201
|
Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J Hepatol 2016; 64:1118-1127. [PMID: 26743076 PMCID: PMC4822535 DOI: 10.1016/j.jhep.2015.12.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells characterised by the invariant TCR-chain, Vα7.2-Jα33, and are restricted by MR1, which presents bacterial vitamin B metabolites. They are important for antibacterial immunity at mucosal sites; however, detailed characteristics of liver-infiltrating MAIT (LI-MAIT) and their role in biliary immune surveillance remain unexplored. METHODS The phenotype and intrahepatic localisation of human LI-MAIT cells was examined in diseased and normal livers. MAIT cell activation in response to E. coli-exposed macrophages, biliary epithelial cells (BEC) and liver B cells was assessed with/without anti-MR1. RESULTS Intrahepatic MAIT cells predominantly localised to bile ducts in the portal tracts. Consistent with this distribution, they expressed biliary tropic chemokine receptors CCR6, CXCR6, and integrin αEβ7. LI-MAIT cells were also present in the hepatic sinusoids and possessed tissue-homing chemokine receptor CXCR3 and integrins LFA-1 and VLA-4, suggesting their recruitment via hepatic sinusoids. LI-MAIT cells were enriched in the parenchyma of acute liver failure livers compared to chronic diseased livers. LI-MAIT cells had an activated, effector memory phenotype, expressed α4β7 and receptors for IL-12, IL-18, and IL-23. Importantly, in response to E. coli-exposed macrophages, liver B cells and BEC, MAIT cells upregulated IFN-γ and CD40 Ligand and degranulated in an MR1-dependent, cytokine-independent manner. In addition, diseased liver MAIT cells expressed T-bet and RORγt and the cytokines IFN-γ, TNF-α, and IL-17. CONCLUSIONS Our findings provide the first evidence of an immune surveillance effector response for MAIT cells towards BEC in human liver; thus they could be manipulated for treatment of biliary disease in the future.
Collapse
|
202
|
Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS One 2016; 11:e0154253. [PMID: 27119555 PMCID: PMC4847787 DOI: 10.1371/journal.pone.0154253] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential.
Collapse
|
203
|
Fergusson J, Hühn M, Swadling L, Walker L, Kurioka A, Llibre A, Bertoletti A, Holländer G, Newell E, Davis M, Sverremark-Ekström E, Powrie F, Capone S, Folgori A, Barnes E, Willberg C, Ussher J, Klenerman P. CD161(int)CD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol 2016; 9:401-13. [PMID: 26220166 PMCID: PMC4732939 DOI: 10.1038/mi.2015.69] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/13/2015] [Indexed: 02/04/2023]
Abstract
The C-type lectin-like receptor CD161 is expressed by lymphocytes found in human gut and liver, as well as blood, especially natural killer (NK) cells, T helper 17 (Th17) cells, and a population of unconventional T cells known as mucosal-associated invariant T (MAIT) cells. The association of high CD161 expression with innate T-cell populations including MAIT cells is established. Here we show that CD161 is also expressed, at intermediate levels, on a prominent subset of polyclonal CD8+ T cells, including antiviral populations that display a memory phenotype. These memory CD161(int)CD8+ T cells are enriched within the colon and express both CD103 and CD69, markers associated with tissue residence. Furthermore, this population was characterized by enhanced polyfunctionality, increased levels of cytotoxic mediators, and high expression of the transcription factors T-bet and eomesodermin (EOMES). Such populations were induced by novel vaccine strategies based on adenoviral vectors, currently in trial against hepatitis C virus. Thus, intermediate CD161 expression marks potent polyclonal, polyfunctional tissue-homing CD8+ T-cell populations in humans. As induction of such responses represents a major aim of T-cell prophylactic and therapeutic vaccines in viral disease and cancer, analysis of these populations could be of value in the future.
