201
|
Wu C, Boisclair Lachance JF, Ludwig MZ, Rebay I. A context-dependent bifurcation in the Pointed transcriptional effector network contributes specificity and robustness to retinal cell fate acquisition. PLoS Genet 2020; 16:e1009216. [PMID: 33253156 PMCID: PMC7728396 DOI: 10.1371/journal.pgen.1009216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/10/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporally precise and robust cell fate transitions, which depend on specific signaling cues, are fundamental to the development of appropriately patterned tissues. The fidelity and precision with which photoreceptor fates are recruited in the Drosophila eye exemplifies these principles. The fly eye consists of a highly ordered array of ~750 ommatidia, each of which contains eight distinct photoreceptors, R1-R8, specified sequentially in a precise spatial pattern. Recruitment of R1-R7 fates requires reiterative receptor tyrosine kinase / mitogen activated protein kinase (MAPK) signaling mediated by the transcriptional effector Pointed (Pnt). However the overall signaling levels experienced by R2-R5 cells are distinct from those experienced by R1, R6 and R7. A relay mechanism between two Pnt isoforms initiated by MAPK activation directs the universal transcriptional response. Here we ask how the generic Pnt response is tailored to these two rounds of photoreceptor fate transitions. We find that during R2-R5 specification PntP2 is coexpressed with a closely related but previously uncharacterized isoform, PntP3. Using CRISPR/Cas9-generated isoform specific null alleles we show that under otherwise wild type conditions, R2-R5 fate specification is robust to loss of either PntP2 or PntP3, and that the two activate pntP1 redundantly; however under conditions of reduced MAPK activity, both are required. Mechanistically, our data suggest that intrinsic activity differences between PntP2 and PntP3, combined with positive and unexpected negative transcriptional auto- and cross-regulation, buffer first-round fates against conditions of compromised RTK signaling. In contrast, in a mechanism that may be adaptive to the stronger signaling environment used to specify R1, R6 and R7 fates, the Pnt network resets to a simpler topology in which PntP2 uniquely activates pntP1 and auto-activates its own transcription. We propose that differences in expression patterns, transcriptional activities and regulatory interactions between Pnt isoforms together facilitate context-appropriate cell fate specification in different signaling environments.
Collapse
Affiliation(s)
- Chudong Wu
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Michael Z. Ludwig
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Ilaria Rebay
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
202
|
Koterniak B, Pilaka PP, Gracida X, Schneider LM, Pritišanac I, Zhang Y, Calarco JA. Global regulatory features of alternative splicing across tissues and within the nervous system of C. elegans. Genome Res 2020; 30:1766-1780. [PMID: 33127752 PMCID: PMC7706725 DOI: 10.1101/gr.267328.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Alternative splicing plays a major role in shaping tissue-specific transcriptomes. Among the broad tissue types present in metazoans, the central nervous system contains some of the highest levels of alternative splicing. Although many documented examples of splicing differences between broad tissue types exist, there remains much to be understood about the splicing factors and the cis sequence elements controlling tissue and neuron subtype-specific splicing patterns. By using translating ribosome affinity purification coupled with deep-sequencing (TRAP-seq) in Caenorhabditis elegans, we have obtained high coverage profiles of ribosome-associated mRNA for three broad tissue classes (nervous system, muscle, and intestine) and two neuronal subtypes (dopaminergic and serotonergic neurons). We have identified hundreds of splice junctions that exhibit distinct splicing patterns between tissue types or within the nervous system. Alternative splicing events differentially regulated between tissues are more often frame-preserving, are more highly conserved across Caenorhabditis species, and are enriched in specific cis regulatory motifs, when compared with other types of exons. By using this information, we have identified a likely mechanism of splicing repression by the RNA-binding protein UNC-75/CELF via interactions with cis elements that overlap a 5′ splice site. Alternatively spliced exons also overlap more frequently with intrinsically disordered peptide regions than constitutive exons. Moreover, regulated exons are often shorter than constitutive exons but are flanked by longer intron sequences. Among these tissue-regulated exons are several highly conserved microexons <27 nt in length. Collectively, our results indicate a rich layer of tissue-specific gene regulation at the level of alternative splicing in C. elegans that parallels the evolutionary forces and constraints observed across metazoa.
Collapse
Affiliation(s)
- Bina Koterniak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Pallavi P Pilaka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Xicotencatl Gracida
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lisa-Marie Schneider
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.,Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yun Zhang
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
203
|
Nakano Y, Wiechert S, Fritzsch B, Bánfi B. Inhibition of a transcriptional repressor rescues hearing in a splicing factor-deficient mouse. Life Sci Alliance 2020; 3:3/12/e202000841. [PMID: 33087486 PMCID: PMC7652395 DOI: 10.26508/lsa.202000841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
The vital role of the splicing factor SRRM4 in vestibular and inner hair cells of the ear is inactivation of the gene repressor REST; however, in outer hair cells, SRRM4 is dispensable for REST inactivation, which SRRM3 accomplishes independently. In mechanosensory hair cells (HCs) of the ear, the transcriptional repressor REST is continuously inactivated by alternative splicing of its pre-mRNA. This mechanism of REST inactivation is crucial for hearing in humans and mice. Rest is one of many pre-mRNAs whose alternative splicing is regulated by the splicing factor SRRM4; Srrm4 loss-of-function mutation in mice (Srrm4bv/bv) causes deafness, balance defects, and degeneration of all HC types other than the outer HCs (OHCs). The specific splicing alterations that drive HC degeneration in Srrm4bv/bv mice are unknown, and the mechanism underlying SRRM4-independent survival of OHCs is undefined. Here, we show that transgenic expression of a dominant-negative REST fragment in Srrm4bv/bv mice is sufficient for long-term rescue of hearing, balancing, HCs, alternative splicing of Rest, and expression of REST target genes including the Srrm4 paralog Srrm3. We also show that in HCs, SRRM3 regulates many of the same exons as SRRM4; OHCs are unique among HCs in that they transiently down-regulate Rest transcription as they mature to express Srrm3 independently of SRRM4; and simultaneous SRRM4–SRRM3 deficiency causes complete HC loss by preventing inactivation of REST in all HCs. Thus, our data reveal that REST inactivation is the primary and essential role of SRRM4 in the ear, and that OHCs differ from other HCs in the SRRM4-independent expression of the functionally SRRM4-like splicing factor SRRM3.
Collapse
Affiliation(s)
- Yoko Nakano
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan Wiechert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bernd Fritzsch
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Botond Bánfi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA .,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Otolaryngology-Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
204
|
Schaffer LV, Anderson LC, Butcher DS, Shortreed MR, Miller RM, Pavelec C, Smith LM. Construction of Human Proteoform Families from 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Top-Down Proteomic Data. J Proteome Res 2020; 20:317-325. [PMID: 33074679 DOI: 10.1021/acs.jproteome.0c00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identification of proteoforms, the different forms of a protein, is important to understand biological processes. A proteoform family is the set of different proteoforms from the same gene. We previously developed the software program Proteoform Suite, which constructs proteoform families and identifies proteoforms by intact-mass analysis. Here, we have applied this approach to top-down proteomic data acquired at the National High Magnetic Field Laboratory 21 tesla Fourier transform ion cyclotron resonance mass spectrometer (data available on the MassIVE platform with identifier MSV000085978). We explored the ability to construct proteoform families and identify proteoforms from the high mass accuracy data that this instrument provides for a complex cell lysate sample from the MCF-7 human breast cancer cell line. There were 2830 observed experimental proteforms, of which 932 were identified, 44 were ambiguous, and 1854 were unidentified. Of the 932 unique identified proteoforms, 766 were identified by top-down MS2 analysis at 1% false discovery rate (FDR) using TDPortal, and 166 were additional intact-mass identifications (∼4.7% calculated global FDR) made using Proteoform Suite. We recently published a proteoform level schema to represent ambiguity in proteoform identifications. We implemented this proteoform level classification in Proteoform Suite for intact-mass identifications, which enables users to determine the ambiguity levels and sources of ambiguity for each intact-mass proteoform identification.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - David S Butcher
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Caitlin Pavelec
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
205
|
Rodriguez JM, Pozo F, di Domenico T, Vazquez J, Tress ML. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput Biol 2020; 16:e1008287. [PMID: 33017396 PMCID: PMC7561204 DOI: 10.1371/journal.pcbi.1008287] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/15/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023] Open
Abstract
The role of alternative splicing is one of the great unanswered questions in cellular biology. There is strong evidence for alternative splicing at the transcript level, and transcriptomics experiments show that many splice events are tissue specific. It has been suggested that alternative splicing evolved in order to remodel tissue-specific protein-protein networks. Here we investigated the evidence for tissue-specific splicing among splice isoforms detected in a large-scale proteomics analysis. Although the data supporting alternative splicing is limited at the protein level, clear patterns emerged among the small numbers of alternative splice events that we could detect in the proteomics data. More than a third of these splice events were tissue-specific and most were ancient: over 95% of splice events that were tissue-specific in both proteomics and RNAseq analyses evolved prior to the ancestors of lobe-finned fish, at least 400 million years ago. By way of contrast, three in four alternative exons in the human gene set arose in the primate lineage, so our results cannot be extrapolated to the whole genome. Tissue-specific alternative protein forms in the proteomics analysis were particularly abundant in nervous and muscle tissues and their genes had roles related to the cytoskeleton and either the structure of muscle fibres or cell-cell connections. Our results suggest that this conserved tissue-specific alternative splicing may have played a role in the development of the vertebrate brain and heart. We manually curated a set of 255 splice events detected in a large-scale tissue-based proteomics experiment and found that more than a third had evidence of significant tissue-specific differences. Events that were significantly tissue-specific at the protein level were highly conserved; almost 75% evolved over 400 million years ago. The tissues in which we found most evidence for tissue-specific splicing were nervous tissues and cardiac tissues. Genes with tissue-specific events in these two tissues had functions related to important cellular structures in brain and heart tissues. These splice events may have been essential for the development of vertebrate heart and muscle. However, our data set may not be representative of alternative exons as a whole. We found that most tissue specific splicing was strongly conserved, but just 5% of annotated alternative exons in the human gene set are ancient. More than three quarters of alternative exons are primate-derived. Although the analysis does not provide a definitive answer to the question of the functional role of alternative splicing, our results do indicate that alternative splice variants may have played a significant part in the evolution of brain and heart tissues in vertebrates.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez, Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
