201
|
Cell-Based Therapies for Trabecular Meshwork Regeneration to Treat Glaucoma. Biomolecules 2021; 11:biom11091258. [PMID: 34572471 PMCID: PMC8465897 DOI: 10.3390/biom11091258] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/01/2021] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is clinically characterized by elevated intraocular pressure (IOP) that leads to retinal ganglion cell (RGC) and optic nerve damage, and eventually blindness if left untreated. Even in normal pressure glaucoma patients, a reduction of IOP is currently the only effective way to prevent blindness, by either increasing aqueous humor outflow or decreasing aqueous humor production. The trabecular meshwork (TM) and the adjacent Schlemm’s canal inner wall play a key role in regulating IOP by providing resistance when aqueous humor drains through the tissue. TM dysfunction seen in glaucoma, through reduced cellularity, abnormal extracellular matrix accumulation, and increased stiffness, contributes to elevated IOP, but current therapies do not target the TM tissue. Stem cell transplantation for regeneration and re-functionalization of damaged TM has shown promise in providing a more direct and effective therapy for glaucoma. In this review, we describe the use of different types of stem cells for TM regeneration in glaucoma models, the mechanisms of regeneration, and the potential for glaucoma treatment using autologous stem cell transplantation.
Collapse
|
202
|
Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, Koh B, How CW, Lee SH, Law JX. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int 2021; 2021:2616807. [PMID: 34422061 PMCID: PMC8378970 DOI: 10.1155/2021/2616807] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Qi Hao Looi
- My Cytohealth Sdn Bhd, Bandar Seri Petaling, 57000 Kuala Lumpur, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hidayah Hassan
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang, Selangor, Malaysia
| | - Genieve Ee Chia Yeo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
203
|
Ude CC, Shah S, Ogueri KS, Nair LS, Laurencin CT. Stromal Vascular Fraction for Osteoarthritis of the Knee Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:210-224. [PMID: 35958164 PMCID: PMC9365234 DOI: 10.1007/s40883-021-00226-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose The knee joint is prone to osteoarthritis (OA) due to its anatomical position, and several reports have implicated the imbalance between catabolic and anabolic processes within the joint as the main culprit, thus leading to investigations towards attenuation of these inflammatory signals for OA treatment. In this review, we have explored clinical evidence supporting the use of stromal vascular fraction (SVF), known for its anti-inflammatory characteristics for the treatment of OA. Methods Searches were made on PubMed, PMC, and Google Scholar with the keywords “adipose fraction knee regeneration, and stromal vascular fraction knee regeneration, and limiting searches within 2017–2020. Results Frequently found interventions include cultured adipose-derived stem cells (ADSCs), SVF, and the micronized/microfragmented adipose tissue-stromal vascular fraction (MAT-SVF). Clinical data reported that joints treated with SVF provided a better quality of life to patients. Currently, MAT-SVF obtained and administered at the point of care is approved by the Food and Drug Administration (FDA), but more studies including manufacturing validation, safety, and proof of pharmacological activity are needed for SVF. The mechanism of action of MAT-SVF is also not fully understood. However, the current hypothesis indicates a direct adherence and integration with the degenerative host tissue, and/or trophic effects resulting from the secretome of constituent cells. Conclusion Our review of the literature on stromal vascular fraction and related therapy use has found evidence of efficacy in results. More research and clinical patient follow-up are needed to determine the proper place of these therapies in the treatment of osteoarthritis of the knee. Lay Summary Reports have implicated the increased inflammatory proteins within the joints as the main cause of osteoarthritis (OA). This has attracted interest towards addressing these inflammatory proteins as a way of treatment for OA. The concentrated cell-packed portion of the adipose product stromal vascular fraction (SVF) from liposuction or other methods possesses anti-inflammatory effects and has been acclaimed to heal OA. Thus, we searched for clinical evidence supporting their use, for OA treatment through examining the literature. Data from various hospitals support that joints treated with SVF provided a better quality of life to patients. Currently, there is at least one version of these products that are obtained and given back to patients during a single clinic visit, approved by the FDA.
Collapse
Affiliation(s)
- Chinedu C. Ude
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, CT, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Shiv Shah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, CT, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| | - Kenneth S. Ogueri
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, CT, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Lakshmi S. Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, CT, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, CT, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
204
|
Mesenchymal stromal cells in the bone marrow niche consist of multi-populations with distinct transcriptional and epigenetic properties. Sci Rep 2021; 11:15811. [PMID: 34349154 PMCID: PMC8338933 DOI: 10.1038/s41598-021-94186-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Although multiple studies have investigated the mesenchymal stem and progenitor cells (MSCs) that give rise to mature bone marrow, high heterogeneity in their morphologies and properties causes difficulties in molecular separation of their distinct populations. In this study, by taking advantage of the resolution of the single cell transcriptome, we analyzed Sca-1 and PDGFR-α fraction in the mouse bone marrow tissue. The single cell transcriptome enabled us to further classify the population into seven populations according to their gene expression profiles. We then separately obtained the seven populations based on candidate marker genes, and specified their gene expression properties and epigenetic landscape by ATAC-seq. Our findings will enable to elucidate the stem cell niche signal in the bone marrow microenvironment, reconstitute bone marrow in vitro, and shed light on the potentially important role of identified subpopulation in various clinical applications to the treatment of bone- and bone marrow-related diseases.
Collapse
|
205
|
Qiao K, Chen Q, Cao Y, Li J, Xu G, Liu J, Cui X, Tian K, Zhang W. Diagnostic and Therapeutic Role of Extracellular Vesicles in Articular Cartilage Lesions and Degenerative Joint Diseases. Front Bioeng Biotechnol 2021; 9:698614. [PMID: 34422779 PMCID: PMC8371972 DOI: 10.3389/fbioe.2021.698614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Two leading contributors to the global disability are cartilage lesions and degenerative joint diseases, which are characterized by the progressive cartilage destruction. Current clinical treatments often fail due to variable outcomes and an unsatisfactory long-term repair. Cell-based therapies were once considered as an effective solution because of their anti-inflammatory and immunosuppression characteristics as well as their differentiation capacity to regenerate the damaged tissue. However, stem cell-based therapies have inherent limitations, such as a high tumorigenicity risk, a low retention, and an engraftment rate, as well as strict regulatory requirements, which result in an underwhelming therapeutic effect. Therefore, the non-stem cell-based therapy has gained its popularity in recent years. Extracellular vesicles (EVs), in particular, like the paracrine factors secreted by stem cells, have been proven to play a role in mediating the biological functions of target cells, and can achieve the therapeutic effect similar to stem cells in cartilage tissue engineering. Therefore, a comprehensive review of the therapeutic role of EVs in cartilage lesions and degenerative joint diseases can be discussed both in terms of time and favorability. In this review, we summarized the physiological environment of a joint and its pathological alteration after trauma and consequent changes in EVs, which are lacking in the current literature studies. In addition, we covered the potential working mechanism of EVs in the repair of the cartilage and the joint and also discussed the potential therapeutic applications of EVs in future clinical use.
Collapse
Affiliation(s)
- Kai Qiao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Chen
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiguo Cao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Li
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaqing Liu
- Qingdao University of Science and Technology, Qingdao, China
| | - Xiaolin Cui
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Kang Tian
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Weiguo Zhang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
206
|
Mini review: Biomaterials in repair and regeneration of nerve in a volumetric muscle loss. Neurosci Lett 2021; 762:136145. [PMID: 34332029 DOI: 10.1016/j.neulet.2021.136145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023]
Abstract
Volumetric muscle loss (VML) following a severe trauma or injury is beyond the intrinsic regenerative capacity of muscle tissues, and hence interventional therapy is required. Extensive muscle loss concomitant with damage to neuromuscular components overwhelms the muscles' remarkable regenerative capacity. The loss of nervous and vascular tissue leads to further damage and atrophy, so a combined treatment for neuromuscular junction (NMJ) along with the volumetric muscle regeneration is important. There have been immense advances in the field of tissue engineering for skeletal muscle tissue and peripheral nerve regeneration, but very few address the interdependence of the tissues and the need for combined therapies to repair and regenerate fully functional muscle tissue. This review addresses the problem and presents an overview of the biomaterials that have been studied for tissue engineering of neuromuscular tissues associated with skeletal muscles.
Collapse
|
207
|
Sendon-Lago J, Rio LGD, Eiro N, Diaz-Rodriguez P, Avila L, Gonzalez LO, Vizoso FJ, Perez-Fernandez R, Landin M. Tailored Hydrogels as Delivery Platforms for Conditioned Medium from Mesenchymal Stem Cells in a Model of Acute Colitis in Mice. Pharmaceutics 2021; 13:pharmaceutics13081127. [PMID: 34452089 PMCID: PMC8400526 DOI: 10.3390/pharmaceutics13081127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is increasingly prevalent and current therapies are not completely effective. Mesenchymal stem cells are emerging as a promising therapeutic option. Here, the effect of local hydrogel application loaded with conditioned medium (CM) from human uterine cervical stem cells (hUCESC-CM) in an experimental acute colitis mice model has been evaluated. Colitis induction was carried out in C57BL/6 mice by dissolving dextran sulfate sodium (DSS) in drinking water for nine days. Ulcers were treated by rectal administration of either mesalazine (as positive control) or a mucoadhesive and thermosensitive hydrogel loaded with hUCESC-CM (H-hUCESC-CM). Body weight changes, colon length, and histopathological analysis were evaluated. In addition, pro-inflammatory TNF-α, IL-6, and IFN-γ mRNA levels were measured by qPCR. Treatment with H-hUCESC-CM inhibited body weight loss and colon shortening and induced a significant decrease in colon mucosa degeneration, as well as TNF-α, IFN-γ, and IL-6 mRNA levels. Results indicate that H-hUCESC-CM effectively alleviated DSS-induced colitis in mice, suggesting that H-hUCESC-CM may represent an attractive cell-free therapy for local treatment of IBD.