Collapse
MESH Headings
- Adenoviridae/immunology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Clinical Trials as Topic
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colon/immunology
- Colon/pathology
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/pathology
- Gene Expression Regulation
- Hepacivirus/immunology
- Hepatitis C/immunology
- Hepatitis C/prevention & control
- Hepatitis C/virology
- Humans
- Immunologic Memory
- Integrin alpha Chains/genetics
- Integrin alpha Chains/immunology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lymphocyte Activation
- NK Cell Lectin-Like Receptor Subfamily B/genetics
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- Primary Cell Culture
- Signal Transduction
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- Tetradecanoylphorbol Acetate/pharmacology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
Collapse
Affiliation(s)
- J.R. Fergusson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - M.H. Hühn
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - L. Swadling
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - L.J. Walker
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- Newcastle University Institute of Cellular Medicine, Framlington Place, Newcastle upon Tyne, Tyne And Wear, United Kingdom, NE2 4HH
| | - A. Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - A. Llibre
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - A. Bertoletti
- Program Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - G. Holländer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - E.W. Newell
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| | - M.M. Davis
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| | - E. Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - F. Powrie
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - S. Capone
- Okairos, via dei Castelli Romani 22, Pomezia, 00040 Rome, Italy
| | - A. Folgori
- Okairos, via dei Castelli Romani 22, Pomezia, 00040 Rome, Italy
| | - E. Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - C.B. Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - J.E. Ussher
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - P. Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9TU, UK
| |
Collapse
|
204
|
Björkander S, Hell L, Johansson MA, Forsberg MM, Lasaviciute G, Roos S, Holmlund U, Sverremark-Ekström E. Staphylococcus aureus-derived factors induce IL-10, IFN-γ and IL-17A-expressing FOXP3+CD161+ T-helper cells in a partly monocyte-dependent manner. Sci Rep 2016; 6:22083. [PMID: 26917055 PMCID: PMC4768154 DOI: 10.1038/srep22083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a human pathogen as well as a frequent colonizer of skin and mucosa. This bacterium potently activates conventional T-cells through superantigens and it is suggested to induce T-cell cytokine-production as well as to promote a regulatory phenotype in T-cells in order to avoid clearance. This study aimed to investigate how S. aureus impacts the production of regulatory and pro-inflammatory cytokines and the expression of CD161 and HELIOS by peripheral CD4(+)FOXP3(+) T-cells. Stimulation of PBMC with S. aureus 161:2-cell free supernatant (CFS) induced expression of IL-10, IFN-γ and IL-17A in FOXP3(+) cells. Further, CD161 and HELIOS separated the FOXP3(+) cells into four distinct populations regarding cytokine-expression. Monocyte-depletion decreased S. aureus 161:2-induced activation of FOXP3(+) cells while pre-stimulation of purified monocytes with S. aureus 161:2-CFS and subsequent co-culture with autologous monocyte-depleted PBMC was sufficient to mediate activation of FOXP3(+) cells. Together, these data show that S. aureus potently induces FOXP3(+) cells and promotes a diverse phenotype with expression of regulatory and pro-inflammatory cytokines connected to increased CD161-expression. This could indicate potent regulation or a contribution of FOXP3(+) cells to inflammation and repression of immune-suppression upon encounter with S. aureus.
Collapse
Affiliation(s)
- Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lena Hell
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Maria A Johansson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Manuel Mata Forsberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gintare Lasaviciute
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Stefan Roos
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulrika Holmlund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
205
|
Ling L, Lin Y, Zheng W, Hong S, Tang X, Zhao P, Li M, Ni J, Li C, Wang L, Jiang Y. Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci Rep 2016; 6:20358. [PMID: 26837580 PMCID: PMC4738248 DOI: 10.1038/srep20358] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/31/2015] [Indexed: 01/19/2023] Open
Abstract
Mucosal associated invariant T (MAIT) cells are important for immune defense against infectious pathogens and regulate the pathogenesis of various inflammatory diseases. However, their roles in the development of colorectal cancer (CRC) are still unclear. This study examined the phenotype, distribution, clinical relevance and potential function of MAIT cells in CRC patients. We found that the percentages of circulating memory CD8+ MAIT cells were significantly reduced while tumor infiltrating MAIT cells were increased, especially in patients with advanced CRC. The serum CEA levels were positively correlated with the percentages of tumor infiltrating MAIT cells in CRC patients, but negatively correlated with the percentages of circulating MAIT in advanced CRC patients. Activated circulating MAIT cells from CRC patients produced lower IFN-γ, but higher IL-17. Furthermore, higher levels of Vα7.2-Jα33, IFN-γ and IL-17A were expressed in the CRC tissues. Co-culture of activated MAIT cells with HCT116 cells enhanced IL-17 expression and induced HCT116 cell cycle arrest at G2/M phase in a contact- and dose-dependent manner, which was abrogated by treatment with anti-MR1. Therefore, MAIT cells preferably infiltrate into the solid tumor in CRC patients and may participate in the immune surveillance of CRC.