| | - Tomas di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
| | - Jesus Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Michael L. Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
- * E-mail:
| |
Collapse
|
206
|
Lau E, Han Y, Williams DR, Thomas CT, Shrestha R, Wu JC, Lam MPY. Splice-Junction-Based Mapping of Alternative Isoforms in the Human Proteome. Cell Rep 2020; 29:3751-3765.e5. [PMID: 31825849 PMCID: PMC6961840 DOI: 10.1016/j.celrep.2019.11.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/24/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
The protein-level translational status and function of many alternative splicing events remain poorly understood. We use an RNA sequencing (RNA-seq)-guided proteomics method to identify protein alternative splicing isoforms in the human proteome by constructing tissue-specific protein databases that prioritize transcript splice junction pairs with high translational potential. Using the custom databases to reanalyze ~80 million mass spectra in public proteomics datasets, we identify more than 1,500 noncanonical protein isoforms across 12 human tissues, including ~400 sequences undocumented on TrEMBL and RefSeq databases. We apply the method to original quantitative mass spectrometry experiments and observe widespread isoform regulation during human induced pluripotent stem cell cardiomyocyte differentiation. On a proteome scale, alternative isoform regions overlap frequently with disordered sequences and post-translational modification sites, suggesting that alternative splicing may regulate protein function through modulating intrinsically disordered regions. The described approach may help elucidate functional consequences of alternative splicing and expand the scope of proteomics investigations in various systems. The translation and function of many alternative splicing events await confirmation at the protein level. Lau et al. use an integrated proteotranscriptomics approach to identify non-canonical and undocumented isoforms from 12 organs in the human proteome. Alternative isoforms interfere with functional sequence features and are differentially regulated during iPSC cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Edward Lau
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Yu Han
- Consortium for Fibrosis Research and Translation, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA; Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Damon R Williams
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Cody T Thomas
- Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Rajani Shrestha
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA; Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Maggie P Y Lam
- Consortium for Fibrosis Research and Translation, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA; Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
207
|
Song Y, Chen P, Liu P, Bu C, Zhang D. High-Temperature-Responsive Poplar lncRNAs Modulate Target Gene Expression via RNA Interference and Act as RNA Scaffolds to Enhance Heat Tolerance. Int J Mol Sci 2020; 21:ijms21186808. [PMID: 32948072 PMCID: PMC7555564 DOI: 10.3390/ijms21186808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023] Open
Abstract
High-temperature stress is a threat to plant development and survival. Long noncoding RNAs (lncRNAs) participate in plant stress responses, but their functions in the complex stress response network remain unknown. Poplar contributes to terrestrial ecological stability. In this study, we identified 204 high-temperature-responsive lncRNAs in an abiotic stress-tolerant poplar (Populus simonii) species using strand-specific RNA sequencing (ssRNA-seq). Mimicking overexpressed and repressed candidate lncRNAs in poplar was used to illuminate their regulation pattern on targets using nano sheet mediation. These lncRNAs were predicted to target 185 genes, of which 100 were cis genes and 119 were trans genes. Gene Ontology enrichment analysis showed that anatomical structure morphogenesis and response to stress and signaling were significantly enriched. Among heat-responsive LncRNAs, TCONS_00202587 binds to upstream sequences via its secondary structure and interferes with target gene transcription. TCONS_00260893 enhances calcium influx in response to high-temperature treatment by interfering with a specific variant/isoform of the target gene. Heterogeneous expression of these two lncRNA targets promoted photosynthetic protection and recovery, inhibited membrane peroxidation, and suppressed DNA damage in Arabidopsis under heat stress. These results showed that lncRNAs can regulate their target genes by acting as potential RNA scaffolds or through the RNA interference pathway.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Arabidopsis
- Base Sequence
- Calcium Signaling
- DNA Damage
- DNA, Plant/genetics
- Gene Expression Regulation, Plant/genetics
- Gene Ontology
- Genes, Plant
- Hot Temperature
- Nanostructures
- Nucleic Acid Conformation
- Nucleotide Motifs
- Photosynthesis
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Plants, Genetically Modified
- Populus/genetics
- Populus/physiology
- Promoter Regions, Genetic/genetics
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Plant/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Recombinant Proteins/metabolism
- Stress, Physiological/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Correspondence:
| |
Collapse
|
208
|
Wang B, Li Y, Kou C, Sun J, Xu X. Mining Database for the Clinical Significance and Prognostic Value of ESRP1 in Cutaneous Malignant Melanoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4985014. [PMID: 32964032 PMCID: PMC7492958 DOI: 10.1155/2020/4985014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epithelial splicing regulatory protein 1 (ESRP1) has been described as an RNA-binding protein involved in cancer development. However, the expression and regulatory network of ESRP1 in cutaneous malignant melanoma (CMM) remain unclear. METHODS From the sequencing data of 103 CMM samples in The Cancer Genome Atlas database, the expression level of ESRP1 and its correlation with the clinicopathological characteristics were analyzed using the Oncomine 4.5, Gene Expression Profiling Interactive Analysis (GEPIA), and UALCAN tools, while LinkedOmics was used to identify differential gene expression with ESRP1 and to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Gene enrichment analysis examined target networks of kinases, miRNAs, and transcription factors. Finally, TIMER was used to analyze the relationship between ESRP1 and tumor immune cell infiltration. RESULTS We found that ESRP1 was lowly expressed in CMM tissues, and a low level of ESRP1 expression correlated with better overall survival. Expression of this gene was linked to functional networks involving the condensed chromosomes, epidermal development, and translation initiation. Functional network analysis suggested that ESRP1 regulated ribosome metabolism, drug metabolism, and chemical carcinogenesis via pathways involving several cancer-related kinases, miRNAs, and transcription factors. Furthermore, our results suggested that ESRP1 played an important role in regulating tumor-associated macrophage polarization, dendritic cell infiltration, Treg cells, and T cell exhaustion. CONCLUSION Our study demonstrates ESRP1 expression, prognostic value, and potential regulatory networks in CMM, thereby shedding light on the clinical significance of ESRP1, and provides a novel biomarker for determining prognosis and immune infiltration in CMM.
Collapse
Affiliation(s)
- Baihe Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Caixia Kou
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Xiulian Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| |
Collapse
|
209
|
Huang H, Tong TT, Yau LF, Wang JR, Lai MH, Zhang CR, Wen XH, Li SN, Li KY, Liu JQ, Ma HX, Tsang BK, Jiang ZH. Chemerin isoform analysis in human biofluids using an LC/MRM-MS-based targeted proteomics approach with stable isotope-labeled standard. Anal Chim Acta 2020; 1139:79-87. [PMID: 33190712 DOI: 10.1016/j.aca.2020.08.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 01/06/2023]
Abstract
Targeted proteomics has advantages over earlier conventional technologies for protein detection. We developed and validated an LC/MRM-MS-based targeted proteomic method combined with immunoaffinity precipitation for the enrichment and detection of low abundance chemerin isoforms in human biofluids. After tryptic digestion, each chemerin isoform was characterized by isoform-specific peptides, and the absolute quantification was achieved by using stable isotope-labeled peptides as internal standards. In serum, follicular fluid and synovial fluid, a total of 6 chemerin isoforms were identified and quantified, among which a novel natural isoform 153Q was discovered for the first time. The relative content of the six chemerin isoforms in human serum was 157S ≫ 156F ≫ 158K > 154F ≥ 155A > 153Q in the ratio of 25:17:5:2.5:2.2:1, respectively. The absolute contents were in the range of 88-3.5 ng/mL. This distribution remained consistent among the 3 biofluids analyzed. Total chemerin were found to be increased in both polycystic ovary syndrome (serum and follicular fluid) and rheumatoid arthritis (serum) patients. However, chemerin isoform analysis revealed that only 156F & 157S were increased in the former, while 155A, 156F & 157S were increased in the latter. This demonstrates the potential of this method in detailed characterization of changes in chemerin isoforms that may be of clinical relevance.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China; National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Tian-Tian Tong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Mao-Hua Lai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Chun-Ren Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiao-Hui Wen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shu-Na Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Kun-Yin Li
- Department of Gynecology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Jian-Qiao Liu
- Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Hong-Xia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Benjamin K Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa, Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
210
|
Kahraman A, Karakulak T, Szklarczyk D, von Mering C. Pathogenic impact of transcript isoform switching in 1,209 cancer samples covering 27 cancer types using an isoform-specific interaction network. Sci Rep 2020; 10:14453. [PMID: 32879328 PMCID: PMC7468103 DOI: 10.1038/s41598-020-71221-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
Under normal conditions, cells of almost all tissue types express the same predominant canonical transcript isoform at each gene locus. In cancer, however, splicing regulation is often disturbed, leading to cancer-specific switches in the most dominant transcripts (MDT). To address the pathogenic impact of these switches, we have analyzed isoform-specific protein-protein interaction disruptions in 1,209 cancer samples covering 27 different cancer types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International Cancer Genomics Consortium (ICGC). Our study revealed large variations in the number of cancer-specific MDT (cMDT) with the highest frequency in cancers of female reproductive organs. Interestingly, in contrast to the mutational load, cancers arising from the same primary tissue had a similar number of cMDT. Some cMDT were found in 100% of all samples in a cancer type, making them candidates for diagnostic biomarkers. cMDT tend to be located at densely populated network regions where they disrupted protein interactions in the proximity of pathogenic cancer genes. A gene ontology enrichment analysis showed that these disruptions occurred mostly in protein translation and RNA splicing pathways. Interestingly, samples with mutations in the spliceosomal complex tend to have higher number of cMDT, while other transcript expressions correlated with mutations in non-coding splice-site and promoter regions of their genes. This work demonstrates for the first time the large extent of cancer-specific alterations in alternative splicing for 27 different cancer types. It highlights distinct and common patterns of cMDT and suggests novel pathogenic transcripts and markers that induce large network disruptions in cancers.