Collapse
Affiliation(s)
- Juan Sendon-Lago
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
| | - Lorena Garcia-del Rio
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
| | - Noemi Eiro
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
| | - Patricia Diaz-Rodriguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
| | - Leandro Avila
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
| | - Luis O. Gonzalez
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
| | - Francisco J. Vizoso
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| | - Roman Perez-Fernandez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| |
Collapse
|
208
|
Human Umbilical Cord Mesenchymal Stem Cells in Combination with Hyaluronic Acid Ameliorate the Progression of Knee Osteoarthritis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this study is to evaluate the feasibility and usefulness of the human umbilical cord mesenchymal stem cells (hUC-MSCs) and hyaluronan acid (HA) combination to attenuate osteoarthritis progression in the knee while simultaneously providing some insights on the mitigation mechanism. In vitro, the effect of hUC-MSCs with HA treatment on chondrocyte cell viability and the cytokine profile were analyzed. Additionally, the antioxidation capability of hUC-MSCs-CM (conditioned medium) with HA towards H2O2-induced chondrocyte cell damage was evaluated. The HA addition increased the hUC-MSC antioxidation capability and cytokine secretion, such as Dickkopf-related protein 1 (DKK-1) and hepatocyte growth factor (HGF), while no adverse effect on the cell viability was observed. In vivo, the intra-articular injection of hUC-MSCs with HA to a mono-iodoacetate (MIA)-induced knee osteoarthritis (KOA) rat model was performed and investigated. Attenuation of the KOA progression in the MIA-damaged rat model was seen best in hUC-MSCs with a HA combination compared to the vehicle control or each individual element. Combining hUC-MSCs and HA resulted in a synergistic effect, such as increasing the cell therapeutic capability while incurring no observable adverse effects. Therefore, this combinatorial therapy is feasible and has promising potential to ameliorate KOA progression.
Collapse
|
209
|
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Front Bioeng Biotechnol 2021; 9:592118. [PMID: 34354983 PMCID: PMC8329559 DOI: 10.3389/fbioe.2021.592118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disk degeneration (IVDD) is a leading cause of disability. The degeneration is inevitable, and the mechanisms are complex. Current therapeutic strategies mainly focus on the relief of symptoms, not the intrinsic regeneration of the intervertebral disk (IVD). Tissue engineering is a promising strategy for IVDD due to its ability to restore a healthy microenvironment and promote IVD regeneration. This review briefly summarizes the IVD anatomy and composition and then sets out elements of the microenvironment and the interactions. We rationalized different scaffolds based on tissue engineering strategies used recently. To fulfill the complete restoration of a healthy IVD microenvironment, we propose that various tissue engineering strategies should be combined and customized to create personalized therapeutic strategies for each individual.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
210
|
Ehsani A, Jodaei A, Barzegar-Jalali M, Fathi E, Farahzadi R, Adibkia K. Nanomaterials and Stem Cell Differentiation Potential: An Overview of Biological Aspects and Biomedical Efficacy. Curr Med Chem 2021; 29:1804-1823. [PMID: 34254903 DOI: 10.2174/0929867328666210712193113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Nanoparticles (NPs) due to their medical applications are widely used. Accordingly, the use of mesenchymal stem cells is one of the most important alternatives in tissue engineering field. NPs play effective roles in stem cells proliferation and differentiation. The combination of NPs and tissue regeneration by stem cells has created new therapeutic approach towards humanity. Of note, the physicochemical properties of NPs determine their biological function. Interestingly, various mechanisms such as modulation of signaling pathways and generation of reactive oxygen species, are involved in NPs-induced cellular proliferation and differentiation. This review summarized the types of nanomaterials effective on stem cell differentiation, the physicochemical features, biomedical application of these materials and relationship between nanomaterials and environment.
Collapse
Affiliation(s)
- Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Jodaei
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
211
|
Alloreactive Immune Response Associated to Human Mesenchymal Stromal Cells Treatment: A Systematic Review. J Clin Med 2021; 10:jcm10132991. [PMID: 34279481 PMCID: PMC8269175 DOI: 10.3390/jcm10132991] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The well-known immunomodulatory and regenerative properties of mesenchymal stromal cells (MSCs) are the reason why they are being used for the treatment of many diseases. Because they are considered hypoimmunogenic, MSCs treatments are performed without considering histocompatibility barriers and without anticipating possible immune rejections. However, recent preclinical studies describe the generation of alloantibodies and the immune rejection of MSCs. This has led to an increasing number of clinical trials evaluating the immunological profile of patients after treatment with MSCs. The objective of this systematic review was to evaluate the generation of donor specific antibodies (DSA) after allogeneic MSC (allo-MSC) therapy and the impact on safety or tolerability. Data from 555 patients were included in the systematic review, 356 were treated with allo-MSC and the rest were treated with placebo or control drugs. A mean of 11.51% of allo-MSC-treated patients developed DSA. Specifically, 14.95% of these patients developed DSA and 6.33% of them developed cPRA. Neither the production of DSA after treatment nor the presence of DSA at baseline (presensitization) were correlated with safety and/or tolerability of the treatment. The number of doses administrated and human leucocyte antigen (HLA) mismatches between donor and recipient did not affect the production of DSA. The safety of allo-MSC therapy has been proved in all the studies and the generation of alloantibodies might not have clinical relevance. However, there are very few studies in the area. More studies with adequate designs are needed to confirm these results.
Collapse
|
212
|
Hickson LJ, Eirin A, Conley SM, Taner T, Bian X, Saad A, Herrmann SM, Mehta RA, McKenzie TJ, Kellogg TA, Kirkland JL, Tchkonia T, Saadiq IM, Tang H, Jordan KL, Zhu X, Griffin MD, Rule AD, van Wijnen AJ, Textor SC, Lerman LO. Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair. Diabetes 2021; 70:1561-1574. [PMID: 33858824 PMCID: PMC8336004 DOI: 10.2337/db19-1268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/03/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) facilitate repair in experimental diabetic kidney disease (DKD). However, the hyperglycemic and uremic milieu may diminish regenerative capacity of patient-derived therapy. We hypothesized that DKD reduces human MSC paracrine function. Adipose-derived MSC from 38 participants with DKD and 16 control subjects were assessed for cell surface markers, trilineage differentiation, RNA sequencing (RNA-seq), in vitro function (coculture or conditioned medium experiments with T cells and human kidney cells [HK-2]), secretome profile, and cellular senescence abundance. The direction of association between MSC function and patient characteristics were also tested. RNA-seq analysis identified 353 differentially expressed genes and downregulation of several immunomodulatory genes/pathways in DKD-MSC versus Control-MSC. DKD-MSC phenotype, differentiation, and tube formation capacity were preserved, but migration was reduced. DKD-MSC with and without interferon-γ priming inhibited T-cell proliferation greater than Control-MSC. DKD-MSC medium contained higher levels of anti-inflammatory cytokines (indoleamine 2,3-deoxygenase 1 and prostaglandin-E2) and prorepair factors (hepatocyte growth factor and stromal cell-derived factor 1) but lower IL-6 versus control-MSC medium. DKD-MSC medium protected high glucose plus transforming growth factor-β-exposed HK-2 cells by reducing apoptotic, fibrotic, and inflammatory marker expression. Few DKD-MSC functions were affected by patient characteristics, including age, sex, BMI, hemoglobin A1c, kidney function, and urine albumin excretion. However, senescence-associated β-galactosidase activity was lower in DKD-MSC from participants on metformin therapy. Therefore, while DKD altered the transcriptome and migratory function of culture-expanded MSCs, DKD-MSC functionality, trophic factor secretion, and immunomodulatory activities contributing to repair remained intact. These observations support testing of patient-derived MSC therapy and may inform preconditioning regimens in DKD clinical trials.
Collapse
Affiliation(s)
- LaTonya J Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Timucin Taner
- Department of Surgery, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Xiaohui Bian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ahmed Saad
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Ramila A Mehta
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | | | - James L Kirkland
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
- Department of Physiology and Engineering, Mayo Clinic, Rochester, MN
| | - Tamar Tchkonia
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
- Department of Physiology and Engineering, Mayo Clinic, Rochester, MN
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Hui Tang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mathew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Stephen C Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
213
|
Xie C, Ye J, Liang R, Yao X, Wu X, Koh Y, Wei W, Zhang X, Ouyang H. Advanced Strategies of Biomimetic Tissue-Engineered Grafts for Bone Regeneration. Adv Healthc Mater 2021; 10:e2100408. [PMID: 33949147 DOI: 10.1002/adhm.202100408] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Indexed: 12/21/2022]
Abstract
The failure to repair critical-sized bone defects often leads to incomplete regeneration or fracture non-union. Tissue-engineered grafts have been recognized as an alternative strategy for bone regeneration due to their potential to repair defects. To design a successful tissue-engineered graft requires the understanding of physicochemical optimization to mimic the composition and structure of native bone, as well as the biological strategies of mimicking the key biological elements during bone regeneration process. This review provides an overview of engineered graft-based strategies focusing on physicochemical properties of materials and graft structure optimization from macroscale to nanoscale to further boost bone regeneration, and it summarizes biological strategies which mainly focus on growth factors following bone regeneration pattern and stem cell-based strategies for more efficient repair. Finally, it discusses the current limitations of existing strategies upon bone repair and highlights a promising strategy for rapid bone regeneration.