Collapse
Affiliation(s)
- Limian Ling
- Department of Colorectal &Anal Surgery, Changchun, 130032, China
| | - Yuyang Lin
- Department of Colorectal &Anal Surgery, Changchun, 130032, China
| | - Wenwen Zheng
- Department of Colorectal &Anal Surgery, Changchun, 130032, China
| | - Sen Hong
- Department of Colorectal &Anal Surgery, Changchun, 130032, China
| | - Xiuqi Tang
- Department of Colorectal &Anal Surgery, Changchun, 130032, China
| | - Pingwei Zhao
- Department of Colorectal &Anal Surgery, Changchun, 130032, China
| | - Ming Li
- Key Laboratory of Zoonosis Research, Ministry of Education; the First Hospital, Jilin University, Changchun, 130032, China
| | - Jingsong Ni
- Key Laboratory of Zoonosis Research, Ministry of Education; the First Hospital, Jilin University, Changchun, 130032, China
| | - Chenguang Li
- Department of Colorectal &Anal Surgery, Changchun, 130032, China
| | - Lei Wang
- Department of Colorectal &Anal Surgery, Changchun, 130032, China
| | - Yanfang Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education; the First Hospital, Jilin University, Changchun, 130032, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
206
|
Llibre A, López-Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, Rivellese F, Galson JD, Walker LJ, Milne P, Phillips RE, Kelly DF, Freeman GJ, El Shikh ME, Klenerman P, Willberg CB. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. THE JOURNAL OF IMMUNOLOGY 2016; 196:2085-94. [PMID: 26829983 PMCID: PMC4760235 DOI: 10.4049/jimmunol.1502462] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/03/2016] [Indexed: 01/08/2023]
Abstract
Germinal centers (GCs) are microanatomical structures critical for the development of high-affinity Abs and B cell memory. They are organized into two zones, light and dark, with coordinated roles, controlled by local signaling. The innate lectin-like transcript 1 (LLT1) is known to be expressed on B cells, but its functional role in the GC reaction has not been explored. In this study, we report high expression of LLT1 on GC-associated B cells, early plasmablasts, and GC-derived lymphomas. LLT1 expression was readily induced via BCR, CD40, and CpG stimulation on B cells. Unexpectedly, we found high expression of the LLT1 ligand, CD161, on follicular dendritic cells. Triggering of LLT1 supported B cell activation, CD83 upregulation, and CXCR4 downregulation. Overall, these data suggest that LLT1–CD161 interactions play a novel and important role in B cell maturation within the GC in humans.
Collapse
Affiliation(s)
- Alba Llibre
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI," Mexican Institute for Social Security, 06720 Mexico City, Mexico
| | - Teresa Marafioti
- Department of Histopathology, University College London, London WC1E 6JJ, United Kingdom
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Amy Partridge
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Carina Kanzig
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jacob D Galson
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Lucy J Walker
- Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Paul Milne
- Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Rodney E Phillips
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215; and
| | - Mohey Eldin El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom; Oxford National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kindgom; Oxford National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
207
|
High-dimensional immune profiling of total and rotavirus VP6-specific intestinal and circulating B cells by mass cytometry. Mucosal Immunol 2016; 9:68-82. [PMID: 25899688 PMCID: PMC4618273 DOI: 10.1038/mi.2015.36] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/07/2015] [Indexed: 02/04/2023]
Abstract
In-depth phenotyping of human intestinal antibody secreting cells (ASCs) and their precursors is important for developing improved mucosal vaccines. We used single-cell mass cytometry to simultaneously analyze 34 differentiation and trafficking markers on intestinal and circulating B cells. In addition, we labeled rotavirus (RV) double-layered particles with a metal isotope and characterized B cells specific to the RV VP6 major structural protein. We describe the heterogeneity of the intestinal B-cell compartment, dominated by ASCs with some phenotypic and transcriptional characteristics of long-lived plasma cells. Using principal component analysis, we visualized the phenotypic relationships between major B-cell subsets in the intestine and blood, and revealed that IgM(+) memory B cells (MBCs) and naive B cells were phenotypically related as were CD27(-) MBCs and switched MBCs. ASCs in the intestine and blood were highly clonally related, but associated with distinct trajectories of phenotypic development. VP6-specific B cells were present among diverse B-cell subsets in immune donors, including naive B cells, with phenotypes representative of the overall B-cell pool. These data provide a high dimensional view of intestinal B cells and the determinants regulating humoral memory to a ubiquitous, mucosal pathogen at steady-state.