Collapse
Affiliation(s)
- Abdullah Kahraman
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tülay Karakulak
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
211
|
Deng Y, Luo H, Yang Z, Liu L. LncAS2Cancer: a comprehensive database for alternative splicing of lncRNAs across human cancers. Brief Bioinform 2020; 22:5895039. [PMID: 32820322 DOI: 10.1093/bib/bbaa179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating studies demonstrated that the roles of lncRNAs for tumorigenesis were isoform-dependent and their aberrant splicing patterns in cancers contributed to function specificity. However, there is no existing database focusing on cancer-related alternative splicing of lncRNAs. Here, we developed a comprehensive database called LncAS2Cancer, which collected 5335 bulk RNA sequencing and 1826 single-cell RNA sequencing samples, covering over 30 cancer types. By applying six state-of-the-art splicing algorithms, 50 859 alternative splicing events for 8 splicing types were identified and deposited in the database. In addition, the database contained the following information: (i) splicing patterns of lncRNAs under seven different conditions, such as gene interference, which facilitated to infer potential regulators; (ii) annotation information derived from eight sources and manual curation, to understand the functional impact of affected sequences; (iii) survival analysis to explore potential biomarkers; as well as (iv) a suite of tools to browse, search, visualize and download interesting information. LncAS2Cancer could not only confirm the known cancer-associated lncRNA isoforms but also indicate novel ones. Using the data deposited in LncAS2Cancer, we compared gene model and transcript overlap between lncRNAs and protein-coding genes and discusses how these factors, along with sequencing depth, affected the interpretation of splicing signals. Based on recurrent signals and potential confounders, we proposed a reliable score to prioritize splicing events for further elucidation. Together, with the broad collection of lncRNA splicing patterns and annotation, LncAS2Cancer will provide important new insights into the diverse functional roles of lncRNA isoforms in human cancers. LncAS2Cancer is freely available at https://lncrna2as.cd120.com/.
Collapse
Affiliation(s)
- Yulan Deng
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Hao Luo
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Zhenyu Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| |
Collapse
|
212
|
Habowski AN, Flesher JL, Bates JM, Tsai CF, Martin K, Zhao R, Ganesan AK, Edwards RA, Shi T, Wiley HS, Shi Y, Hertel KJ, Waterman ML. Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt. Commun Biol 2020; 3:453. [PMID: 32814826 PMCID: PMC7438495 DOI: 10.1038/s42003-020-01181-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal stem cells are non-quiescent, dividing epithelial cells that rapidly differentiate into progenitor cells of the absorptive and secretory cell lineages. The kinetics of this process is rapid such that the epithelium is replaced weekly. To determine how the transcriptome and proteome keep pace with rapid differentiation, we developed a new cell sorting method to purify mouse colon epithelial cells. Here we show that alternative mRNA splicing and polyadenylation dominate changes in the transcriptome as stem cells differentiate into progenitors. In contrast, as progenitors differentiate into mature cell types, changes in mRNA levels dominate the transcriptome. RNA processing targets regulators of cell cycle, RNA, cell adhesion, SUMOylation, and Wnt and Notch signaling. Additionally, global proteome profiling detected >2,800 proteins and revealed RNA:protein patterns of abundance and correlation. Paired together, these data highlight new potentials for autocrine and feedback regulation and provide new insights into cell state transitions in the crypt.
Collapse
Affiliation(s)
- Amber N Habowski
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Jessica L Flesher
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Jennifer M Bates
- Institute for Immunology, University of California Irvine, Irvine, CA, 92697, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kendall Martin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Anand K Ganesan
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Dermatology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
213
|
Xiong Y, Yang G, Wang K, Riaz M, Xu J, Lv Z, Zhou H, Li Q, Li W, Sun J, Tao T, Li J. Genome-Wide Transcriptional Analysis Reveals Alternative Splicing Event Profiles in Hepatocellular Carcinoma and Their Prognostic Significance. Front Genet 2020; 11:879. [PMID: 32849842 PMCID: PMC7432180 DOI: 10.3389/fgene.2020.00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates an unexpected role of aberrant splicing in hepatocellular carcinoma (HCC) that has been seriously neglected in previous studies. There is a need for a detailed analysis of alternative splicing (AS) and its underlying biological and clinical relevance in HCC. In this study, clinical information and corresponding RNA sequencing data of HCC patients were obtained from The Cancer Genome Atlas. Percent spliced in (PSI) values and transcriptional splicing patterns of genes were determined from the original RNA sequencing data using SpliceSeq. Then, based on the PSI values of AS events in different patients, a series of bioinformatics methods was used to identify differentially expressed AS events (DEAS), determine potential regulatory relationships, and investigate the correlation between DEAS and the patients' clinicopathological features. Finally, 25,934 AS events originating from 8,795 genes were screened with high reliability; 263 of these AS events were identified as DEAS. The parent genes of these DEAS formed an intricate network with roles in the regulation of cancer-related pathway and liver metabolism. In HCC, 36 splicing factors were involved in the dysregulation of part DEAS, 100 DEAS events were correlated with overall survival, and 71 DEAS events were correlated with disease-free survival. Stratifying HCC patients according to DEAS resulted in four clusters with different survival patterns. Significant variations in AS occurred during HCC initiation and maintenance; these are likely to be vital both for biological processes and in prognosis. The HCC-related AS events identified here and the splicing networks constructed will be valuable in deciphering the underlying role of AS in HCC.
Collapse
Affiliation(s)
- Yongfu Xiong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,North Sichuan Medical College, Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Nanchong, China
| | - Gang Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Muhammad Riaz
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhenbing Lv
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, Nanchong, China
| | - He Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Weinan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ji Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tang Tao
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,North Sichuan Medical College, Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Nanchong, China
| |
Collapse
|
214
|
Korona D, Nightingale D, Fabre B, Nelson M, Fischer B, Johnson G, Lees J, Hubbard S, Lilley K, Russell S. Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy. PLoS One 2020; 15:e0236679. [PMID: 32760087 PMCID: PMC7410302 DOI: 10.1371/journal.pone.0236679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/threonine kinase activity and is a key player in diverse developmental signalling pathways. Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engineering to tag eight different Sgg proteoform classes and determined their localization during embryonic development. We performed proteomic analysis of the two major proteoform classes and generated mutant lines for both of these for transcriptomic and phenotypic analysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteoforms we examined, most of which have not previously been characterised directly at the protein level, including one proteoform initiating with a non-standard codon. Collectively, this suggests complex developmentally regulated splicing of the sgg primary transcript. Further, affinity purification followed by mass spectrometric analyses indicate a different repertoire of interacting proteins for the two major proteoforms we examined, one with ubiquitous expression (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific mutation of these proteoforms shows that Sgg-PB performs the well characterised maternal and zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan and locomotor defects consistent with its nervous system localisation. Our findings provide new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and GSK-3β proteins encoded by independent vertebrate genes. Our analysis suggests that different proteoforms generated by alternative splicing are likely to perform distinct functions.
Collapse
Affiliation(s)
- Dagmara Korona
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Nightingale
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Bertrand Fabre
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Michael Nelson
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre Manchester, University of Manchester, Manchester, United Kingdom
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Glynnis Johnson
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Lees
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Simon Hubbard
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre Manchester, University of Manchester, Manchester, United Kingdom
| | - Kathryn Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
215
|
Song E, Wang R, Leopold JA, Loscalzo J. Network determinants of cardiovascular calcification and repositioned drug treatments. FASEB J 2020; 34:11087-11100. [PMID: 32638415 PMCID: PMC7497212 DOI: 10.1096/fj.202001062r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 01/31/2023]
Abstract
Ectopic cardiovascular calcification is a highly prevalent pathology for which there are no effective novel or repurposed pharmacotherapeutics to prevent disease progression. We created a human calcification endophenotype module (ie, the "calcificasome") by mapping vascular calcification genes (proteins) to the human vascular smooth muscle-specific protein-protein interactome (218 nodes and 632 edges, P < 10-5 ). Network proximity analysis was used to demonstrate that the calcificasome overlapped significantly with endophenotype modules governing inflammation, thrombosis, and fibrosis in the human interactome (P < 0.001). A network-based drug repurposing analysis further revealed that everolimus, temsirolimus, and pomalidomide are predicted to target the calcificasome. The efficacy of these agents in limiting calcification was confirmed experimentally by treating human coronary artery smooth muscle cells in an in vitro calcification assay. Each of the drugs affected expression or activity of their predicted target in the network, and decreased calcification significantly (P < 0.009). An integrated network analytical approach identified novel mediators of ectopic cardiovascular calcification and biologically plausible candidate drugs that could be repurposed to target calcification. This methodological framework for drug repurposing has broad applicability to other diseases.
Collapse
Affiliation(s)
- Euijun Song
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Rui‐Sheng Wang
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Jane A. Leopold
- Division of Cardiovascular MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Joseph Loscalzo
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
216
|
Jia K, Wu Y, Huang J, Chen J, Wei H, Wu H. Wide-ranging analysis of survival-related alternative splicing events in invasive breast carcinoma. Oncol Lett 2020; 20:1866-1878. [PMID: 32724430 PMCID: PMC7377089 DOI: 10.3892/ol.2020.11695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Invasive breast carcinoma (BRCA) is a serious disease that threatens the survival time of those affected. Alternative splicing (AS) involved in BRCA pathogenesis may be a potential therapeutic target. However, to the best of our knowledge, a systematic analysis of survival-related alternative splicing events (SREs) has not yet been reported. The aim of the present study was to identify SREs and analyze their potential biological functions as BRCA prognostic biomarkers. An UpSet plot demonstrated AS global characteristics. Cox's proportional hazards regression model quantitatively demonstrated the prognostic relevance of AS events. Functional enrichment analysis investigated the potential pathways through which AS events affect BRCA progression. The receiver operating characteristic curve model determined the clinical significance of AS events represented using percent-spliced-in (PSI) values. The regulatory network of splicing factors (SFs) and AS events laid the foundation for studying the role of SFs in BRCA. The present study identified 1,215 SREs and their distribution characteristics, suggesting that AS events in exon skipping (ES) primarily exerted normal physiological functions, while AS events in alternative terminator sites had the most significant prognostic effect. The present study demonstrated that survival-associated genes are involved primarily in certain biological processes of ribosomal proteins. In the diagnostic model, the alternative acceptor site, alternative donor site, alternative promoter site and ES performed well. ELAVL4 was the key gene associated with prognosis and SREs. In conclusion, a number of AS events affect BRCA initiation, progression and prognosis. The PSI value of AS events has the potential to diagnose BRCA and predict a prognosis; however, this must be confirmed in additional studies.
