201
|
Abstract
In the last decade, Systems Biology has emerged as a conceptual and explanatory alternative to reductionist-based approaches in molecular biology. However, the foundations of this new discipline need to be fleshed out more carefully. In this paper, we claim that a relational ontology is a necessary tool to ground both the conceptual and explanatory aspects of Systems Biology. A relational ontology holds that relations are prior-both conceptually and explanatory-to entities, and that in the biological realm entities are defined primarily by the context they are embedded within-and hence by the web of relations they are part of.
Collapse
Affiliation(s)
- Marta Bertolaso
- University Campus Biomedico, Via Álvaro del Portillo, 21, 00128, Rome, Italy.
| | - Emanuele Ratti
- Center for Theology, Science and Human Flourishing, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
202
|
Lee SY, Bissell MJ. A Functionally Robust Phenotypic Screen that Identifies Drug Resistance-associated Genes Using 3D Cell Culture. Bio Protoc 2018; 8:e3083. [PMID: 30687772 DOI: 10.21769/bioprotoc.3083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a major obstacle in cancer treatment: A case in point is the failure of cancer patients to respond to tyrosine kinase inhibitors (TKI) of EGFR, a receptor that is highly expressed in many cancers. Identification of the targets and delineation of mechanisms of drug resistance remain major challenges. Traditional pharmacological assays of drug resistance measure the response of tumor cells using cell proliferation or cell death as readouts. These assays performed using traditional plastic tissue culture plates (2D) do not translate to in vivo realities. Here, we describe a genetic screen based on phenotypic changes that can be completed over a period of 1-1½ months using functional endpoints in physiologically relevant 3D culture models. This phenotype-based assay could lead to the discovery of previously unknown therapeutic targets and could explain the source of the resistance and relapse. As a proof of principle, we performed our 3D culture assay with a small cDNA library in that yielded five unknown intermediates in EGFR and PI3K signaling pathways. Here, we describe the screening method and the characterization of one of the five molecules, but this approach could be easily expanded for a high-throughput screening to identify or evaluate many more unknown intermediates in oncogenic signaling pathways.
Collapse
Affiliation(s)
- Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
203
|
Vital ex vivo tissue labeling and pathology-guided micropunching to characterize cellular heterogeneity in the tissue microenvironment. Biotechniques 2018; 64:13-19. [PMID: 29384072 DOI: 10.2144/000114626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
Cellular heterogeneity within the tissue microenvironment may underlie chemotherapeutic resistance and response, enabling tumor evolution; however, this heterogeneity it is difficult to characterize. Here, we present a new approach-pathology-guided micropunching (PGM)-that enables identification and characterization of heterogeneous foci identified in viable human and animal model tissue slices. This technique consists of live-cell tissue labeling using fluorescent antibodies/small molecules to identify heterogeneous foci (e.g., immune infiltrates or cells with high levels of reactive oxygen species) in viable tissues, coupled with a micropunch step to isolate cells from these heterogeneous foci for downstream molecular or vital functional analysis. Micropunches obtained from epithelial or stromal fibroblast foci in human prostate tissue show 6- to 12-fold enrichment in transcripts specific for EpCam/cytokeratin 8 and vimentin/a-smooth muscle actin/integrin 1-α, respectively. Transcriptional enrichment efficiency agrees with epithelial and stromal laser capture microdissection samples isolated from human prostate. Micropunched foci show a loss of cellular viability in the periphery, but centrally localized cells retained viability before and after dissociation and grew out in culture.
Collapse
|
204
|
Assessing multiparametric drug response in tissue engineered tumor microenvironment models. Methods 2017; 134-135:20-31. [PMID: 29258924 DOI: 10.1016/j.ymeth.2017.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/18/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment is important in promoting treatment resistance of tumor cells via multiple mechanisms. However, studying this interaction often proves difficult. In vivo animal models are costly, time-consuming, and often fail to adequately predict human response to treatment. Conversely, testing drug response on human tumor cells in vitro in 2D cell culture excludes the important contribution of stromal cells and biophysical forces seen in the in vivo tumor microenvironment. Here, we present tissue-engineered models of both human brain and breast tumor microenvironments incorporating key stromal cell populations for assessing multiple mechanisms of therapeutic response using flow cytometry. We show our physiologically-relevant systems used to interrogate a variety of parameters associated with chemotherapeutic efficacy, including cell death, proliferation, drug uptake, and invasion of cancer and stromal cell populations. The use of flow cytometry allows for single cell, quantitative, and fast assessments of multiple outcomes affecting anti-tumor therapy failure. Our system can be modified to add and remove cellular components with ease, thereby enabling the study of individual cellular contributions in the tumor microenvironment. Together, our models and analysis methods illustrate the importance of developing fast, cost-effective, and reproducible methods to model complex human systems in a physiologically-relevant manner that may prove useful for drug screening efforts in the future.