Collapse
Affiliation(s)
- Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
| | - Jinchun Ye
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Xudong Yao
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Xinyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Yiwen Koh
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Wei Wei
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| |
Collapse
|
214
|
The secretome of mesenchymal stem cells and oxidative stress: challenges and opportunities in cell-free regenerative medicine. Mol Biol Rep 2021; 48:5607-5619. [PMID: 34191238 DOI: 10.1007/s11033-021-06360-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
Over the last decade, mesenchymal stem cells (MSCs) have been considered a suitable source for cell-based therapy, especially in regenerative medicine. First, the efficacy and functions of MSCs in clinical applications have been attributed to their differentiation ability, called homing and differentiation. However, it has recently been confirmed that MSCs mostly exert their therapeutic effects through soluble paracrine bioactive factors and extracellular vesicles, especially secretome. These secreted components play critical roles in modulating immune responses, improving the survival, and increasing the regeneration of damaged tissues. The secretome content of MSCs is variable under different conditions. Oxidative stress (OS) is one of these conditions that is highly important in MSC therapy and regenerative medicine. High levels of reactive oxygen species (ROS) are produced during isolation, cell culture, and transplantation lead to OS, which induces cell death and apoptosis and limits the efficacy of their regeneration capability. In turn, the preconditioning of MSCs in OS conditions contributes to the secretion of several proteins, cytokines, growth factors, and exosomes, which can improve the antioxidant potential of MSCs against OS. This potential of MSC secretome has turned it into a new promising cell-free tissue regeneration strategy.This review provides a view of MSC secretome under OS conditions, focusing on different secretome contents of MSCs and thier possible therapeutic potential against cell therapy.
Collapse
|
215
|
Lu D, Xu Y, Liu Q, Zhang Q. Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Front Cell Dev Biol 2021; 9:681171. [PMID: 34249933 PMCID: PMC8267370 DOI: 10.3389/fcell.2021.681171] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages are involved in almost every aspect of biological systems and include development, homeostasis and repair. Mesenchymal stem cells (MSCs) have good clinical application prospects due to their ability to regulate adaptive and innate immune cells, particularly macrophages, and they have been used successfully for many immune disorders, including inflammatory bowel disease (IBD), acute lung injury, and wound healing, which have been reported as macrophage-mediated disorders. In the present review, we focus on the interaction between MSCs and macrophages and summarize their methods of interaction and communication, such as cell-to-cell contact, soluble factor secretion, and organelle transfer. In addition, we discuss the roles of MSC-macrophage crosstalk in the development of disease and maintenance of homeostasis of inflammatory microenvironments. Finally, we provide optimal strategies for applications in immune-related disease treatments.
Collapse
Affiliation(s)
- Di Lu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
216
|
Xing D, Liu W, Wang B, Li JJ, Zhao Y, Li H, Liu A, Du Y, Lin J. Intra-articular Injection of Cell-laden 3D Microcryogels Empower Low-dose Cell Therapy for Osteoarthritis in a Rat Model. Cell Transplant 2021; 29:963689720932142. [PMID: 32608995 PMCID: PMC7563831 DOI: 10.1177/0963689720932142] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Intra-articular injection of mesenchymal stem cells (MSCs) in an osteoarthritic joint can help slow down cartilage destruction. However, cell survival and the efficiency of repair are generally low due to mechanical damage during injection and a high rate of cell loss. We, thus, investigated an improved strategy for cell delivery to an osteoarthritic joint through the use of three-dimensional (3D) microcryogels. MSCs were seeded into 3D microcryogels. The viability and proliferation of MSCs in microcryogels were determined over 5 d, and the phenotype of MSCs was confirmed through trilineage differentiation tests and flow cytometry. In Sprague Dawley rats with induced osteoarthritis (OA) of the knee joint, a single injection was made with the following groups: saline control, low-dose free MSCs (1 × 105 cells), high-dose free MSCs (1 × 106 cells), and microcryogels + MSCs (1 × 105 cells). Cartilage degeneration was evaluated by macroscopic examination, micro-computed tomographic analysis, and histology. MSCs grown in microcryogels exhibited optimal viability and proliferation at 3 d with stable maintenance of phenotype in vitro. Microcryogels seeded with MSCs were, therefore, primed for 3 d before being used for in vivo experiments. At 4 and 8 wk, the microcryogels + MSCs and high-dose free MSC groups had significantly higher International Cartilage Repair Society macroscopic scores, histological evidence of more proteoglycan deposition and less cartilage loss accompanied by a lower Mankin score, and minimal radiographic evidence of osteoarthritic changes in the joint compared to the other two groups. In conclusion, intra-articular injection of cell-laden 3D microcryogels containing a low dose of MSCs can achieve similar effects as a high dose of free MSCs for OA in a rat model. Primed MSCs in 3D microcryogels can be considered as an improved delivery strategy for cell therapy in treating OA that minimizes cell dose while retaining therapeutic efficacy.
Collapse
Affiliation(s)
- Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China.,These authors contributed equally to this article
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China.,Beijing Cytoniche Biotechnology Co, Ltd., Beijing, China.,These authors contributed equally to this article
| | - Bin Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,These authors contributed equally to this article
| | - Jiao Jiao Li
- Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Yu Zhao
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Aifeng Liu
- Department of Orthopedics, The First affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|
217
|
Wilson AJ, Rand E, Webster AJ, Genever PG. Characterisation of mesenchymal stromal cells in clinical trial reports: analysis of published descriptors. Stem Cell Res Ther 2021; 12:360. [PMID: 34158116 PMCID: PMC8220718 DOI: 10.1186/s13287-021-02435-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem or stromal cells are the most widely used cell therapy to date. They are heterogeneous, with variations in growth potential, differentiation capacity and protein expression profile depending on tissue source and production process. Nomenclature and defining characteristics have been debated for almost 20 years, yet the generic term 'MSC' is used to cover a wide range of cellular phenotypes. Against a documented lack of definition of cellular populations used in clinical trials, our study evaluated the extent of characterisation of the cellular population or study drug. METHODS A literature search of clinical trials involving mesenchymal stem/stromal cells was refined to 84 papers upon application of pre-defined inclusion/exclusion criteria. Data were extracted covering background trial information including location, phase, indication, tissue source and details of clinical cell population characterisation (expression of surface markers, viability, differentiation assays and potency/functionality assays). Descriptive statistics were applied, and tests of association between groups were explored using Fisher's exact test for count data with simulated p value. RESULTS Twenty-eight studies (33.3%) include no characterisation data. Forty-five (53.6%) reported average values per marker for all cell lots used in the trial, and 11 (13.1%) studies included individual values per cell lot. Viability was reported in 57% of studies. Differentiation was discussed: osteogenesis (29% of papers), adipogenesis (27%), and chondrogenesis (20%) and other functional assays arose in 7 papers (8%). The extent of characterisation was not related to the clinical phase of development. Assessment of functionality was very limited and did not always relate to the likely mechanism of action. CONCLUSIONS The extent of characterisation was poor and variable. Our findings concur with those in other fields including bone marrow aspirate and platelet-rich plasma therapy. We discuss the potential implications of these findings for the use of mesenchymal stem or stromal cells in regenerative medicine, and the importance of characterisation for transparency and comparability of literature.
Collapse
Affiliation(s)
- Alison J Wilson
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Emma Rand
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Andrew J Webster
- Science and Technology Studies Unit, Department of Sociology, University of York, York, YO10 5DD, UK
| | - Paul G Genever
- Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
218
|
Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells. Stem Cell Rev Rep 2021; 17:1905-1916. [PMID: 34115315 DOI: 10.1007/s12015-021-10197-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly evident that selecting an optimal source of mesenchymal stromal cells (MSCs) is crucial for the successful outcome of MSC-based therapies. During the search for cells with potent regenerative properties, Sertoli cells (SCs) have been proven to modulate immune response in both in vitro and in vivo models. Based on morphological properties and expression of surface markers, it has been suggested that SCs could be a kind of MSCs, however, this hypothesis has not been fully confirmed. Therefore, we compared several parameters of MSCs and SCs, with the aim to evaluate the therapeutic potential of SCs in regenerative medicine. We showed that SCs successfully underwent osteogenic, chondrogenic and adipogenic differentiation and determined the expression profile of canonical MSC markers on the SC surface. Besides, SCs rescued T helper (Th) cells from undergoing apoptosis, promoted the anti-inflammatory phenotype of these cells, but did not regulate Th cell proliferation. MSCs impaired the Th17-mediated response; on the other hand, SCs suppressed the inflammatory polarisation in general. SCs induced M2 macrophage polarisation more effectively than MSCs. For the first time, we demonstrated here the ability of SCs to transfer mitochondria to immune cells. Our results indicate that SCs are a type of MSCs and modulate the reactivity of the immune system. Therefore, we suggest that SCs are promising candidates for application in regenerative medicine due to their anti-inflammatory and protective effects, especially in the therapies for diseases associated with testicular tissue inflammation.
