between OTUB1 and OTUB2 may be relevant for the selective design of OTU inhibitors.
Collapse
Affiliation(s)
- Dakshinamurthy Sivakumar
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany
| | - Vikash Kumar
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany.,Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany
| |
Collapse
|
211
|
Liu X, Zhang X, Peng Z, Li C, Wang Z, Wang C, Deng Z, Wu B, Cui Y, Wang Z, Cui C, Zheng M, Zhang L. Deubiquitylase OTUD6B Governs pVHL Stability in an Enzyme-Independent Manner and Suppresses Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902040. [PMID: 32328410 PMCID: PMC7175249 DOI: 10.1002/advs.201902040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/29/2020] [Accepted: 02/13/2020] [Indexed: 06/04/2023]
Abstract
Hypoxia inducible factors (HIFs) are the key transcription factors that allow cancer cells to survive hypoxia. HIF's stability is mainly controlled by von Hippel-Lindau (pVHL)-mediated ubiquitylation. Unlike sporadic clear-cell renal carcinomas, VHL mutation is rarely observed in hepatocellular carcinoma (HCC) and the regulatory mechanisms of pVHL-HIF signaling remain elusive. Here, it is shown that deubiquitylase ovarian tumor domain-containing 6B (OTUD6B) suppresses HCC metastasis through inhibiting the HIF activity. OTUD6B directly interacts with pVHL, decreases its ubiquitylation and proteasomal degradation to reduce HIF-1α accumulation in HCC cells under hypoxia. Surprisingly, OTUD6B limits the ubiquitylation of pVHL independent of its deubiquitylase activity. OTUD6B couples pVHL and elongin B/C to form more CBCVHL ligase complex, which protects pVHL from proteasomal degradation. Depletion of OTUD6B results in the dissociation of CBCVHL complex and the degradation of pVHL by Trp Asp repeat and suppressors of cytokine signaling box-containing protein 1 (WSB1). In human HCC tissues, the protein level of OTUD6B is positively correlated with pVHL, but negatively with HIF-1α and vascular endothelial growth factor. Low expression of OTUD6B predicts poor patient survival. Furthermore, OTUD6B gene is a direct transcriptional target of HIF-1α and upregulated upon hypoxia. These results indicate a previously unrecognized feedback loop consisting of OTUD6B, pVHL, and HIF-1α, and provide insights into the targeted hypoxic microenvironment for HCC therapy.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Xiaoli Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Zhiqiang Peng
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Chunnan Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Ze Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Chanjuan Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Zhikang Deng
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Bo Wu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Yu Cui
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of EducationCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Chun‐Ping Cui
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310000China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhou310000China
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| |
Collapse
|
212
|
Zhou K, Mai H, Zheng S, Cai W, Yang X, Chen Z, Zhan B. OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in renal cell carcinoma. Cell Biosci 2020; 10:50. [PMID: 32257108 PMCID: PMC7106863 DOI: 10.1186/s13578-020-00408-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background OTUB1 (ovarian tumor domain protease domain-containing ubiquitin aldehyde-binding proteins)-mediated deubiquitination of FOXM1 (Forkhead box M1) participates in carcinogenesis of various tumors. We aim to investigate the effect and mechanism of OTUB1/FOXM1 on RCC (renal cell carcinoma) progression. Expression levels of OTUB1 in RCC tissues and cell lines were examined by qRT-PCR (quantitative real-time polymerase chain reaction) and immunohistochemistry. Cell proliferation was measured with CCK8 (Cell Counting Kit-8) and colony formation assays. Wound healing and transwell assays were used to determine cell migration and invasion, respectively. The effect of OTUB1 on FOXM1 ubiquitination was examined by Immunoprecipitation. Western blot was used to uncover the underlying mechanism. In vivo subcutaneous xenotransplanted tumor model combined with immunohistochemistry and western blot were used to examine the tumorigenic function of OTUB1. Results OTUB1 was up-regulated in RCC tissues and cell lines, and was associated with poor prognosis of RCC patients. Knockdown of OTUB1 inhibited cell viability and proliferation, as well as migration and invasion of RCC cells. Mechanistically, knockdown of OTUB1 down-regulated FOXM1 expression by promoting its ubiquitination. Down-regulation of FOXM1 inhibited ECT2 (epithelial cell transforming 2)-mediated Rho signaling. Moreover, the inhibition of RCC progression caused by OTUB1 knockdown was reversed by FOXM1 over-expression. In vivo subcutaneous xenotransplanted tumor model also revealed that knockdown of OTUB1 could suppress in vivo RCC growth via down-regulation of FOXM1-mediated ECT2 expression. Conclusions OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in RCC, providing a new potential therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Kai Zhou
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Haixing Mai
- 2Department of Urology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Song Zheng
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Weizhong Cai
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Xu Yang
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Zhenlin Chen
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Bin Zhan
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| |
Collapse
|
213
|
Li Y, Lan Q, Gao Y, Xu C, Xu Z, Wang Y, Chang L, Wu J, Deng Z, He F, Finley D, Xu P. Ubiquitin Linkage Specificity of Deubiquitinases Determines Cyclophilin Nuclear Localization and Degradation. iScience 2020; 23:100984. [PMID: 32240951 PMCID: PMC7115106 DOI: 10.1016/j.isci.2020.100984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin chain specificity has been described for some deubiquitinases (DUBs) but lacks a comprehensive profiling in vivo. We used quantitative proteomics to compare the seven lysine-linked ubiquitin chains between wild-type yeast and its 20 DUB-deletion strains, which may reflect the linkage specificity of DUBs in vivo. Utilizing the specificity and ubiquitination heterogeneity, we developed a method termed DUB-mediated identification of linkage-specific ubiquitinated substrates (DILUS) to screen the ubiquitinated lysine residues on substrates modified with certain chains and regulated by specific DUB. Then we were able to identify 166 Ubp2-regulating substrates with 244 sites potentially modified with K63-linked chains. Among these substrates, we further demonstrated that cyclophilin A (Cpr1) modified with K63-linked chain on K151 site was regulated by Ubp2 and mediated the nuclear translocation of zinc finger protein Zpr1. The K48-linked chains at non-K151 sites of Cpr1 were mainly regulated by Ubp3 and served as canonical signals for proteasome-mediated degradation.
Collapse
Affiliation(s)
- Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Qiuyan Lan
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuan Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Cong Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Zhongwei Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Junzhu Wu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China; School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Guizhou University School of Medicine, Guiyang 550025, China; Second Clinical Medicine Collage, Guangzhou University Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
214
|
Abstract
OTUB1 is a highly expressed cysteine protease that specifically cleaves K48-linked polyubiquitin chains. This unique deubiquitinating enzyme (DUB) can bind to a subset of E2 ubiquitin conjugating enzymes, forming complexes in which the two enzymes can regulate one another's activity. OTUB1 can noncatalytically suppress the ubiquitin conjugating activity of its E2 partners by sequestering the charged E2∼Ub thioester and preventing ubiquitin transfer. The same E2 enzymes, when uncharged, can stimulate the DUB activity of OTUB1 in vitro, although the importance of OTUB1 stimulation in vivo remains unclear. To assess the potential balance between these activities that might occur in cells, we characterized the kinetics and thermodynamics governing the formation and activity of OTUB1:E2 complexes. We show that both stimulation of OTUB1 by E2 enzymes and noncatalytic inhibition of E2 enzymes by OTUB1 occur at physiologically relevant concentrations of both partners. Whereas E2 partners differ in their ability to stimulate OTUB1 activity, we find that this variability is not correlated with the affinity of each E2 for OTUB1. In addition to UBE2N and the UBE2D isoforms, we find that OTUB1 inhibits the polyubiquitination activity of all three UBE2E enzymes, UBE2E1, UBE2E2, and UBE2E3. Interestingly, although OTUB1 also inhibits the auto-monoubiquitination and autopolyubiquitination activity of UBE2E1 and UBE2E2, it is unable to suppress autoubiquitination by UBE2E3. Our quantitative analysis provides a basis for further exploring the biological roles of OTUB1:E2 complexes in cells.