Collapse
|
208
|
|
209
|
Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L, Premel V, Martin E, Kachaner A, Duban L, Ingersoll MA, Rabot S, Jaubert J, De Villartay JP, Soudais C, Lantz O. Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J Clin Invest 2015; 125:4171-85. [PMID: 26524590 DOI: 10.1172/jci82424] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023] Open
Abstract
Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%-10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4-CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7-). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease.
Collapse
MESH Headings
- Animals
- Chemotaxis, Leukocyte
- Crosses, Genetic
- Disease Models, Animal
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Germ-Free Life
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunologic Memory
- Kruppel-Like Transcription Factors/analysis
- Lymphocyte Activation
- Lymphocyte Count
- Lymphoid Tissue/cytology
- Lymphokines/metabolism
- Mice
- Mice, Congenic/genetics
- Mice, Congenic/immunology
- Mice, Congenic/microbiology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microbiota
- Minor Histocompatibility Antigens
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/analysis
- Phenotype
- Polymorphism, Single Nucleotide
- Promyelocytic Leukemia Zinc Finger Protein
- Radiation Chimera
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Cytokine/analysis
- Urinary Tract Infections/immunology
- Urinary Tract Infections/microbiology
Collapse
|
210
|
Held K, Beltrán E, Moser M, Hohlfeld R, Dornmair K. T-cell receptor repertoire of human peripheral CD161hiTRAV1-2+ MAIT cells revealed by next generation sequencing and single cell analysis. Hum Immunol 2015; 76:607-14. [PMID: 26382249 DOI: 10.1016/j.humimm.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/15/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are a T-cell subset that expresses a conserved TRAV1-2 (Vα7.2) T-cell receptor (TCR) chain and the surface marker CD161. They are involved in the defence against microbes as they recognise small organic molecules of microbial origin that are presented by the non-classical MHC molecule 1 (MR1). MAIT cells express a semi-restricted TCR α chain with TRAV1-2 preferentially linked to TRAJ33, TRAJ12, or TRAJ20 which pairs with a limited set of β chains. To investigate the TCR repertoire of human CD161(hi)TRAV1-2(+) T cells in depth we analysed the α and β chains of this T-cell subset by next generation sequencing. Concomitantly we analysed 132 paired α and β chains from single cells to assess the αβ pairing preferences. We found that the CD161(hi)TRAV1-2(+) TCR repertoire in addition to the typical MAIT TCRs further contains polyclonal elements reminiscent of classical αβ T cells.
Collapse
Affiliation(s)
- Kathrin Held
- Institute of Clinical Neuroimmunology, Klinikum der Universität Muenchen, Munich, Germany.
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Klinikum der Universität Muenchen, Munich, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Klinikum der Universität Muenchen, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilian-University, Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Klinikum der Universität Muenchen, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
211
|
Dolton G, Tungatt K, Lloyd A, Bianchi V, Theaker SM, Trimby A, Holland CJ, Donia M, Godkin AJ, Cole DK, Straten PT, Peakman M, Svane IM, Sewell AK. More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology 2015; 146:11-22. [PMID: 26076649 PMCID: PMC4552497 DOI: 10.1111/imm.12499] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022] Open
Abstract
Analysis of antigen-specific T-cell populations by flow cytometry with peptide-MHC (pMHC) multimers is now commonplace. These reagents allow the tracking and phenotyping of T cells during infection, autoimmunity and cancer, and can be particularly revealing when used for monitoring therapeutic interventions. In 2009, we reviewed a number of 'tricks' that could be used to improve this powerful technology. More recent advances have demonstrated the potential benefits of using higher order multimers and of 'boosting' staining by inclusion of an antibody against the pMHC multimer. These developments now allow staining of T cells where the interaction between the pMHC and the T-cell receptor is over 20-fold weaker (K(D) > 1 mm) than could previously be achieved. Such improvements are particularly relevant when using pMHC multimers to stain anti-cancer or autoimmune T-cell populations, which tend to bear lower affinity T-cell receptors. Here, we update our previous work to include discussion of newer tricks that can produce substantially brighter staining even when using log-fold lower concentrations of pMHC multimer. We further provide a practical guide to using pMHC multimers that includes a description of several common pitfalls and how to circumvent them.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Katie Tungatt
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Angharad Lloyd
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Valentina Bianchi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Sarah M Theaker
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew Trimby
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Marco Donia
- Centre for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Per Thor Straten
- Centre for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Mark Peakman
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, London, UK
| | - Inge Marie Svane
- Centre for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
212
|
Rother S, Hundrieser J, Pokoyski C, Kollrich S, Borns K, Blasczyk R, Poehnert D, Klempnauer J, Schwinzer R. The c.503T>C Polymorphism in the Human KLRB1 Gene Alters Ligand Binding and Inhibitory Potential of CD161 Molecules. PLoS One 2015; 10:e0135682. [PMID: 26309225 PMCID: PMC4550425 DOI: 10.1371/journal.pone.0135682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022] Open
Abstract