Collapse
|
205
|
Ikram M, Lim Y, Baek SY, Jin S, Jeong YH, Kwak JY, Yoon S. Co-targeting of Tiam1/Rac1 and Notch ameliorates chemoresistance against doxorubicin in a biomimetic 3D lymphoma model. Oncotarget 2017; 9:2058-2075. [PMID: 29416753 PMCID: PMC5788621 DOI: 10.18632/oncotarget.23156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Lymphoma is a heterogeneous disease with a highly variable clinical course and prognosis. Improving the prognosis for patients with relapsed and treatment-resistant lymphoma remains challenging. Current in vitro drug testing models based on 2D cell culture lack natural tissue-like structural organization and result in disappointing clinical outcomes. The development of efficient drug testing models using 3D cell culture that more accurately reflects in vivo behaviors is vital. Our aim was to establish an in vitro 3D lymphoma model that can imitate the in vivo 3D lymphoma microenvironment. Using this model, we explored strategies to enhance chemosensitivity to doxorubicin, an important chemotherapeutic drug widely used for the treatment of hematological malignancies. Lymphoma cells grown in this model exhibited excellent biomimetic properties compared to conventional 2D culture including (1) enhanced chemotherapy resistance, (2) suppressed rate of apoptosis, (3) upregulated expression of drug resistance genes (MDR1, MRP1, BCRP and HIF-1α), (4) elevated levels of tumor aggressiveness factors including Notch (Notch-1, -2, -3, and -4) and its downstream molecules (Hes-1 and Hey-1), VEGF and MMPs (MMP-2 and MMP-9), and (5) enrichment of a lymphoma stem cell population. Tiam1, a potential biomarker of tumor progression, metastasis, and chemoresistance, was activated in our 3D lymphoma model. Remarkably, we identified two synergistic therapeutic oncotargets, Tiam1 and Notch, as a strategy to combat resistance against doxorubicin in EL4 T and A20 B lymphoma. Therefore, our data suggest that our 3D lymphoma model is a promising in vitro research platform for studying lymphoma biology and therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yeseon Lim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sun-Yong Baek
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Songwan Jin
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung 15073, Korea
| | - Young Hun Jeong
- Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Jong-Young Kwak
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sik Yoon
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
206
|
Akasov R, Drozdova M, Zaytseva-Zotova D, Leko M, Chelushkin P, Marc A, Chevalot I, Burov S, Klyachko N, Vandamme T, Markvicheva E. Novel Doxorubicin Derivatives: Synthesis and Cytotoxicity Study in 2D and 3D in Vitro Models. Adv Pharm Bull 2017; 7:593-601. [PMID: 29399549 PMCID: PMC5788214 DOI: 10.15171/apb.2017.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: Multidrug resistance (MDR) of tumors to chemotherapeutics often leads to failure of cancer treatment. The aim of the study was to prepare novel MDR-overcoming chemotherapeutics based on doxorubicin (DOX) derivatives and to evaluate their efficacy in 2D and 3D in vitro models. Methods: To overcome MDR, we synthesized five DOX derivatives, and then obtained non-covalent complexes with human serum albumin (HSA). Drug efficacy was evaluated for two tumor cell lines, namely human breast adenocarcinoma MCF-7 cells and DOX resistant MCF-7/ADR cells. Additionally, MCF-7 cells were entrapped in alginate-oligochitosan microcapsules, and generated tumor spheroids were used as a 3D in vitro model to study cytotoxicity of the DOX derivatives. Results: Due to 3D structure, the tumor spheroids were more resistant to chemotherapy compared to monolayer culture. DOX covalently attached to palmitic acid through hydrazone linkage (DOX-N2H-Palm conjugate) was found to be the most promising derivative. Its accumulation levels within MCF-7/ADR cells was 4- and 10-fold higher than those of native DOX when the conjugate was added to cultivation medium without serum and to medium supplemented with 10% fetal bovine serum, respectively. Non-covalent complex of the conjugate with HSA was found to reduce the IC50 value from 32.9 µM (for free DOX-N2H-Palm) to 16.8 µM (for HSA-DOX-N2H-Palm) after 72 h incubation with MCF-7/ADR cells. Conclusion: Palm-N2H-DOX conjugate was found to be the most promising DOX derivative in this research. The formation of non-covalent complex of Palm-N2H-DOX conjugate with HSA allowed improving its anti-proliferative activity against both MCF-7 and MCF-7/ADR cells.
Collapse
Affiliation(s)
- Roman Akasov
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia
| | - Maria Drozdova
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia
| | - Daria Zaytseva-Zotova
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | - Maria Leko
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Pavel Chelushkin
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Annie Marc
- UMR CNRS 7274, Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54518, 2 avenue de la Fort de Haye, Vandoeuvre lès Nancy, France
| | - Isabelle Chevalot
- UMR CNRS 7274, Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54518, 2 avenue de la Fort de Haye, Vandoeuvre lès Nancy, France
| | - Sergey Burov
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Natalia Klyachko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Elena Markvicheva
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| |
Collapse
|
207
|
Mao L, Zhao ZL, Yu GT, Wu L, Deng WW, Li YC, Liu JF, Bu LL, Liu B, Kulkarni AB, Zhang WF, Zhang L, Sun ZJ. γ-Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int J Cancer 2017; 142:999-1009. [PMID: 29047105 DOI: 10.1002/ijc.31115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/23/2017] [Accepted: 10/09/2017] [Indexed: 12/28/2022]
Abstract
Immune evasion is a hallmark feature of cancer, and it plays an important role in tumour initiation and progression. In addition, tumour immune evasion severely hampers the desired antitumour effect in multiple cancers. In this study, we aimed to investigate the role of the Notch pathway in immune evasion in the head and neck squamous cell carcinoma (HNSCC) microenvironment. We first demonstrated that Notch1 signaling was activated in a Tgfbr1/Pten-knockout HNSCC mouse model. Notch signaling inhibition using a γ-secretase inhibitor (GSI-IX, DAPT) decreased tumour burden in the mouse model after prophylactic treatment. In addition, flow cytometry analysis indicated that Notch signaling inhibition reduced the sub-population of myeloid-derived suppressor cells (MDSCs), tumour-associated macrophages (TAMs) and regulatory T cells (Tregs), as well as immune checkpoint molecules (PD1, CTLA4, TIM3 and LAG3), in the circulation and in the tumour. Immunohistochemistry (IHC) of human HNSCC tissues demonstrated that elevation of the Notch1 downstream target HES1 was correlated with MDSC, TAM and Treg markers and with immune checkpoint molecules. These results suggest that modulating the Notch signaling pathway may decrease MDSCs, TAMs, Tregs and immune checkpoint molecules in HNSCC.
Collapse
Affiliation(s)
- Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zhi-Li Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi-Cun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
208
|
Abstract
The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical Engineering, David H. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories of Tumour Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox 7, Boston, Massachusetts 02114, USA
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
209
|
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and prompts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactions involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targeted therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of translationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy.
Collapse
|
210
|
Świerczewska M, Klejewski A, Wojtowicz K, Brązert M, Iżycki D, Nowicki M, Zabel M, Januchowski R. New and Old Genes Associated with Primary and Established Responses to Cisplatin and Topotecan Treatment in Ovarian Cancer Cell Lines. Molecules 2017; 22:molecules22101717. [PMID: 29027969 PMCID: PMC6151558 DOI: 10.3390/molecules22101717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023] Open
Abstract
Low efficiency of chemotherapy in ovarian cancer results from the development of drug resistance. Cisplatin (CIS) and topotecan (TOP) are drugs used in chemotherapy of this cancer. We analyzed the development of CIS and TOP resistance in ovarian cancer cell lines. Incubation of drug sensitive cell lines (W1 and A2780) with cytostatic drugs was used to determine the primary response to CIS and TOP. Quantitative polymerase chain reaction (Q-PCR) was performed to measure the expression levels of the genes. We observed decreased expression of the MCTP1 gene in all resistant cell lines. We observed overexpression of the S100A3 and HERC5 genes in TOP-resistant cell lines. Increased expression of the S100A3 gene was also observed in CIS-resistant A2780 sublines. Overexpression of the C4orf18 gene was observed in CIS- and TOP-resistant A2780 sublines. A short time of exposure to CIS led to increased expression of the ABCC2 gene in the W1 and A2780 cell lines and increased expression of the C4orf18 gene in the A2780 cell line. A short time of exposure to TOP led to increased expression of the S100A3 and HERC5 genes in both sensitive cell lines, increased expression of the C4orf18 gene in the A2780 cell line and downregulation of the MCTP1 gene in the W1 cell line. Our results suggest that changes in expression of the MCTP1, S100A3 and C4orf18 genes may be related to both CIS and TOP resistance. Increased expression of the HERC5 gene seems to be important only in TOP resistance.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznan, Poland.