Collapse
Affiliation(s)
- Lauren T. Que
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| | - Marie E. Morrow
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| |
Collapse
|
215
|
Zhao X, Su X, Cao L, Xie T, Chen Q, Li J, Xu R, Jiang C. OTUD4: A Potential Prognosis Biomarker for Multiple Human Cancers. Cancer Manag Res 2020; 12:1503-1512. [PMID: 32184655 PMCID: PMC7053814 DOI: 10.2147/cmar.s233028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Deubiquitinase OTU domain containing 4 (OTUD4) is initially identified as a K48-specific deubiquitinase and plays an important role in DNA damage repair signaling transduction. However, the expression level, prognostic role, biological function and mechanism of OTUD4 in multiple human cancers are unclear. Methods GEPIA online (http://gepia.cancer-pku.cn/; The Cancer Genome Atlas (TCGA) database) was used to analyze the mRNA expression of OTUD4 in multiple human cancers. Kaplan-Meier plotter (KM plotter) database and TCGA database were used to evaluate the prognostic value of OTUD4 expression in multiple human cancers. MTT, Transwell and 3D culture assays were used to detect the role of OTUD4 in breast, liver and lung cancer cells. The correlation between OTUD4 and apoptosis signaling pathway and AKT signaling pathway was analyzed by Gene set enrichment analysis (GSEA). Results OTUD4 mRNA expression is significantly downregulated in multiple human cancer tissues. Survival analysis establishes that the downregulation of OTUD4 predicts poor prognosis in many solid tumors, including breast invasive carcinoma (BRCA), esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV). Furthermore, overexpression of OTUD4 could inhibit tumor cell proliferation, migration and invasion of breast, liver and lung cancer cells through inhibiting the AKT signaling pathway. Conclusion This study found that OTUD4 may be a potential predictive factor for several human cancers and a tumor suppressor for breast, liver and lung cancer. The overexpression of OTUD4 restrained proliferation, migration and invasion of human breast, liver and lung cancer cells through promoting cancer cells apoptosis and inhibiting AKT signaling pathway. Notably, our results indicated that OTUD4 could be a useful biomarker for the prognosis of human cancers and a potential molecular target for diagnosis and treatment of breast, liver and lung cancer.
Collapse
Affiliation(s)
- Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiaobo Su
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Lu Cao
- Juancheng People's Hospital, Heze City, Shandong Province 274600, People's Republic of China
| | - Tian Xie
- Obstetrics and Prenatal Diagnosis Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Quan Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Jing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Rui Xu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, People's Republic of China
| | - Chao Jiang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China.,Department of Cancer Center, People's Hospital of Baoan District, Shenzhen 518101, People's Republic of China
| |
Collapse
|
216
|
Bacterial DUBs: deubiquitination beyond the seven classes. Biochem Soc Trans 2020; 47:1857-1866. [PMID: 31845741 DOI: 10.1042/bst20190526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Protein ubiquitination is a posttranslational modification that regulates many aspects of cellular life, including proteostasis, vesicular trafficking, DNA repair and NF-κB activation. By directly targeting intracellular bacteria or bacteria-containing vacuoles to the lysosome, ubiquitination is also an important component of cell-autonomous immunity. Not surprisingly, several pathogenic bacteria encode deubiquitinases (DUBs) and use them as secreted effectors that prevent ubiquitination of bacterial components. A systematic overview of known bacterial DUBs, including their cleavage specificities and biological roles, suggests multiple independent acquisition events from host-encoded DUBs and other proteases. The widely used classification of DUBs into seven well-defined families should only be applied to eukaryotic DUBs, since several bacterial DUBs do not follow this classification.
Collapse
|
217
|
Zhang Z, Wang D, Wang P, Zhao Y, You F. OTUD1 Negatively Regulates Type I IFN Induction by Disrupting Noncanonical Ubiquitination of IRF3. THE JOURNAL OF IMMUNOLOGY 2020; 204:1904-1918. [DOI: 10.4049/jimmunol.1900305] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
|
218
|
Garret P, Ebstein F, Delplancq G, Dozieres-Puyravel B, Boughalem A, Auvin S, Duffourd Y, Klafack S, Zieba BA, Mahmoudi S, Singh KK, Duplomb L, Thauvin-Robinet C, Costa JM, Krüger E, Trost D, Verloes A, Faivre L, Vitobello A. Report of the first patient with a homozygous OTUD7A variant responsible for epileptic encephalopathy and related proteasome dysfunction. Clin Genet 2020; 97:567-575. [PMID: 31997314 DOI: 10.1111/cge.13709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Heterozygous microdeletions of chromosome 15q13.3 (MIM: 612001) show incomplete penetrance and are associated with a highly variable phenotype that may include intellectual disability, epilepsy, facial dysmorphism and digit anomalies. Rare patients carrying homozygous deletions show more severe phenotypes including epileptic encephalopathy, hypotonia and poor growth. For years, CHRNA7 (MIM: 118511), was considered the candidate gene that could account for this syndrome. However, recent studies in mouse models have shown that OTUD7A/CEZANNE2 (MIM: 612024), which encodes for an ovarian tumor (OTU) deubiquitinase, should be considered the critical gene responsible for brain dysfunction. In this study, a patient presenting with severe global developmental delay, language impairment and epileptic encephalopathy was referred to our genetics center. Trio exome sequencing (tES) analysis identified a homozygous OTUD7A missense variant (NM_130901.2:c.697C>T), predicted to alter an ultraconserved amino acid, p.(Leu233Phe), lying within the OTU catalytic domain. Its subsequent segregation analysis revealed that the parents, presenting with learning disability, and brother were heterozygous carriers. Biochemical assays demonstrated that proteasome complex formation and function were significantly reduced in patient-derived fibroblasts and in OTUD7A knockout HAP1 cell line. We provide evidence that biallelic pathogenic OTUD7A variation is linked to early-onset epileptic encephalopathy and proteasome dysfunction.
Collapse
Affiliation(s)
- Philippine Garret
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Laboratoire CERBA, Saint-Ouen l'Aumône, France
| | - Frédéric Ebstein
- Universitätsmedizin Greifswald, Institut für Medizinische Biochemie und Molekularbiologie, Greifswald, Germany
| | - Geoffroy Delplancq
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | | | - Stéphane Auvin
- AP-HP, Hôpital Robert Debré, Service de Neurologie pédiatrique, Paris, France.,UMR1141 INSERM, Université Paris Diderot, Paris, France
| | - Yannis Duffourd
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Sandro Klafack
- Universitätsmedizin Greifswald, Institut für Medizinische Biochemie und Molekularbiologie, Greifswald, Germany
| | - Barbara A Zieba
- Universitätsmedizin Greifswald, Institut für Medizinische Biochemie und Molekularbiologie, Greifswald, Germany
| | - Sana Mahmoudi
- Service de Pédiatrie, Centre Hospitalier René-Dubos, Pontoise, France
| | - Karun K Singh
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - Laurence Duplomb
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares "déficience intellectuelle", centre de génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | - Elke Krüger
- Universitätsmedizin Greifswald, Institut für Medizinische Biochemie und Molekularbiologie, Greifswald, Germany
| | | | - Alain Verloes
- UMR1141 INSERM, Université Paris Diderot, Paris, France.,Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", centre de génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
219
|
Ma K, Zhen X, Zhou B, Gan N, Cao Y, Fan C, Ouyang S, Luo ZQ, Qiu J. The bacterial deubiquitinase Ceg23 regulates the association of Lys-63-linked polyubiquitin molecules on the Legionella phagosome. J Biol Chem 2020; 295:1646-1657. [PMID: 31907282 PMCID: PMC7008378 DOI: 10.1074/jbc.ra119.011758] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Legionella pneumophila is the causative agent of the lung malady Legionnaires' disease, it modulates host function to create a niche termed the Legionella-containing vacuole (LCV) that permits intracellular L. pneumophila replication. One important aspect of such modulation is the co-option of the host ubiquitin network with a panel of effector proteins. Here, using recombinantly expressed and purified proteins, analytic ultracentrifugation, structural analysis, and computational modeling, along with deubiquitinase (DUB), and bacterial infection assays, we found that the bacterial defective in organelle trafficking/intracellular multiplication effector Ceg23 is a member of the ovarian tumor (OTU) DUB family. We found that Ceg23 displays high specificity toward Lys-63-linked polyubiquitin chains and is localized on the LCV, where it removes ubiquitin moieties from proteins ubiquitinated by the Lys-63-chain type. Analysis of the crystal structure of a Ceg23 variant lacking two putative transmembrane domains at 2.80 Å resolution revealed that despite very limited homology to established members of the OTU family at the primary sequence level, Ceg23 harbors a catalytic motif resembling those associated with typical OTU-type DUBs. ceg23 deletion increased the association of Lys-63-linked polyubiquitin with the bacterial phagosome, indicating that Ceg23 regulates Lys-63-linked ubiquitin signaling on the LCV. In summary, our findings indicate that Ceg23 contributes to the regulation of the association of Lys-63 type polyubiquitin with the Legionella phagosome. Future identification of host substrates targeted by Ceg23 could clarify the roles of these polyubiquitin chains in the intracellular life cycle of L. pneumophila and Ceg23's role in bacterial virulence.
