201
|
Campbell K, Noël ES, Fletcher AG, Bulgakova NA. Contemporary morphogenesis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190549. [DOI: 10.1098/rstb.2019.0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kyra Campbell
- Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Emily S. Noël
- Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Alexander G. Fletcher
- Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK
| | - Natalia A. Bulgakova
- Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
202
|
Wagner DE, Ikonomou L, Gilpin SE, Magin CM, Cruz F, Greaney A, Magnusson M, Chen YW, Davis B, Vanuytsel K, Rolandsson Enes S, Krasnodembskaya A, Lehmann M, Westergren-Thorsson G, Stegmayr J, Alsafadi HN, Hoffman ET, Weiss DJ, Ryan AL. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Res 2020; 6:00123-2020. [PMID: 33123557 PMCID: PMC7569162 DOI: 10.1183/23120541.00123-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung. This selection of topics represents some of the most dynamic research areas in which incredible progress continues to be made. The workshop also included active discussion on the regulation and commercialisation of regenerative medicine products and concluded with an open discussion to set priorities and recommendations for future research directions in basic and translation lung biology.
Collapse
Affiliation(s)
- Darcy E. Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- These authors contributed equally
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- These authors contributed equally
| | - Sarah E. Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Chelsea M. Magin
- Depts of Medicine and Bioengineering, University of Colorado, Denver, Aurora, CO, USA
| | - Fernanda Cruz
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allison Greaney
- Dept of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mattias Magnusson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Sara Rolandsson Enes
- Dept of Medicine, University of Vermont, Burlington, VT, USA
- Dept of Experimental Medical Science, Division of Lung Biology, Lund University, Lund, Sweden
| | | | - Mareike Lehmann
- Comprehensive Pneumology Center, Lung Repair and Regeneration Unit, Helmholtz Center Munich, Munich, Germany
| | | | - John Stegmayr
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Evan T. Hoffman
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Daniel J. Weiss
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
- Dept of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
203
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
204
|
Abstract
Pluripotent stem cells (PSCs) are the in vitro counterpart of the pluripotent epiblast of the mammalian embryo with the capacity to generate all cell types of the adult organism. During development, the three definitive germ layers are specified and simultaneously spatially organized. In contrast, differentiating PSCs tend to generate cell fates in a spatially disorganized manner. This has limited the in vitro study of specific cell-cell interactions and patterning mechanisms that occur in vivo. Here we describe a protocol to differentiate mouse PSCs in a spatially organized manner on micropatterned surfaces. Micropatterned chips comprise many colonies of uniform size and geometry facilitating a robust quantitative analysis of patterned fate specification. Furthermore, multiple factors may be simultaneously manipulated with temporal accuracy to probe the dynamic interactions regulating these processes. The micropattern system is scalable, providing a valuable tool to generate material for large-scale analysis and biochemical experiments that require substantial amounts of starting material, difficult to obtain from early embryos.
Collapse
|
205
|
Microfabricated Device for High-Resolution Imaging of Preimplantation Embryos. Methods Mol Biol 2020. [PMID: 32944900 DOI: 10.1007/978-1-0716-0958-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The mouse preimplantation embryo is an excellent system for studying how mammalian cells organize dynamically into increasingly complex structures. Accessible to experimental and genetic manipulations, its normal or perturbed development can be scrutinized ex vivo by real-time imaging from fertilization to late blastocyst stage. High-resolution imaging of multiple embryos at the same time can be compromised by embryos displacement during imaging. We have developed an inexpensive and easy-to-produce imaging device that facilitates greatly the imaging of preimplantation embryo. In this chapter, we describe the different steps of production and storage of the imaging device as well as its use for live imaging of mouse preimplantation embryos expressing fluorescent reporters from genetically modified alleles or after in vitro transcribed mRNA transfer by microinjection or electroporation.
Collapse
|
206
|
Fumagalli A, Bruens L, Scheele CLGJ, van Rheenen J. Capturing Stem Cell Behavior Using Intravital and Live Cell Microscopy. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035949. [PMID: 31767651 DOI: 10.1101/cshperspect.a035949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells maintain tissue homeostasis by driving cellular turnover and regeneration upon damage. They reside within specialized niches that provide the signals required for stem cell maintenance. Stem cells have been identified in many tissues and cancer types, but their behavior within the niche and their reaction to microenvironmental signals were inferred from limited static observations. Recent advances in live imaging techniques, such as live cell imaging and intravital microscopy, have allowed the visualization of stem cell behavior and dynamics over time in their (near) native environment. Through these recent technological advances, it is now evident that stem cells are much more dynamic than previously anticipated, resulting in a model in which stemness is a state that can be gained or lost over time. In this review, we will highlight how live imaging and intravital microscopy have unraveled previously unanticipated stem cell dynamics and plasticity during development, homeostasis, regeneration, and tumor formation.
Collapse
Affiliation(s)
- Arianna Fumagalli
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Lotte Bruens
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Colinda L G J Scheele
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| |
Collapse
|
207
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
208
|
Gu B. Light up the embryos: knock-in reporter generation for mouse developmental biology. Anim Reprod 2020; 17:e20200055. [PMID: 33029220 PMCID: PMC7534580 DOI: 10.1590/1984-3143-ar2020-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Developmental biology seeks to understand the sophisticated regulated process through which a single cell – a fertilized egg – generates a highly organized organism. The most effective way to reveal the nature of these processes is to follow single cells and cell lineages in real-time. Recent advances in imaging equipment, fluorescent tags and computational tools have made long term multi-color imaging of cells and embryos possible. However, there is still one major challenging for achieving live imaging of mammalian embryos- the generation of embryos carrying reporters that recapitulate the endogenous expression pattern of marker genes. Recent developments of genome editing technology played important roles in enabling efficient generation of reporter mouse models. This mini review discusses recent developments of technologies for efficiently generate knock-in reporter mice and the application of these models in live imaging development. With these developments, we are starting to realize the long-sought promises of realtime analysis of mammalian development.