- Department of Obstetrics and Womens Diseases, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznan, Poland.
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland.
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poland, Garbary 15 St., 61-866 Poznań, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Maciej Zabel
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
- Division of Histology and Embryology, Wrocław Medical University, Chałubińskiego 6a, 50-368 Wrocław, Poland.
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| |
Collapse
|
211
|
Bertolaso M, Dieli AM. Cancer and intercellular cooperation. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170470. [PMID: 29134064 PMCID: PMC5666247 DOI: 10.1098/rsos.170470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
The major transitions approach in evolutionary biology has shown that the intercellular cooperation that characterizes multicellular organisms would never have emerged without some kind of multilevel selection. Relying on this view, the Evolutionary Somatic view of cancer considers cancer as a breakdown of intercellular cooperation and as a loss of the balance between selection processes that take place at different levels of organization (particularly single cell and individual organism). This seems an elegant unifying framework for healthy organism, carcinogenesis, tumour proliferation, metastasis and other phenomena such as ageing. However, the gene-centric version of Darwinian evolution, which is often adopted in cancer research, runs into empirical problems: proto-tumoural and tumoural features in precancerous cells that would undergo 'natural selection' have proved hard to demonstrate; cells are radically context-dependent, and some stages of cancer are poorly related to genetic change. Recent perspectives propose that breakdown of intercellular cooperation could depend on 'fields' and other higher-level phenomena, and could be even mutations independent. Indeed, the field would be the context, allowing (or preventing) genetic mutations to undergo an intra-organism process analogous to natural selection. The complexities surrounding somatic evolution call for integration between multiple incomplete frameworks for interpreting intercellular cooperation and its pathologies.
Collapse
Affiliation(s)
- Marta Bertolaso
- Departmental Faculty of Engineering and FAST Institute for Philosophy of Scientific and Technological Practice, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Anna Maria Dieli
- Department of Literature, Philosophy, and the Arts, University of Rome Tor Vergata, Roma, Italy
- Institute for the History and Philosophy of Science and Technology (IHPST), Paris 1 Panthéon-Sorbonne University, Paris, France
| |
Collapse
|
212
|
Klejewski A, Sterzyńska K, Wojtowicz K, Świerczewska M, Partyka M, Brązert M, Nowicki M, Zabel M, Januchowski R. The significance of lumican expression in ovarian cancer drug-resistant cell lines. Oncotarget 2017; 8:74466-74478. [PMID: 29088800 PMCID: PMC5650355 DOI: 10.18632/oncotarget.20169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of the present study is to determine the expression of LUM in drug-resistant ovarian cancer cell lines. METHODS Doxorubicin- (DOX), topotecan- (TOP) and vincristine- (VIN) resistant variants of the W1 ovarian cancer cell line were used in this study. We used quantitative real-time polymerase chain reactions to determine LUM mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. Protein glycosylation was investigated using PGNase F digestion. Immunohistochemistry assays were used to determine protein expression in ovarian cancer patients. RESULTS We observed increased expression of LUM in drug-resistant cell lines at both the mRNA and the protein level. The most abundant LUM expression was observed in TOP-resistant cell line. We observed LUM bands that corresponded to different molecular masses, and the most abundant LUM form was the secreted form, which had a mass of 50 kDa. Double immunofluorescence analysis showed co-expression of LUM and COL3A1 as well as the presence of extracellular COL3A1 in the TOP-resistant cell line. Finally, we detected the LUM protein in ovarian cancer tissue. CONCLUSION The expression of LUM in cytostatic-resistant cell lines suggests its role in drug resistance. The co-expression of LUM and COL3A1 indicates the significance of LUM in collagen fibre assembly. Expression in ovarian cancer tissue suggests that LUM can play a role in ovarian cancer pathogenesis in ways similar to other cancers.
Collapse
Affiliation(s)
- Andrzej Klejewski
- Department of Nursing, Poznań University of Medical Sciences, Poznań, Poland
- Department of Obstetrics and Womens Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Małgorzata Partyka
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Maciej Zabel
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
- Department of Histology and Embryology, Wrocław Medical University, Wrocław, Poland
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
213
|
Rodríguez CE, Berardi DE, Abrigo M, Todaro LB, Bal de Kier Joffé ED, Fiszman GL. Breast cancer stem cells are involved in Trastuzumab resistance through the HER2 modulation in 3D culture. J Cell Biochem 2017; 119:1381-1391. [DOI: 10.1002/jcb.26298] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/18/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Cristina E. Rodríguez
- Universidad de Buenos Aires, Área Investigación, Instituto de Oncología Ángel H. RoffoBuenos AiresArgentina
| | - Damian E. Berardi
- Universidad de Buenos Aires, Área Investigación, Instituto de Oncología Ángel H. RoffoBuenos AiresArgentina
| | - Marianela Abrigo
- Universidad de Buenos Aires, Área Investigación, Instituto de Oncología Ángel H. RoffoBuenos AiresArgentina
| | - Laura B. Todaro
- Universidad de Buenos Aires, Área Investigación, Instituto de Oncología Ángel H. RoffoBuenos AiresArgentina
| | - Elisa D. Bal de Kier Joffé
- Universidad de Buenos Aires, Área Investigación, Instituto de Oncología Ángel H. RoffoBuenos AiresArgentina
| | - Gabriel L. Fiszman
- Universidad de Buenos Aires, Área Investigación, Instituto de Oncología Ángel H. RoffoBuenos AiresArgentina
| |
Collapse
|
214
|
Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol Lett 2017; 14:2611-2620. [PMID: 28927027 PMCID: PMC5588104 DOI: 10.3892/ol.2017.6497] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 05/08/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblasts in the tumor stroma are well recognized as having an indispensable role in carcinogenesis, including in the initiation of epithelial tumor formation. The association between cancer cells and fibroblasts has been highlighted in several previous studies. Regulation factors released from cancer-associated fibroblasts (CAFs) into the tumor microenvironment have essential roles, including the support of tumor growth, angiogenesis, metastasis and therapy resistance. A mutual interaction between tumor-induced fibroblast activation, and fibroblast-induced tumor proliferation and metastasis occurs, thus CAFs act as tumor supporters. Previous studies have reported that by developing fibroblast-targeting drugs, it may be possible to interrupt the interaction between fibroblasts and the tumor, thus resulting in the suppression of tumor growth, and metastasis. The present review focused on the reciprocal feedback loop between fibroblasts and cancer cells, and evaluated the potential application of anti-CAF agents in the treatment of cancer.