Collapse
Affiliation(s)
- Kelong Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiangkai Zhen
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Biao Zhou
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ninghai Gan
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
220
|
Garshott DM, Sundaramoorthy E, Leonard M, Bennett EJ. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. eLife 2020; 9:54023. [PMID: 32011234 PMCID: PMC7064338 DOI: 10.7554/elife.54023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/01/2020] [Indexed: 11/13/2022] Open
Abstract
Activation of the integrated stress response (ISR) or the ribosome-associated quality control (RQC) pathway stimulates regulatory ribosomal ubiquitylation (RRub) on distinct 40S ribosomal proteins, yet the cellular role and fate of ubiquitylated proteins remain unclear. We demonstrate that uS10 and uS5 ubiquitylation are dependent upon eS10 or uS3 ubiquitylation, respectively, suggesting that a hierarchical relationship exists among RRub events establishing a ubiquitin code on ribosomes. We show that stress dependent RRub events diminish after initial stimuli and that demodification by deubiquitylating enzymes contributes to reduced RRub levels during stress recovery. Utilizing an optical RQC reporter we identify OTUD3 and USP21 as deubiquitylating enzymes that antagonize ZNF598-mediated 40S ubiquitylation and can limit RQC activation. Critically, cells lacking USP21 or OTUD3 have altered RQC activity and delayed eS10 deubiquitylation indicating a functional role for deubiquitylating enzymes within the RQC pathway. Ribosomes are cellular machines that build proteins by latching on and then reading template molecules known as mRNAs. Several ribosomes may be moving along the same piece of mRNA at the same time, each making their own copy of the same protein. Damage to an mRNA or other problems may cause a ribosome to stall, leading to subsequent collisions. A quality control pathway exists to identify stalled ribosomes and fix the ‘traffic jams’. It relies on enzymes that tag halted ribosomes with molecules known as ubiquitin. The cell then removes these ribosomes from the mRNA and destroys the proteins they were making. Afterwards, additional enzymes take off the ubiquitin tags so the cell can recycle the ribosomes. These enzymes are key to signaling the end of the quality control event, yet their identity was still unclear. Garshott et al. used genetic approaches to study traffic jams of ribosomes in mammalian cells. The experiments showed that cells added sets of ubiquitin tags to stalled ribosomes in a specific order. Two enzymes, known as USP21 and OTUD3, could stop this process; this allowed ribosomes to carry on reading mRNA. Further work revealed that the ribosomes in cells that produce higher levels of USP21 and OTUD3 were less likely to stall on mRNA. On the other hand, ribosomes in cells lacking USP1 and OTUD3 retained their ubiquitin tags for longer and were more likely to stall. The findings of Garshott et al. reveal that USP21 and OTUD3 are involved in the quality control pathway which fixes ribosome traffic jams. In mice, problems in this pathway have been linked with neurons dying or being damaged because toxic protein products start to accumulate in cells; this is similar to what happens in human conditions such as Alzheimer's and Parkinson's diseases. Using ubiquitin to target and potentially fix the pathway could therefore open the door to new therapies.
Collapse
Affiliation(s)
- Danielle M Garshott
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
221
|
van Huizen M, Kikkert M. The Role of Atypical Ubiquitin Chains in the Regulation of the Antiviral Innate Immune Response. Front Cell Dev Biol 2020; 7:392. [PMID: 32039206 PMCID: PMC6987411 DOI: 10.3389/fcell.2019.00392] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
It is well established that polyubiquitin chains, in particular those linked through K48 and K63, play a key role in the regulation of the antiviral innate immune response. However, the role of the atypical chains linked via any of the other lysine residues (K6, K11, K27, K29, and K33) and the M1-linked linear chains have not been investigated very well yet in this context. This is partially due to a lack of tools to study these linkages in their biological context. Interestingly though, recent findings underscore the importance of the atypical chains in the regulation of the antiviral immune response. This review will highlight the most important advances in the study of the role of atypical ubiquitin chains, particularly in the regulation of intracellular antiviral innate immune signaling pathways. We will also discuss the development of new tools and how these can increase our knowledge of the role of atypical ubiquitin chains.
Collapse
Affiliation(s)
- Mariska van Huizen
- Department of Medical Microbiology, LUMC Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolein Kikkert
- Department of Medical Microbiology, LUMC Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
222
|
OTUD4 alleviates hepatic ischemia-reperfusion injury by suppressing the K63-linked ubiquitination of TRAF6. Biochem Biophys Res Commun 2020; 523:924-930. [PMID: 31964525 DOI: 10.1016/j.bbrc.2019.12.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/15/2023]
Abstract
Hepatic ischemia-reperfusion (IR) injury can cause serious liver damage, leading to liver dysfunction after liver surgery, which is associated with NF-κB-mediated inflammation. The K63-linked auto-polyubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB. Here, we found that OTU domain-containing protein 4 (OTUD4), a deubiquitinating enzyme (DUB), interacts with TRAF6 and decreases the K63 auto-polyubiquitination of TRAF6. In addition, the data showed that NF-κB activation was impaired and inflammatory factor levels were reduced after overexpressing OTUD4 in a hypoxia/reoxygenation (HR) model and a hepatic IR model. Additionally, the liver inflammatory response and tissue damage were ameliorated in mice overexpressing OTUD4.Taken together, these results show that OTUD4 can negatively regulate NF-κB activation by suppressing the K63-linked ubiquitination of TRAF6, thus alleviating hepatic ischemia-reperfusion injury.
Collapse
|
223
|
Boughton AJ, Krueger S, Fushman D. Branching via K11 and K48 Bestows Ubiquitin Chains with a Unique Interdomain Interface and Enhanced Affinity for Proteasomal Subunit Rpn1. Structure 2020; 28:29-43.e6. [PMID: 31677892 PMCID: PMC6996796 DOI: 10.1016/j.str.2019.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023]
Abstract
Post-translational substrate modification with ubiquitin is essential for eukaryotic cellular signaling. Polymeric ubiquitin chains are assembled with specific architectures, which convey distinct signaling outcomes depending on the linkages involved. Recently, branched K11/K48-linked polyubiquitins were shown to enhance proteasomal degradation during mitosis. To better understand the underlying structural mechanisms, we determined the crystal and NMR structures of branched K11/K48-linked tri-ubiquitin and discovered a previously unobserved interdomain interface between the distal ubiquitins. Small-angle neutron scattering and site-directed mutagenesis corroborated the presence of this interface, which we hypothesized to be influential in the physiological role of branched K11/K48-linked chains. Yet, experiments probing polyubiquitin interactions-deubiquitination assays, binding to proteasomal shuttle hHR23A-showed negligible differences between branched K11/K48-linked tri-ubiquitin and related di-ubiquitins. However, significantly stronger binding affinity for branched K11/K48-linked tri-ubiquitin was observed with proteasomal subunit Rpn1, thereby suggesting a functional impact of this interdomain interface and pinpointing the mechanistic site of enhanced degradation.