Collapse
Affiliation(s)
- Bin Gu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Michigan, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan, USA
| |
Collapse
|
209
|
Özgüç Ö, Maître JL. Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr Opin Cell Biol 2020; 66:123-129. [PMID: 32711300 DOI: 10.1016/j.ceb.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/31/2023]
Abstract
During preimplantation development, the mouse embryo forms the blastocyst, which consists of a squamous epithelium enveloping a fluid-filled lumen and a cluster of pluripotent cells. The shaping of the blastocyst into its specific architecture is a prerequisite to implantation and further development of the embryo. Recent studies identified the central role of the actomyosin cortex in generating the forces driving the successive steps of blastocyst morphogenesis. As seen in other developing animals, actomyosin functions across spatial scales from the subcellular to the tissue levels. In addition, the slow development of the mouse embryo reveals that actomyosin contractility operates at multiple timescales with periodic cortical waves of contraction every ∼80 s and tissue remodeling over hours.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, 26, rue d'Ulm - 75248 Paris Cedex 05 - France
| | | |
Collapse
|
210
|
Abstract
Gene regulatory networks and tissue morphogenetic events drive the emergence of shape and function: the pillars of embryo development. Although model systems offer a window into the molecular biology of cell fate and tissue shape, mechanistic studies of our own development have so far been technically and ethically challenging. However, recent technical developments provide the tools to describe, manipulate and mimic human embryos in a dish, thus opening a new avenue to exploring human development. Here, I discuss the evidence that supports a role for the crosstalk between cell fate and tissue shape during early human embryogenesis. This is a critical developmental period, when the body plan is laid out and many pregnancies fail. Dissecting the basic mechanisms that coordinate cell fate and tissue shape will generate an integrated understanding of early embryogenesis and new strategies for therapeutic intervention in early pregnancy loss.
Collapse
Affiliation(s)
- Marta N Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
211
|
Mulas C, Hodgson AC, Kohler TN, Agley CC, Humphreys P, Kleine-Brüggeney H, Hollfelder F, Smith A, Chalut KJ. Microfluidic platform for 3D cell culture with live imaging and clone retrieval. LAB ON A CHIP 2020; 20:2580-2591. [PMID: 32573646 DOI: 10.1039/d0lc00165a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Combining live imaging with the ability to retrieve individual cells of interest remains a technical challenge. Combining imaging with precise cell retrieval is of particular interest when studying highly dynamic or transient, asynchronous, or heterogeneous cell biological and developmental processes. Here, we present a method to encapsulate live cells in a 3D hydrogel matrix, via hydrogel bead compartmentalisation. Using a small-scale screen, we optimised matrix conditions for the culture and multilineage differentiation of mouse embryonic stem cells. Moreover, we designed a custom microfluidic platform that is compatible with live imaging. With this platform we can long-term culture and subsequently extract individual cells-in-beads by media flow only, obviating the need for enzymatic cell removal from the platform. Specific beads may be extracted from the platform in isolation, without disrupting the adjacent beads. We show that we can differentiate mouse embryonic stem cells, monitor reporter expression by live imaging, and retrieve individual beads for functional assays, correlating reporter expression with functional response. Overall, we present a highly flexible 3D cell encapsulation and microfluidic platform that enables both monitoring of cellular dynamics and retrieval for molecular and functional assays.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Wagner DE, Klein AM. Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet 2020; 21:410-427. [PMID: 32235876 PMCID: PMC7307462 DOI: 10.1038/s41576-020-0223-2] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
A fundamental goal of developmental and stem cell biology is to map the developmental history (ontogeny) of differentiated cell types. Recent advances in high-throughput single-cell sequencing technologies have enabled the construction of comprehensive transcriptional atlases of adult tissues and of developing embryos from measurements of up to millions of individual cells. Parallel advances in sequencing-based lineage-tracing methods now facilitate the mapping of clonal relationships onto these landscapes and enable detailed comparisons between molecular and mitotic histories. Here we review recent progress and challenges, as well as the opportunities that emerge when these two complementary representations of cellular history are synthesized into integrated models of cell differentiation.
Collapse
Affiliation(s)
- Daniel E Wagner
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
213
|
Tyser RCV, Srinivas S. The First Heartbeat-Origin of Cardiac Contractile Activity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037135. [PMID: 31767652 DOI: 10.1101/cshperspect.a037135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The amniote embryonic heart starts as a crescent of mesoderm that transitions through a midline linear heart tube in the course of developing into the four chambered heart. It is unusual in having to contract rhythmically while still undergoing extensive morphogenetic remodeling. Advances in imaging have allowed us to determine when during development this contractile activity starts. In the mouse, focal regions of contractions can be detected as early as the cardiac crescent stage. Calcium transients, required to trigger contraction, can be detected even earlier, prior to contraction. In this review, we outline what is currently known about how this early contractile function is initiated and the impact early contractile function has on cardiac development.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| |
Collapse
|
214
|
Abstract
The lateral plate mesoderm (LPM) forms the progenitor cells that constitute the heart and cardiovascular system, blood, kidneys, smooth muscle lineage and limb skeleton in the developing vertebrate embryo. Despite this central role in development and evolution, the LPM remains challenging to study and to delineate, owing to its lineage complexity and lack of a concise genetic definition. Here, we outline the processes that govern LPM specification, organization, its cell fates and the inferred evolutionary trajectories of LPM-derived tissues. Finally, we discuss the development of seemingly disparate organ systems that share a common LPM origin. Summary: The lateral plate mesoderm is the origin of several major cell types and organ systems in the vertebrate body plan. How this mesoderm territory emerges and partitions into its downstream fates provides clues about vertebrate development and evolution.
Collapse
Affiliation(s)
- Karin D Prummel
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA .,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
215
|
Qin B, Fei C, Bridges AA, Mashruwala AA, Stone HA, Wingreen NS, Bassler BL. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 2020; 369:71-77. [PMID: 32527924 DOI: 10.1126/science.abb8501] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
Bacterial biofilms represent a basic form of multicellular organization that confers survival advantages to constituent cells. The sequential stages of cell ordering during biofilm development have been studied in the pathogen and model biofilm-former Vibrio cholerae It is unknown how spatial trajectories of individual cells and the collective motions of many cells drive biofilm expansion. We developed dual-view light-sheet microscopy to investigate the dynamics of biofilm development from a founder cell to a mature three-dimensional community. Tracking of individual cells revealed two distinct fates: one set of biofilm cells expanded ballistically outward, while the other became trapped at the substrate. A collective fountain-like flow transported cells to the biofilm front, bypassing members trapped at the substrate and facilitating lateral biofilm expansion. This collective flow pattern was quantitatively captured by a continuum model of biofilm growth against substrate friction. Coordinated cell movement required the matrix protein RbmA, without which cells expanded erratically. Thus, tracking cell lineages and trajectories in space and time revealed how multicellular structures form from a single founder cell.