Studying genetic diversity of immunologically relevant molecules can improve our knowledge on their functional spectrum in normal immune responses and may also uncover a possible role of different variants in diseases. We characterized the c.503T>C polymorphism in the human KLRB1 gene (Killer cell lectin-like receptor, subfamily B, member 1) coding for the cell surface receptor CD161. CD161 is expressed by subsets of CD4+ and CD8+ T cells and the great majority of CD56+ natural killer (NK) cells, acting as inhibitory receptor in the latter population. Genotyping a cohort of 118 healthy individuals revealed 40% TT homozygotes, 46% TC heterozygotes, and 14% carriers of CC. There was no difference in the frequency of CD161 expressing CD4+ and CD8+ T cells between the different genotypes. However, the frequency of CD161+ NK cells was significantly decreased in CC carriers as compared to TT homozygotes. c.503T>C causes an amino acid exchange (p.Ile168Thr) in an extracellular loop of the CD161 receptor, which is regarded to be involved in binding of its ligand Lectin-like transcript 1 (LLT1). Binding studies using soluble LLT1-Fc on 293 transfectants over-expressing CD161 receptors from TT or CC carriers suggested diminished binding to the CC variant. Furthermore, triggering of CD161 either by LLT1 or anti-CD161 antibodies inhibited NK cell activation less effectively in cells from CC individuals than cells from TT carriers. These data suggest that the c.503T>C polymorphism is associated with structural alterations of the CD161 receptor. The regulation of NK cell homeostasis and activation apparently differs between carriers of the CC and TT variant of CD161.
Collapse
Affiliation(s)
- Sascha Rother
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim Hundrieser
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Pokoyski
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Sonja Kollrich
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Katja Borns
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Department for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Daniel Poehnert
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Klempnauer
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
213
|
Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 2015; 21:938-945. [PMID: 26193342 PMCID: PMC4852857 DOI: 10.1038/nm.3909] [Citation(s) in RCA: 2173] [Impact Index Per Article: 241.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/19/2015] [Indexed: 12/12/2022]
Abstract
Molecular profiles of tumors and tumor-associated cells hold great promise as biomarkers of clinical outcomes. However, existing data sets are fragmented and difficult to analyze systematically. Here we present a pan-cancer resource and meta-analysis of expression signatures from ∼18,000 human tumors with overall survival outcomes across 39 malignancies. By using this resource, we identified a forkhead box MI (FOXM1) regulatory network as a major predictor of adverse outcomes, and we found that expression of favorably prognostic genes, including KLRB1 (encoding CD161), largely reflect tumor-associated leukocytes. By applying CIBERSORT, a computational approach for inferring leukocyte representation in bulk tumor transcriptomes, we identified complex associations between 22 distinct leukocyte subsets and cancer survival. For example, tumor-associated neutrophil and plasma cell signatures emerged as significant but opposite predictors of survival for diverse solid tumors, including breast and lung adenocarcinomas. This resource and associated analytical tools (http://precog.stanford.edu) may help delineate prognostic genes and leukocyte subsets within and across cancers, shed light on the impact of tumor heterogeneity on cancer outcomes, and facilitate the discovery of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Andrew J Gentles
- Center for Cancer Systems Biology (CCSB), Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Chih Long Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Scott V Bratman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Weiguo Feng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dongkyoon Kim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Viswam S Nair
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - Yue Xu
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Stanford University, Stanford, California, USA
| | - Amanda Khuong
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Stanford University, Stanford, California, USA
| | - Chuong D Hoang
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Stanford University, Stanford, California, USA
| | - Maximilian Diehn
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Robert B West
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Sylvia K Plevritis
- Center for Cancer Systems Biology (CCSB), Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ash A Alizadeh
- Center for Cancer Systems Biology (CCSB), Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
- Department of Medicine, Division of Hematology, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
214
|
Furman D, Davis MM. New approaches to understanding the immune response to vaccination and infection. Vaccine 2015; 33:5271-81. [PMID: 26232539 DOI: 10.1016/j.vaccine.2015.06.117] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/26/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
The immune system is a network of specialized cell types and tissues that communicates via cytokines and direct contact, to orchestrate specific types of defensive responses. Until recently, we could only study immune responses in a piecemeal, highly focused fashion, on major components like antibodies to the pathogen. But recent advances in technology and in our understanding of the many components of the system, innate and adaptive, have made possible a broader approach, where both the multiple responding cells and cytokines in the blood are measured. This systems immunology approach to a vaccine response or an infection gives us a more holistic picture of the different parts of the immune system that are mobilized and should allow us a much better understanding of the pathways and mechanisms of such responses, as well as to predict vaccine efficacy in different populations well in advance of efficacy studies. Here we summarize the different technologies and methods and discuss how they can inform us about the differences between diseases and vaccines, and how they can greatly accelerate vaccine development.