Collapse
Affiliation(s)
- Andrew J Boughton
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Susan Krueger
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
224
|
Gui W, Paudel P, Zhuang Z. Activity-Based Ubiquitin Probes for Investigation of Deubiquitinases. COMPREHENSIVE NATURAL PRODUCTS III 2020. [PMCID: PMC7157470 DOI: 10.1016/b978-0-12-409547-2.14672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ubiquitination is emerging as an important post-translational modification (PTM) for numerous cellular functions including protein degradation, DNA damage repair and tolerance, and cell cycle progression. Compared with other small-molecule modifiers found in phosphorylation, acetylation and glycosylation, ubiquitin is a small protein modifier that exists as either a single ubiquitin or a polyubiquitin chain. Furthermore, the polyubiquitin chains are formed via various linkages imparting an additional layer of specificity in cellular signaling. In order to adequately study ubiquitin signaling and particularly deubiquitination, a number of ubiquitin activity-based probes (ABPs) were developed and utilized in understanding the deubiquitinase (DUBs) function. Here, we focus on the current state of the DUB ABP development and their application in understanding DUB function and specificity for polyubiquitin chains and ubiquitinated proteins.
Collapse
|
225
|
Zang Y, Gong Y, Wang Q, Guo H, Xiao W. Arabidopsis OTU1, a linkage-specific deubiquitinase, is required for endoplasmic reticulum-associated protein degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:141-155. [PMID: 31491807 DOI: 10.1111/tpj.14524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is part of the ER protein quality-control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N-terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N-terminal region. These observations collectively define AtOTU1 as an OTU domain-containing deubiquitinase involved in Arabidopsis ERAD.
Collapse
Affiliation(s)
- Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yingya Gong
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
226
|
The function and regulation of OTU deubiquitinases. Front Med 2019; 14:542-563. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
Collapse
|
227
|
Abstract
This Outlook discusses Wu et al.’s finding showing Cezanne and Cezanne2, two paralogous deubiquitinating enzymes that are recruited to sites of DNA damage, ensure proper local polyubiquitin chain composition for downstream DNA repair protein assembly. Diverse linkage in polyubiquitin chain structure gives cells an unparalleled complexity to virtually modulate all aspects of cell biology. Substrates can be covalently modified by ubiquitin chains of different topology. Proper DNA damage response takes advantage of this regulatory system and heavily relies on ubiquitin-based signaling. Moreover, increasing evidence suggests that chain specificity dictates DNA repair outcome. In this issue of Genes & Development, Wu and colleagues (pp. 1702–1717) show that Cezanne and Cezanne2, two paralogous deubiquitinating enzymes that are recruited to sites of DNA damage, ensure proper local polyubiquitin chain composition for downstream DNA repair protein assembly. Their study offers a key insight into the mechanism of crosstalk between linkage-specific ubiquitylation at DNA damage sites, while simultaneously raising important questions for future research.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology.,Perlmutter Cancer Center
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology.,Perlmutter Cancer Center.,Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
228
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
229
|
Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019; 20:ijms20235997. [PMID: 31795161 PMCID: PMC6929034 DOI: 10.3390/ijms20235997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mitosis is a complex and dynamic process that is tightly regulated by a large number of mitotic proteins. Dysregulation of these proteins can generate daughter cells that exhibit genomic instability and aneuploidy, and such cells can transform into tumorigenic cells. Thus, it is important for faithful mitotic progression to regulate mitotic proteins at specific locations in the cells at a given time in each phase of mitosis. Ubiquitin-dependent modifications play critical roles in this process by regulating the degradation, translocation, or signal transduction of mitotic proteins. Here, we review how ubiquitination and deubiquitination regulate the progression of mitosis. In addition, we summarize the substrates and roles of some deubiquitinating enzymes (DUBs) crucial for mitosis and describe how they contribute error correction during mitosis and control the transition between the mitotic phases.
Collapse
|
230
|
Inactivity of YGL082W in vitro due to impairment of conformational change in the catalytic center loop. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9623-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
231
|
Wu X, Liu S, Sagum C, Chen J, Singh R, Chaturvedi A, Horton JR, Kashyap TR, Fushman D, Cheng X, Bedford MT, Wang B. Crosstalk between Lys63- and Lys11-polyubiquitin signaling at DNA damage sites is driven by Cezanne. Genes Dev 2019; 33:1702-1717. [PMID: 31699778 PMCID: PMC6942045 DOI: 10.1101/gad.332395.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022]
Abstract
The establishment of polyubiquitin conjugates with distinct linkages play important roles in the DNA damage response. Much remains unknown about the regulation of linkage-specific ubiquitin signaling at sites of DNA damage. Here we reveal that Cezanne (also known as Otud7B) deubiquitinating enzyme promotes the recruitment of Rap80/BRCA1-A complex by binding to Lys63-polyubiquitin and targeting Lys11-polyubiquitin. Using a ubiquitin binding domain protein array screen, we identify that the UBA domains of Cezanne and Cezanne2 (also known as Otud7A) selectively bind to Lys63-linked polyubiquitin. Increased Lys11-linkage ubiquitination due to lack of Cezanne DUB activity compromises the recruitment of Rap80/BRCA1-A. Cezanne2 interacts with Cezanne, facilitating Cezanne in the recruitment of Rap80/BRCA1-A, Rad18, and 53BP1, in cellular resistance to ionizing radiation and DNA repair. Our work presents a model that Cezanne serves as a "reader" of the Lys63-linkage polyubiquitin at DNA damage sites and an "eraser" of the Lys11-linkage ubiquitination, indicating a crosstalk between linkage-specific ubiquitination at DNA damage sites.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shichang Liu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tanuja R Kashyap
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - David Fushman
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
232
|
Sun J, Shi X, Mamun MAA, Gao Y. The role of deubiquitinating enzymes in gastric cancer. Oncol Lett 2019; 19:30-44. [PMID: 31897112 PMCID: PMC6924028 DOI: 10.3892/ol.2019.11062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5-yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Shi
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - M A A Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
233
|
Fan J, Ye Y, Chu G, Zhang Z, Fu Y, Li YM, Shi J. Semisynthesis of Ubiquitin and SUMO-Rhodamine 110-Glycine through Aminolysis of Boc-Protected Thioester Counterparts. J Org Chem 2019; 84:14861-14867. [PMID: 31642325 DOI: 10.1021/acs.joc.9b01529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitin (Ub)-based fluorescent reagents are crucial to explore the activity of deubiquitinases (DUBs). Ub-Rho110-G is one of the preferred tools, whereas the current synthetic route is time-consuming. Here, we report a new semisynthetic strategy to produce Ub-Rho110-G through direct aminolysis of Boc-protected Ub-Mesna using bisglycyl-rhodamine 110. We also applied this strategy to synthesize active SUMO2-Rho110-G for the first time. Biochemical analysis demonstrated that semisynthetic Ub or SUMO-Rho110-G can be effectively used for the detection of the activity of DUBs or SUMO-specific enzymes.