Collapse
Affiliation(s)
- Boyang Qin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Andrew A Bridges
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ameya A Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. .,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
216
|
Hartmann J, Wong M, Gallo E, Gilmour D. An image-based data-driven analysis of cellular architecture in a developing tissue. eLife 2020; 9:e55913. [PMID: 32501214 PMCID: PMC7274788 DOI: 10.7554/elife.55913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022] Open
Abstract
Quantitative microscopy is becoming increasingly crucial in efforts to disentangle the complexity of organogenesis, yet adoption of the potent new toolbox provided by modern data science has been slow, primarily because it is often not directly applicable to developmental imaging data. We tackle this issue with a newly developed algorithm that uses point cloud-based morphometry to unpack the rich information encoded in 3D image data into a straightforward numerical representation. This enabled us to employ data science tools, including machine learning, to analyze and integrate cell morphology, intracellular organization, gene expression and annotated contextual knowledge. We apply these techniques to construct and explore a quantitative atlas of cellular architecture for the zebrafish posterior lateral line primordium, an experimentally tractable model of complex self-organized organogenesis. In doing so, we are able to retrieve both previously established and novel biologically relevant patterns, demonstrating the potential of our data-driven approach.
Collapse
Affiliation(s)
- Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Mie Wong
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
| | - Elisa Gallo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | - Darren Gilmour
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
| |
Collapse
|
217
|
Welling M, Kalyviotis K, Pantazis P. Primed Track: Reliable Volumetric Single-cell Tracking and Lineage Tracing of Living Specimen with Dual-labeling Approaches. Bio Protoc 2020; 10:e3645. [PMID: 33659315 DOI: 10.21769/bioprotoc.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/29/2020] [Accepted: 04/28/2020] [Indexed: 11/02/2022] Open
Abstract
Mammalian embryonic development starts with a single fertilized zygote that develops into a blastocyst embryo consisting of three cell types that evolve into either embryonic or extra-embryonic tissues. Lineage tracing of these cells can provide important information about the molecular and cellular dynamics contributing to fate allocation during early development. While global labeling techniques allow for visualization of all cells at the same time, lineage tracing of cells over several divisions can become complicated due to embryo movement and rotation as well as increasing cell densities. Here, we use green-to-red photoconvertible proteins for both global and sparse labeling of cells of interest in the developing murine embryo. We use primed conversion to achieve precise photoconversion of single nuclei in 4-cell stage embryos followed by volumetric live imaging to capture development up to the blastocyst stage. We developed an image analysis pipeline, called primed Track, that uses the dual labeling strategy for both straightforward segmentation and registration of all cells in the embryo as well as correction of rotational and spatial drift. Together, this strategy allows for reliable and fast tracking and lineage tracing of individual cells, even over increased imaging time intervals that result in a major reduction in data volume, all essential conditions for volumetric long-term imaging techniques.
Collapse
Affiliation(s)
- Maaike Welling
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Periklis Pantazis
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
218
|
Abstract
Gastrulation is a critical early morphogenetic process of animal development, during which the three germ layers; mesoderm, endoderm and ectoderm, are rearranged by internalization movements. Concurrent epiboly movements spread and thin the germ layers while convergence and extension movements shape them into an anteroposteriorly elongated body with head, trunk, tail and organ rudiments. In zebrafish, gastrulation follows the proliferative and inductive events that establish the embryonic and extraembryonic tissues and the embryonic axis. Specification of these tissues and embryonic axes are controlled by the maternal gene products deposited in the egg. These early maternally controlled processes need to generate sufficient cell numbers and establish the embryonic polarity to ensure normal gastrulation. Subsequently, after activation of the zygotic genome, the zygotic gene products govern mesoderm and endoderm induction and germ layer patterning. Gastrulation is initiated during the maternal-to-zygotic transition, a process that entails both activation of the zygotic genome and downregulation of the maternal transcripts. Genomic studies indicate that gastrulation is largely controlled by the zygotic genome. Nonetheless, genetic studies that investigate the relative contributions of maternal and zygotic gene function by comparing zygotic, maternal and maternal zygotic mutant phenotypes, reveal significant contribution of maternal gene products, transcripts and/or proteins, that persist through gastrulation, to the control of gastrulation movements. Therefore, in zebrafish, the maternally expressed gene products not only set the stage for, but they also actively participate in gastrulation morphogenesis.
Collapse
Affiliation(s)
- Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
219
|
Samal P, Maurer P, van Blitterswijk C, Truckenmüller R, Giselbrecht S. A New Microengineered Platform for 4D Tracking of Single Cells in a Stem-Cell-Based In Vitro Morphogenesis Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907966. [PMID: 32346909 DOI: 10.1002/adma.201907966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Recently developed stem-cell-based in vitro models of morphogenesis can help shed light on the mechanisms involved in embryonic patterning. These models are showcased using traditional cell culture platforms and materials, which allow limited control over the biological system and usually do not support high-content imaging. In contrast, using advanced microengineered tools can help in microscale control, long-term culture, and real-time data acquisition from such biological models and aid in elucidating the underlying mechanisms. Here, a new culturing, manipulation and analysis platform is described to study in vitro morphogenesis using thin polycarbonate film-based microdevices. A pipeline consisting of open-source software to quantify 3D cell movement using 4D image acquisition is developed to analyze cell migration within the multicellular clusters. It is shown that the platform can be used to control and study morphogenesis in non-adherent cultures of the P19C5 mouse stem cell line and mouse embryonic stem cells (mESCs) that show symmetry breaking and axial elongation events similar to early embryonic development. Using the new platform, it is found that localized cell proliferation and coordinated cell migration result in elongation morphogenesis of the P19C5 aggregates. Further, it is found that polarization and elongation of mESC aggregates are dependent on directed cell migration.