Collapse
Affiliation(s)
- David Furman
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States; Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States; Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
215
|
Liuzzi AR, McLaren JE, Price DA, Eberl M. Early innate responses to pathogens: pattern recognition by unconventional human T-cells. Curr Opin Immunol 2015; 36:31-7. [PMID: 26182978 PMCID: PMC4594761 DOI: 10.1016/j.coi.2015.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/13/2015] [Indexed: 02/06/2023]
Abstract
Although typically viewed as a feature of innate immune responses, microbial pattern recognition is increasingly acknowledged as a function of particular cells nominally categorized within the adaptive immune system. Groundbreaking research over the past three years has shown how unconventional human T-cells carrying invariant or semi-invariant TCRs that are not restricted by classical MHC molecules sense microbial compounds via entirely novel antigen presenting pathways. This review will focus on the innate-like recognition of non-self metabolites by Vγ9/Vδ2 T-cells, mucosal-associated invariant T (MAIT) cells and germline-encoded mycolyl-reactive (GEM) T-cells, with an emphasis on early immune responses in acute infection.
Collapse
Affiliation(s)
- Anna Rita Liuzzi
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
216
|
Chalan P, Bijzet J, Huitema MG, Kroesen BJ, Brouwer E, Boots AMH. Expression of Lectin-Like Transcript 1, the Ligand for CD161, in Rheumatoid Arthritis. PLoS One 2015; 10:e0132436. [PMID: 26147876 PMCID: PMC4492745 DOI: 10.1371/journal.pone.0132436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/15/2015] [Indexed: 11/19/2022] Open
Abstract
Objectives Precursor Th17 lineage cells expressing CD161 are implicated in Rheumatoid Arthritis (RA) pathogenesis. CD4+CD161+ T-cells accumulate in RA joints and may acquire a non classical Th1 phenotype. The endogenous ligand for CD161 is lectin-like transcript 1 (LLT1). CD161/LLT1 ligation may co-stimulate T-cell IFN-γ production. We investigated the presence and identity of LLT1-expressing cells in RA synovial fluid (SF) and synovial tissue (ST). We also assessed levels of soluble LLT1 (sLLT1) in different phases of RA development. Methods Paired samples of peripheral blood mononuclear cells (MC) and SFMC (n = 14), digested ST cells (n = 4) and ST paraffin sections (n = 6) from late-stage RA were analyzed for LLT1 expression by flow cytometry and immunohistochemistry. sLLT1 was measured using a sandwich ELISA. Sera and SF from late-stage RA (n = 26), recently diagnosed RA patients (n = 39), seropositive arthralgia patients (SAP, n = 31), spondyloarthropathy patients (SpA, n = 26) and healthy controls (HC, n = 31) were assayed. Results In RA SF, LLT1 was expressed by a small proportion of monocytes. In RA ST, LLT1-expressing cells were detected in the lining, sublining layer and in areas with infiltrates. The LLT1 staining pattern overlapped with the CD68 staining pattern. FACS analysis of digested ST confirmed LLT1 expression by CD68+ cells. Elevated systemic sLLT1 was found in all patient groups. Conclusions In RA joints, LLT1 is expressed by cells of the monocyte/macrophage lineage. Serum levels of sLLT1 were increased in all patient groups (patients with early- and late-stage RA, seropositive arthralgia and spondyloarthropathy) when compared to healthy subjects.