Collapse
Affiliation(s)
- Leilei Tao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
215
|
Su JL, Wang CH, Kang HG, Zhang J, Wang BZ, Liu MR, Zhao J, Liu L. Association between MDR1 gene of gastrointestinal tumors, the expression of P-glycoprotein and resistance to chemotherapeutic drugs. Oncol Lett 2017; 14:3510-3514. [PMID: 28927106 PMCID: PMC5588068 DOI: 10.3892/ol.2017.6642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to examine and discuss the association between multidrug resistance 1 gene (MDR1) of gastrointestinal tumors, the expression of P-glycoprotein and resistance to chemotherapeutic drugs. In this study, 126 cases of patients with gastrointestinal tumors admitted to hospital from February 2013 to February 2015 were selected. The expression levels of MDR1 gene were obsreved in the control population and patients before and after treatment by fluoresecent quantitative PCR. The protein expression level of P-glycoprotein was determined using western blotting and enzyme-linked immunosorbent assay. In addition, drug resistance was assessed by ATP-TCA chemosensitivity experiments. The results showed that before treatment, the expression of mRNA in MDR1 of tissues of gastrointestinal tract of the 126 cases was 108-fold larger than that of the gastrointestinal tract of the controls (p<0.05), P-glycoprotein was 87-fold larger than the expression level of the controls (p<0.05). The sensitivity of 126 tumor tissues to different chemotherapeutic drugs was determined, and the results showed that most of the tumor tissues were sensitive to chemotherapeutic drugs, and the sensitivity rate reached 96.4%. Following chemotherapy, the expression of mRNA in MDR1 of tumor tissues and the expression of P-glycoprotein decreased (p<0.05). In conclusion, the MDR1 gene and P-glycoprotein have a positive correlation with the occurrence of gastrointestinal tumors, and a negative correlation between the MDR1 gene and P-glycoprotein with resistance of chemotherapeutic drugs. Therefore, the MDR1 gene and P-glycoprotein can be used as references in the identification and diagnosis of gastrointestinal tumors.
Collapse
Affiliation(s)
- Jian-Li Su
- Department of Laboratory Medicine, Qilu Hospital of Shandong University, Qingdao, Shandong 266000, P.R. China
| | - Cheng-Hong Wang
- Department of Laboratory Medicine, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Hong-Gang Kang
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jing Zhang
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Bao-Zhong Wang
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Mei-Rong Liu
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jun Zhao
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Lin Liu
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
216
|
Yuan JX, Munson JM. Quantitative Immunohistochemistry of the Cellular Microenvironment in Patient Glioblastoma Resections. J Vis Exp 2017. [PMID: 28784969 DOI: 10.3791/56025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
With the growing interest in the tumor microenvironment, we set out to develop a method to specifically determine the microenvironment components within patient samples of glioblastoma, the deadliest and most invasive brain cancer. Not only are quantitative methods beneficial for accurately describing diseased tissues, they can also potentially contribute to more accurate prognosis, diagnosis, and the development of tissue-engineered systems and replacements. In glioblastoma, glial cells, such as microglia and astrocytes, have been independently correlated with poor prognosis based on pathologist grading. However, the state of these cells and other glial cell components has not been well-described quantitatively. This can be difficult due to the large processes that mark these glial cells. Furthermore, most histological analyses focus on the overall tissue sample or only within the bulk of the tumor, as opposed to delineating quantifications based on regions within the highly heterogeneous tissue. Here, we describe a method for identifying and quantitatively analyzing the populations of glial cells within the tumor bulk and adjacent regions of tumor resections from glioblastoma patients. We used chromogenic immunohistochemistry to identify the glial cell populations in patient tumor resections and ImageJ to analyze percent coverage of staining for each glial population. With these techniques we are able to better describe the glial cells throughout regions of the glioma tumor microenvironment.
Collapse
|
217
|
Zeng Z, Liu W, Tsao T, Qiu Y, Zhao Y, Samudio I, Sarbassov DD, Kornblau SM, Baggerly KA, Kantarjian HM, Konopleva M, Andreeff M. High-throughput profiling of signaling networks identifies mechanism-based combination therapy to eliminate microenvironmental resistance in acute myeloid leukemia. Haematologica 2017; 102:1537-1548. [PMID: 28659338 PMCID: PMC5685227 DOI: 10.3324/haematol.2016.162230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment is known to provide a survival advantage to residual acute myeloid leukemia cells, possibly contributing to disease recurrence. The mechanisms by which stroma in the microenvironment regulates leukemia survival remain largely unknown. Using reverse-phase protein array technology, we profiled 53 key protein molecules in 11 signaling pathways in 20 primary acute myeloid leukemia samples and two cell lines, aiming to understand stroma-mediated signaling modulation in response to the targeted agents temsirolimus (MTOR), ABT737 (BCL2/BCL-XL), and Nutlin-3a (MDM2), and to identify the effective combination therapy targeting acute myeloid leukemia in the context of the leukemia microenvironment. Stroma reprogrammed signaling networks and modified the sensitivity of acute myeloid leukemia samples to all three targeted inhibitors. Stroma activated AKT at Ser473 in the majority of samples treated with single-agent ABT737 or Nutlin-3a. This survival mechanism was partially abrogated by concomitant treatment with temsirolimus plus ABT737 or Nutlin-3a. Mapping the signaling networks revealed that combinations of two inhibitors increased the number of affected proteins in the targeted pathways and in multiple parallel signaling, translating into facilitated cell death. These results demonstrated that a mechanism-based selection of combined inhibitors can be used to guide clinical drug selection and tailor treatment regimens to eliminate microenvironment-mediated resistance in acute myeloid leukemia.