Collapse
Affiliation(s)
- Keren Jia
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yingcheng Wu
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Jianing Chen
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huagen Wei
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huiqun Wu
- Department of Medical Informatics, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
217
|
Preussner M, Gao Q, Morrison E, Herdt O, Finkernagel F, Schumann M, Krause E, Freund C, Chen W, Heyd F. Splicing-accessible coding 3'UTRs control protein stability and interaction networks. Genome Biol 2020; 21:186. [PMID: 32727563 PMCID: PMC7392665 DOI: 10.1186/s13059-020-02102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 3'-Untranslated regions (3'UTRs) play crucial roles in mRNA metabolism, such as by controlling mRNA stability, translation efficiency, and localization. Intriguingly, in some genes the 3'UTR is longer than their coding regions, pointing to additional, unknown functions. Here, we describe a protein-coding function of 3'UTRs upon frameshift-inducing alternative splicing in more than 10% of human and mouse protein-coding genes. RESULTS 3'UTR-encoded amino acid sequences show an enrichment of PxxP motifs and lead to interactome rewiring. Furthermore, an elevated proline content increases protein disorder and reduces protein stability, thus allowing splicing-controlled regulation of protein half-life. This could also act as a surveillance mechanism for erroneous skipping of penultimate exons resulting in transcripts that escape nonsense mediated decay. The impact of frameshift-inducing alternative splicing on disease development is emphasized by a retinitis pigmentosa-causing mutation leading to translation of a 3'UTR-encoded, proline-rich, destabilized frameshift-protein with altered protein-protein interactions. CONCLUSIONS We describe a widespread, evolutionarily conserved mechanism that enriches the mammalian proteome, controls protein expression and protein-protein interactions, and has important implications for the discovery of novel, potentially disease-relevant protein variants.
Collapse
Affiliation(s)
- Marco Preussner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Qingsong Gao
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Laboratory for Systems Biology and Functional Genomics, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Eliot Morrison
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Olga Herdt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology (ZTI), Philipps-University Marburg, Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Michael Schumann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Wei Chen
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China.
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany.
| |
Collapse
|
218
|
Sulakhe D, D'Souza M, Wang S, Balasubramanian S, Athri P, Xie B, Canzar S, Agam G, Gilliam TC, Maltsev N. Exploring the functional impact of alternative splicing on human protein isoforms using available annotation sources. Brief Bioinform 2020; 20:1754-1768. [PMID: 29931155 DOI: 10.1093/bib/bby047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the emphasis of scientific inquiry has shifted from whole-genome analyses to an understanding of cellular responses specific to tissue, developmental stage or environmental conditions. One of the central mechanisms underlying the diversity and adaptability of the contextual responses is alternative splicing (AS). It enables a single gene to encode multiple isoforms with distinct biological functions. However, to date, the functions of the vast majority of differentially spliced protein isoforms are not known. Integration of genomic, proteomic, functional, phenotypic and contextual information is essential for supporting isoform-based modeling and analysis. Such integrative proteogenomics approaches promise to provide insights into the functions of the alternatively spliced protein isoforms and provide high-confidence hypotheses to be validated experimentally. This manuscript provides a survey of the public databases supporting isoform-based biology. It also presents an overview of the potential global impact of AS on the human canonical gene functions, molecular interactions and cellular pathways.
Collapse
Affiliation(s)
- Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Mark D'Souza
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA
| | - Sheng Wang
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA
| | - Sandhya Balasubramanian
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Genentech, Inc. 1 DNA Way, Mail Stop: 35-6J, South San Francisco, CA, USA
| | - Prashanth Athri
- Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, Kasavanahalli, Carmelaram P.O., Bengaluru, Karnataka, India
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Stefan Canzar
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gady Agam
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - T Conrad Gilliam
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| |
Collapse
|
219
|
Suñé-Pou M, Limeres MJ, Moreno-Castro C, Hernández-Munain C, Suñé-Negre JM, Cuestas ML, Suñé C. Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects Underlying Disease. Front Genet 2020; 11:731. [PMID: 32760425 PMCID: PMC7373156 DOI: 10.3389/fgene.2020.00731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of pre-mRNA contributes strongly to the diversity of cell- and tissue-specific protein expression patterns. Global transcriptome analyses have suggested that >90% of human multiexon genes are alternatively spliced. Alterations in the splicing process cause missplicing events that lead to genetic diseases and pathologies, including various neurological disorders, cancers, and muscular dystrophies. In recent decades, research has helped to elucidate the mechanisms regulating alternative splicing and, in some cases, to reveal how dysregulation of these mechanisms leads to disease. The resulting knowledge has enabled the design of novel therapeutic strategies for correction of splicing-derived pathologies. In this review, we focus primarily on therapeutic approaches targeting splicing, and we highlight nanotechnology-based gene delivery applications that address the challenges and barriers facing nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Marc Suñé-Pou
- Drug Development Service (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - María J Limeres
- Institute of Research in Microbiology and Medical Parasitology (IMPaM), Faculty of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Josep M Suñé-Negre
- Drug Development Service (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - María L Cuestas
- Institute of Research in Microbiology and Medical Parasitology (IMPaM), Faculty of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
220
|
Schaffer LV, Millikin RJ, Shortreed MR, Scalf M, Smith LM. Improving Proteoform Identifications in Complex Systems Through Integration of Bottom-Up and Top-Down Data. J Proteome Res 2020; 19:3510-3517. [PMID: 32584579 DOI: 10.1021/acs.jproteome.0c00332] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular functions are performed by a vast and diverse set of proteoforms. Proteoforms are the specific forms of proteins produced as a result of genetic variations, RNA splicing, and post-translational modifications (PTMs). Top-down mass spectrometric analysis of intact proteins enables proteoform identification, including proteoforms derived from sequence cleavage events or harboring multiple PTMs. In contrast, bottom-up proteomics identifies peptides, which necessitates protein inference and does not yield proteoform identifications. We seek here to exploit the synergies between these two data types to improve the quality and depth of the overall proteomic analysis. To this end, we automated the large-scale integration of results from multiprotease bottom-up and top-down analyses in the software program Proteoform Suite and applied it to the analysis of proteoforms from the human Jurkat T lymphocyte cell line. We implemented the recently developed proteoform-level classification scheme for top-down tandem mass spectrometry (MS/MS) identifications in Proteoform Suite, which enables users to observe the level and type of ambiguity for each proteoform identification, including which of the ambiguous proteoform identifications are supported by bottom-up-level evidence. We used Proteoform Suite to find instances where top-down identifications aid in protein inference from bottom-up analysis and conversely where bottom-up peptide identifications aid in proteoform PTM localization. We also show the use of bottom-up data to infer proteoform candidates potentially present in the sample, allowing confirmation of such proteoform candidates by intact-mass analysis of MS1 spectra. The implementation of these capabilities in the freely available software program Proteoform Suite enables users to integrate large-scale top-down and bottom-up data sets and to utilize the synergies between them to improve and extend the proteomic analysis.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
221
|
Shao XY, Dong J, Zhang H, Wu YS, Zheng L. Prognostic Value and Potential Role of Alternative mRNA Splicing Events in Cervical Cancer. Front Genet 2020; 11:726. [PMID: 32793282 PMCID: PMC7394696 DOI: 10.3389/fgene.2020.00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Increasing evidence suggests that aberrant alternative splicing (AS) events are associated with progression of cancer. This study evaluated the prognostic value and clarify the role of AS events in cervical cancer (CC). Methods Based on RNA-seq AS event data and clinical information of CC patients in The Cancer Genome Atlas (TCGA) database, we sought to identify prognosis-related AS events in this setting. We selected several survival-associated AS events to construct a prognostic predictor for CC through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. Moreover, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed on genes with prognosis-related AS events and constructed an AS-splicing factors (SFs) regulatory network. Results 2770 AS events were significantly correlated with overall survival (OS). The area under the curve (AUC) values of receiver-operator characteristic curve (ROC) for the final prognostic predictor were 0.926, 0.946 and 0.902 at 3, 5, and 10 years, respectively. These values indicated efficiency in prognostic risk stratification for patients with CC. The final prognostic predictor was an independent predictor of OS (HR: 1.24; 95% CI: 1.020–1.504; P < 0.05). The AS-SFs correlation network may reveal an underlying regulatory mechanism of AS events. Conclusion AS events are essential participants in the prognosis of CC and hold great potentials for the prognostic stratification and development of treatment strategy.
Collapse
Affiliation(s)
- Xiang-Yang Shao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Dong
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Song Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
222
|
Neuroblastoma RAS viral oncogene homolog mRNA is differentially spliced to give five distinct isoforms: implications for melanoma therapy. Melanoma Res 2020; 29:491-500. [PMID: 31116161 DOI: 10.1097/cmr.0000000000000623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuroblastoma RAS viral oncogene homolog is a commonly mutated oncogene in melanoma, and therapeutic targeting of neuroblastoma RAS viral oncogene homolog has proven difficult. We characterized the expression and phenotypic functions of five recently discovered splice isoforms of neuroblastoma RAS viral oncogene homolog in melanoma. Canonical neuroblastoma RAS viral oncogene homolog (isoform-1) was expressed to the highest degree and its expression was significantly increased in melanoma metastases compared to primary lesions. Isoform-5 expression in metastases showed a significant, positive correlation with survival and tumours over-expressing isoform-5 had significantly decreased growth in a xenograft model. In contrast, over-expression of any isoform resulted in enhanced proliferation, and invasiveness was increased with over-expression of isoform-1 or isoform-2. Downstream signalling analysis indicated that the isoforms signalled differentially through the mitogen-activated protein kinase and PI3K pathways and A375 cells over-expressing isoform-2 or isoform-5 showed resistance to vemurafenib treatment in vitro. The neuroblastoma RAS viral oncogene homolog isoforms appear to play varying roles in melanoma phenotype and could potentially serve as biomarkers for therapeutic response and disease prognosis.