Collapse
Affiliation(s)
- Paulina Chalan
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan Bijzet
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Minke G. Huitema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
217
|
Gao Y, Williams AP. Role of Innate T Cells in Anti-Bacterial Immunity. Front Immunol 2015; 6:302. [PMID: 26124758 PMCID: PMC4463001 DOI: 10.3389/fimmu.2015.00302] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023] Open
Abstract
Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review, we focus on the functional properties of these three innate T cell populations and how they are purposed for antimicrobial defense. Furthermore, we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly, we speculate on future roles of these cell types in therapeutic settings such as vaccination.
Collapse
Affiliation(s)
- Yifang Gao
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK
| | - Anthony P Williams
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK ; Wessex Investigational Sciences Hub (WISH) Laboratory, Department of Allergy, Asthma and Clinical Immunology, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
218
|
Herderschee J, Fenwick C, Pantaleo G, Roger T, Calandra T. Emerging single-cell technologies in immunology. J Leukoc Biol 2015; 98:23-32. [PMID: 25908734 DOI: 10.1189/jlb.6ru0115-020r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
During evolution, the immune system has diversified to protect the host from the extremely wide array of possible pathogens. Until recently, immune responses were dissected by use of global approaches and bulk tools, averaging responses across samples and potentially missing particular contributions of individual cells. This is a strongly limiting factor, considering that initial immune responses are likely to be triggered by a restricted number of cells at the vanguard of host defenses. The development of novel, single-cell technologies is a major innovation offering great promise for basic and translational immunology with the potential to overcome some of the limitations of traditional research tools, such as polychromatic flow cytometry or microscopy-based methods. At the transcriptional level, much progress has been made in the fields of microfluidics and single-cell RNA sequencing. At the protein level, mass cytometry already allows the analysis of twice as many parameters as flow cytometry. In this review, we explore the basis and outcome of immune-cell diversity, how genetically identical cells become functionally different, and the consequences for the exploration of host-immune defense responses. We will highlight the advantages, trade-offs, and potential pitfalls of emerging, single-cell-based technologies and how they provide unprecedented detail of immune responses.
Collapse
Affiliation(s)
- Jacobus Herderschee
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Craig Fenwick
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Thierry Roger
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Thierry Calandra
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| |
Collapse
|
219
|
Attrition of TCR Vα7.2+ CD161++ MAIT cells in HIV-tuberculosis co-infection is associated with elevated levels of PD-1 expression. PLoS One 2015; 10:e0124659. [PMID: 25894562 PMCID: PMC4403924 DOI: 10.1371/journal.pone.0124659] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved antimicrobial MR1-restricted CD8+ T cells co-expressing the semi-invariant TCR Vα7.2, and are numerous in the blood and mucosal tissues of humans. MAIT cells appear to undergo exhaustion in chronic viral infections. However, their role in human immunodeficiency virus type 1 (HIV-1) mono-infection and HIV/tuberculosis (TB) co-infection have seldom been elaborately investigated. We conducted a cross-sectional study to investigate the frequencies and phenotypes of CD161++CD8+ T cells among anti-retroviral therapy (ART)/anti-TB therapy (ATT) treatment-naïve HIV/TB co-infected, ART/TB treated HIV/TB co-infected, ART naïve HIV-infected, ART-treated HIV-infected patients, and HIV negative healthy controls (HCs) by flow cytometry. Our data revealed that the frequency of MAIT cells was severely depleted in HIV mono- and HIV/TB co-infections. Further, PD-1 expression on MAIT cells was significantly increased in HIV mono- and HIV-TB co-infected patients. The frequency of MAIT cells did not show any significant increase despite the initiation of ART and/or ATT. Majority of the MAIT cells in HCs showed a significant increase in CCR6 expression as compared to HIV/TB co-infections. No marked difference was seen with expressions of chemokine co-receptor CCR5 and CD103 among the study groups. Decrease of CCR6 expression appears to explain why HIV-infected patients display weakened mucosal immune responses.