Collapse
Affiliation(s)
- Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Twee Tsao
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - YiHua Qiu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ismael Samudio
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Dos D Sarbassov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
218
|
Yuan JX, Bafakih FF, Mandell JW, Horton BJ, Munson JM. Quantitative Analysis of the Cellular Microenvironment of Glioblastoma to Develop Predictive Statistical Models of Overall Survival. J Neuropathol Exp Neurol 2017; 75:1110-1123. [PMID: 27815396 DOI: 10.1093/jnen/nlw090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glioblastomas, the most common primary malignant brain tumors, have a distinct tissue microenvironment. Although non-neoplastic cells contribute to glioblastoma progression, very few quantitative studies have shown the effect of tumor microenvironmental influences on patient survival. We examined relationships of the cellular microenvironment, including astrocytes, microglia, oligodendrocytes, and blood vessels, to survival in glioblastoma patients. Using histological staining and quantitative image analyses, we examined the tumor-associated parenchyma of 33 patients and developed statistical models to predict patient outcomes based on the cellular picture of the tumor parenchyma. We found that blood vessel density correlated with poorer prognosis. To examine the role of adjacent parenchymal versus higher tumor cell density bulk parenchymal tissue, we examined the glial components in these highly variable regions. Comparison of bulk and adjacent astrocytes and microglia in tissue yielded the strongest prediction of survival, with high levels of adjacent astrocytes predicted poor prognosis and high levels of microglia correlated with a better prognosis. These results indicate that parenchymal components predict survival in glioblastoma patients and in particular that the balance between reactive glial populations is important for patient prognosis.
Collapse
Affiliation(s)
- Jessica X Yuan
- From the University of Virginia School of Medicine (JXY, FFB, JWM, BJH, JMM), Department of Biomedical Engineering, University (JXY, JMM), Department of Pathology (FFB, JWM), and Department of Public Health Sciences (BJH), Division of Translational Research and Applied Statistics, University of Virginia, Charlottesville, Virginia
| | - Fahad F Bafakih
- From the University of Virginia School of Medicine (JXY, FFB, JWM, BJH, JMM), Department of Biomedical Engineering, University (JXY, JMM), Department of Pathology (FFB, JWM), and Department of Public Health Sciences (BJH), Division of Translational Research and Applied Statistics, University of Virginia, Charlottesville, Virginia
| | - James W Mandell
- From the University of Virginia School of Medicine (JXY, FFB, JWM, BJH, JMM), Department of Biomedical Engineering, University (JXY, JMM), Department of Pathology (FFB, JWM), and Department of Public Health Sciences (BJH), Division of Translational Research and Applied Statistics, University of Virginia, Charlottesville, Virginia
| | - Bethany J Horton
- From the University of Virginia School of Medicine (JXY, FFB, JWM, BJH, JMM), Department of Biomedical Engineering, University (JXY, JMM), Department of Pathology (FFB, JWM), and Department of Public Health Sciences (BJH), Division of Translational Research and Applied Statistics, University of Virginia, Charlottesville, Virginia
| | - Jennifer M Munson
- From the University of Virginia School of Medicine (JXY, FFB, JWM, BJH, JMM), Department of Biomedical Engineering, University (JXY, JMM), Department of Pathology (FFB, JWM), and Department of Public Health Sciences (BJH), Division of Translational Research and Applied Statistics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
219
|
Abstract
Nanoparticle drug formulations have been extensively investigated, developed, and in some cases, approved by the Food and Drug Administration (FDA). Synergistic combinations of drugs having distinct tumor-inhibiting mechanisms and non-overlapping toxicity can circumvent the issue of treatment resistance and may be essential for effective anti-cancer therapy. At the same time, co-delivery of a combined regimen by a single nanocarrier presents a challenge due to differences in solubility, molecular weight, functional groups and encapsulation conditions between the two drugs. This review discusses cellular and microenvironment mechanisms behind treatment resistance and nanotechnology-based solutions for effective anti-cancer therapy. Co-loading or cascade delivery of multiple drugs using of polymeric nanoparticles, polymer-drug conjugates and lipid nanoparticles will be discussed along with lipid-coated drug nanoparticles developed by our lab and perspectives on combination therapy.
Collapse
Affiliation(s)
- Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shutao Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - C Michael Lin
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
220
|
Muraro MG, Muenst S, Mele V, Quagliata L, Iezzi G, Tzankov A, Weber WP, Spagnoli GC, Soysal SD. Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments. Oncoimmunology 2017; 6:e1331798. [PMID: 28811974 DOI: 10.1080/2162402x.2017.1331798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Interaction between cancerous, non-transformed cells, and non-cellular components within the tumor microenvironment plays a key role in response to treatment. However, short-term culture or xenotransplantation of cancer specimens in immunodeficient animals results in dramatic modifications of the tumor microenvironment, thus preventing reliable assessment of compounds or biologicals of potential therapeutic relevance. We used a perfusion-based bioreactor developed for tissue engineering purposes to successfully maintain the tumor microenvironment of freshly excised breast cancer tissue obtained from 27 breast cancer patients and used this platform to test the therapeutic effect of antiestrogens as well as checkpoint-inhibitors on the cancer cells. Viability and functions of tumor and immune cells could be maintained for over 2 weeks in perfused bioreactors. Next generation sequencing authenticated cultured tissue specimens as closely matching the original clinical samples. Anti-estrogen treatment of cultured estrogen receptor positive breast cancer tissue as well as administration of pertuzumab to a Her2 positive breast cancer both had an anti-proliferative effect. Treatment with anti-programmed-death-Ligand (PD-L)-1 and anti-cytotoxic T lymphocyte-associated protein (CTLA)-4 antibodies lead to immune activation, evidenced by increased lymphocyte proliferation, increased expression of IFNγ, and decreased expression of IL10, accompanied by a massive cancer cell death in ex vivo triple negative breast cancer specimens. In the era of personalized medicine, the ex vivo culture of breast cancer tissue represents a promising approach for the pre-clinical evaluation of conventional and immune-mediated treatments and provides a platform for testing of innovative treatments.