Collapse
|
223
|
Uapinyoying P, Goecks J, Knoblach SM, Panchapakesan K, Bonnemann CG, Partridge TA, Jaiswal JK, Hoffman EP. A long-read RNA-seq approach to identify novel transcripts of very large genes. Genome Res 2020; 30:885-897. [PMID: 32660935 PMCID: PMC7370890 DOI: 10.1101/gr.259903.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
RNA-seq is widely used for studying gene expression, but commonly used sequencing platforms produce short reads that only span up to two exon junctions per read. This makes it difficult to accurately determine the composition and phasing of exons within transcripts. Although long-read sequencing improves this issue, it is not amenable to precise quantitation, which limits its utility for differential expression studies. We used long-read isoform sequencing combined with a novel analysis approach to compare alternative splicing of large, repetitive structural genes in muscles. Analysis of muscle structural genes that produce medium (Nrap: 5 kb), large (Neb: 22 kb), and very large (Ttn: 106 kb) transcripts in cardiac muscle, and fast and slow skeletal muscles identified unannotated exons for each of these ubiquitous muscle genes. This also identified differential exon usage and phasing for these genes between the different muscle types. By mapping the in-phase transcript structures to known annotations, we also identified and quantified previously unannotated transcripts. Results were confirmed by endpoint PCR and Sanger sequencing, which revealed muscle-type-specific differential expression of these novel transcripts. The improved transcript identification and quantification shown by our approach removes previous impediments to studies aimed at quantitative differential expression of ultralong transcripts.
Collapse
Affiliation(s)
- Prech Uapinyoying
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20052, USA.,Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jeremy Goecks
- Computational Biology Program, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Susan M Knoblach
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20052, USA
| | - Karuna Panchapakesan
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA
| | - Carsten G Bonnemann
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20052, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20052, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, D.C. 20010, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, New York 13902, USA
| |
Collapse
|
224
|
Iida M, Iwata M, Yamanishi Y. Network-based characterization of disease-disease relationships in terms of drugs and therapeutic targets. Bioinformatics 2020; 36:i516-i524. [PMID: 32657408 PMCID: PMC7355285 DOI: 10.1093/bioinformatics/btaa439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION Disease states are distinguished from each other in terms of differing clinical phenotypes, but characteristic molecular features are often common to various diseases. Similarities between diseases can be explained by characteristic gene expression patterns. However, most disease-disease relationships remain uncharacterized. RESULTS In this study, we proposed a novel approach for network-based characterization of disease-disease relationships in terms of drugs and therapeutic targets. We performed large-scale analyses of omics data and molecular interaction networks for 79 diseases, including adrenoleukodystrophy, leukaemia, Alzheimer's disease, asthma, atopic dermatitis, breast cancer, cystic fibrosis and inflammatory bowel disease. We quantified disease-disease similarities based on proximities of abnormally expressed genes in various molecular networks, and showed that similarities between diseases could be explained by characteristic molecular network topologies. Furthermore, we developed a kernel matrix regression algorithm to predict the commonalities of drugs and therapeutic targets among diseases. Our comprehensive prediction strategy indicated many new associations among phenotypically diverse diseases. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Midori Iida
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
225
|
Liu C, Hu C, Li Z, Feng J, Huang J, Yang B, Wen T. Systematic profiling of alternative splicing in Helicobacter pylori-negative gastric cancer and their clinical significance. Cancer Cell Int 2020; 20:279. [PMID: 32617077 PMCID: PMC7325377 DOI: 10.1186/s12935-020-01368-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background Alternative splicing (AS) may cause structural and functional variations in the protein to promote the proliferation of tumor cells. However, there is no comprehensive analysis of the clinical significance of AS in Helicobacter pylori-negative gastric cancer (HP− GC). Methods The clinical, gene expression profile data and AS events of 138 HP− GC patients were obtained from the database named the cancer genome atlas. Differently expressed AS (DEAS) events were determined by a comparison of the PSI values between HP− GC samples and adjacent normal samples. Unsupervised clustering analysis, proportional regression and Kaplan–Meier analysis were used to explore the association between clinical data and immune features and to establish two nomograms about the prognosis of HP− GC. Finally, splicing networks were constructed using Cytoscape. Results A total of 48141 AS events and 1041 DEAS events were found in HP− GC. Various functions and pathways of DEAS events parent genes were enriched, such as cell-substrate junction, cell leading edge, focal adhension, and AMPK signaling. Seven overall survival (OS)-related and seven disease-free survival (DFS)-related AS events were used to construct the prognostic signatures. Based on the independent prognostic factors, two nomograms were established and showed excellent performance. Then, splicing regulatory networks among the correlations suggested that splicing factors were significantly associated with prognostic DEASs. Finally, the unsupervised clustering analysis revealed that DEAS-based clusters were associated with clinical characteristics, tumor microenvironment, tumor mutation burden, and immune features. Conclusion Seven OS-related and seven DFS-related AS events have been found to be correlated with the prognosis of HP− GC and can be used as prognostic factors to establish an effective nomogram.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Chuan Hu
- Qingdao University Medical College, Qingdao, 266071 Shandong China
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Jing Feng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Jiale Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Bowen Yang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| |
Collapse
|
226
|
Calviello L, Hirsekorn A, Ohler U. Quantification of translation uncovers the functions of the alternative transcriptome. Nat Struct Mol Biol 2020; 27:717-725. [DOI: 10.1038/s41594-020-0450-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 11/09/2022]
|
227
|
Poverennaya E, Kiseleva O, Romanova A, Pyatnitskiy M. Predicting Functions of Uncharacterized Human Proteins: From Canonical to Proteoforms. Genes (Basel) 2020; 11:E677. [PMID: 32575886 PMCID: PMC7350264 DOI: 10.3390/genes11060677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023] Open
Abstract
Despite tremendous efforts in genomics, transcriptomics, and proteomics communities, there is still no comprehensive data about the exact number of protein-coding genes, translated proteoforms, and their function. In addition, by now, we lack functional annotation for 1193 genes, where expression was confirmed at the proteomic level (uPE1 proteins). We re-analyzed results of AP-MS experiments from the BioPlex 2.0 database to predict functions of uPE1 proteins and their splice forms. By building a protein-protein interaction network for 12 ths. identified proteins encoded by 11 ths. genes, we were able to predict Gene Ontology categories for a total of 387 uPE1 genes. We predicted different functions for canonical and alternatively spliced forms for four uPE1 genes. In total, functional differences were revealed for 62 proteoforms encoded by 31 genes. Based on these results, it can be carefully concluded that the dynamics and versatility of the interactome is ensured by changing the dominant splice form. Overall, we propose that analysis of large-scale AP-MS experiments performed for various cell lines and under various conditions is a key to understanding the full potential of genes role in cellular processes.
Collapse
Affiliation(s)
- Ekaterina Poverennaya
- Department of Bioinformatics, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (O.K.); (A.R.); (M.P.)
- Institute of Environmental and Agricultural Biology (X-BIO),Tyumen State University, 625003 Tyumen, Russia
| | - Olga Kiseleva
- Department of Bioinformatics, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (O.K.); (A.R.); (M.P.)
| | - Anastasia Romanova
- Department of Bioinformatics, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (O.K.); (A.R.); (M.P.)
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| | - Mikhail Pyatnitskiy
- Department of Bioinformatics, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (O.K.); (A.R.); (M.P.)
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
228
|
Chen XX, Zhu JH, Li ZP, Xiao HT, Zhou H. Comprehensive Characterization of the Prognosis Value of Alternative Splicing Events in Acute Myeloid Leukemia. DNA Cell Biol 2020; 39:1243-1255. [PMID: 32543226 DOI: 10.1089/dna.2020.5534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence have demonstrated that dysregulated alternative splicing (AS) events promoted tumor development and was correlated with worse prognosis in the context of certain malignancies. Nevertheless, a comprehensive examination of the prognosis role of AS events in acute myeloid leukemia (AML) has not yet been illuminated. In this study, univariate and multivariate Cox regression analysis were used to identify survival-related AS events and independent prognostic predictors. The interaction between splicing factors (SFs) and AS events was visualized by Cytoscape. A total of 3013 survival-associated AS events in 1977 genes were screened in 151 AML patients. Interestingly, the majority (2031 events) were revealed to be protective factors. Furthermore, the prediction models were constructed for each type of AS and all of them displayed good performance in predicting prognosis, considering their area under curve values of the receiver operating characteristic were all above 0.7. Notably, the splicing regulatory network displayed the underlying interaction networks between SFs and AS events. Taken together, our study demonstrated the survival-related AS events in AML and uncovered the possible association between SFs and prognostic AS events, which provide new prognostic biomarkers and aid to develop novel targets for AML therapy.
Collapse
Affiliation(s)
- Xue-Xing Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Hua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Ping Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Tao Xiao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
229
|
Wang D, Zou X, Fai Au K. A network-based computational framework to predict and differentiate functions for gene isoforms using exon-level expression data. Methods 2020; 189:54-64. [PMID: 32534132 DOI: 10.1016/j.ymeth.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Alternative splicing makes significant contributions to functional diversity of transcripts and proteins. Many alternatively spliced gene isoforms have been shown to perform specific biological functions under different contexts. In addition to gene-level expression, the advances of high-throughput sequencing offer a chance to estimate isoform-specific exon expression with a high resolution, which is informative for studying splice variants with network analysis. RESULTS In this study, we propose a novel network-based analysis framework to predict isoform-specific functions from exon-level RNA-Seq data. In particular, based on exon-level expression data, we firstly propose a unified framework, referred to as Iso-Net, to integrate two new mathematical methods (named MINet and RVNet) that infer co-expression networks at different data scenarios. We demonstrate the superior prediction accuracy of Iso-Net over the existing methods for most simulation data, especially in two extreme cases: sample size is very small and exon numbers of two isoforms are quite different. Furthermore, by defining relevant quantitative measures (e.g., Jaccard correlation coefficient) and combining differential co-expression network analysis and GO functional enrichment analysis, a co-expression network analysis framework is developed to predict functions of isoforms and further, to discover their distinct functions within the same gene. We apply Iso-Net to study gene isoforms for several important transcription factors in human myeloid differentiation with the exon-level RNA-Seq data from three different cell lines. AVAILABILITY AND IMPLEMENTATION Iso-Net is open source and freely available from https://github.com/Dingjie-Wang/Iso-Net.