Collapse
|
219
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. Combining Growth Factor and Stem Cell Therapy for Stroke Rehabilitation, A Review. Curr Drug Targets 2021; 21:781-791. [PMID: 31914912 DOI: 10.2174/1389450121666200107100747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Stroke is a serious, life-threatening condition demanding vigorous search for new therapies. Recent research has focused on stem cell-based therapies as a viable choice following ischemic stroke, based on studies displaying that stem cells transplanted to the brain not only survive but also cause functional recovery. Growth factors defined as polypeptides that regulate the growth and differentiation of many cell types. Many studies have demonstrated that combined use of growth factors may increase results by the stimulation of endogenous neurogenesis, anti-inflammatory, neuroprotection properties, and enhancement of stem cell survival rates and so may be more effective than a single stem cell therapy. This paper reviews and discusses the most promising new stroke recovery research, including combination treatment.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
220
|
Beckenkamp LR, da Fontoura DMS, Korb VG, de Campos RP, Onzi GR, Iser IC, Bertoni APS, Sévigny J, Lenz G, Wink MR. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity. Stem Cell Rev Rep 2021; 16:776-791. [PMID: 32556945 DOI: 10.1007/s12015-020-09986-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cell-based therapies, mainly due to their unique biological properties such as multipotency, self-renewal and trophic/immunomodulatory effects. However, clinical use has proven complex due to limitations such as high variability of MSCs preparations and high number of cells required for therapies. These challenges could be circumvented with cell immortalization through genetic manipulation, and although many studies show that such approaches are safe, little is known about changes in other biological properties and functions of MSCs. In this study, we evaluated the impact of MSCs immortalization with the TERT gene on the purinergic system, which has emerged as a key modulator in a wide variety of pathophysiological conditions. After cell immortalization, MSCs-TERT displayed similar immunophenotypic profile and differentiation potential to primary MSCs. However, analysis of gene and protein expression exposed important alterations in the purinergic signaling of in vitro cultured MSCs-TERT. Immortalized cells upregulated the CD39/NTPDase1 enzyme and downregulated CD73/NT5E and adenosine deaminase (ADA), which had a direct impact on their nucleotide/nucleoside metabolism profile. Despite these alterations, adenosine did not accumulate in the extracellular space, due to increased uptake. MSCs-TERT cells presented an impaired in vitro immunosuppressive potential, as observed in an assay of co-culture with lymphocytes. Therefore, our data suggest that MSCs-TERT have altered expression of key enzymes of the extracellular nucleotides/nucleoside control, which altered key characteristics of these cells and can potentially change their therapeutic effects in tissue engineering in regenerative medicine.
Collapse
Affiliation(s)
- L R Beckenkamp
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - D M S da Fontoura
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - V G Korb
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - R P de Campos
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G R Onzi
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - I C Iser
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - A P S Bertoni
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - J Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec city, QC, G1V 4G2, Canada
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
221
|
Gui C, Parson J, Meyer GA. Harnessing adipose stem cell diversity in regenerative medicine. APL Bioeng 2021; 5:021501. [PMID: 33834153 PMCID: PMC8018797 DOI: 10.1063/5.0038101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Since the first isolation of mesenchymal stem cells from lipoaspirate in the early 2000s, adipose tissue has been a darling of regenerative medicine. It is abundant, easy to access, and contains high concentrations of stem cells (ADSCs) exhibiting multipotency, proregenerative paracrine signaling, and immunomodulation-a winning combination for stem cell-based therapeutics. While basic science, preclinical and clinical findings back up the translational potential of ADSCs, the vast majority of these used cells from a single location-subcutaneous abdominal fat. New data highlight incredible diversity in the adipose morphology and function in different anatomical locations or depots. Even in isolation, ADSCs retain a memory of this diversity, suggesting that the optimal adipose source material for ADSC isolation may be application specific. This review discusses our current understanding of the heterogeneity in the adipose organ, how that heterogeneity translates into depot-specific ADSC characteristics, and how atypical ADSC populations might be harnessed for regenerative medicine applications. While our understanding of the breadth of ADSC heterogeneity is still in its infancy, clear trends are emerging for application-specific sourcing to improve regenerative outcomes.
Collapse
Affiliation(s)
- Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Jacob Parson
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Gretchen A. Meyer
- Author to whom correspondence should be addressed:. Tel.: (314) 286-1425. Fax: (314) 747-0674
| |
Collapse
|
222
|
Shetty R, Murugeswari P, Chakrabarty K, Jayadev C, Matalia H, Ghosh A, Das D. Stem cell therapy in coronavirus disease 2019: current evidence and future potential. Cytotherapy 2021; 23:471-482. [PMID: 33257213 PMCID: PMC7649634 DOI: 10.1016/j.jcyt.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
The end of 2019 saw the beginning of the coronavirus disease 2019 (COVID-19) pandemic that soared in 2020, affecting 215 countries worldwide, with no signs of abating. In an effort to contain the spread of the disease and treat the infected, researchers are racing against several odds to find an effective solution. The unavailability of timely and affordable or definitive treatment has caused significant morbidity and mortality. Acute respiratory distress syndrome (ARDS) caused by an unregulated host inflammatory response toward the viral infection, followed by multi-organ dysfunction or failure, is one of the primary causes of death in severe cases of COVID-19 infection. Currently, empirical management of respiratory and hematological manifestations along with anti-viral agents is being used to treat the infection. The quest is on for both a vaccine and a more definitive management protocol to curtail the spread. Researchers and clinicians are also exploring the possibility of using cell therapy for severe cases of COVID-19 with ARDS. Mesenchymal stromal cells are known to have immunomodulatory properties and have previously been used to treat viral infections. This review explores the potential of mesenchymal stromal cells as cell therapy for ARDS.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, India
| | - Ponnalagu Murugeswari
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | | | - Chaitra Jayadev
- Department of Vitreo-Retinal Surgery, Narayana Nethralaya Eye Institute, Bangalore, India
| | - Himanshu Matalia
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, India.
| |
Collapse
|
223
|
Schott NG, Friend NE, Stegemann JP. Coupling Osteogenesis and Vasculogenesis in Engineered Orthopedic Tissues. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:199-214. [PMID: 32854589 PMCID: PMC8349721 DOI: 10.1089/ten.teb.2020.0132] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Inadequate vascularization of engineered tissue constructs is a main challenge in developing a clinically impactful therapy for large, complex, and recalcitrant bone defects. It is well established that bone and blood vessels form concomitantly during development, as well as during repair after injury. Endothelial cells (ECs) and mesenchymal stromal cells (MSCs) are known to be key players in orthopedic tissue regeneration and vascularization, and these cell types have been used widely in tissue engineering strategies to create vascularized bone. Coculture studies have demonstrated that there is crosstalk between ECs and MSCs that can lead to synergistic effects on tissue regeneration. At the same time, the complexity in fabricating, culturing, and characterizing engineered tissue constructs containing multiple cell types presents a challenge in creating multifunctional tissues. In particular, the timing, spatial distribution, and cell phenotypes that are most conducive to promoting concurrent bone and vessel formation are not well understood. This review describes the processes of bone and vascular development, and how these have been harnessed in tissue engineering strategies to create vascularized bone. There is an emphasis on interactions between ECs and MSCs, and the culture systems that can be used to understand and control these interactions within a single engineered construct. Developmental engineering strategies to mimic endochondral ossification are discussed as a means of generating vascularized orthopedic tissues. The field of tissue engineering has made impressive progress in creating tissue replacements. However, the development of larger, more complex, and multifunctional engineered orthopedic tissues will require a better understanding of how osteogenesis and vasculogenesis are coupled in tissue regeneration. Impact statement Vascularization of large engineered tissue volumes remains a challenge in developing new and more biologically functional bone grafts. A better understanding of how blood vessels develop during bone formation and regeneration is needed. This knowledge can then be applied to develop new strategies for promoting both osteogenesis and vasculogenesis during the creation of engineered orthopedic tissues. This article summarizes the processes of bone and blood vessel development, with a focus on how endothelial cells and mesenchymal stromal cells interact to form vascularized bone both during development and growth, as well as tissue healing. It is meant as a resource for tissue engineers who are interested in creating vascularized tissue, and in particular to those developing cell-based therapies for large, complex, and recalcitrant bone defects.
Collapse
Affiliation(s)
- Nicholas G. Schott
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
224
|
Chung MJ, Son JY, Park S, Park SS, Hur K, Lee SH, Lee EJ, Park JK, Hong IH, Kim TH, Jeong KS. Mesenchymal Stem Cell and MicroRNA Therapy of Musculoskeletal Diseases. Int J Stem Cells 2021; 14:150-167. [PMID: 33377459 PMCID: PMC8138662 DOI: 10.15283/ijsc20167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic effects of mesenchymal stem cells (MSCs) in musculoskeletal diseases (MSDs) have been verified in many human and animal studies. Although some tissues contain MSCs, the number of cells harvested from those tissues and rate of proliferation in vitro are not enough for continuous transplantation. In order to produce and maintain stable MSCs, many attempts are made to induce differentiation from pluripotent stem cells (iPSCs) into MSCs. In particular, it is also known that the paracrine action of stem cell-secreted factors could promote the regeneration and differentiation of target cells in damaged tissue. MicroRNAs (miRNAs), one of the secreted factors, are small non-coding RNAs that regulate the translation of a gene. It is known that miRNAs help communication between stem cells and their surrounding niches through exosomes to regulate the proliferation and differentiation of stem cells. While studies have so far been underway targeting therapeutic miRNAs of MSDs, studies on specific miRNAs secreted from MSCs are still minimal. Hence, our ultimate goal is to obtain sufficient amounts of exosomes from iPSC-MSCs and develop them into therapeutic agents, furthermore to select specific miRNAs and provide safe cell-free clinical setting as a cell-free status with purpose of delivering them to target cells. This review article focuses on stem cell therapy on MSDs, specific microRNAs regulating MSDs and updates on novel approaches.