Collapse
Affiliation(s)
- Jian Fan
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yinshan Ye
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Guochao Chu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Zhongping Zhang
- Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Yao Fu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yi-Ming Li
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Jing Shi
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
234
|
Li F, Sun Q, Liu K, Han H, Lin N, Cheng Z, Cai Y, Tian F, Mao Z, Tong T, Zhao W. The deubiquitinase OTUD5 regulates Ku80 stability and non-homologous end joining. Cell Mol Life Sci 2019; 76:3861-3873. [PMID: 30980112 PMCID: PMC11105630 DOI: 10.1007/s00018-019-03094-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/03/2023]
Abstract
The ability of cells to repair DNA double-strand breaks (DSBs) is important for maintaining genome stability and eliminating oncogenic DNA lesions. Two distinct and complementary pathways, non-homologous end joining (NHEJ) and homologous recombination (HR), are employed by mammalian cells to repair DNA DSBs. Each pathway is tightly controlled in response to increased DSBs. The Ku heterodimer has been shown to play a regulatory role in NHEJ repair. Ku80 ubiquitination contributes to the selection of a DSB repair pathway by causing the removal of Ku heterodimers from DSB sites. However, whether Ku80 deubiquitination also plays a role in regulating DSB repair is unknown. To address this question, we performed a comprehensive study of the deubiquitinase specific for Ku80, and our study showed that the deubiquitinase OTUD5 serves as an important regulator of NHEJ repair by increasing the stability of Ku80. Further studies revealed that OTUD5 depletion impaired NHEJ repair, and hence reduced overall DSB repair. Furthermore, OTUD5-depleted cells displayed excess end resection; as a result, HR repair was facilitated by OTUD5 depletion during the S/G2 phase. In summary, our study demonstrates that OTUD5 is a specific deubiquitinase for Ku80 and establishes OTUD5 as an important and positive regulator of NHEJ repair.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing, 100191, China
| | - Qianqian Sun
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing, 100191, China
| | - Kun Liu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing, 100191, China
| | - Haichao Han
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing, 100191, China
| | - Ning Lin
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab, Co. Ltd, Hangzhou Economic and Technological Development Area, Hangzhou, 310018, China
| | - Yueming Cai
- Rheumatic Immunology Department, Peking University Shenzhen Hospital, Shenzhen, 518035, China
| | - Feng Tian
- Department of Laboratory Animal Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing, 100191, China
| | - Tanjun Tong
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing, 100191, China
| | - Wenhui Zhao
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
235
|
Abstract
OTULIN (OTU Deubiquitinase With Linear Linkage Specificity) specifically hydrolyzes methionine1 (Met1)-linked ubiquitin chains conjugated by LUBAC (linear ubiquitin chain assembly complex). Here we report on the mass spectrometric identification of the OTULIN interactor SNX27 (sorting nexin 27), an adaptor of the endosomal retromer complex responsible for protein recycling to the cell surface. The C-terminal PDZ-binding motif (PDZbm) in OTULIN associates with the cargo-binding site in the PDZ domain of SNX27. By solving the structure of the OTU domain in complex with the PDZ domain, we demonstrate that a second interface contributes to the selective, high affinity interaction of OTULIN and SNX27. SNX27 does not affect OTULIN catalytic activity, OTULIN-LUBAC binding or Met1-linked ubiquitin chain homeostasis. However, via association, OTULIN antagonizes SNX27-dependent cargo loading, binding of SNX27 to the VPS26A-retromer subunit and endosome-to-plasma membrane trafficking. Thus, we define an additional, non-catalytic function of OTULIN in the regulation of SNX27-retromer assembly and recycling to the cell surface. OTULIN is a linear ubiquitin hydrolase that regulates ubiquitin homeostasis. Here the authors identify the adaptor of the endosomal retromer complex sorting nexin 27 (SNX27) as a binding partner of OTULIN and determine the structure of the OTULIN-SNX27 complex, which reveals a secondary interface through which OTULIN non-catalytically antagonizes SNX27 retromer assembly and cargo loading.
Collapse
|
236
|
Deng J, Hou G, Fang Z, Liu J, Lv XD. Distinct expression and prognostic value of OTU domain-containing proteins in non-small-cell lung cancer. Oncol Lett 2019; 18:5417-5427. [PMID: 31612050 PMCID: PMC6781715 DOI: 10.3892/ol.2019.10883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-proteasome pathway is an important protein degradation regulatory system in cells. This pathway is also a reversible process that is strictly regulated, and the regulation of deubiquitinating enzymes (DUBs) represents an important facet of the process. Ovarian tumor-associated proteases domain-containing proteins (OTUDs), as a subfamily within the DUB family, serve an important role in regulatory mechanisms of several biological processes, through the regulation of gene transcription, cell cycle, immune response, inflammation and tumor growth processes, and may be important in the diagnosis of various diseases and constitute novel drug targets. However, the role of OTUDs in non-small-cell lung cancer (NSCLC) has not been fully elucidated. In the present study, the Oncomine database was used to examine gene expression in NSCLC, and the prognostic value of each gene was analyzed by Kaplan-Meier analysis. The results indicated that high mRNA expression levels of OTUD1, OTUD3, OTUD4 and putative bifunctional UDP-N-acetylglucosamine transferase and deubiquitinase ALG13 were associated with improved prognosis in all NSCLC and adenocarcinoma, but not in squamous cell carcinoma. By contrast, high expression levels of OTUD2 mRNA were associated with poorer overall survival in patients with NSCLC. These data suggested that these OTUD isozymes may be a potential drug target for NSCLC.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Gouxin Hou
- Department of Oncology, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhixian Fang
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jialiang Liu
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiao-Dong Lv
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
237
|
Wu L, Lin Y, Feng J, Qi Y, Wang X, Lin Q, Shi W, Zheng E, Wang W, Hou Z, Lin H, Yu C, He Y, Xu Y, Yang H, Lin L, Li L. The deubiquitinating enzyme OTUD1 antagonizes BH3-mimetic inhibitor induced cell death through regulating the stability of the MCL1 protein. Cancer Cell Int 2019; 19:222. [PMID: 31467488 PMCID: PMC6712616 DOI: 10.1186/s12935-019-0936-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/18/2019] [Indexed: 11/10/2022] Open
Abstract
Background Myeloid cell leukaemia 1 (MCL1) is a pro-survival Bcl-2 family protein that plays important roles in cell survival, proliferation, differentiation and tumourigenesis. MCL1 is a fast-turnover protein that is degraded via an ubiquitination/proteasome-dependent mechanism. Although several E3 ligases have been discovered to promote the ubiquitination of MCL1, the deubiquitinating enzyme (DUB) that regulates its stability requires further investigation. Methods The immunoprecipitation was used to determine the interaction between OTUD1 and MCL1. The ubiquitination assays was performed to determine the regulation of MCL1 by OTUD1. The cell viability was used to determine the regulation of BH3-mimetic inhibitor induced cell death by OTUD1. The survival analysis was used to determine the relationship between OTUD1 expression levels and the survival rate of cancer patients. Results By screening a DUB expression library, we determined that the deubiquitinating enzyme OTUD1 regulates MCL1 protein stability in an enzymatic-activity dependent manner. OTUD1 interacts with MCL1 and promotes its deubiquitination. Knockdown of OTUD1 increases the sensitivity of tumour cells to the BH3-mimetic inhibitor ABT-263, while overexpression of OTUD1 increases tumour cell tolerance of ABT-263. Furthermore, bioinformatics analysis data reveal that OTUD1 is a negative prognostic factor for liver cancer, ovarian cancer and specific subtypes of breast and cervical cancer. Conclusions The deubiquitinating enzyme OTUD1 antagonizes BH3-mimetic inhibitor induced cell death through regulating the stability of the MCL1 protein. Thus, OTUD1 could be considered as a therapeutic target for curing these cancers.
Collapse
Affiliation(s)
- Lanqin Wu
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Yingying Lin
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Jinan Feng
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Yuanlin Qi
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Xinrui Wang
- 2State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaofa Lin
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Wanyan Shi
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Enrun Zheng
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Wei Wang
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Zhenzhu Hou
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Hanbin Lin
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Cheng Yu
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Yan He
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Yan Xu
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Hong Yang
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Ling Lin
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Lisheng Li
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China.,3Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou China
| |
Collapse
|
238
|
de Vivo A, Sanchez A, Yegres J, Kim J, Emly S, Kee Y. The OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res 2019; 47:729-746. [PMID: 30508113 PMCID: PMC6344881 DOI: 10.1093/nar/gky1219] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Timely stalling and resumption of RNA polymerases at damaged chromatin are actively regulated processes. Prior work showed an importance of FACT histone chaperone in such process. Here we provide a new role of OTUD5 deubiquitinase in the FACT-dependent process. Through a DUB RNAi screen, we found OTUD5 as a specific stabilizer of the UBR5 E3 ligase. OTUD5 localizes to DNA double strand breaks (DSBs), interacts with UBR5 and represses the RNA Pol II elongation and RNA synthesis. OTUD5 co-localizes and interacts with the FACT component SPT16 and antagonizes the histone H2A deposition at DSB lesions. OTUD5 interacts with UBR5 and SPT16 independently through two distinct regions, and both interactions are necessary for arresting the Pol II elongation at lesions. These analyses suggested that the catalytic (through UBR5 stabilization) as well as scaffolding (through FACT binding) activities of OTUD5 are involved in the FACT-dependent transcription. We found that a cancer-associated missense mutation within the OTUD5 Ubiquitin Interacting Motif (UIM) abrogates the FACT association and the Pol II arrest, providing a possible link between the transcriptional regulation and tumor suppression. Our work establishes OTUD5 as a new regulator of the DNA damage response, and provides an insight into the FACT-dependent transcription at damaged chromatin.