Collapse
Affiliation(s)
- Dingjie Wang
- Department of Biomedical Informatics, The Ohio State University, OH 43210, USA; School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China; Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China; Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China.
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, OH 43210, USA.
| |
Collapse
|
230
|
Ding Y, Feng G, Yang M. Prognostic role of alternative splicing events in head and neck squamous cell carcinoma. Cancer Cell Int 2020; 20:168. [PMID: 32467664 PMCID: PMC7227031 DOI: 10.1186/s12935-020-01249-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant alternative splicing (AS) is implicated in biological processes of cancer. This study aims to reveal prognostic AS events and signatures that may serve as prognostic predictors for head and neck squamous cell carcinoma (HNSCC). Methods Prognostic AS events in HNSCC were identified by univariate COX analysis. Prognostic signatures comprising prognostic AS events were constructed for prognosis prediction in patients with HNSCC. The correlation between the percent spliced in (PSI) values of AS events and the expression of splicing factors (SFs) was analyzed by Pearson correlation analysis. Gene functional annotation analysis was performed to reveal pathways in which prognostic AS is enriched. Results A total of 27,611 AS events in 15,873 genes were observed, and there were 3433 AS events in 2624 genes significantly associated with overall survival (OS) for HNSCC. Moreover, we found that AS prognostic signatures could accurately predict HNSCC prognosis. SF-AS regulatory networks were constructed according to the correlation between PSI values of AS events and the expression levels of SFs. Conclusions Our study identified prognostic AS events and signatures. Furthermore, it established SF-AS networks in HNSCC that were valuable in predicting the prognosis of patients with HNSCC and elucidating the regulatory mechanisms underlying AS in HNSCC.
Collapse
Affiliation(s)
- Yanni Ding
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| | - Guang Feng
- 2The Third Department of Burns and Plastic Surgery and Center of Wound Repair, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Min Yang
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| |
Collapse
|
231
|
Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LMD, Holien JK, Lim SY. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 2020; 213:107594. [PMID: 32473962 DOI: 10.1016/j.pharmthera.2020.107594] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are dynamic organelles constantly undergoing fusion and fission. A concerted balance between the process of mitochondrial fusion and fission is required to maintain cellular health under different physiological conditions. Mutation and dysregulation of Drp1, the major driver of mitochondrial fission, has been associated with various neurological, oncological and cardiovascular disorders. Moreover, when subjected to pathological insults, mitochondria often undergo excessive fission, generating fragmented and dysfunctional mitochondria leading to cell death. Therefore, manipulating mitochondrial fission by targeting Drp1 has been an appealing therapeutic approach for cytoprotection. However, studies have been inconsistent. Studies employing Drp1 constructs representing alternate Drp1 isoforms, have demonstrated differing impacts of these isoforms on mitochondrial fission and cell death. Furthermore, there are distinct expression patterns of Drp1 isoforms in different tissues, suggesting idiosyncratic engagement in specific cellular functions. In this review, we will discuss these inherent variations among human Drp1 isoforms and how they could affect Drp1-mediated mitochondrial fission and cell death.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia; Department of Surgery, University of Melbourne, Victoria, Australia
| | - William J Smiles
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia
| | - John W Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia; Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Christopher G Langendorf
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery, University of Melbourne, Victoria, Australia; Structural Bioinformatics and Drug Discovery, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Department of Surgery, University of Melbourne, Victoria, Australia.
| |
Collapse
|
232
|
Rubbini D, Cornet C, Terriente J, Di Donato V. CRISPR Meets Zebrafish: Accelerating the Discovery of New Therapeutic Targets. SLAS DISCOVERY 2020; 25:552-567. [PMID: 32462967 DOI: 10.1177/2472555220926920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bringing a new drug to the market costs an average of US$2.6 billion and takes more than 10 years from discovery to regulatory approval. Despite the need to reduce cost and time to increase productivity, pharma companies tend to crowd their efforts in the same indications and drug targets. This results in the commercialization of drugs that share the same mechanism of action (MoA) and, in many cases, equivalent efficacies among them-an outcome that helps neither patients nor the balance sheet of the companies trying to bring therapeutics to the same patient population. Indeed, the discovery of new therapeutic targets, based on a deeper understanding of the disease biology, would likely provide more innovative MoAs and potentially greater drug efficacies. It would also bring better chances for identifying appropriate treatments according to the patient's genetic stratification. Nowadays, we count with an enormous amount of unprocessed information on potential disease targets that could be extracted from omics data obtained from patient samples. In addition, hundreds of pharmacological and genetic screenings have been performed to identify innovative drug targets. Traditionally, rodents have been the animal models of choice to perform functional genomic studies. The high experimental cost, combined with the low throughput provided by those models, however, is a bottleneck for discovering and validating novel genetic disease associations. To overcome these limitations, we propose that zebrafish, in conjunction with the use of CRISPR/Cas9 genome-editing tools, could streamline functional genomic processes to bring biologically relevant knowledge on innovative disease targets in a shorter time frame.
Collapse
Affiliation(s)
- Davide Rubbini
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Carles Cornet
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Vincenzo Di Donato
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| |
Collapse
|
233
|
de la Fuente L, Arzalluz-Luque Á, Tardáguila M, Del Risco H, Martí C, Tarazona S, Salguero P, Scott R, Lerma A, Alastrue-Agudo A, Bonilla P, Newman JRB, Kosugi S, McIntyre LM, Moreno-Manzano V, Conesa A. tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing. Genome Biol 2020; 21:119. [PMID: 32423416 PMCID: PMC7236505 DOI: 10.1186/s13059-020-02028-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in long-read sequencing solve inaccuracies in alternative transcript identification of full-length transcripts in short-read RNA-Seq data, which encourages the development of methods for isoform-centered functional analysis. Here, we present tappAS, the first framework to enable a comprehensive Functional Iso-Transcriptomics (FIT) analysis, which is effective at revealing the functional impact of context-specific post-transcriptional regulation. tappAS uses isoform-resolved annotation of coding and non-coding functional domains, motifs, and sites, in combination with novel analysis methods to interrogate different aspects of the functional readout of transcript variants and isoform regulation. tappAS software and documentation are available at https://app.tappas.org.
Collapse
Affiliation(s)
- Lorena de la Fuente
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
- Present Address: Bioinformatics Unit, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Ángeles Arzalluz-Luque
- Department of Statistics and Operational Research, Polytechnical University of Valencia, Valencia, Spain
| | - Manuel Tardáguila
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Héctor Del Risco
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Cristina Martí
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Sonia Tarazona
- Department of Statistics and Operational Research, Polytechnical University of Valencia, Valencia, Spain
| | - Pedro Salguero
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Raymond Scott
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Alberto Lerma
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Ana Alastrue-Agudo
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Pablo Bonilla
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Shunichi Kosugi
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Wako, Japan
| | - Lauren M McIntyre
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | - Ana Conesa
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
- Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
234
|
Sheynkman GM, Tuttle KS, Laval F, Tseng E, Underwood JG, Yu L, Dong D, Smith ML, Sebra R, Willems L, Hao T, Calderwood MA, Hill DE, Vidal M. ORF Capture-Seq as a versatile method for targeted identification of full-length isoforms. Nat Commun 2020; 11:2326. [PMID: 32393825 PMCID: PMC7214433 DOI: 10.1038/s41467-020-16174-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/16/2020] [Indexed: 01/02/2023] Open
Abstract
Most human protein-coding genes are expressed as multiple isoforms, which greatly expands the functional repertoire of the encoded proteome. While at least one reliable open reading frame (ORF) model has been assigned for every coding gene, the majority of alternative isoforms remains uncharacterized due to (i) vast differences of overall levels between different isoforms expressed from common genes, and (ii) the difficulty of obtaining full-length transcript sequences. Here, we present ORF Capture-Seq (OCS), a flexible method that addresses both challenges for targeted full-length isoform sequencing applications using collections of cloned ORFs as probes. As a proof-of-concept, we show that an OCS pipeline focused on genes coding for transcription factors increases isoform detection by an order of magnitude when compared to unenriched samples. In short, OCS enables rapid discovery of isoforms from custom-selected genes and will accelerate mapping of the human transcriptome.
Collapse
Affiliation(s)
- Gloria M Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Katharine S Tuttle
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biochemistry, Northeastern University, Boston, MA, 02115, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute of Data Science and Genomic Technology, New York, NY, 10029, USA
| | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Laboratory of Molecular Biology, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.,Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | | | | | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, China
| | - Da Dong
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, China
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute of Data Science and Genomic Technology, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute of Data Science and Genomic Technology, New York, NY, 10029, USA
| | - Luc Willems
- Laboratory of Molecular Biology, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.,Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
235
|
Andreani J, Quignot C, Guerois R. Structural prediction of protein interactions and docking using conservation and coevolution. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Andreani
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Chloé Quignot
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Raphael Guerois
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| |
Collapse
|
236
|
Lambert É, Babeu JP, Simoneau J, Raisch J, Lavergne L, Lévesque D, Jolibois É, Avino M, Scott MS, Boudreau F, Boisvert FM. Human Hepatocyte Nuclear Factor 4-α Encodes Isoforms with Distinct Transcriptional Functions. Mol Cell Proteomics 2020; 19:808-827. [PMID: 32123031 PMCID: PMC7196586 DOI: 10.1074/mcp.ra119.001909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.