Collapse
Affiliation(s)
- Pinak Samal
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Philipp Maurer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
220
|
Lemon WC, McDole K. Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol 2020; 66:34-42. [PMID: 32470820 DOI: 10.1016/j.ceb.2020.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023]
Abstract
At the time of this writing, searching Google Scholar for 'light-sheet microscopy' returns almost 8500 results; over three-quarters of which were published in the last 5 years alone. Searching for other advanced imaging methods in the last 5 years yields similar results: 'super-resolution microscopy' (>16 000), 'single-molecule imaging' (almost 10 000), SPIM (Single Plane Illumination Microscopy, 5000), and 'lattice light-sheet' (1300). The explosion of new imaging methods has also produced a dizzying menagerie of acronyms, with over 100 different species of 'light-sheet' alone, from SPIM to UM (Ultra microscopy) to SiMView (Simultaneous MultiView) to iSPIM (inclined SPIM, not to be confused with iSPIM, inverted SPIM). How then is the average biologist, without an advanced degree in physics, optics, or computer science supposed to make heads or tails of which method is best suited for their needs? Let us also not forget the plight of the optical physicist, who at best might need help with obtaining healthy samples and keeping them that way, or at worst may not realize the impact their newest technique could have for biologists. This review will not attempt to solve all these problems, but instead highlight some of the most recent, successful mergers between biology and advanced imaging technologies, as well as hopefully provide some guidance for anyone interested in journeying into the world of live-cell imaging.
Collapse
Affiliation(s)
- William C Lemon
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
221
|
Eastman AE, Guo S. The palette of techniques for cell cycle analysis. FEBS Lett 2020; 594:10.1002/1873-3468.13842. [PMID: 32441778 PMCID: PMC9261528 DOI: 10.1002/1873-3468.13842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
The cell division cycle is the generational period of cellular growth and propagation. Cell cycle progression needs to be highly regulated to preserve genomic fidelity while increasing cell number. In multicellular organisms, the cell cycle must also coordinate with cell fate specification during development and tissue homeostasis. Altered cell cycle dynamics play a central role also in a number of pathophysiological processes. Thus, extensive effort has been made to define the biochemical machineries that execute the cell cycle and their regulation, as well as implementing more sensitive and accurate cell cycle measurements. Here, we review the available techniques for cell cycle analysis, revisiting the assumptions behind conventional population-based measurements and discussing new tools to better address cell cycle heterogeneity in the single-cell era. We weigh the strengths, weaknesses, and trade-offs of methods designed to measure temporal aspects of the cell cycle. Finally, we discuss emerging techniques for capturing cell cycle speed at single-cell resolution in live animals.
Collapse
Affiliation(s)
- Anna E Eastman
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Shangqin Guo
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| |
Collapse
|
222
|
Maya-Ramos L, Mikawa T. Programmed cell death along the midline axis patterns ipsilaterality in gastrulation. Science 2020; 367:197-200. [PMID: 31919222 DOI: 10.1126/science.aaw2731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/07/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Bilateral symmetry is the predominant body plan in the animal kingdom. Cells on the left and right sides remain compartmentalized on their ipsilateral side throughout life, but with occasional variation, as evidenced by gynandromorphs and human disorders. How this evolutionarily conserved body plan is programmed remains a fundamental yet unanswered question. Here, we show that germ-layer patterning in avian gastrulation is ipsilateral despite cells undergoing highly invasive mesenchymal transformation and cell migration. Contralateral invasion is suppressed by extracellular matrix (ECM) and programmed cell death (PCD) along the embryonic midline. Ipsilateral gastrulation was lost by midline ECM and PCD inhibition but restored with exogenously induced PCD. Our data support ipsilaterality as an integral component of bilaterality and highlight a positive functional role of PCD in development.
Collapse
Affiliation(s)
- Lisandro Maya-Ramos
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
223
|
Fischer SC, Corujo-Simon E, Lilao-Garzon J, Stelzer EHK, Muñoz-Descalzo S. The transition from local to global patterns governs the differentiation of mouse blastocysts. PLoS One 2020; 15:e0233030. [PMID: 32413083 PMCID: PMC7228118 DOI: 10.1371/journal.pone.0233030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/27/2020] [Indexed: 01/06/2023] Open
Abstract
During mammalian blastocyst development, inner cell mass (ICM) cells differentiate into epiblast (Epi) or primitive endoderm (PrE). These two fates are characterized by the expression of the transcription factors NANOG and GATA6, respectively. Here, we investigate the spatio-temporal distribution of NANOG and GATA6 expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single cell-based neighbourhood analyses. We define the cell neighbourhood by local features, which include the expression levels of both fate markers expressed in each cell and its neighbours, and the number of neighbouring cells. We further include the position of a cell relative to the centre of the ICM as a global positional feature. Our analyses reveal a local three-dimensional pattern that is already present in early blastocysts: 1) Cells expressing the highest NANOG levels are surrounded by approximately nine neighbours, while 2) cells expressing GATA6 cluster according to their GATA6 levels. This local pattern evolves into a global pattern in the ICM that starts to emerge in mid blastocysts. We show that FGF/MAPK signalling is involved in the three-dimensional distribution of the cells and, using a mutant background, we further show that the GATA6 neighbourhood is regulated by NANOG. Our quantitative study suggests that the three-dimensional cell neighbourhood plays a role in Epi and PrE precursor specification. Our results highlight the importance of analysing the three-dimensional cell neighbourhood while investigating cell fate decisions during early mouse embryonic development.
Collapse
Affiliation(s)
- Sabine C. Fischer
- Physikalische Biologie, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elena Corujo-Simon
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
| | - Joaquin Lilao-Garzon
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ernst H. K. Stelzer
- Physikalische Biologie, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Silvia Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
224
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
225
|
McKinley KL, Castillo-Azofeifa D, Klein OD. Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell 2020; 26:632-656. [PMID: 32386555 PMCID: PMC7250495 DOI: 10.1016/j.stem.2020.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defining the mechanisms that generate specialized cell types and coordinate their functions is critical for understanding organ development and renewal. New tools and discoveries are challenging and refining our definitions of a cell type. A rapidly growing toolkit for single-cell analyses has expanded the number of markers that can be assigned to a cell simultaneously, revealing heterogeneity within cell types that were previously regarded as homogeneous populations. Additionally, cell types defined by specific molecular markers can exhibit distinct, context-dependent functions; for example, between tissues in homeostasis and those responding to damage. Here we review the current technologies used to identify and characterize cells, and we discuss how experimental and pathological perturbations are adding increasing complexity to our definitions of cell identity.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
226
|
Abstract
Morphogenetic flows in developmental biology are characterized by the coordinated motion of thousands of cells that organize into tissues, naturally raising the question of how this collective organization arises. Using only the kinematics of tissue deformation, which naturally integrates local and global mechanisms along cell paths, we identify the dynamic morphoskeletons behind morphogenesis, i.e., the evolving centerpieces of multicellular trajectory patterns. These features are model- and parameter-free, frame-invariant, and robust to measurement errors and can be computed from unfiltered cell-velocity data. We reveal the spatial attractors and repellers of the embryo by quantifying its Lagrangian deformation, information that is inaccessible to simple trajectory inspection or Eulerian methods that are local and typically frame-dependent. Computing these dynamic morphoskeletons in wild-type and mutant chick and fly embryos, we find that they capture the early footprint of known morphogenetic features, reveal new ones, and quantitatively distinguish between different phenotypes.