Collapse
Affiliation(s)
- Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Soon-Seok Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Keun Hur
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang-Han Lee
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Il-Hwa Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Tae-Hwan Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
225
|
Somal A, Bhat IA, Pandey S, Ansari MM, Indu B, Panda BSK, Bharti MK, Chandra V, Saikumar G, Sharma GT. Comparative analysis of the immunomodulatory potential of caprine fetal adnexa derived mesenchymal stem cells. Mol Biol Rep 2021; 48:3913-3923. [PMID: 34050503 DOI: 10.1007/s11033-021-06383-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
The caprine mesenchymal stem cells (MSCs) derived from fetal adnexa are highly proliferative. These cells possess tri-lineage differentiation potential and express MSC surface antigens and pluripotency markers with a wound-healing potential. This present study was conducted to compare the immunomodulatory potential of caprine MSCs derived from the fetal adnexa. Mid-gestation caprine uteri (2-3 months) were collected from the abattoir to isolate MSCs from amniotic fluid (cAF), amniotic sac (cAS), Wharton's jelly (cWJ) and cord blood (cCB), which were expanded and characterized at the 3rd passage. These MSCs were then stimulated with inflammatory cytokines (IFN-γ and TNF-α) to assess the percentage of inhibition produced on peripheral blood mononuclear cells (PBMCs) proliferation. The percentage of inhibition on activated PBMCs proliferation produced by cWJ MSCs and cAS MSCs was significantly higher than cCB and cAF MSCs. The relative mRNA expression profile and immunofluorescent localization of different immunomodulatory cytokines and growth factors were conducted upon stimulation. The mRNA expression profile of a set of different cytokines and growth factors in each caprine fetal adnexa MSCs were modulated. Indoleamine 2, 3 dioxygenase appeared to be the major immunomodulator in cWJ, cAF, and cCB MSCs whereas inducible nitric oxide synthase in cAS MSCs. This study suggests that caprine MSCs derived from fetal adnexa display variable immunomodulatory potential, which appears to be modulated by different molecules among sources.
Collapse
Affiliation(s)
- Anjali Somal
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Irfan A Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Mohd Matin Ansari
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | | | - Bibhudatta S K Panda
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Mukesh Kumar Bharti
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - G Saikumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - G Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India.
| |
Collapse
|
226
|
Li C, Cheng D, Xu P, Nie H, Zhang T, Pang X. POSTN Promotes the Proliferation of Spermatogonial Cells by Activating the Wnt/β-Catenin Signaling Pathway. Reprod Sci 2021; 28:2906-2915. [PMID: 33959891 DOI: 10.1007/s43032-021-00596-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
The self-renewal of spermatogonial cells (SCs) provides the foundation for life-long spermatogenesis. To date, only a few growth factors have been used for the culture of SCs in vitro, and how to enhance proliferation capacity of SCs in vitro needs further research. This study aimed to explore the effects of periostin (POSTN) on the proliferation of human SCs. GC-1 spg cells were cultured in a medium with POSTN, cell proliferation was evaluated by MTS analysis and EdU assay, and the Wnt/β-catenin signaling pathway was examined. Thereafter, the proliferations of human SC were detected using immunofluorescence and RT-PCR. In this study, we found that CM secreted by human amniotic mesenchymal stem cells (hAMSCs) could enhance the proliferation capacity of mouse GC-1 spg cells. Label-free mass spectrometry and ELISA analysis demonstrated that high level of POSTN was secreted by hAMSCs. MTS and EdU staining showed that POSTN increased GC-1 spg cell proliferation, whereas CM from POSTN-silenced hAMSCs suppressed cell proliferation capacity. Then POSTN was found to activate the Wnt/β-catenin signaling pathway to regulate the proliferation of GC-1 spg cells. XAV-939, a Wnt/β-catenin inhibitor, partially reversed the effects of POSTN on GC-1 spg cell proliferation. We then analyzed human SCs and found that POSTN promoted human SC proliferation in vitro. These findings provide insights regarding the role of POSTN in regulating SC proliferation via the Wnt/β-catenin signaling pathway and suggest that POSTN may serve as a cytokine for male infertility therapy.
Collapse
Affiliation(s)
- Caihong Li
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang, 110013, Liaoning, China
- Center for Reproductive Medicine, Assisted Reproductive Technology Laboratory, Shenyang Jinghua Hospital, Shenyang, 110005, Liaoning, China
| | - Dongkai Cheng
- Center for Reproductive Medicine, Assisted Reproductive Technology Laboratory, Shenyang Jinghua Hospital, Shenyang, 110005, Liaoning, China
| | - Peng Xu
- Center for Reproductive Medicine, Assisted Reproductive Technology Laboratory, Shenyang Jinghua Hospital, Shenyang, 110005, Liaoning, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang, 110013, Liaoning, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang, 110013, Liaoning, China.
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang, 110013, Liaoning, China.
- Shenyang Amnion Bioengineering and Technology R & D Center, Shenyang Liaoning Amnion Stem Cell and Regenerative Medicine Professional Technology Innovation Platform, Liaoning Human Amniotic Membrane Biological Dressing Stem Cell and Regenerative Medicine Engineering Research Center, Shenyang, 110015, Liaoning, China.
| |
Collapse
|
227
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
228
|
Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. BURNS & TRAUMA 2021; 9:tkab002. [PMID: 34212055 PMCID: PMC8240555 DOI: 10.1093/burnst/tkab002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Burns, with their high incidence and mortality rates, have a devastating effect on patients. There are still huge challenges in the management of burns. Mesenchymal stem cells (MSCs), which have multidirectional differentiation potential, have aroused interest in exploring the capacity for treating different intractable diseases due to their strong proliferation, tissue repair, immune tolerance and paracrine abilities, among other features. Currently, several animal studies have shown that MSCs play various roles and have beneficial effects in promoting wound healing, inhibiting burn inflammation and preventing the formation of pathological scars during burn healing process. The substances MSCs secrete can act on peripheral cells and promote burn repair. According to preclinical research, MSC-based treatments can effectively improve burn wound healing and reduce pain. However, due to the small number of patients and the lack of controls, treatment plans and evaluation criteria vary widely, thus limiting the value of these clinical studies. Therefore, to better evaluate the safety and effectiveness of MSC-based burn treatments, standardization of the application scheme and evaluation criteria of MSC therapy in burn treatment is required in the future. In addition, the combination of MSC pretreatment and dressing materials are also conducive to improving the therapeutic effect of MSCs on burns. In this article, we review current animal research and clinical trials based on the use of stem cell therapy for treating burns and discuss the main challenges and coping strategies facing future clinical applications.
Collapse
Affiliation(s)
- Mingyao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xinxuan Xu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiongxin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
229
|
Sato Y, Tsuji M. Diverse actions of cord blood cell therapy for hypoxic-ischemic encephalopathy. Pediatr Int 2021; 63:497-503. [PMID: 33453136 PMCID: PMC8252712 DOI: 10.1111/ped.14604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal death and permanent neurological deficits. However, effective treatments have not yet been established, except therapeutic hypothermia, which is not effective for severe HIE; therefore, developing a novel therapy for HIE is of the utmost importance. Stem cell therapy has recently been identified as a novel therapy for HIE. Among the various stem cell sources, ethical hurdles can be avoided by using stem cells that originate from non-embryonic or non-neural tissues, such as umbilical cord blood cells (UCBCs), which are readily available and can be exploited for autologous transplantations. Human UCBs are a rich source of stem and progenitor cells. Many recent studies have reported the treatment effect of UCBCs. Additionally, phase I clinical trials have already been conducted, showing this therapy's safety and feasibility. One advantage of stem cell therapies, including UCBC administration, is that they exert treatment effects through multifaceted mechanisms. According to the findings of several publications, replacement of lost cells, namely, engraftment and differentiation into neuronal cells, is not likely to be the main mechanism. However, the association between UCBCs and various mechanism of action, such as neurogenesis, angiogenesis, and anti-inflammation, has been suggested in many studies, and most mechanisms are due to growth factors secreted from UCBCs. These diverse actions of UCBC treatment are expected to exert a substantial effect on HIE, which has a complex injury mechanism.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| |
Collapse
|
230
|
Fan Y, Cui C, Li P, Bi R, Lyu P, Li Y, Zhu S. Fibrocartilage Stem Cells in the Temporomandibular Joint: Insights From Animal and Human Studies. Front Cell Dev Biol 2021; 9:665995. [PMID: 33987185 PMCID: PMC8111285 DOI: 10.3389/fcell.2021.665995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular disorders (TMD) are diseases involving the temporomandibular joint (TMJ), masticatory muscles, and osseous components. TMD has a high prevalence, with an estimated 4.8% of the U.S. population experiencing signs and symptoms, and represents a financial burden to both individuals and society. During TMD progression, the most frequently affected site is the condylar cartilage. Comprising both fibrous and cartilaginous tissues, condylar cartilage has restricted cell numbers but lacks a vascular supply and has limited regenerative properties. In 2016, a novel stem cell niche containing a reservoir of fibrocartilage stem cells (FCSCs) was discovered in the condylar cartilage of rats. Subsequently, FCSCs were identified in mouse, rabbit, and human condylar cartilage. Unlike mesenchymal stem cells or other tissue-specific stem/progenitor cells, FCSCs play a unique role in the development and regeneration of fibrocartilage. More importantly, engraftment treatment of FCSCs has been successfully applied in animal models of TMD. In this context, FCSCs play a major role in the regeneration of newly formed cartilage. Furthermore, FCSCs participate in the regeneration of intramembranous bone by interacting with endothelial cells in bone defects. This evidence highlights the potential of FCSCs as an ideal stem cell source for the regeneration of oral maxillofacial tissue. This review is intended to detail the current knowledge of the characteristics and function of FCSCs in the TMJ, as well as the potential therapeutic applications of FCSCs. A deep understanding of the properties of FCSCs can thus inform the development of promising, biologically based strategies for TMD in the future.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
231
|
Bhat S, Chiew GGY, Ng JX, Lin X, Seetharam RN. Optimization of culture conditions for human bone marrow-derived mesenchymal stromal cell expansion in macrocarrier-based Tide Motion system. Biotechnol J 2021; 16:e2000540. [PMID: 33838001 DOI: 10.1002/biot.202000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND With high cell doses required for mesenchymal stromal cell (MSC) clinical trials, there is a need to upgrade technologies that facilitate efficient scale up of MSCs for cell therapy. Conventional expansion with 2D culture vessels becomes the bottleneck when large cell dosages are required. Tide Motion bioreactors offer a robust, scalable platform using BioNOC II macrocarriers developed for the production of adherent cells. METHODS We evaluated the growth and expansion of bone marrow-derived MSCs (BM-MSCs) on the macrocarrier-based culture system by optimizing key parameters such as cell seeding densities, culturing conditions, and harvesting procedures to achieve optimal cell growth. BM-MSCs expanded in conventional 2D adherent cultures were seeded into BioNOC II macrocarriers and grown in serum-containing or serum-free medium. RESULTS BM-MSCs attained a maximum cell density of 0.49 ± 0.07 × 106 cells/carrier after 12 days of culture in BioNOC II macrocarriers with cell viability > 86% while retaining MSC specific characteristics such as surface marker expression, tri-lineage differentiation potential, immunosuppressive properties, and potency. CONCLUSION These results reveal the feasibility of BM-MSC expansion in the scalable macrocarrier-based Tide Motion system both under serum and serum-free conditions and represent an important step for the large-scale production system of BM-MSC based cellular therapies.