Collapse
Affiliation(s)
- Manuele G Muraro
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Simone Muenst
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Valentina Mele
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Giandomenica Iezzi
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Walter P Weber
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Giulio C Spagnoli
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Savas D Soysal
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,Department of Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
221
|
Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles. ACS NANO 2017; 11:4916-4925. [PMID: 28414916 PMCID: PMC5961944 DOI: 10.1021/acsnano.7b01522] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our previous work demonstrated that Wnt16 expression in cisplatin-damaged tumor-associated fibroblasts is a key factor contributing to cisplatin resistance in malignancies. Natural antifibrotic compounds with low toxicities are promising candidates to downregulate Wnt16 expression, improving the antitumor effect of cisplatin nanoparticles. Upon screening several natural chemicals, we found that a dietary flavonoid, quercetin, significantly suppresses Wnt16 expression in activated fibroblasts. To facilitate drug delivery, we have prepared a targeted lipid/calcium/phosphate nanoparticle formulation consisting of a prodrug of quercetin, i.e., quercetin phosphate, with a high loading efficiency (26.6% w/w). This quercetin nanoparticle with a particle size of around 35 nm significantly improved the bioavailability and metabolic stability of the parent quercetin. Quercetin phosphate is released from the nanoparticles and converted back to the parent quercetin under physiological conditions. Following systemic administration of quercetin phosphate nanoparticles, a significant downregulation in Wnt16 expression was observed and further yielded a synergistic antitumor effect with cisplatin nanoparticles in a stroma-rich bladder carcinoma model. The α-SMA-positive fibroblast and collagen within the tumor decreased significantly after combination treatment. This suggests that the remodeling of the tumor microenvironment induced by quercetin plays a critical role in promoting the synergy. Indeed, our data further confirmed that quercetin phosphate alone significantly remodeled the tumor microenvironment and increased the penetration of second-wave nanoparticles into the tumor nests. Collectively, quercetin phosphate nanoparticles may be a safe and effective way to improve therapeutic treatment for desmoplastic tumors.
Collapse
Affiliation(s)
- Kaili Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People’s Republic of China
| | - Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tyler J. Goodwin
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jun Li
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Corresponding Author:
| |
Collapse
|
222
|
Exploring the Potential of Nanotherapeutics in Targeting Tumor Microenvironment for Cancer Therapy. Pharmacol Res 2017; 126:109-122. [PMID: 28511988 DOI: 10.1016/j.phrs.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/18/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Advanced research in the field of cancer biology clearly demonstrated the key role of tumor microenvironment (TME) in cancer development and metastasis particularly in solid tumors. Components of TME, being non-neoplastic in nature provide supportive and permissive conditions for the growth of cancer cells. Hence it is important to modify TME in cancer therapy and this would be achieved by better understanding of TME morphological features and functioning of stromal components. Nanotechnology based drug delivery offers various advantages such as prolonged circulation time, delivery of cargo at desired site, improved bioavailability, reduced toxicity etc. over conventional chemotherapeutics. Abnormal characteristic features of TME play a paradoxical role in nanoparticulate drug delivery. Leaky vasculature, acidic and hypoxic conditions of TME helps in the accumulation of tailored nanoparticles whereas high interstitial pressure and dense stroma restrict the extravasation, homogenous distribution of nanocarriers in TME. This review mainly discusses the potential of nanotherapeutics in targeting TME by briefly discussing stromal components, therapeutic opportunities and barriers offered by TME for nanoparticulate drug delivery. Updated information on TME remodeling strategies for improved drug delivery and specific targeting of individual stromal components are also outlined.
Collapse
|
223
|
microRNA-200a-3p increases 5-fluorouracil resistance by regulating dual specificity phosphatase 6 expression. Exp Mol Med 2017; 49:e327. [PMID: 28496200 PMCID: PMC5454440 DOI: 10.1038/emm.2017.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition of resistance to anti-cancer drugs is a significant obstacle to effective cancer treatment. Although several efforts have been made to overcome drug resistance in cancer cells, the detailed mechanisms have not been fully elucidated. Here, we investigated whether microRNAs (miRNAs) function as pivotal regulators in the acquisition of anti-cancer drug resistance to 5-fluorouracil (5-FU). A survey using a lentivirus library containing 572 precursor miRNAs revealed that five miRNAs promoted cell survival after 5-FU treatment in human hepatocellular carcinoma Hep3B cells. Among the five different clones, the clone expressing miR-200a-3p (Hep3B-miR-200a-3p) was further characterized as a 5-FU-resistant cell line. The cell viability and growth rate of Hep3B-miR-200a-3p cells were higher than those of control cells after 5-FU treatment. Ectopic expression of a miR-200a-3p mimic increased, while inhibition of miR-200a-3p downregulated, cell viability in response to 5-FU, doxorubicin, and CDDP (cisplatin). We also showed that dual-specificity phosphatase 6 (DUSP6) is a novel target of miR-200a-3p and regulates resistance to 5-FU. Ectopic expression of DUSP6 mitigated the pro-survival effects of miR-200a-3p. Taken together, these results lead us to propose that miR-200a-3p enhances anti-cancer drug resistance by decreasing DUSP6 expression.
Collapse
|
224
|
Haq S, Samuel V, Haxho F, Akasov R, Leko M, Burov SV, Markvicheva E, Szewczuk MR. Sialylation facilitates self-assembly of 3D multicellular prostaspheres by using cyclo-RGDfK(TPP) peptide. Onco Targets Ther 2017; 10:2427-2447. [PMID: 28496342 PMCID: PMC5422540 DOI: 10.2147/ott.s133563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Prostaspheres-based three dimensional (3D) culture models have provided insight into prostate cancer (PCa) biology, highlighting the importance of cell–cell interactions and the extracellular matrix (EMC) in the tumor microenvironment. Although these 3D classical spheroid platforms provide a significant advance over 2D models mimicking in vivo tumors, the limitations involve no control of assembly and structure with only limited spatial or glandular organization. Here, matrix-free prostaspheres from human metastatic prostate carcinoma PC3 and DU145 cell lines and their respective gemcitabine resistant (GemR) variants were generated by using cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK(TPP)). Materials and methods Microscopic imaging, immunocytochemistry (ICC), flow cytometry, sialidase, and WST-1 cell viability assays were used to evaluate the formation of multicellular tumor spheroid (MCTS), cell survival, morphologic changes, and expression levels of α2,6 and α2,3 sialic acid (SA) and E- and N-cadherin in DU145, PC3, and their GemR variants. Results By using the cyclo-RGDfK(TPP) peptide platform in a dose- and time-dependent manner, both DU145 and DU145GemR cells formed small MCTS. In contrast, PC3 and PC3GemR cells formed irregular multicellular aggregates at all concentrations of cyclo-RGDfK(TPP) peptide, even after 6 days of incubation. ICC and flow cytometry results revealed that DU145 cells expressed higher amounts of E-cadherin but lower N-cadherin compared with PC3 cells. By using Maackia amurensis (α2,3-SA-specific MAL-II) and Sambucus nigra (α2,6-SA specific SNA) lectin-based cytochemistry staining and flow cytometry, it was found that DU145 and DU145GemR cells expressed 5 times more α2,6-SA than α2,3-SA on the cell surface. PC3 cells expressed 4 times more α2,3-SA than α2,6-SA, and the PC3GemR cells showed 1.4 times higher α2,6-SA than α2,3-SA. MCTS volume was dose-dependently reduced following pretreatment with α2,6-SA-specific neuraminidase (Vibrio cholerae). Oseltamivir phosphate enhanced cell aggregation and compaction of 3D MCTS formed with PC3 cells. Conclusion The relative levels of specific sialoglycan structures on the cell surface correlate with the ability of PCa cells to form avascular multicellular prostaspheres.