Collapse
Affiliation(s)
- Élie Lambert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Joël Simoneau
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jennifer Raisch
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Laurie Lavergne
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Émilie Jolibois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Francois-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
237
|
Reixachs-Solé M, Ruiz-Orera J, Albà MM, Eyras E. Ribosome profiling at isoform level reveals evolutionary conserved impacts of differential splicing on the proteome. Nat Commun 2020; 11:1768. [PMID: 32286305 PMCID: PMC7156646 DOI: 10.1038/s41467-020-15634-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
The differential production of transcript isoforms from gene loci is a key cellular mechanism. Yet, its impact in protein production remains an open question. Here, we describe ORQAS (ORF quantification pipeline for alternative splicing), a pipeline for the translation quantification of individual transcript isoforms using ribosome-protected mRNA fragments (ribosome profiling). We find evidence of translation for 40-50% of the expressed isoforms in human and mouse, with 53% of the expressed genes having more than one translated isoform in human, and 33% in mouse. Differential splicing analysis revealed that about 40% of the splicing changes at RNA level are concordant with changes in translation. Furthermore, orthologous cassette exons between human and mouse preserve the directionality of the change, and are enriched in microexons in a comparison between glia and glioma. ORQAS leverages ribosome profiling to uncover a widespread and evolutionarily conserved impact of differential splicing on translation, particularly of microexon-containing isoforms.
Collapse
Affiliation(s)
- Marina Reixachs-Solé
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - M Mar Albà
- IMIM - Hospital del Mar Medical Research Institute, E08003, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia.
- IMIM - Hospital del Mar Medical Research Institute, E08003, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain.
| |
Collapse
|
238
|
Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, Brignall R, Cafarelli T, Campos-Laborie FJ, Charloteaux B, Choi D, Coté AG, Daley M, Deimling S, Desbuleux A, Dricot A, Gebbia M, Hardy MF, Kishore N, Knapp JJ, Kovács IA, Lemmens I, Mee MW, Mellor JC, Pollis C, Pons C, Richardson AD, Schlabach S, Teeking B, Yadav A, Babor M, Balcha D, Basha O, Bowman-Colin C, Chin SF, Choi SG, Colabella C, Coppin G, D'Amata C, De Ridder D, De Rouck S, Duran-Frigola M, Ennajdaoui H, Goebels F, Goehring L, Gopal A, Haddad G, Hatchi E, Helmy M, Jacob Y, Kassa Y, Landini S, Li R, van Lieshout N, MacWilliams A, Markey D, Paulson JN, Rangarajan S, Rasla J, Rayhan A, Rolland T, San-Miguel A, Shen Y, Sheykhkarimli D, Sheynkman GM, Simonovsky E, Taşan M, Tejeda A, Tropepe V, Twizere JC, Wang Y, Weatheritt RJ, Weile J, Xia Y, Yang X, Yeger-Lotem E, Zhong Q, Aloy P, Bader GD, De Las Rivas J, Gaudet S, Hao T, Rak J, Tavernier J, Hill DE, Vidal M, Roth FP, Calderwood MA. A reference map of the human binary protein interactome. Nature 2020; 580:402-408. [PMID: 32296183 PMCID: PMC7169983 DOI: 10.1038/s41586-020-2188-x] [Citation(s) in RCA: 738] [Impact Index Per Article: 147.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships1,2. Here, we present a human “all-by-all” reference interactome map of human binary protein interactions, or “HuRI”. With ~53,000 high-quality protein-protein interactions (PPIs), HuRI has approximately four times more such interactions than high-quality curated interactions from small-scale studies. Integrating HuRI with genome3, transcriptome4, and proteome5 data enables the study of cellular function within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying specific subcellular roles of PPIs. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms underlying tissue-specific phenotypes of Mendelian diseases. HuRI represents a systematic proteome-wide reference linking genomic variation to phenotypic outcomes.
Collapse
Affiliation(s)
- Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dae-Kyum Kim
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bridget E Begg
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wenting Bian
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ruth Brignall
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tiziana Cafarelli
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francisco J Campos-Laborie
- Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Benoit Charloteaux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dongsic Choi
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Atina G Coté
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Meaghan Daley
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven Deimling
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Molecular Biology of Diseases, Groupe Interdisciplinaire de Génomique Appliquée (GIGA) and Laboratory of Viral Interactomes, University of Liège, Liège, Belgium
| | - Amélie Dricot
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marinella Gebbia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Madeleine F Hardy
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nishka Kishore
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Jennifer J Knapp
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - István A Kovács
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Network Science Institute, Northeastern University, Boston, MA, USA.,Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, Budapest, Hungary
| | - Irma Lemmens
- Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Miles W Mee
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Joseph C Mellor
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada.,seqWell, Beverly, MA, USA
| | - Carl Pollis
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Aaron D Richardson
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sadie Schlabach
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bridget Teeking
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mariana Babor
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Christian Bowman-Colin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Suet-Feung Chin
- Cancer Research UK (CRUK) Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Soon Gang Choi
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Claudia Colabella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.,Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Perugia, Italy
| | - Georges Coppin
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Molecular Biology of Diseases, Groupe Interdisciplinaire de Génomique Appliquée (GIGA) and Laboratory of Viral Interactomes, University of Liège, Liège, Belgium
| | - Cassandra D'Amata
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David De Ridder
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steffi De Rouck
- Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Miquel Duran-Frigola
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Hanane Ennajdaoui
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Florian Goebels
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Liana Goehring
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anjali Gopal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Ghazal Haddad
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Elodie Hatchi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mohamed Helmy
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Yves Jacob
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Paris, France.,Université Paris Diderot, Paris, France
| | - Yoseph Kassa
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Serena Landini
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roujia Li
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Natascha van Lieshout
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Andrew MacWilliams
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dylan Markey
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph N Paulson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.,Department of Biostatistics, Product Development, Genentech Inc., South San Francisco, CA, USA
| | - Sudharshan Rangarajan
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John Rasla
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ashyad Rayhan
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Thomas Rolland
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adriana San-Miguel
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yun Shen
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dayag Sheykhkarimli
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Gloria M Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eyal Simonovsky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Murat Taşan
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Tejeda
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Claude Twizere
- Molecular Biology of Diseases, Groupe Interdisciplinaire de Génomique Appliquée (GIGA) and Laboratory of Viral Interactomes, University of Liège, Liège, Belgium
| | - Yang Wang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Jochen Weile
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Yu Xia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Xinping Yang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Suzanne Gaudet
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Jan Tavernier
- Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. .,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Frederick P Roth
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA. .,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada. .,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada. .,Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. .,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
239
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism. Drug Metab Dispos 2020; 48:272-287. [PMID: 31980501 DOI: 10.1124/dmd.119.089102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 02/13/2025] Open
Abstract
The human genome encodes 48 nuclear receptor (NR) genes, whose translated products transform chemical signals from endo-xenobiotics into pleotropic RNA transcriptional profiles that refine drug metabolism. This review describes the remarkable diversification of the 48 human NR genes, which are potentially processed into over 1000 distinct mRNA transcripts by alternative splicing (AS). The average human NR expresses ∼21 transcripts per gene and is associated with ∼7000 single nucleotide polymorphisms (SNPs). However, the rate of SNP accumulation does not appear to drive the AS process, highlighting the resilience of NR genes to mutation. Here we summarize the altered tissue distribution/function of well characterized NR splice variants associated with human disease. We also describe a cassette exon visualization pictograph methodology for illustrating the location of modular, cassette exons in genes, which can be skipped in-frame, to facilitate the study of their functional relevance to both drug metabolism and NR evolution. We find cassette exons associated with all of the functional domains of NR genes including the DNA and ligand binding domains. The matrix of inclusion or exclusion for functional domain-encoding cassette exons is extensive and capable of significant alterations in cellular phenotypes that modulate endo-xenobiotic metabolism. Exon inclusion options are differentially distributed across NR subfamilies, suggesting group-specific conservation of resilient functionalities. A deeper understanding of this transcriptional plasticity expands our understanding of how chemical signals are refined and mediated by NR genes. This expanded view of the NR transcriptome informs new models of chemical toxicity, disease diagnostics, and precision-based approaches to personalized medicine. SIGNIFICANCE STATEMENT: This review explores the impact of alternative splicing (AS) on the human nuclear receptor (NR) superfamily and highlights the dramatic expansion of more than 1000 potential transcript variants from 48 individual genes. Xenobiotics are increasingly recognized for their ability to perturb gene splicing events, and here we explore the differential sensitivity of NR genes to AS and chemical exposure. Using the cassette exon visualization pictograph methodology, we have documented the conservation of splice-sensitive, modular, cassette exon domains among the 48 human NR genes, and we discuss how their differential expression profiles may augment cellular resilience to oxidative stress and fine-tune adaptive, metabolic responses to endo-xenobiotic exposure.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.)
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.)
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.)
| |
Collapse
|
240
|
Whole-Genome Uterine Artery Transcriptome Profiling and Alternative Splicing Analysis in Rat Pregnancy. Int J Mol Sci 2020; 21:ijms21062079. [PMID: 32197362 PMCID: PMC7139363 DOI: 10.3390/ijms21062079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 01/27/2023] Open
Abstract
During pregnancy, the uterine artery (UA) undergoes extensive remodeling to permit a 20–40 fold increase in blood flow with associated changes in the expression of a multitude of genes. This study used next-gen RNA sequencing technology to identify pathways and genes potentially involved in arterial adaptations in pregnant rat UA (gestation day 20) compared with non-pregnant rat UA (diestrus). A total of 2245 genes were differentially expressed, with 1257 up-regulated and 970 down-regulated in pregnant UA. Gene clustering analysis revealed a unique cluster of suppressed genes implicated in calcium signaling pathway and vascular smooth muscle contraction in pregnant UA. Transcription factor binding site motif scanning identified C2H2 ZF, AP-2 and CxxC as likely factors functional on the promoters of down-regulated genes involved in calcium signaling and vascular smooth muscle contraction. In addition, 1686 genes exhibited alternative splicing that were mainly implicated in microtubule organization and smooth muscle contraction. Cross-comparison analysis identified novel genes that were both differentially expressed and alternatively spliced; these were involved in leukocyte and B cell biology and lipid metabolism. In conclusion, this first comprehensive study provides a valuable resource for understanding the molecular mechanism underlying gestational uterine arterial adaptations during pregnancy.