Collapse
|
227
|
Ueda HR, Dodt HU, Osten P, Economo MN, Chandrashekar J, Keller PJ. Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron 2020; 106:369-387. [PMID: 32380050 PMCID: PMC7213014 DOI: 10.1016/j.neuron.2020.03.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/11/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka 565-0871, Japan.
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria; Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
228
|
Choi WJ, Maga AM, Kim ES, Wang RK. A feasibility study of OCT for anatomical and vascular phenotyping of mouse embryo. JOURNAL OF BIOPHOTONICS 2020; 13:e201960225. [PMID: 32067352 DOI: 10.1002/jbio.201960225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The embryo phenotyping of genetic murine model is invaluable when investigating functions of genes underlying embryonic development and birth defect. Although traditional imaging technologies such as ultrasound are very useful for evaluating phenotype of murine embryos, the use of advanced techniques for phenotyping is desirable to obtain more information from genetic research. This letter tests the feasibility of optical coherence tomography (OCT) as a high-throughput phenotyping tool for murine embryos. Three-dimensional OCT imaging is performed for live and cleared mouse embryos in the late developmental stage (embryonic day 17.5). By using a dynamic focusing method and OCT angiography (OCTA) approach, our OCT imaging of the embryo exhibits rapid and clean visualization of organ structures deeper than 5 mm and complex microvasculature of perfused blood vessels in the murine embryonic body. This demonstration suggests that OCT imaging can be useful for comprehensively assessing embryo anatomy and angiography of genetically engineered mice.
Collapse
Affiliation(s)
- Woo J Choi
- School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - A M Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Development Biology and Regenerative Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Eun S Kim
- School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
229
|
Keomanee-Dizon K, Fraser SE, Truong TV. A versatile, multi-laser twin-microscope system for light-sheet imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:053703. [PMID: 32486724 PMCID: PMC7255815 DOI: 10.1063/1.5144487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 05/25/2023]
Abstract
Light-sheet microscopy offers faster imaging and reduced phototoxicity in comparison to conventional point-scanning microscopy, making it a preferred technique for imaging biological dynamics for durations of hours or days. Such extended imaging sessions pose a challenge, as it reduces the number of specimens that can be imaged in a given day. Here, we present a versatile light-sheet imaging instrument that combines two independently controlled microscope-twins, built so that they can share an ultrafast near-infrared laser and a bank of continuous-wave visible lasers, increasing the throughput and decreasing the cost. To permit a wide variety of specimens to be imaged, each microscope-twin provides flexible imaging parameters, including (i) operation in one-photon and/or two-photon excitation modes, (ii) delivery of one to three light-sheets via a trio of orthogonal excitation arms, (iii) sub-micron to micron imaging resolution, (iv) multicolor compatibility, and (v) upright (with provision for inverted) detection geometry. We offer a detailed description of the twin-microscope design to aid instrument builders who wish to construct and use similar systems. We demonstrate the instrument's versatility for biological investigation by performing fast imaging of the beating heart in an intact zebrafish embryo, deep imaging of thick patient-derived tumor organoids, and gentle whole-brain imaging of neural activity in behaving larval zebrafish.
Collapse
Affiliation(s)
- Kevin Keomanee-Dizon
- Translational Imaging Center, Dornsife College of Letters, Arts and Sciences, and Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Scott E. Fraser
- Translational Imaging Center, Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Thai V. Truong
- Translational Imaging Center, Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
230
|
Peng G, Cui G, Ke J, Jing N. Using Single-Cell and Spatial Transcriptomes to Understand Stem Cell Lineage Specification During Early Embryo Development. Annu Rev Genomics Hum Genet 2020; 21:163-181. [PMID: 32339035 DOI: 10.1146/annurev-genom-120219-083220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Embryonic development and stem cell differentiation provide a paradigm to understand the molecular regulation of coordinated cell fate determination and the architecture of tissue patterning. Emerging technologies such as single-cell RNA sequencing and spatial transcriptomics are opening new avenues to dissect cell organization, the divergence of morphological and molecular properties, and lineage allocation. Rapid advances in experimental and computational tools have enabled researchers to make many discoveries and revisit old hypotheses. In this review, we describe the use of single-cell RNA sequencing in studies of molecular trajectories and gene regulation networks for stem cell lineages, while highlighting the integratedexperimental and computational analysis of single-cell and spatial transcriptomes in the molecular annotation of tissue lineages and development during postimplantation gastrulation.