Collapse
Affiliation(s)
- Angelo de Vivo
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Anthony Sanchez
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Jose Yegres
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Jeonghyeon Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Sylvia Emly
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
239
|
Insights into ubiquitin chain architecture using Ub-clipping. Nature 2019; 572:533-537. [PMID: 31413367 DOI: 10.1038/s41586-019-1482-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/17/2019] [Indexed: 01/17/2023]
Abstract
Protein ubiquitination is a multi-functional post-translational modification that affects all cellular processes. Its versatility arises from architecturally complex polyubiquitin chains, in which individual ubiquitin moieties may be ubiquitinated on one or multiple residues, and/or modified by phosphorylation and acetylation1-3. Advances in mass spectrometry have enabled the mapping of individual ubiquitin modifications that generate the ubiquitin code; however, the architecture of polyubiquitin signals has remained largely inaccessible. Here we introduce Ub-clipping as a methodology by which to understand polyubiquitin signals and architectures. Ub-clipping uses an engineered viral protease, Lbpro∗, to incompletely remove ubiquitin from substrates and leave the signature C-terminal GlyGly dipeptide attached to the modified residue; this simplifies the direct assessment of protein ubiquitination on substrates and within polyubiquitin. Monoubiquitin generated by Lbpro∗ retains GlyGly-modified residues, enabling the quantification of multiply GlyGly-modified branch-point ubiquitin. Notably, we find that a large amount (10-20%) of ubiquitin in polymers seems to exist as branched chains. Moreover, Ub-clipping enables the assessment of co-existing ubiquitin modifications. The analysis of depolarized mitochondria reveals that PINK1/parkin-mediated mitophagy predominantly exploits mono- and short-chain polyubiquitin, in which phosphorylated ubiquitin moieties are not further modified. Ub-clipping can therefore provide insight into the combinatorial complexity and architecture of the ubiquitin code.
Collapse
|
240
|
Skugor A, Kjos NP, Sundaram AYM, Mydland LT, Ånestad R, Tauson AH, Øverland M. Effects of long-term feeding of rapeseed meal on skeletal muscle transcriptome, production efficiency and meat quality traits in Norwegian Landrace growing-finishing pigs. PLoS One 2019; 14:e0220441. [PMID: 31390356 PMCID: PMC6685631 DOI: 10.1371/journal.pone.0220441] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
This study was performed to investigate the effects of dietary inclusion of 20% rapeseed meal (RSM) as an alternative to soybean meal (SBM) in a three-month feeding experiment with growing finishing pigs. Dietary alteration affected growth performance, several carcass traits and transcriptional responses in the skeletal muscle, but did not affect measured meat quality traits. In general, pigs fed the RSM test diet exhibited reduced growth performance compared to pigs on SBM control diet. Significant transcriptional changes in the skeletal muscle of growing pigs fed RSM diet were likely the consequence of an increased amount of fiber and higher polyunsaturated fatty acids, and presence of bioactive phytochemicals, such as glucosinolates. RNAseq pipeline using Tophat2-Cuffdiff identified 57 upregulated and 63 downregulated genes in RSM compared to SBM pigs. Significantly enriched among downregulated pathways was p53-mediated signalling involved in cellular proliferation, while activation of negative growth regulators (IER5, KLF10, BTG2, KLF11, RETREG1, PRUNE2) in RSM fed pigs provided further evidence for reduced proliferation and increased cellular death, in accordance with the observed reduction in performance traits. Upregulation of well-known metabolic controllers (PDK4, UCP3, ESRRG and ESRRB), involved in energy homeostasis (glucose and lipid metabolism, and mitochondrial function), suggested less available energy and nutrients in RSM pigs. Furthermore, several genes supported more pronounced proteolysis (ABTB1, OTUD1, PADI2, SPP1) and reduced protein synthesis (THBS1, HSF4, AP1S2) in RSM muscle tissue. In parallel, higher levels of NR4A3, PDK4 and FGF21, and a drop in adropin, ELOVL6 and CIDEC/FSP27 indicated increased lipolysis and fatty acid oxidation, reflective of lower dressing percentage. Finally, pigs exposed to RSM showed greater expression level of genes responsive to oxidative stress, indicated by upregulation of GPX1, GPX2, and TXNIP.
Collapse
Affiliation(s)
- Adrijana Skugor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Nils Petter Kjos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ragnhild Ånestad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Anne-Helene Tauson
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
241
|
Haakonsen DL, Rape M. Branching Out: Improved Signaling by Heterotypic Ubiquitin Chains. Trends Cell Biol 2019; 29:704-716. [PMID: 31300189 DOI: 10.1016/j.tcb.2019.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
Ubiquitin chains of distinct topologies control the stability, interactions, or localization of many proteins in eukaryotic cells, and thus play an essential role in cellular information transfer. It has recently been found that ubiquitin chains can be combined to produce branched conjugates that are characterized by the presence of at least two linkages within the same polymer. Akin to their homotypic counterparts, branched chains elicit a wide array of biological outputs, further expanding the versatility, specificity, and efficiency of ubiquitin-dependent signaling. This review discusses emerging understanding of the synthesis and function of branched ubiquitin chains.
Collapse
Affiliation(s)
- Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
242
|
The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun 2019; 10:2914. [PMID: 31266968 PMCID: PMC6606649 DOI: 10.1038/s41467-019-10824-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
The deubiquitylase OTUD3 plays a suppressive role in breast tumorigenesis through stabilizing PTEN protein, but its role in lung cancer remains unclear. Here, we demonstrate that in vivo deletion of OTUD3 indeed promotes breast cancer development in mice, but by contrast, it slows down KrasG12D-driven lung adenocarcinoma (ADC) initiation and progression and markedly increases survival in mice. Moreover, OTUD3 is highly expressed in human lung cancer tissues and its higher expression correlates with poorer survival of patients. Further mechanistic studies reveal that OTUD3 interacts with, deubiquitylates and stabilizes the glucose-regulated protein GRP78. Knockdown of OTUD3 results in a decrease in the level of GRP78 protein, suppression of cell growth and migration, and tumorigenesis in lung cancer. Collectively, our results reveal a previously unappreciated pro-oncogenic role of OTUD3 in lung cancer and indicate that deubiquitylases could elicit tumor-suppressing or tumor-promoting activities in a cell- and tissue-dependent context. The deubiquitylase OTUD3 can function as a tumour-suppressor by stabilizing PTEN. Here, the authors show that OTUD3 also has an oncogenic role in lung cancer by stabilizing the glucose-regulated protein GRP78.
Collapse
|
243
|
Das R, Schwintzer L, Vinopal S, Aguado Roca E, Sylvester M, Oprisoreanu AM, Schoch S, Bradke F, Broemer M. New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules. J Cell Sci 2019; 132:jcs.229252. [PMID: 31138677 PMCID: PMC6602300 DOI: 10.1242/jcs.229252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/11/2019] [Indexed: 11/20/2022] Open
Abstract
Mechanisms that regulate the formation of membrane-less cellular organelles, such as neuronal RNA granules and stress granules, have gained increasing attention over the past years. These granules consist of RNA and a plethora of RNA-binding proteins. Mutations in RNA-binding proteins have been found in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). By performing pulldown experiments and subsequent mass spectrometry on mouse brain lysates, we discovered that the de-ubiquitylating enzyme OTU domain-containing protein 4 (OTUD4) unexpectedly is part of a complex network of multiple RNA-binding proteins, including core stress granule factors, such as FMRP (also known as FMR1), SMN1, G3BP1 and TIA1. We show that OTUD4 binds RNA, and that several of its interactions with RNA-binding proteins are RNA dependent. OTUD4 is part of neuronal RNA transport granules in rat hippocampal neurons under physiological conditions, whereas upon cellular stress, OTUD4 is recruited to cytoplasmic stress granules. Knockdown of OTUD4 in HeLa cells resulted in defects in stress granule formation and led to apoptotic cell death. Together, we characterize OTUD4 as a new RNA-binding protein with a suggested function in regulation of translation.