Collapse
Affiliation(s)
- Samatha Bhat
- Stempeutics Research Pvt Ltd, Shirdi Sai Baba Cancer Hospital, Manipal, Karnataka, India
| | | | - Jia Xing Ng
- Esco Aster Pte Ltd (CDMO Services), Singapore
| | | | - Raviraja N Seetharam
- Stempeutics Research Pvt Ltd, Shirdi Sai Baba Cancer Hospital, Manipal, Karnataka, India
| |
Collapse
|
232
|
Zheng J, Wei Z, Yang K, Lu Y, Lu P, Zhao J, Du Y, Zhang H, Li R, Lei S, Lv H, Chen X, Liu Y, Chen YM, Zhang Q, Zhang P. Neural Stem Cell-Laden Self-Healing Polysaccharide Hydrogel Transplantation Promotes Neurogenesis and Functional Recovery after Cerebral Ischemia in Rats. ACS APPLIED BIO MATERIALS 2021; 4:3046-3054. [PMID: 35014393 DOI: 10.1021/acsabm.0c00934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploring a strategy to effectively repair cerebral ischemic injury is a critical requirement for neuroregeneration. Herein, we transplanted a neural stem cell (NSC)-laden self-healing and injectable hydrogel into the brains of ischemic rats and evaluated its therapeutic effects. We observed an improvement in neurological functions in rats transplanted with the NSC-laden hydrogel. This strategy is sufficiently efficient to support neuroregeneration evidenced by NSC proliferation, differentiation, and athletic movement recovery of rats. This therapeutic effect relates to the inhibition of the astrocyte reaction and the increased expression of vascular endothelial growth factor. This work provides a novel approach to repair cerebral ischemic injury.
Collapse
Affiliation(s)
- Juan Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Zhao Wei
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Jingyi Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Yin Du
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Shan Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Haixia Lv
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an 710016, P. R. China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an 710016, P. R. China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an 710016, P. R. China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Qiqing Zhang
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, P. R. China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| |
Collapse
|
233
|
3D cell sheet structure augments mesenchymal stem cell cytokine production. Sci Rep 2021; 11:8170. [PMID: 33854167 PMCID: PMC8046983 DOI: 10.1038/s41598-021-87571-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) secrete paracrine factors that play crucial roles during tissue regeneration. An increasing body of evidence suggests that this paracrine function is enhanced by MSC cultivation in three-dimensional (3D) tissue-like microenvironments. Toward this end, this study explored scaffold-free cell sheet technology as a new 3D platform. MSCs cultivated on temperature-responsive culture dishes to a confluent 2D monolayer were harvested by temperature reduction from 37 to 20 °C that induces a surface wettability transition from hydrophobic to hydrophilic. Release of culture-adherent tension induced spontaneous cell sheet contraction, reducing the diameter 2.4-fold, and increasing the thickness 8.0-fold to render a 3D tissue-like construct with a 36% increase in tissue volume. This 2D-to-3D transition reorganized MSC actin cytoskeleton from aligned to multidirectional, corresponding to a cell morphological change from elongated in 2D monolayers to rounded in 3D cell sheets. 3D culture increased MSC gene expression of cell interaction proteins, β-catenin, integrin β1, and connexin 43, and of pro-tissue regenerative cytokines, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10), and increased VEGF secretion per MSC 2.1-fold relative to 2D cultures. Together, these findings demonstrate that MSC therapeutic potency can be enhanced by 3D cell sheet tissue structure.
Collapse
|
234
|
Ivolgin DA, Kudlay DA. Mesenchymal multipotent stromal cells and cancer safety: two sides of the same coin or a double-edged sword (review of foreign literature). RUSSIAN JOURNAL OF PEDIATRIC HEMATOLOGY AND ONCOLOGY 2021; 8:64-84. [DOI: 10.21682/2311-1267-2021-8-1-64-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Knowledge about the mechanisms of action of mesenchymal multipotent stromal cells (MSC) has undergone a significant evolution since their discovery. From the first attempts to use the remarkable properties of MSC in restoring the functions of organs and tissues, the most important question arose – how safe their use would be? One of the aspects of safety of the use of such biomaterial is tumorogenicity and oncogenicity. Numerous studies have shown that the mechanisms by which MSC realize their regenerative potential can, in principle, have a stimulating effect on tumor cells. This review presents specific mechanisms that have a potentially pro-tumor effect, which include the homing of MSC to the tumor site, support for replicative and proliferative signaling of both cancer cells and cancer stem cells, angiogenesis, and effects on the epithelial-mesenchymal transition. Along with pro-tumor mechanisms, the mechanisms of possible antitumor action are also described – direct suppression of tumor growth, loading and transportation of chemotherapeutic agents, oncolytic viruses, genetic modifications for targeting cancer, delivery of “suicide genes” to the tumor. Also, in conclusion, a small review of the current clinical trials of MSC as antitumor agents for malignant neoplasms of various localization (gastrointestinal tract, lungs, ovaries) is given.
Collapse
Affiliation(s)
- D. A. Ivolgin
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia
| | - D. A. Kudlay
- JSC “GENERIUM”;
I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University);
National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia
| |
Collapse
|
235
|
Kotb HI, Abedalmohsen AM, Elgamal AF, Mokhtar DM, Abd-Ellatief RB. Preemptive Stem Cells Ameliorate Neuropathic Pain in Rats: A Central Component of Preemptive Analgesia. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:450-456. [PMID: 33588960 DOI: 10.1017/s1431927621000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study aims to investigate the efficacy of intravenously injected mesenchymal stem cells (MSCs) in treating neuropathic pain either before or after its induction by a chronic constriction injury (CCI) model. Rats were divided into four groups: control group, neuropathic group, and treated groups (pre and postinduction) with i.v. mononuclear cells (106 cell/mL). For these rats, experimental testing for both thermal and mechanical hyperalgesia was evaluated. The cerebral cortex of the rats was dissected, and immunohistochemical analysis using anti-proliferating cell nuclear antigen (PCNA), CD117, nestin, and glial fibrillary acidic protein was performed. Our results showed that a single injection of MSCs (either preemptive/or post-CCI) produced equipotent effects on allodynia, mechanical hyperalgesia, and thermal response. Immunohistochemical analysis showed that the stem cells have reached the cerebral cortex. The injected group with MSCs before CCI showing few stem cells expressed PCNA, CD117, and nestin in the cerebral cortex. The group injected with MSCs after CCI, showing numerous recently proliferated CD117-, nestin-, PCNA-positive stem cells in the cerebral cortex. In conclusion, our findings demonstrate that the most probable effect of i.v. stem cells is the central anti-inflammatory effect, which opens concerns about how stem cells circulating in systemic administration to reach the site of injury.