Collapse
Affiliation(s)
- Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; .,Center for Cell Lineage and Atlas, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Guizhong Cui
- Center for Cell Lineage and Atlas, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Jincan Ke
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China;
| | - Naihe Jing
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; .,Center for Cell Lineage and Atlas, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
231
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
232
|
Sladitschek HL, Fiuza UM, Pavlinic D, Benes V, Hufnagel L, Neveu PA. MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate. Cell 2020; 181:922-935.e21. [PMID: 32315617 PMCID: PMC7237864 DOI: 10.1016/j.cell.2020.03.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 11/10/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging data a canonical digital embryo that captures the genome-wide gene expression trajectory of every single cell at every cell division in the 18 lineages up to gastrulation in the ascidian Phallusia mammillata. By using high-coverage scRNA-seq, we devise a computational framework that stratifies single cells of individual embryos into cell types without prior knowledge. Unbiased transcriptome data analysis mapped each cell’s physical position and lineage history, yielding the complete history of gene expression at the genome-wide level for every single cell in a developing embryo. A comparison of individual embryos reveals both extensive reproducibility between symmetric embryo sides and a large inter-embryonic variability due to small differences in embryogenesis timing. Integration of scRNA-seq and imaging data yield a canonical digital embryo Cell type classification without prior knowledge De novo reconstruction of the lineage history and spatial organization of the embryo Timing differences contribute to inter-embryo variability in gene expression
Collapse
Affiliation(s)
- Hanna L Sladitschek
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Department of Molecular Medicine, University of Padua School of Medicine, 35126 Padua, Italy
| | - Ulla-Maj Fiuza
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
233
|
Huang Q, Cohen MA, Alsina FC, Devlin G, Garrett A, McKey J, Havlik P, Rakhilin N, Wang E, Xiang K, Mathews P, Wang L, Bock C, Ruthig V, Wang Y, Negrete M, Wong CW, Murthy PKL, Zhang S, Daniel AR, Kirsch DG, Kang Y, Capel B, Asokan A, Silver DL, Jaenisch R, Shen X. Intravital imaging of mouse embryos. Science 2020; 368:181-186. [PMID: 32273467 PMCID: PMC7646360 DOI: 10.1126/science.aba0210] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Embryonic development is a complex process that is unamenable to direct observation. In this study, we implanted a window to the mouse uterus to visualize the developing embryo from embryonic day 9.5 to birth. This removable intravital window allowed manipulation and high-resolution imaging. In live mouse embryos, we observed transient neurotransmission and early vascularization of neural crest cell (NCC)-derived perivascular cells in the brain, autophagy in the retina, viral gene delivery, and chemical diffusion through the placenta. We combined the imaging window with in utero electroporation to label and track cell division and movement within embryos and observed that clusters of mouse NCC-derived cells expanded in interspecies chimeras, whereas adjacent human donor NCC-derived cells shrank. This technique can be combined with various tissue manipulation and microscopy methods to study the processes of development at unprecedented spatiotemporal resolution.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fernando C Alsina
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Garth Devlin
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Jennifer McKey
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, USA
| | - Patrick Havlik
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Cheryl Bock
- Duke Cancer Institute, School of Medicine, Duke University, Durham, NC, USA
| | - Victor Ruthig
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, USA
| | - Yi Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Chi Wut Wong
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Preetish K L Murthy
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Andrea R Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Blanche Capel
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
234
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
235
|
Heemskerk I. Full of potential: Pluripotent stem cells for the systems biology of embryonic patterning. Dev Biol 2020; 460:86-98. [DOI: 10.1016/j.ydbio.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
|
236
|
Lloyd-Lewis B. Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. Front Cell Dev Biol 2020; 8:203. [PMID: 32296702 PMCID: PMC7138012 DOI: 10.3389/fcell.2020.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
An in-depth appreciation of organ form and function relies on the ability to image intact tissues across multiple scales. Difficulties associated with imaging deep within organs, however, can preclude high-resolution multidimensional imaging of live and fixed tissues. This is particularly challenging in the mammary gland, where the epithelium lies deeply encased within a stromal matrix. Recent advances in deep-tissue and live imaging methodologies are increasingly facilitating the visualization of complex cellular structures within their native environment. Alongside, refinements in optical tissue clearing and immunostaining methods are enabling 3D fluorescence imaging of whole organs at unprecedented resolutions. Collectively, these methods are illuminating the dynamic biological processes underlying tissue morphogenesis, homeostasis, and disease. This review provides a snapshot of the current and state-of-the-art multidimensional imaging techniques applied to the postnatal mammary gland, illustrating how these approaches have revealed important new insights into mammary gland ductal development and lactation. Continual evolution of multidimensional image acquisition and analysis methods will undoubtedly offer further insights into mammary gland biology that promises to shed new light on the perturbations leading to breast cancer.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
237
|
Camp JG, Platt R, Treutlein B. Mapping human cell phenotypes to genotypes with single-cell genomics. Science 2020; 365:1401-1405. [PMID: 31604266 DOI: 10.1126/science.aax6648] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cumulative activity of all of the body's cells, with their myriad interactions, life histories, and environmental experiences, gives rise to a condition that is distinctly human and specific to each individual. It is an enduring goal to catalog our human cell types, to understand how they develop, how they vary between individuals, and how they fail in disease. Single-cell genomics has revolutionized this endeavor because sequencing-based methods provide a means to quantitatively annotate cell states on the basis of high-information content and high-throughput measurements. Together with advances in stem cell biology and gene editing, we are in the midst of a fascinating journey to understand the cellular phenotypes that compose human bodies and how the human genome is used to build and maintain each cell. Here, we will review recent advances into how single-cell genomics is being used to develop personalized phenotyping strategies that cross subcellular, cellular, and tissue scales to link our genome to our cumulative cellular phenotypes.
Collapse
Affiliation(s)
- J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Randall Platt
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
238
|
Synthetic human embryology: towards a quantitative future. Curr Opin Genet Dev 2020; 63:30-35. [PMID: 32172182 DOI: 10.1016/j.gde.2020.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Study of early human embryo development is essential for advancing reproductive and regenerative medicine. Traditional human embryological studies rely on embryonic tissue specimens, which are difficult to acquire due to technical challenges and ethical restrictions. The availability of human stem cells with developmental potentials comparable to pre-implantation and peri-implantation human embryonic and extraembryonic cells, together with properly engineered in vitro culture environments, allow for the first time researchers to generate self-organized multicellular structures in vitro that mimic the structural and molecular features of their in vivo counterparts. The development of these stem cell-based, synthetic human embryo models offers a paradigm-shifting experimental system for quantitative measurements and perturbations of multicellular development, critical for advancing human embryology and reproductive and regenerative medicine without using intact human embryos.
Collapse
|
239
|
Long-term, in toto live imaging of cardiomyocyte behaviour during mouse ventricle chamber formation at single-cell resolution. Nat Cell Biol 2020; 22:332-340. [PMID: 32123336 DOI: 10.1038/s41556-020-0475-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/31/2020] [Indexed: 11/08/2022]
Abstract
Mapping of the holistic cell behaviours sculpting the four-chambered mammalian heart has been a goal or previous studies, but so far only success in transparent invertebrates and lower vertebrates with two-chambered hearts has been achieved. Using a live-imaging system comprising a customized vertical light-sheet microscope equipped with a mouse embryo culture module, a heartbeat-gated imaging strategy and a digital image processing framework, we realized volumetric imaging of developing mouse hearts at single-cell resolution and with uninterrupted cell lineages for up to 1.5 d. Four-dimensional landscapes of Nppa+ cardiomyocyte cell behaviours revealed a blueprint for ventricle chamber formation by which biased outward migration of the outermost cardiomyocytes is coupled with cell intercalation and horizontal division. The inner-muscle architecture of trabeculae was developed through dual mechanisms: early fate segregation and transmural cell arrangement involving both oriented cell division and directional migration. Thus, live-imaging reconstruction of uninterrupted cell lineages affords a transformative means for deciphering mammalian organogenesis.