Collapse
Affiliation(s)
- Sabah Haq
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Vanessa Samuel
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Fiona Haxho
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Roman Akasov
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow
| | - Maria Leko
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Sergey V Burov
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Elena Markvicheva
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
225
|
Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat Commun 2017; 8:15045. [PMID: 28429794 PMCID: PMC5413944 DOI: 10.1038/ncomms15045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
The majority of breast cancer models for drug discovery are based on orthotopic or subcutaneous tumours. Therapeutic responses of metastases, especially microscopic metastases, are likely to differ from these tumours due to distinct cancer-microenvironment crosstalk in distant organs. Here, to recapitulate such differences, we established an ex vivo bone metastasis model, termed bone-in-culture array or BICA, by fragmenting mouse bones preloaded with breast cancer cells via intra-iliac artery injection. Cancer cells in BICA maintain features of in vivo bone micrometastases regarding the microenvironmental niche, gene expression profile, metastatic growth kinetics and therapeutic responses. Through a proof-of-principle drug screening using BICA, we found that danusertib, an inhibitor of the Aurora kinase family, preferentially inhibits bone micrometastases. In contrast, certain histone methyltransferase inhibitors stimulate metastatic outgrowth of indolent cancer cells, specifically in the bone. Thus, BICA can be used to investigate mechanisms involved in bone colonization and to rapidly test drug efficacies on bone micrometastases.
Collapse
|
226
|
Dash TK, Konkimalla VSB. Selection and optimization of nano-formulation of P-glycoprotein inhibitor for reversal of doxorubicin resistance in COLO205 cells. ACTA ACUST UNITED AC 2017; 69:834-843. [PMID: 28397291 DOI: 10.1111/jphp.12722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/04/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The prime objective of current work was to develop a strategy for preparation of combinational nano-formulation for reversal of drug resistance. METHODS As a model system, doxorubicin (DOX)-resistant COLO205 cells were developed and validated. From co-treatment studies with DOX, curcumin was selected as it reversed DOX-resistance at lowest concentration. In an attempt to increase its solubility, curcumin was encapsulated into hydroxypropyl-β-cyclodextrin (HP-β-CD). Here, we propose that presence of stabilizer overcomes its low encapsulation efficiency. Thus, we evaluated curcumin encapsulation in HP-β-CD in presence of different stabilizers and organic solvents. Finally, the effect of nanocurcumin with liposomal DOX was studied for reversal of resistance in COLO205 cells. KEY FINDINGS In the process encapsulation, selective optimization of organic solvent by freeze-drying was found to be appropriate among other methods. From optimization studies with different organic solvent (acetone and dichloromethane) and stabilizer [polyvinyl alcohol (PVA) and Pluronics], HP-β-CD-encapsulated curcumin prepared using acetone in PVA-stabilized dispersion increased encapsulation (60%) with size of ~40 nm. Prepared nano-curcumin reversed the DOX resistance effectively in combination with liposomal DOX. CONCLUSIONS Curcumin reversed DOX resistance in COLO205 cells at low concentration and enhanced curcumin encapsulation in HP-β-CD was noted in presence of PVA. Further, it was observed that prepared HP-β-CD-encapsulated curcumin is equi-efficacious to nano-dispersed curcumin.
Collapse
Affiliation(s)
- Tapan K Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER, HBNI), Khurda, India
| | | |
Collapse
|
227
|
Mechanisms governing metastatic dormancy in breast cancer. Semin Cancer Biol 2017; 44:72-82. [PMID: 28344165 DOI: 10.1016/j.semcancer.2017.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is a systemic disease characterized by early dissemination of tumor cells to distant organs. In this foreign environment, tumor cells may stay in a dormant state as single cells or as micrometastases for many years before growing out into a macrometastatic lesion. As metastasis is the primary cause for breast cancer-related death, it is important to understand the mechanisms underlying the maintenance of dormancy and dormancy escape to find druggable targets to eradicate metastatic tumor cells. Metastatic dormancy is regulated by complex interactions between tumor cells and the local microenvironment. In addition, cancer-directed immunity and systemic instigation play a crucial role.
Collapse
|
228
|
Sambi M, Haq S, Samuel V, Qorri B, Haxho F, Hill K, Harless W, Szewczuk MR. Alternative therapies for metastatic breast cancer: multimodal approach targeting tumor cell heterogeneity. BREAST CANCER-TARGETS AND THERAPY 2017; 9:85-93. [PMID: 28280388 PMCID: PMC5340247 DOI: 10.2147/bctt.s130838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the primary challenges in developing effective therapies for malignant tumors is the specific targeting of a heterogeneous cancer cell population within the tumor. The cancerous tumor is made up of a variety of distinct cells with specialized receptors and proteins that could potentially be viable targets for drugs. In addition, the diverse signals from the local microenvironment may also contribute to the induction of tumor growth and metastasis. Collectively, these factors must be strategically studied and targeted in order to develop an effective treatment protocol. Targeted multimodal approaches need to be strategically studied in order to develop a treatment protocol that is successful in controlling tumor growth and preventing metastatic burden. Breast cancer, in particular, presents a unique problem because of the variety of subtypes of cancer that can arise and the multiple drug targets that could be exploited. For example, the tumor stage and subtypes often dictate the appropriate treatment regimen. Alternate multimodal therapies should consider the importance of time-dependent drug administration, as well as targeting the local and systemic tumor environment. Many reviews and papers have briefly touched on the clinical implications of this cellular heterogeneity; however, there has been very little discussion on the development of study models that reflect this diversity and on multimodal therapies that could target these subpopulations. Here, we summarize the current understanding of the origins of intratumoral heterogeneity in breast cancer subtypes, and its implications for tumor progression, metastatic potential, and treatment regimens. We also discuss the advantages and disadvantages of utilizing specific breast cancer models for research, including in vitro monolayer systems and three-dimensional mammospheres, as well as in vivo murine models that may have the capacity to encompass this heterogeneity. Lastly, we summarize some of the current advancements in the development of multitarget therapeutics that have shown promising results in clinical and preclinical studies when used alone or in combination with traditional regimens of surgery, chemotherapy, and/or radiation.