Collapse
Affiliation(s)
- Richa Das
- Ubiquitin Signaling Group, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Lukas Schwintzer
- Ubiquitin Signaling Group, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Stanislav Vinopal
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Eva Aguado Roca
- Ubiquitin Signaling Group, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, Core Facility Mass Spectrometry, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Ana-Maria Oprisoreanu
- Institute of Neuropathology and Department of Epileptology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology and Department of Epileptology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Frank Bradke
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Meike Broemer
- Ubiquitin Signaling Group, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| |
Collapse
|
244
|
De novo macrocyclic peptides that specifically modulate Lys48-linked ubiquitin chains. Nat Chem 2019; 11:644-652. [PMID: 31182821 DOI: 10.1038/s41557-019-0278-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
A promising approach in cancer therapy is to find ligands that directly bind ubiquitin (Ub) chains. However, finding molecules capable of tightly and specifically binding Ub chains is challenging given the range of Ub polymer lengths and linkages and their subtle structural differences. Here, we use total chemical synthesis of proteins to generate highly homogeneous Ub chains for screening against trillion-member macrocyclic peptide libraries (RaPID system). De novo cyclic peptides were found that can bind tightly and specifically to K48-linked Ub chains, confirmed by NMR studies. These cyclic peptides protected K48-linked Ub chains from deubiquitinating enzymes and prevented proteasomal degradation of Ub-tagged proteins. The cyclic peptides could enter cells, inhibit growth and induce programmed cell death, opening new opportunities for therapeutic intervention. This highly synthetic approach, with both protein target generation and cyclic peptide discovery performed in vitro, will make other elaborate post-translationally modified targets accessible for drug discovery.
Collapse
|
245
|
Santana RAG, Oliveira MC, Cabral I, Junior RCAS, de Sousa DRT, Ferreira L, Lacerda MVG, Monteiro WM, Abrantes P, Guerra MDGVB, Silveira H. Anopheles aquasalis transcriptome reveals autophagic responses to Plasmodium vivax midgut invasion. Parasit Vectors 2019; 12:261. [PMID: 31126324 PMCID: PMC6534896 DOI: 10.1186/s13071-019-3506-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
Background Elimination of malaria depends on mastering transmission and understanding the biological basis of Plasmodium infection in the vector. The first mosquito organ to interact with the parasite is the midgut and its transcriptomic characterization during infection can reveal effective antiplasmodial responses able to limit the survival of the parasite. The vector response to Plasmodium vivax is not fully characterized, and its specificities when compared with other malaria parasites can be of fundamental interest for specific control measures. Methods Experimental infections were performed using a membrane-feeding device. Three groups were used: P. vivax-blood-fed, blood-fed on inactivated gametocytes, and unfed mosquitoes. Twenty-four hours after feeding, the mosquitoes were dissected and the midgut collected for transcriptomic analysis using RNAseq. Nine cDNA libraries were generated and sequenced on an Illumina HiSeq2500. Readings were checked for quality control and analysed using the Trinity platform for de novo transcriptome assembly. Transcript quantification was performed and the transcriptome was functionally annotated. Differential expression gene analysis was carried out. The role of the identified mechanisms was further explored using functional approaches. Results Forty-nine genes were identified as being differentially expressed with P. vivax infection: 34 were upregulated and 15 were downregulated. Half of the P. vivax-related differentially expressed genes could be related to autophagy; therefore, the effect of the known inhibitor (wortmannin) and activator (spermidine) was tested on the infection outcome. Autophagic activation significantly reduced the intensity and prevalence of infection. This was associated with transcription alterations of the autophagy regulating genes Beclin, DRAM and Apg8. Conclusions Our data indicate that P. vivax invasion of An. aquasalis midgut epithelium triggers an autophagic response and its activation reduces infection. This suggests a novel mechanism that mosquitoes can use to fight Plasmodium infection. Electronic supplementary material The online version of this article (10.1186/s13071-019-3506-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosa Amélia Gonçalves Santana
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Maurício Costa Oliveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Iria Cabral
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Rubens Celso Andrade Silva Junior
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Débora Raysa Teixeira de Sousa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Lucas Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Patrícia Abrantes
- Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria das Graças Vale Barbosa Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Henrique Silveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil. .,Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
246
|
Resnick E, Bradley A, Gan J, Douangamath A, Krojer T, Sethi R, Geurink PP, Aimon A, Amitai G, Bellini D, Bennett J, Fairhead M, Fedorov O, Gabizon R, Gan J, Guo J, Plotnikov A, Reznik N, Ruda GF, Díaz-Sáez L, Straub VM, Szommer T, Velupillai S, Zaidman D, Zhang Y, Coker AR, Dowson CG, Barr HM, Wang C, Huber KVM, Brennan PE, Ovaa H, von Delft F, London N. Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening. J Am Chem Soc 2019; 141:8951-8968. [PMID: 31060360 PMCID: PMC6556873 DOI: 10.1021/jacs.9b02822] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covalent probes can display unmatched potency, selectivity, and duration of action; however, their discovery is challenging. In principle, fragments that can irreversibly bind their target can overcome the low affinity that limits reversible fragment screening, but such electrophilic fragments were considered nonselective and were rarely screened. We hypothesized that mild electrophiles might overcome the selectivity challenge and constructed a library of 993 mildly electrophilic fragments. We characterized this library by a new high-throughput thiol-reactivity assay and screened them against 10 cysteine-containing proteins. Highly reactive and promiscuous fragments were rare and could be easily eliminated. In contrast, we found hits for most targets. Combining our approach with high-throughput crystallography allowed rapid progression to potent and selective probes for two enzymes, the deubiquitinase OTUB2 and the pyrophosphatase NUDT7. No inhibitors were previously known for either. This study highlights the potential of electrophile-fragment screening as a practical and efficient tool for covalent-ligand discovery.
Collapse
Affiliation(s)
| | - Anthony Bradley
- Department of Chemistry , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , U.K.,Diamond Light Source Ltd., Harwell Science and Innovation Campus , Didcot OX11 0QX , U.K
| | | | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus , Didcot OX11 0QX , U.K
| | | | - Ritika Sethi
- Structural Biology Research Center , VIB , Brussels , Belgium.,Structural Biology Brussels , Vrije Universiteit Brussel , Brussels , Belgium
| | - Paul P Geurink
- Oncode Institute and Department of Cell and Chemical Biology , Leiden University Medical Center , Einthovenweg 20 , 2333 ZC Leiden , The Netherlands
| | - Anthony Aimon
- Department of Chemistry , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , U.K.,Diamond Light Source Ltd., Harwell Science and Innovation Campus , Didcot OX11 0QX , U.K
| | | | - Dom Bellini
- School of Life Sciences , University of Warwick , Coventry , U.K
| | | | | | | | | | - Jin Gan
- Oncode Institute and Department of Cell and Chemical Biology , Leiden University Medical Center , Einthovenweg 20 , 2333 ZC Leiden , The Netherlands
| | - Jingxu Guo
- Division of Medicine , University College London , Gower Street , London WC1E 6BT , U.K
| | | | | | | | | | | | | | | | | | | | - Alun R Coker
- Division of Medicine , University College London , Gower Street , London WC1E 6BT , U.K
| | | | | | | | | | - Paul E Brennan
- School of Life Sciences , University of Warwick , Coventry , U.K.,Alzheimer's Research UK Oxford Drug Discovery Institute , University of Oxford , NDMRB, Roosevelt Drive , Oxford OX3 7FZ , U.K
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology , Leiden University Medical Center , Einthovenweg 20 , 2333 ZC Leiden , The Netherlands
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus , Didcot OX11 0QX , U.K.,Department of Biochemistry , University of Johannesburg , Auckland Park 2006 , South Africa
| | | |
Collapse
|
247
|
Ceccarelli DF, Ivantsiv S, Mullin AA, Coyaud E, Manczyk N, Maisonneuve P, Kurinov I, Zhao L, Go C, Gingras AC, Raught B, Cordes S, Sicheri F. FAM105A/OTULINL Is a Pseudodeubiquitinase of the OTU-Class that Localizes to the ER Membrane. Structure 2019; 27:1000-1012.e6. [PMID: 31056421 DOI: 10.1016/j.str.2019.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/23/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Pseudoenzymes have been identified across a diverse range of enzyme classes and fulfill important cellular functions. Examples of pseudoenzymes exist within ubiquitin conjugating and deubiquitinase (DUB) protein families. Here we characterize FAM105A/OTULINL, the only putative pseudodeubiquitinase of the ovarian tumor protease (OTU domain) family in humans. The crystal structure of FAM105A revealed that the OTU domain possesses structural deficiencies in both active site and substrate-binding infrastructure predicted to impair normal DUB function. We confirmed the absence of catalytic function against all ubiquitin linkages and an inability of FAM105A to bind ubiquitin compared with catalytically active FAM105B/OTULIN. FAM105A co-localized with KDEL markers and Lamin B1 at the endoplasmic reticulum (ER) and nuclear envelope, respectively. Accordingly, the FAM105A interactome exhibited significant enrichment in proteins localized to the ER/outer nuclear, Golgi and vesicular membranes. In light of undetectable deubiquitinase activity, we posit that FAM105A/OTULINL functions through its ability to mediate protein-protein interactions.