Collapse
|
240
|
|
241
|
Kobayashi T, Kobayashi H, Goto T, Takashima T, Oikawa M, Ikeda H, Terada R, Yoshida F, Sanbo M, Nakauchi H, Kurimoto K, Hirabayashi M. Germline development in rat revealed by visualization and deletion of Prdm14. Development 2020; 147:dev.183798. [PMID: 32001439 DOI: 10.1242/dev.183798] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
Primordial germ cells (PGCs), the founder cells of the germline, are specified in pre-gastrulating embryos in mammals, and subsequently migrate towards gonads to mature into functional gametes. Here, we investigated PGC development in rats, by genetically modifying Prdm14, a unique marker and an essential PGC transcriptional regulator. We trace PGC development in rats, for the first time, from specification until the sex determination stage in fetal gonads using Prdm14 H2BVenus knock-in rats. We uncover that the crucial role of Prdm14 in PGC specification is conserved between rat and mice, by analyzing Prdm14-deficient rat embryos. Notably, loss of Prdm14 completely abrogates the PGC program, as demonstrated by failure of the maintenance and/or activation of germ cell markers and pluripotency genes. Finally, we profile the transcriptome of the post-implantation epiblast and all PGC stages in rat to reveal enrichment of distinct gene sets at each transition point, thereby providing an accurate transcriptional timeline for rat PGC development. Thus, the novel genetically modified rats and data sets obtained in this study will advance our knowledge on conserved versus species-specific features for germline development in mammals.
Collapse
Affiliation(s)
- Toshihiro Kobayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan.,Department of Physiological Sciences, The Graduate University of Advanced Studies, Okazaki, 444-8787 Aichi, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Teppei Goto
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Tomoya Takashima
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, 156-8502 Tokyo, Japan
| | - Mami Oikawa
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Reiko Terada
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Fumika Yoshida
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan .,Department of Physiological Sciences, The Graduate University of Advanced Studies, Okazaki, 444-8787 Aichi, Japan
| |
Collapse
|
242
|
Abstract
The EMBO/EMBL Symposium 'Mechanical Forces in Development' was held in Heidelberg, Germany, on 3-6 July 2019. This interdisciplinary symposium brought together an impressive and diverse line-up of speakers seeking to address the origin and role of mechanical forces in development. Emphasising the importance of integrative approaches and theoretical simulations to obtain comprehensive mechanistic insights into complex morphogenetic processes, the meeting provided an ideal platform to discuss the concepts and methods of developmental mechanobiology in an era of fast technical and conceptual progress. Here, we summarise the concepts and findings discussed during the meeting, as well as the agenda it sets for the future of developmental mechanobiology.
Collapse
Affiliation(s)
- Adrien Hallou
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK .,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.,Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
243
|
Affiliation(s)
- John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
244
|
Embryo-Based Large Fragment Knock-in in Mammals: Why, How and What's Next. Genes (Basel) 2020; 11:genes11020140. [PMID: 32013077 PMCID: PMC7073597 DOI: 10.3390/genes11020140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
Endonuclease-mediated genome editing technologies, most notably CRISPR/Cas9, have revolutionized animal genetics by allowing for precise genome editing directly through embryo manipulations. As endonuclease-mediated model generation became commonplace, large fragment knock-in remained one of the most challenging types of genetic modification. Due to their unique value in biological and biomedical research, however, a diverse range of technological innovations have been developed to achieve efficient large fragment knock-in in mammalian animal model generation, with a particular focus on mice. Here, we first discuss some examples that illustrate the importance of large fragment knock-in animal models and then detail a subset of the recent technological advancements that have allowed for efficient large fragment knock-in. Finally, we envision the future development of even larger fragment knock-ins performed in even larger animal models, the next step in expanding the potential of large fragment knock-in in animal models.
Collapse
|
245
|
Abstract
Humans have sought to understand the embryo for millennia. Paradoxically, even as technical and intellectual innovations bring us ever closer to a transformative understanding of developmental biology, our discipline faces an "image problem." We should face this problem by acknowledging that developmental biology is fundamental to the human experience.
Collapse
Affiliation(s)
- John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
246
|
Tam PPL, Ho JWK. Cellular diversity and lineage trajectory: insights from mouse single cell transcriptomes. Development 2020; 147:147/2/dev179788. [PMID: 31980483 DOI: 10.1242/dev.179788] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Single cell RNA-sequencing (scRNA-seq) technology has matured to the point that it is possible to generate large single cell atlases of developing mouse embryos. These atlases allow the dissection of developmental cell lineages and molecular changes during embryogenesis. When coupled with single cell technologies for profiling the chromatin landscape, epigenome, proteome and metabolome, and spatial tissue organisation, these scRNA-seq approaches can now collect a large volume of multi-omic data about mouse embryogenesis. In addition, advances in computational techniques have enabled the inference of developmental lineages of differentiating cells, even without explicitly introduced genetic markers. This Spotlight discusses recent advent of single cell experimental and computational methods, and key insights from applying these methods to the study of mouse embryonic development. We highlight challenges in analysing and interpreting these data to complement and expand our knowledge from traditional developmental biology studies in relation to cell identity, diversity and lineage differentiation.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia .,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
247
|
Kawasoe R, Shinoda T, Hattori Y, Nakagawa M, Pham TQ, Tanaka Y, Sagou K, Saito K, Katsuki S, Kotani T, Sano A, Fujimori T, Miyata T. Two-photon microscopic observation of cell-production dynamics in the developing mammalian neocortex in utero. Dev Growth Differ 2020; 62:118-128. [PMID: 31943159 PMCID: PMC7027555 DOI: 10.1111/dgd.12648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Morphogenesis and organ development should be understood based on a thorough description of cellular dynamics. Recent studies have explored the dynamic behaviors of mammalian neural progenitor cells (NPCs) using slice cultures in which three‐dimensional systems conserve in vivo‐like environments to a considerable degree. However, live observation of NPCs existing truly in vivo, as has long been performed for zebrafish NPCs, has yet to be established in mammals. Here, we performed intravital two‐photon microscopic observation of NPCs in the developing cerebral cortex of H2B‐EGFP or Fucci transgenic mice in utero. Fetuses in the uterine sac were immobilized using several devices and were observed through a window made in the uterine wall and the amniotic membrane while monitoring blood circulation. Clear visibility was obtained to the level of 300 μm from the scalp surface of the fetus, which enabled us to quantitatively assess NPC behaviors, such as division and interkinetic nuclear migration, within a neuroepithelial structure called the ventricular zone at embryonic day (E) 13 and E14. In fetuses undergoing healthy monitoring in utero for 60 min, the frequency of mitoses observed at the apical surface was similar to those observed in slice cultures and in freshly fixed in vivo specimens. Although the rate and duration of successful in utero observations are still limited (33% for ≥10 min and 14% for 60 min), further improvements based on this study will facilitate future understanding of how organogenetic cellular behaviors occur or are pathologically influenced by the systemic maternal condition and/or maternal‐fetal relationships.