Collapse
|
220
|
Germain C, Guillaudeux T, Galsgaard ED, Hervouet C, Tekaya N, Gallouet AS, Fassy J, Bihl F, Poupon G, Lazzari A, Spee P, Anjuère F, Pangault C, Tarte K, Tas P, Xerri L, Braud VM. Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin's lymphomas dampening natural killer cell functions. Oncoimmunology 2015; 4:e1026503. [PMID: 26405582 DOI: 10.1080/2162402x.2015.1026503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
Abstract
Non-Hodgkin's lymphomas (NHLs) are malignant neoplasms which are clinically and biologically diverse. Their incidence is constantly increasing and despite treatment advances, there is a need for novel targeted therapies. Here, we identified Lectin-like transcript 1 (LLT1) as a biomarker of germinal center (GC)-derived B-cell NHLs. LLT1 identifies GC B cells in reactive tonsils and lymph nodes and its expression is maintained in B-cell NHLs which derive from GC, including Burkitt lymphoma (BL), follicular lymphoma (FL), and GC-derived diffuse large B-cell lymphoma (DLBCL). We further show that LLT1 expression by tumors dampens natural killer (NK) cell functions following interaction with its receptor CD161, uncovering a potential immune escape mechanism. Our results pinpoint LLT1 as a novel biomarker of GC-derived B-cell NHLs and as a candidate target for innovative immunotherapies.
Collapse
Affiliation(s)
- Claire Germain
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France ; Laboratory "Cancer, Immune control and Escape,", Cordeliers Research Center; UMRS1138 ; Paris, France
| | - Thierry Guillaudeux
- Université de Rennes 1; INSERM, Unité 917; EFS Bretagne; UMS 3480CNRS 018INSERM Biosit ; Rennes, France
| | | | - Catherine Hervouet
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France
| | - Nedra Tekaya
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France
| | - Anne-Sophie Gallouet
- Université de Rennes 1; INSERM, Unité 917; EFS Bretagne; UMS 3480CNRS 018INSERM Biosit ; Rennes, France
| | - Julien Fassy
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France
| | - Franck Bihl
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France
| | - Gwenola Poupon
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France
| | - Anne Lazzari
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France
| | - Pieter Spee
- Biopharmaceutical Research Unit, Novo Nordisk A/S , DK-2760; Måløv, Denmark
| | - Fabienne Anjuère
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France
| | - Céline Pangault
- Université de Rennes 1; INSERM, Unité 917, EFS Bretagne; CHU de Rennes, Service d'Hématologie, UMS 3480CNRS 018INSERM Biosit ; Rennes, France
| | - Karin Tarte
- Université de Rennes 1; INSERM, Unité 917, EFS Bretagne; CHU de Rennes, Service d'Hématologie, UMS 3480CNRS 018INSERM Biosit ; Rennes, France
| | - Patrick Tas
- Université de Rennes 1; INSERM, Unité 917, EFS Bretagne; CHU de Rennes, Service d'Hématologie, UMS 3480CNRS 018INSERM Biosit ; Rennes, France
| | - Luc Xerri
- Département d'Oncologie Moléculaire; Centre de Recherche en Cancérologie de Marseille; INSERM UMR89 , IFR137; Marseille, France
| | - Veronique M Braud
- Institut de Pharmacologie Moléculaire et Cellulaire; CNRS UMR7275 ; Valbonne, France ; Université de Nice-Sophia Antipolis ; Valbonne, France
| |
Collapse
|
221
|
Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH, Walker LJ, Hansen TH, Willberg CB, Klenerman P. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 2015; 8:429-40. [PMID: 25269706 PMCID: PMC4288950 DOI: 10.1038/mi.2014.81] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/26/2014] [Indexed: 02/06/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population restricted by the non-polymorphic, major histocompatibility complex class I-related protein 1, MR1. MAIT cells are activated by a broad range of bacteria through detection of riboflavin metabolites bound by MR1, but their direct cytolytic capacity upon recognition of cognate target cells remains unclear. We show that resting human MAIT cells are uniquely characterized by a lack of granzyme (Gr) B and low perforin expression, key granule proteins required for efficient cytotoxic activity, but high levels of expression of GrA and GrK. Bacterial activation of MAIT cells rapidly induced GrB and perforin, licensing these cells to kill their cognate target cells. Using a novel flow cytometry-based killing assay, we show that licensed MAIT cells, but not ex vivo MAIT cells from the same donors, can efficiently kill Escherichia coli-exposed B-cell lines in an MR1- and degranulation-dependent manner. Finally, we show that MAIT cells are highly proliferative in response to antigenic and cytokine stimulation, maintaining high expression of GrB, perforin, and GrA, but reduced expression of GrK following antigenic proliferation. The tightly regulated cytolytic capacity of MAIT cells may have an important role in the control of intracellular bacterial infections, such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- A Kurioka
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,
| | - J E Ussher
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - C Cosgrove
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - C Clough
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J R Fergusson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - K Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Y-H Kang
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L J Walker
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - C B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - P Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|