Collapse
Affiliation(s)
- Hassan I Kotb
- Department of anesthesia, intensive care and pain management, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Abualauon M Abedalmohsen
- Department of anesthesia, intensive care and pain management, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Ahmed F Elgamal
- Department of anesthesia, intensive care and pain management, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Doaa M Mokhtar
- Department of anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Rasha B Abd-Ellatief
- Department of pharmacology, Faculty of Medicine, Assiut University, Asyut, Egypt
| |
Collapse
|
236
|
Wechsler ME, Rao VV, Borelli AN, Anseth KS. Engineering the MSC Secretome: A Hydrogel Focused Approach. Adv Healthc Mater 2021; 10:e2001948. [PMID: 33594836 PMCID: PMC8035320 DOI: 10.1002/adhm.202001948] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic benefits of exogenously delivered mesenchymal stromal/stem cells (MSCs) have been largely attributed to their secretory properties. However, clinical translation of MSC-based therapies is hindered due to loss of MSC regenerative properties during large-scale expansion and low survival/retention post-delivery. These limitations might be overcome by designing hydrogel culture platforms to modulate the MSC microenvironment. Hydrogel systems could be engineered to i) promote MSC proliferation and maintain regenerative properties (i.e., stemness and secretion) during ex vivo expansion, ii) improve MSC survival, retention, and engraftment in vivo, and/or iii) direct the MSC secretory profile using tailored biochemical and biophysical cues. Herein, it is reviewed how hydrogel material properties (i.e., matrix modulus, viscoelasticity, dimensionality, cell adhesion, and porosity) influence MSC secretion, mediated through cell-matrix and cell-cell interactions. In addition, it is highlighted how biochemical cues (i.e., small molecules, peptides, and proteins) can improve and direct the MSC secretory profile. Last, the authors' perspective is provided on future work toward the understanding of how microenvironmental cues influence the MSC secretome, and designing the next generation of biomaterials, with optimized biophysical and biochemical cues, to direct the MSC secretory profile for improved clinical translation outcomes.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
237
|
Tongu EADO, Segabinazzi LGTM, Alvarenga ML, Monteiro A, Papa FO, Alvarenga MA. Allogenic mesenchymal stem cell-conditioned medium does not affect sperm parameters and mitigates early endometrial inflammatory responses in mares. Theriogenology 2021; 169:1-8. [PMID: 33887520 DOI: 10.1016/j.theriogenology.2021.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
This study aimed to evaluate the effects of mesenchymal stem cell-conditioned medium (MSC-CM) on sperm parameters, intrauterine polymorphonuclear neutrophils (PMN), intrauterine fluid accumulation (IUF), and fertility in mares. In experiment 1, two ejaculates from ten stallions were extended to 50 million sperm/mL using a milk-based extender. Thereafter, 20 mL of extended semen was added of MSC-CM as follows: 0, 5, 10, 15, and 20 mL. Sperm kinetics and plasma membrane integrity were evaluated immediately after dilution (T0) and 2 h post-incubation at 37 °C (T2). In experiment 2, mares characterized as resistant (n = 13) or susceptible (n = 7) to endometritis were inseminated with fresh semen 24 h post-induction of ovulation in two (Control and CM-1) and three (Control, CM-1, and CM-2) cycles in a crossover, as follows: control, no pharmacological interference; CM-1, supplementation of semen insemination dose at 3:4 (v:v, MSC-CM:semen); CM-2, 30 mL of MSC-CM was infused into the uterus 24 h before insemination. Endometrial cytology and uterine fluid were collected 6 and 24 h after insemination to evaluate the number of PMNs and concentrations of interleukins IL6, IL10, and TNFα. IUF was determined by ultrasonography 24 and 48 h after insemination. Pregnancy status was diagnosed 14 days after ovulation. The addition of MSC-CM to semen did not influence sperm parameters at T0 and T2 (P > 0.05) and reduced (CM-1; P < 0.05) the number of PMNs at 6 h post-insemination in resistant mares. In susceptible mares, PMNs at 6 and 24 h post-insemination, as well as IUF were reduced (P < 0.05) in both treated cycles (CM-1 and CM-2). In addition, MSC-CM downregulated IL6 and upregulated IL10 concentrations in the uterus of susceptible mares after insemination. There were no differences in fertility rates among groups both in resistant (Control, 77%, 10/13; CM-1, 62%, 8/13) and susceptible mares (Control, 42.8%, 3/7; CM-1, 57.1%, 4/7; CM-2, 85.7%. 6/7). In conclusion, MSC-CM did not affect sperm parameters when mixed with diluted semen, and reduced post-insemination inflammatory responses in mares.
Collapse
Affiliation(s)
- Eriky Akio de Oliveira Tongu
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Lorenzo G T M Segabinazzi
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Marina Landim Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Aldine Monteiro
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Frederico Ozanam Papa
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Marco Antonio Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil.
| |
Collapse
|
238
|
Cequier A, Sanz C, Rodellar C, Barrachina L. The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses. Animals (Basel) 2021; 11:ani11040931. [PMID: 33805967 PMCID: PMC8064371 DOI: 10.3390/ani11040931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The main target of mesenchymal stem cell therapy in horses has long been the locomotor system, because these athletic animals commonly suffer from tendon and joint lesions. Originally, mesenchymal stem cells were thought to act by just differentiating into the cells of the injured tissue. However, these cells are also able to regulate and stimulate the body’s own repair mechanisms, opening the door to many applications in inflammatory and immune-mediated disorders in both animals and humans. In horses, beyond their traditional application in the musculoskeletal system, these cells have been studied for ophthalmologic pathologies such as corneal ulcers or immune-mediated processes, and for reproductive disorders such as endometritis/endometrosis. Their potential has been explored for equine pathologies very similar to those affecting people, such as asthma, metabolic syndrome, aberrant wound healing, or endotoxemia, as well as for equine-specific pathologies such as laminitis. Current evidence is still preliminary, and further research is needed to clarify different aspects, although research performed so far shows the promising potential of mesenchymal stem cells to treat a wide variety of equine pathologies, some of which are analogous to human disorders. Therefore, advancements in this path will be beneficial for both animals and people. Abstract The differentiation ability of mesenchymal stem cells (MSCs) initially raised interest for treating musculoskeletal injuries in horses, but MSC paracrine activity has widened their scope for inflammatory and immune-mediated pathologies in both equine and human medicine. Furthermore, the similar etiopathogenesis of some diseases in both species has advanced the concept of “One Medicine, One Health”. This article reviews the current knowledge on the use of MSCs for equine pathologies beyond the locomotor system, highlighting the value of the horse as translational model. Ophthalmologic and reproductive disorders are among the most studied for MSC application. Equine asthma, equine metabolic syndrome, and endotoxemia have been less explored but offer an interesting scenario for human translation. The use of MSCs in wounds also provides a potential model for humans because of the healing particularities in both species. High-burden equine-specific pathologies such as laminitis have been suggested to benefit from MSC-therapy, and MSC application in challenging disorders such as neurologic conditions has been proposed. The available data are preliminary, however, and require further development to translate results into the clinic. Nevertheless, current evidence indicates a significant potential of equine MSCs to enlarge their range of application, with particular interest in pathologies analogous to human conditions.
Collapse
Affiliation(s)
- Alina Cequier
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
| | - Carmen Sanz
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain;
| | - Clementina Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
| | - Laura Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain;
- Correspondence:
| |
Collapse
|
239
|
Shigematsu K, Takeda T, Komori N, Tahara K, Yamagishi H. Hypothesis: Intravenous administration of mesenchymal stem cells is effective in the treatment of Alzheimer's disease. Med Hypotheses 2021; 150:110572. [PMID: 33799163 DOI: 10.1016/j.mehy.2021.110572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/24/2023]
Abstract
We propose the intravenous administration of autologous adipose-derived stem cells as a new treatment for Alzheimer's disease. We hypothesize that the stem cells will secrete neprilysin in the brain to break down and remove amyloid deposits in the Alzheimer's brain. We have shown a case of skin amyloid deposition that disappeared after stem cell administration and confirmed that the stem cells administered had neprilysin activity. In addition to neprilysin secretion, other mechanisms of action of stem cells include nerve regeneration, nerve repair, growth factor secretion, anti-inflammatory effects, and angiogenesis. The harvesting of adipose-derived stem cells is minimally invasive, and intravenous administration can be safely repeated. We hope that the efficacy of this new treatment will be verified and that it will bring a ray of hope to patients suffering from this incurable disease.
Collapse
Affiliation(s)
- Kazuo Shigematsu
- Department of Neurology, Minami Kyoto Hospital, National Hospital Organization, Kyoto, Japan; Nagituji Hospital. Kyoto, Japan.
| | | | | | | | | |
Collapse
|
240
|
Mesenchymal stem cell-derived secretomes for therapeutic potential of premature infant diseases. Biosci Rep 2021; 40:222738. [PMID: 32320046 PMCID: PMC7953482 DOI: 10.1042/bsr20200241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Preterm birth is a complex syndrome and remains a substantial public health problem globally. Its common complications include periventricular leukomalacia (PVL), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC) and retinopathy of prematurity (ROP). Despite great advances in the comprehension of the pathogenesis and improvements in neonatal intensive care and associated medicine, preterm birth-related diseases remain essentially without adequate treatment and can lead to high morbidity and mortality. The therapeutic potential of mesenchymal stem/stromal cells (MSCs) appears promising as evidenced by their efficacy in preclinical models of pathologies relevant to premature infant complications. MSC-based therapeutic efficacy is closely associated with MSC secretomes and a subsequent paracrine action response to tissue injuries, which are complex and abundant in response to the local microenvironment. In the current review, we summarize the paracrine mechanisms of MSC secretomes underlying diverse preterm birth-related diseases, including PVL, BPD, NEC and ROP, are summarized, and focus is placed on MSC-conditioned media (CM) and MSC-derived extracellular vesicles (EVs) as key mediators of modulatory action, thereby providing new insights for future therapies in newborn medicine.
Collapse
|
241
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
242
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
243
|
Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor'ev AM, Kirsanova LA, Lupatov AY, Sevastianov VI, Yarygin KN. Chondrogeneic Potential of MSC from Different Sources in Spheroid Culture. Bull Exp Biol Med 2021; 170:528-536. [PMID: 33725253 DOI: 10.1007/s10517-021-05101-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 10/21/2022]
Abstract
We performed a comparative study of the proliferative potential of human mesenchymal stromal cells (MSC) from three sources (tooth pulp, adipose tissue, and Wharton's jelly) in spheroid culture; human chondroblasts served as the positive control. Histological examination revealed signs of chondrogenic differentiation in all studied cell cultures and the differences in the volume and composition of the extracellular matrix. Spheroids formed by MSC from the tooth pulp and Wharton's jelly were characterized by low content of extracellular matrix and glycosaminoglycans. Spheroids from adipose tissue MSC contained maximum amount of the extracellular matrix and high content of glycosaminoglycans. Chondrocytes produced glycosaminoglycan-enriched matrix. Type II collagen was produced by chondrocytes (to a greater extent) and adipose tissue MSC (to a lesser extent). The results of our study demonstrate that MSC from the adipose tissue under conditions of spheroid culturing exhibited maximum chondrogenic potential.
Collapse
Affiliation(s)
- A V Tsvetkova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu B Basok
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A M Grigor'ev
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L A Kirsanova
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Yu Lupatov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V I Sevastianov
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
244
|
Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells 2021; 10:cells10030588. [PMID: 33799995 PMCID: PMC8001847 DOI: 10.3390/cells10030588] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.