Collapse
Affiliation(s)
- Ryotaro Kawasoe
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyasu Shinoda
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Hattori
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mami Nakagawa
- Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Trung Quang Pham
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshihiro Tanaka
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Ken Sagou
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Saito
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Katsuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Sano
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
248
|
Rogers MA, Aikawa E. Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nat Rev Cardiol 2020; 16:261-274. [PMID: 30531869 DOI: 10.1038/s41569-018-0123-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular calcification is a health disorder with increasing prevalence and high morbidity and mortality. The only available therapeutic options for calcific vascular and valvular heart disease are invasive transcatheter procedures or surgeries that do not fully address the wide spectrum of these conditions; therefore, an urgent need exists for medical options. Cardiovascular calcification is an active process, which provides a potential opportunity for effective therapeutic targeting. Numerous biological processes are involved in calcific disease, including matrix remodelling, transcriptional regulation, mitochondrial dysfunction, oxidative stress, calcium and phosphate signalling, endoplasmic reticulum stress, lipid and mineral metabolism, autophagy, inflammation, apoptosis, loss of mineralization inhibition, impaired mineral resorption, cellular senescence and extracellular vesicles that act as precursors of microcalcification. Advances in molecular imaging and big data technology, including in multiomics and network medicine, and the integration of these approaches are helping to provide a more comprehensive map of human disease. In this Review, we discuss ectopic calcification processes in the cardiovascular system, with an emphasis on emerging mechanistic knowledge obtained through patient data and advances in imaging methods, experimental models and multiomics-generated big data. We also highlight the potential and challenges of artificial intelligence, machine learning and deep learning to integrate imaging and mechanistic data for drug discovery.
Collapse
Affiliation(s)
- Maximillian A Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
249
|
Zhu M, Zhang K, Tao H, Hopyan S, Sun Y. Magnetic Micromanipulation for In Vivo Measurement of Stiffness Heterogeneity and Anisotropy in the Mouse Mandibular Arch. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7914074. [PMID: 32666052 PMCID: PMC7327709 DOI: 10.34133/2020/7914074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
The mechanical properties of tissues are pivotal for morphogenesis and disease progression. Recent approaches have enabled measurements of the spatial distributions of viscoelastic properties among embryonic and pathological model systems and facilitated the generation of important hypotheses such as durotaxis and tissue-scale phase transition. There likely are many unexpected aspects of embryo biomechanics we have yet to discover which will change our views of mechanisms that govern development and disease. One area in the blind spot of even the most recent approaches to measuring tissue stiffness is the potentially anisotropic nature of that parameter. Here, we report a magnetic micromanipulation device that generates a uniform magnetic field gradient within a large workspace and permits measurement of the variation of tissue stiffness along three orthogonal axes. By applying the device to the organ-stage mouse embryo, we identify spatially heterogenous and directionally anisotropic stiffness within the mandibular arch. Those properties correspond to the domain of expression and the angular distribution of fibronectin and have potential implications for mechanisms that orient collective cell movements and shape tissues during development. Assessment of anisotropic properties extends the repertoire of current methods and will enable the generation and testing of hypotheses.
Collapse
Affiliation(s)
- Min Zhu
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada M5S 3G8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Kaiwen Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada M5S 3G8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Department of Molecular Genetics, University of Toronto, Canada M5S 1A8
- Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Canada M5G 1X8
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada M5S 3G8
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada M5S 3G9
- Department of Electrical and Computer Engineering, University of Toronto, Canada M5S 3G4
| |
Collapse
|
250
|
Remacha E, Friedrich L, Vermot J, Fahrbach FO. How to define and optimize axial resolution in light-sheet microscopy: a simulation-based approach. BIOMEDICAL OPTICS EXPRESS 2020; 11:8-26. [PMID: 32010496 PMCID: PMC6968747 DOI: 10.1364/boe.11.000008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 05/11/2023]
Abstract
"How thick is your light sheet?" is a question that has been asked frequently after talks showing impressive renderings of 3D data acquired by a light-sheet microscope. This question is motivated by the fact that most of the time the thickness of the light-sheet is uniquely associated to the axial resolution of the microscope. However, the link between light-sheet thickness and axial resolution has never been systematically assessed and it is still unclear how both are connected. The question is not trivial because commonly employed measures cannot readily be applied or do not lead to easily interpretable results for the many different types of light sheet. Here, we introduce a set of intuitive measures that helps to define the relationship between light sheet thickness and axial resolution by using simulation data. Unexpectedly, our analysis revealed a trade-off between better axial resolution and thinner light-sheet thickness. Our results are surprising because thicker light-sheets that provide lower image contrast have previously not been associated with better axial resolution. We conclude that classical Gaussian illumination beams should be used when image contrast is most important, and more advanced types of illumination represent a way to optimize axial resolution at the expense of image contrast.
Collapse
Affiliation(s)
- Elena Remacha
- Leica Microsystems CMS GmbH, Am
Friedensplatz 3, 68165 Mannheim, Germany
- Institute of Genetics and Molecular and
Cellular Biology (IGBMC), 67404 Illkirch, France
- Centre National de la Recherche
Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de
la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch,
France
| | - Lars Friedrich
- Leica Microsystems CMS GmbH, Am
Friedensplatz 3, 68165 Mannheim, Germany
| | - Julien Vermot
- Institute of Genetics and Molecular and
Cellular Biology (IGBMC), 67404 Illkirch, France
- Centre National de la Recherche
Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de
la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch,
France
- Department of Bioengineering, Imperial
College London, London, UK
| | | |
Collapse
|