Collapse
Affiliation(s)
- Derek F Ceccarelli
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Sofiia Ivantsiv
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amber Anne Mullin
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Noah Manczyk
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Maisonneuve
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, IL 60439, USA
| | - Liang Zhao
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Chris Go
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Sabine Cordes
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
248
|
Wu Z, Qiu M, Guo Y, Zhao J, Liu Z, Wang H, Meng M, Yuan Z, Mi Z. OTU deubiquitinase 4 is silenced and radiosensitizes non-small cell lung cancer cells via inhibiting DNA repair. Cancer Cell Int 2019; 19:99. [PMID: 31011293 PMCID: PMC6466656 DOI: 10.1186/s12935-019-0816-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Radiotherapy is becoming one major therapeutics for non-small cell lung cancer (NSCLC). Identifying novel radiosensitizers will greatly increase the efficacy of radiotherapy and benefit more patients. OTU deubiquitinase 4 (OTUD4) has been reported involved in DNA damage repair pathways and could be a potential target for chemotherapy therapy. This study aimed to investigate the roles of OTUD4 in regulation of radiosensitivity of NSCLC via modulating DNA repair. Methods The expression of OTUD4, γ-H2Ax and ATM/CHK2/p53 pathway-related signaling molecules were detected by Western blotting and QRT-PCR. The methylation of OTUD4 promoter was investigated by 5-aza-deoxycytidine treatment, methylation-specific PCR and bisulfite genomic sequencing assays. Radiosensitivity was assessed by the clonogenic formation assay. Cell cycle, cell apoptosis were analyzed by flow cytometry. DNA damage and repair were determined by comet assay, γ-H2Ax foci staining and flow cytometry. Results OTUD4 is dramatically downregulated in NSCLC and its downregulation significantly correlates with poor prognosis of NSCLC patients. Promoter hypermethylation is responsible for the loss of OTUD4 expression in NSCLC cells. Overexpression of OTUD4 increases radiosensitivity of NSCLC cells exhibiting as impaired clonogenic formation ability, enhanced cell cycle arrest and increased cell apoptosis. Moreover, molecular mechanism study reveals that OTUD4 radiosensitizs NSCLC cells via ATM/CHK2/P53 signaling and inhibiting homology-directed repair of DNA double strand breaks induced by ionizing radiation. Conclusions This study uncovers a tumor-suppressing role of OTUD4 and that OTUD4 is a potential radiosensitizer for NSCLC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0816-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiqiang Wu
- 1Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Minghan Qiu
- 1Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Yu Guo
- 2Department of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Jinlin Zhao
- 1Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Zhuang Liu
- 1Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Hui Wang
- 1Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Maobin Meng
- 1Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Zhiyong Yuan
- 1Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Zeyun Mi
- 3Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
249
|
Liu C, Huang S, Wang X, Wen M, Zheng J, Wang W, Fu Y, Tian S, Li L, Li Z, Wang X. The Otubain YOD1 Suppresses Aggregation and Activation of the Signaling Adaptor MAVS through Lys63-Linked Deubiquitination. THE JOURNAL OF IMMUNOLOGY 2019; 202:2957-2970. [PMID: 30952814 DOI: 10.4049/jimmunol.1800656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
Abstract
MAVS is a critical adaptor required for activating an innate antiviral immune response against viral infection. The activation of MAVS requires modification of the Lys63-linked ubiquitination and formation of prion-like aggregates. However, the molecular mechanisms regulating MAVS activity remain largely obscured. In this study, we identified a deubiquitinase YOD1, also known as a member of the ovarian tumor family, as a negative regulator of MAVS activation in both human and murine cells. YOD1 was recruited to mitochondria to interact with MAVS through its UBX and Znf domains after viral infection. Subsequently, YOD1 cleaved the K63-linked ubiquitination and abrogated the formation of prion-like aggregates of MAVS, which led to attenuation of IRF3, P65 activation, and IFN-β production. Knockdown of YOD1 potentiated IRF3 and P65 activation, IFN-β production, and antiviral innate immune response to RNA virus. Our findings thus provided, to our knowledge, novel insights into the regulatory cascade of the cellular antiviral response through YOD1-mediated K63-linked deubiquitination and aggregation of MAVS.
Collapse
Affiliation(s)
- Chang Liu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Heping District, Tianjin 300070, People's Republic of China.,Department of Immunology, Beijing Key Laboratory for Cancer Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Shan Huang
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Heping District, Tianjin 300070, People's Republic of China.,Department of Immunology, Beijing Key Laboratory for Cancer Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Xuelin Wang
- Tianjin Children's Hospital, Tianjin 300074, People's Republic of China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; and
| | - Mingjie Wen
- Department of Immunology, Beijing Key Laboratory for Cancer Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jiarui Zheng
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Heping District, Tianjin 300070, People's Republic of China.,Department of Immunology, Beijing Key Laboratory for Cancer Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; and
| | - Yanbin Fu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Heping District, Tianjin 300070, People's Republic of China
| | - Shunli Tian
- Department of Geratology, Tianjin Geriatric Institute, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, People's Republic of China
| | - Long Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Heping District, Tianjin 300070, People's Republic of China
| | - Zexing Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Heping District, Tianjin 300070, People's Republic of China;
| | - Xi Wang
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Laboratory of Epigenetics in Development and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Heping District, Tianjin 300070, People's Republic of China; .,Department of Immunology, Beijing Key Laboratory for Cancer Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
250
|
Kabra A, Benson CA, Li Y. Backbone 1H, 13C, and 15N resonance assignments of deubiquitinase A in non-phosphorylated and phosphorylated forms. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:37-42. [PMID: 30232733 PMCID: PMC6424661 DOI: 10.1007/s12104-018-9847-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Ubiquitination is one of the most prevalent forms of post-translational modifications that are important for regulating many cellular processes in eukaryotes. Deubiquitinases are proteases that hydrolyze the isopeptide or peptide bonds formed between ubiquitin and the target proteins or within a polyubiquitin chain. Deubiquitinase A (DUBA) is a deubiquitinase known to be a negative regulator of innate immune responses in humans by suppressing production of type I interferons (INF-I). Excess INF-I production has been associated with autoimmune diseases. Phosphorylation of a single serine residue at position 177 is essential for the protease activity of DUBA. The structural and mechanistic basis of DUBA activation by phosphorylation and substrate specificity is not well understood. Here, we report the backbone resonance assignments of the isoform 2 of DUBA in both non-phosphorylated and phosphorylated forms. The reported assignments form the basis for future NMR studies on the structural and dynamical properties of both active and inactive forms of DUBA.
Collapse
Affiliation(s)
- Ashish Kabra
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, 40208, USA
| | - Catherine A Benson
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, 40208, USA
| | - Ying Li
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, 40208, USA.
| |
Collapse
|