Collapse
|
245
|
Rocha JLM, de Oliveira WCF, Noronha NC, Dos Santos NCD, Covas DT, Picanço-Castro V, Swiech K, Malmegrim KCR. Mesenchymal Stromal Cells in Viral Infections: Implications for COVID-19. Stem Cell Rev Rep 2021; 17:71-93. [PMID: 32895900 PMCID: PMC7476649 DOI: 10.1007/s12015-020-10032-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) constitute a heterogeneous population of stromal cells with immunomodulatory and regenerative properties that support their therapeutic use. MSCs isolated from many tissue sources replicate vigorously in vitro and maintain their main biological properties allowing their widespread clinical application. To date, most MSC-based preclinical and clinical trials targeted immune-mediated and inflammatory diseases. Nevertheless, MSCs have antiviral properties and have been used in the treatment of various viral infections in the last years. Here, we revised in detail the biological properties of MSCs and their preclinical and clinical applications in viral diseases, including the disease caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection (COVID-19). Notably, rapidly increasing numbers of MSC-based therapies for COVID-19 have recently been reported. MSCs are theoretically capable of reducing inflammation and promote lung regeneration in severe COVID-19 patients. We critically discuss the rationale, advantages and disadvantages of MSC-based therapies for viral infections and also specifically for COVID-19 and point out some directions in this field. Finally, we argue that MSC-based therapy may be a promising therapeutic strategy for severe COVID-19 and other emergent respiratory tract viral infections, beyond the viral infection diseases in which MSCs have already been clinically applied. Graphical Abstract ![]()
Collapse
Affiliation(s)
- José Lucas Martins Rocha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Waldir César Ferreira de Oliveira
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Bioscience and Biotecnology Program, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nádia Cássia Noronha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Bioscience and Biotecnology Program, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Cristine Dias Dos Santos
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Bioscience and Biotecnology Program, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Virgínia Picanço-Castro
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, São Paulo, Brazil.
| |
Collapse
|
246
|
Abstract
An unfortunate emergence of a new virus SARS-CoV-2, causing a disease known as COVID-19, has spread all around the globe and has caused a pandemic. It primarily affects the respiratory tract and lungs in some cases causing severe organ damage and pneumonia due to overwhelming immune responses. Clinical reports show that the most commons symptoms are fever, dry cough, and shortness of breath, along with several other symptoms. It is thought that an immense cytokine dysregulation in COVID-19 patients is caused following the virus infection. Notably, if patients present with pre-existing specific comorbidities like diabetes or high blood pressure, rates of COVID-19 induced complications and deaths are escalated. Mesenchymal stem cell (MSC) therapy has been shown to alleviate pneumonia and acute respiratory syndrome (ARDS) symptoms, through their immunomodulatory activities in COVID-19 patients. Although more research studies and clinical trial results are needed to elucidate the exact mechanism by which MSCs provide relief to COVID-19 infected patients. Results from clinical trials are encouraging as patients treated with MSCs, regain lung functions and have restored levels of cytokines and trophic factors underscoring the fact that stem cell therapy can be, at least, a complementary therapy to alleviate sufferings in COVID-19 patients. This review discusses the possible therapeutic uses of MSCs for treating COVID-19. Graphical Abstract.
Collapse
|
247
|
Saris TFF, de Windt TS, Kester EC, Vonk LA, Custers RJH, Saris DBF. Five-Year Outcome of 1-Stage Cell-Based Cartilage Repair Using Recycled Autologous Chondrons and Allogenic Mesenchymal Stromal Cells: A First-in-Human Clinical Trial. Am J Sports Med 2021; 49:941-947. [PMID: 33591794 DOI: 10.1177/0363546520988069] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Long-term clinical evaluation of patient outcomes can steer treatment choices and further research for cartilage repair. Using mesenchymal stromal cells (MSCs) as signaling cells instead of stem cells is a novel approach in the field. PURPOSE To report the 5-year follow-up of safety, clinical efficacy, and durability after treatment of symptomatic cartilage defects in the knee with allogenic MSCs mixed with recycled autologous chondrons in first-in-human study of 1-stage cartilage repair. STUDY DESIGN Case series; Level of evidence, 4. METHODS This study is an investigator-driven study aiming at the feasibility and safety of this innovative cartilage repair procedure. Between 2013 and 2014, a total of 35 patients (mean ± SD age, 36 ± 8 years) were treated with a 1-stage cartilage repair procedure called IMPACT (Instant MSC Product Accompanying Autologous Chondron Transplantation) for a symptomatic cartilage defect on the femoral condyle or trochlear groove. Subsequent follow-up after initial publication was performed annually using online patient-reported outcome measures with a mean follow-up of 61 months (range, 56-71 months). Patient-reported outcome measures included the KOOS (Knee injury and Osteoarthritis Outcome Score), visual analog scale for pain, and EuroQol-5 Dimensions. All clinical data and serious adverse events, including additional treatment received after IMPACT, were recorded. A failure of IMPACT was defined as a chondral defect of at least 20% of the index lesion with a need for a reintervention including a surgical procedure or an intra-articular injection. RESULTS Using allogenic MSCs, no signs of a foreign body response or serious adverse reactions were recorded after 5 years. The majority of patients showed statistically significant and clinically relevant improvement in the KOOS and all its subscales from baseline to 60 months: overall, 57.9 ± 16.3 to 78.9 ± 17.7 (P < .001); Pain, 62.3 ± 18.9 to 79.9 ± 20.0 (P = .03); Function, 61.6 ± 16.5 to 79.4 ± 17.3 (P = .01); Activities of Daily Living, 69.0 ± 19.0 to 89.9 ± 14.9 (P < .001); Sports and Recreation, 32.3 ± 22.6 to 57.5 ± 30.0 (P = .02); and Quality of Life, 25.9 ± 12.9 to 55.8 ± 26.8 (P < .001). The visual analog scale score for pain improved significantly from baseline (45.3 ± 23.6) to 60 months (15.4 ± 13.4) (P < .001). Five cases required reintervention. CONCLUSION This is the first study showing the midterm safety and efficacy of the proof of concept that allogenic MSCs augment 1-stage articular cartilage repair. The absence of serious adverse events and the clinical outcome support the longevity of this unique concept. These data support MSC-augmented chondron transplantation (IMPACT) as a safe 1-stage surgical solution that is considerably more cost-effective and a logistically advantageous alternative to conventional 2-stage cell-based therapy for articular chondral defects in the knee.
Collapse
Affiliation(s)
- Tim F F Saris
- Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tommy S de Windt
- Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Esmee C Kester
- Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lucienne A Vonk
- Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roel J H Custers
- Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniel B F Saris
- Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Reconstructive medicine, University of Twente, Enschede, the Netherlands.,Orthopedics and Sports Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
248
|
Kim HJ, Kim OH, Hong HE, Lee SC, Kim SJ. Harnessing adipose‑derived stem cells to release specialized secretome for the treatment of hepatitis B. Int J Mol Med 2021; 47:15. [PMID: 33448314 PMCID: PMC7834954 DOI: 10.3892/ijmm.2021.4848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 11/09/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the function of repairing damaged tissue, which is known to be mediated by the secretome, the collection of secretory materials shed from MSCs. Adjusting the culture conditions of MSCs can lead to a significant difference in the composition of the secretome. It was hypothesized that pre‑sensitization of MSCs with specific disease‑causing agents could harness MSCs to release the therapeutic materials specialized for the disease. To validate this hypothesis, the present study aimed to generate a 'disease‑specific secretome' for hepatitis caused by hepatitis B virus using hepatitis BX antigen (HBx) as a disease‑causing material. Secretary materials (HBx‑IS) were collected following the stimulation of adipose‑derived stem cells (ASCs) with 100‑fold diluted culture media of AML12 hepatocytes that had been transfected with pcDNA‑HBx for 24 h. An animal model of hepatitis B was generated by injecting HBx into mice, and the mice were subsequently intravenously administered a control secretome (CS) or HBx‑IS. Compared with the CS injection, the HBx‑IS injection significantly reduced the serum levels of interleukin‑6 and tumor necrosis factor‑α (pro‑inflammatory cytokines). Western blot analysis and immunohistochemistry of the liver specimens revealed that the HBx‑IS injection led to a higher expression of liver regeneration‑related markers, including hepatocyte growth factor and proliferating cell nuclear antigen, a lower expression of pro‑apoptotic markers, such as cleaved caspase 3 and Bim in mouse livers, and a lower expression of pro‑inflammatory markers (F4/80 and CD68) compared to the CS injection. HBx‑IS exhibited higher liver regenerative, anti‑inflammatory and anti‑apoptotic properties, particularly in the mouse model of hepatitis B compared to CS. This suggests that the secretome obtained by stimulating ASCs with disease‑causing agents may have a more prominent therapeutic effect on the specific disease than the naïve secretome.
Collapse
Affiliation(s)
- Hee Ju Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea
| | - Ha-Eun Hong
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea
| | - Sang Chul Lee
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea
| |
Collapse
|
249
|
Barcelona‐Estaje E, Dalby MJ, Cantini M, Salmeron‐Sanchez M. You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Adv Healthc Mater 2021; 10:e2002048. [PMID: 33586353 DOI: 10.1002/adhm.202002048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 12/21/2022]
Abstract
While much work has been done in the design of biomaterials to control integrin-mediated adhesion, less emphasis has been put on functionalization of materials with cadherin ligands. Yet, cell-cell contacts in combination with cell-matrix interactions are key in driving embryonic development, collective cell migration, epithelial to mesenchymal transition, and cancer metastatic processes, among others. This review focuses on the incorporation of both cadherin and integrin ligands in biomaterial design, to promote what is called the "adhesive crosstalk." First, the structure and function of cadherins and their role in eliciting mechanotransductive processes, by themselves or in combination with integrin mechanosensing, are introduced. Then, biomaterials that mimic cell-cell interactions, and recent applications to get insights in fundamental biology and tissue engineering, are critically discussed.
Collapse
Affiliation(s)
- Eva Barcelona‐Estaje
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
250
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|