Collapse
|
241
|
Fujita KI, Ishizuka T, Mitsukawa M, Kurata M, Masuda S. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. Int J Mol Sci 2020; 21:ijms21062026. [PMID: 32188117 PMCID: PMC7139312 DOI: 10.3390/ijms21062026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human transcriptomes are more divergent than genes and contribute to the sophistication of life. This divergence is derived from various isoforms arising from alternative splicing. In addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA G-quadruplex, is important not only for isoform diversity but also for regulating gene expression. Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders. In the first part of this review, we describe the regulation of divergent transcriptomes using alternative mRNA splicing. In the second part, we present the relationship between the disruption of splicing and diseases. Recently, various compounds with splicing inhibitor activity were established. These splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for basic research and future clinical potential.
Collapse
|
242
|
Che Y, Fu L. Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors. J Cancer 2020; 11:3502-3511. [PMID: 32284746 PMCID: PMC7150454 DOI: 10.7150/jca.42645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing facilitates the splicing of precursor RNA into different isoforms. Alternatively spliced transcripts often exhibit antagonistic functions or differential temporal or spatial expression patterns. There is increasing evidence that alternative splicing, especially by the serine-arginine rich (SR) protein family, leads to abnormal expression patterns and is closely related to the development of cancer. SRSF3, also known as SRp20, is a splicing factor. Through alternative splicing, it plays important roles in regulating various biological functions, such as cell cycle, cell proliferation, migration and invasion, under pathological and physiological conditions. Deregulation of SRSF3 is an essential feature of cancers. SRSF3 is also considered a candidate therapeutic target. Therefore, the involvement of abnormal splicing in tumorigenesis and the regulation of splicing factors deserve further analysis and discussion. Here, we summarize the function of SRSF3-regulated alternative transcripts in cancer cell biology at different stages of tumor development and the regulation of SRSF3 in tumorigenesis.
Collapse
Affiliation(s)
- Yingying Che
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| |
Collapse
|
243
|
Lundberg E, Borner GHH. Spatial proteomics: a powerful discovery tool for cell biology. Nat Rev Mol Cell Biol 2020; 20:285-302. [PMID: 30659282 DOI: 10.1038/s41580-018-0094-y] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein subcellular localization is tightly controlled and intimately linked to protein function in health and disease. Capturing the spatial proteome - that is, the localizations of proteins and their dynamics at the subcellular level - is therefore essential for a complete understanding of cell biology. Owing to substantial advances in microscopy, mass spectrometry and machine learning applications for data analysis, the field is now mature for proteome-wide investigations of spatial cellular regulation. Studies of the human proteome have begun to reveal a complex architecture, including single-cell variations, dynamic protein translocations, changing interaction networks and proteins localizing to multiple compartments. Furthermore, several studies have successfully harnessed the power of comparative spatial proteomics as a discovery tool to unravel disease mechanisms. We are at the beginning of an era in which spatial proteomics finally integrates with cell biology and medical research, thereby paving the way for unbiased systems-level insights into cellular processes. Here, we discuss current methods for spatial proteomics using imaging or mass spectrometry and specifically highlight global comparative applications. The aim of this Review is to survey the state of the field and also to encourage more cell biologists to apply spatial proteomics approaches.
Collapse
Affiliation(s)
- Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Genetics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany.
| |
Collapse
|
244
|
David JK, Maden SK, Weeder BR, Thompson R, Nellore A. Putatively cancer-specific exon-exon junctions are shared across patients and present in developmental and other non-cancer cells. NAR Cancer 2020; 2:zcaa001. [PMID: 34316681 PMCID: PMC8209686 DOI: 10.1093/narcan/zcaa001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
This study probes the distribution of putatively cancer-specific junctions across a broad set of publicly available non-cancer human RNA sequencing (RNA-seq) datasets. We compared cancer and non-cancer RNA-seq data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) Project and the Sequence Read Archive. We found that (i) averaging across cancer types, 80.6% of exon-exon junctions thought to be cancer-specific based on comparison with tissue-matched samples (σ = 13.0%) are in fact present in other adult non-cancer tissues throughout the body; (ii) 30.8% of junctions not present in any GTEx or TCGA normal tissues are shared by multiple samples within at least one cancer type cohort, and 87.4% of these distinguish between different cancer types; and (iii) many of these junctions not found in GTEx or TCGA normal tissues (15.4% on average, σ = 2.4%) are also found in embryological and other developmentally associated cells. These findings refine the meaning of RNA splicing event novelty, particularly with respect to the human neoepitope repertoire. Ultimately, cancer-specific exon-exon junctions may have a substantial causal relationship with the biology of disease.
Collapse
Affiliation(s)
- Julianne K David
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sean K Maden
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin R Weeder
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Portland VA Research Foundation, Portland, OR 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
245
|
Liu C, Ma Y, Zhao J, Nussinov R, Zhang YC, Cheng F, Zhang ZK. Computational network biology: Data, models, and applications. PHYSICS REPORTS 2020; 846:1-66. [DOI: 10.1016/j.physrep.2019.12.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
246
|
Abstract
High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.
Collapse
|
247
|
Prognostic Value and Potential Regulatory Mechanism of Alternative Splicing in Geriatric Breast Cancer. Genes (Basel) 2020; 11:genes11020200. [PMID: 32079071 PMCID: PMC7074345 DOI: 10.3390/genes11020200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Breast cancer has the highest mortality and morbidity among women, especially in elderly women over 60 years old. Abnormal alternative splicing (AS) events are associated with the occurrence and development of geriatric breast cancer (GBC), yet strong evidence is lacking for the prognostic value of AS in GBC and the regulatory network of AS in GBC, which may highlight the mechanism through which AS contributes to GBC. In the present study, we obtained splicing event information (SpliceSeq) and clinical information for GBC from The Cancer Genome Atlas, and we constructed a GBC prognosis model based on AS events to predict the survival outcomes of GBC. Kaplan–Meier analysis was conducted to evaluate the predictive accuracy among different molecular subtypes of GBC. We conducted enrichment analysis and constructed a splicing network between AS and the splicing factor (SF) to examine the possible regulatory mechanisms of AS in GBC. We constructed eight prognostic signatures with very high statistical accuracy in predicting GBC survival outcomes from 45,421 AS events of 10,480 genes detected in 462 GBC patients; the prognostic model based on exon skip (ES) events had the highest accuracy, indicating its significant value in GBC prognosis. The constructed regulatory SF–AS network may explain the potential regulatory mechanism between SF and AS, which may be the mechanism through which AS events contribute to GBC survival outcomes. The findings confirm that AS events have a significant prognostic value in GBC, and we found a few effective prognostic signatures. We also hypothesized the mechanism underlying AS in GBC and discovered a potential regulatory mechanism between SF and AS.
Collapse
|
248
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
249
|
Ait-Hamlat A, Zea DJ, Labeeuw A, Polit L, Richard H, Laine E. Transcripts' Evolutionary History and Structural Dynamics Give Mechanistic Insights into the Functional Diversity of the JNK Family. J Mol Biol 2020; 432:2121-2140. [PMID: 32067951 DOI: 10.1016/j.jmb.2020.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Alternative splicing and alternative initiation/termination transcription sites have the potential to greatly expand the proteome in eukaryotes by producing several transcript isoforms from the same gene. Although these mechanisms are well described at the genomic level, little is known about their contribution to protein evolution and their impact at the protein structure level. Here, we address both issues by reconstructing the evolutionary history of transcripts and by modeling the tertiary structures of the corresponding protein isoforms. We reconstruct phylogenetic forests relating 60 protein-coding transcripts from the c-Jun N-terminal kinase (JNK) family observed in seven species. We identify two alternative splicing events of ancient origin and show that they induce subtle changes in the protein's structural dynamics. We highlight a previously uncharacterized transcript whose predicted structure seems stable in solution. We further demonstrate that orphan transcripts, for which no phylogeny could be reconstructed, display peculiar sequence and structural properties. Our approach is implemented in PhyloSofS (Phylogenies of Splicing Isoforms Structures), a fully automated computational tool freely available at https://github.com/PhyloSofS-Team/PhyloSofS.
Collapse
Affiliation(s)
- Adel Ait-Hamlat
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Diego Javier Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Antoine Labeeuw
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Lélia Polit
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Hugues Richard
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France.
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France.
| |
Collapse
|
250
|
Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. Int J Mol Sci 2020; 21:E863. [PMID: 32013234 PMCID: PMC7037685 DOI: 10.3390/ijms21030863] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs), as key regulators, play an important role in plant growth and development and the response to various stresses. In the present study, we identified 80 and 78 CIPK genes in the Gossypium hirsutum and G. barbadense, respectively. The phylogenetic and gene structure analysis divided the cotton CIPK genes into five groups which were classified into an exon-rich clade and an exon-poor clade. A synteny analysis showed that segmental duplication contributed to the expansion of Gossypium CIPK gene family, and purifying selection played a major role in the evolution of the gene family in cotton. Analyses of expression profiles showed that GhCIPK genes had temporal and spatial specificity and could be induced by various abiotic stresses. Fourteen GhCIPK genes were found to contain 17 non-synonymous single nucleotide polymorphisms (SNPs) and co-localized with oil or protein content quantitative trait loci (QTLs). Additionally, five SNPs from four GhCIPKs were found to be significantly associated with oil content in one of the three field tests. Although most GhCIPK genes were not associated with natural variations in cotton oil content, the overexpression of the GhCIPK6 gene reduced the oil content and increased C18:1 and C18:1+C18:1d6 in transgenic cotton as compared to wild-type plants. In addition, we predicted the potential molecular regulatory mechanisms of the GhCIPK genes. In brief, these results enhance our understanding of the roles of CIPK genes in oil synthesis and stress responses.
Collapse
Affiliation(s)
- Yupeng Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China;
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| |
Collapse
|