Collapse
Affiliation(s)
- Manpreet Sambi
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, ON, Canada
| | - Sabah Haq
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, ON, Canada
| | - Vanessa Samuel
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, ON, Canada
| | - Bessi Qorri
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, ON, Canada
| | - Fiona Haxho
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, ON, Canada
| | - Kelli Hill
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, ON, Canada; ENCYT Technologies, Inc., Membertou, NS, Canada
| | | | - Myron R Szewczuk
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
229
|
Ramamonjisoa N, Ackerstaff E. Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging. Front Oncol 2017; 7:3. [PMID: 28197395 PMCID: PMC5281579 DOI: 10.3389/fonc.2017.00003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor-stroma interaction in cancer development, progression, and treatment response.
Collapse
Affiliation(s)
- Nirilanto Ramamonjisoa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
230
|
Leyh B, Dittmer A, Lange T, Martens JWM, Dittmer J. Stromal cells promote anti-estrogen resistance of breast cancer cells through an insulin-like growth factor binding protein 5 (IGFBP5)/B-cell leukemia/lymphoma 3 (Bcl-3) axis. Oncotarget 2016; 6:39307-28. [PMID: 26515727 PMCID: PMC4770774 DOI: 10.18632/oncotarget.5624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
There is strong evidence that stromal cells promote drug resistance of cancer. Here, we show that mesenchymal stem cells (MSCs) and carcinoma-associated fibroblasts (CAFs) desensitize ERα-positive breast cancer cells to the anti-estrogen fulvestrant. In search for the mechanism, we found that MSCs and CAFs similarly increased the activity of the PI3K/AKT and the JAK/STAT3 pathways and upregulated the expression of integrin β1, IGF1R, HIF1α, CAIX and Bcl-3 in MCF-7 cells. Further analyses revealed that MSCs and CAFs coordinately induce these changes by triggering the downregulation of IGFBP5. Loss of IGFBP5 in MCF-7 cells was an early and long-lasting event in response to MSCs and CAFs and was accompanied by growth stimulation both in the absence and presence of fulvestrant. The growth-stimulatory effect in the absence of fulvestrant could be attributed to PI3K/AKT pathway activation and could be mimicked by insulin. The growth-promoting effect in the presence of fulvestrant depended upon the upregulation of Bcl-3. By cRNA microarray analysis we identified additional IGFBP5 targets, of which two (KLHL4 and SEPP1) were inversely regulated by IGFBP5 and Bcl-3. BT474 cells also responded to stromal cells by downregulating IGFBP5 and upregulating the P-AKT, Bcl-3 and IGF1R levels, whereas T47D cells did not show any of these responses. In conclusion, our data suggest that, by targeting IGFBP5 expression in ERα-positive breast cancer cells, such as MCF-7 cells, MSCs and CAFs are able to orchestrate a variety of events, particularly activation of the PI3K/AKT pathway, upregulation of Bcl-3 expression and desensitization to anti-estrogen.
Collapse
Affiliation(s)
- Benjamin Leyh
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle(Saale), Germany
| | - Angela Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle(Saale), Germany
| | - Theresia Lange
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle(Saale), Germany
| | - John W M Martens
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle(Saale), Germany
| |
Collapse
|
231
|
Wojciechowski JP, Martin AD, Mason AF, Fife CM, Sagnella SM, Kavallaris M, Thordarson P. Choice of Capping Group in Tripeptide Hydrogels Influences Viability in the Three‐Dimensional Cell Culture of Tumor Spheroids. Chempluschem 2016; 82:383-389. [DOI: 10.1002/cplu.201600464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/28/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Jonathan P. Wojciechowski
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Adam D. Martin
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Alexander F. Mason
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Christopher M. Fife
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
- Tumour Biology and Targeting Program Children's Cancer Institute Lowy Cancer Research Centre UNSW Australia Sydney NSW 2052 Australia
| | - Sharon M. Sagnella
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
- Tumour Biology and Targeting Program Children's Cancer Institute Lowy Cancer Research Centre UNSW Australia Sydney NSW 2052 Australia
| | - Maria Kavallaris
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
- Tumour Biology and Targeting Program Children's Cancer Institute Lowy Cancer Research Centre UNSW Australia Sydney NSW 2052 Australia
| | - Pall Thordarson
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
232
|
Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep 2016; 6:38408. [PMID: 27922075 PMCID: PMC5138853 DOI: 10.1038/srep38408] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) are recognized as one of the key determinants in the malignant progression of lung adenocarcinoma. And its contributions to chemoresistance acquisition of lung cancer has raised more and more attention. In our study, cancer associated fibroblasts treated with cisplatin conferred chemoresistance to lung cancer cells. Meanwhile, Interleukin-11(IL-11) was significantly up-regulated in the CAF stimulated by cisplatin. As confirmed in lung adenocarcinoma cells in vivo and in vitro, IL-11 could protect cancer cells from cisplatin-induced apoptosis and thus promote their chemoresistance. Furthermore, it was also observed that IL-11 induced STAT3 phosphorylation and increased anti-apoptotic protein Bcl-2 and Survivin expression in cancer cells. The effect could be abrogated by suppressing STAT3 phosphorylation or silencing IL-11Rα expression in cancer cells. In conclusion, chemotherapy-induced IL-11 upregulation in CAF promotes lung adenocarcinoma cell chemoresistance by activating IL-11R/STAT3 anti-apoptotic signaling pathway.
Collapse
|
233
|
Mao L, Deng WW, Yu GT, Bu LL, Liu JF, Ma SR, Wu L, Kulkarni AB, Zhang WF, Sun ZJ. Inhibition of SRC family kinases reduces myeloid-derived suppressor cells in head and neck cancer. Int J Cancer 2016; 140:1173-1185. [PMID: 27798955 DOI: 10.1002/ijc.30493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022]
Abstract
SRC family kinases (SFKs), a group of nonreceptor tyrosine kinases, modulate multiple cellular functions, such as cell proliferation, differentiation and metabolism. SFKs display aberrant activity in progressive stages of human cancers. However, the precise role of SFKs in the head and neck squamous cell carcinoma (HNSCC) signaling network is far from clear. In this study, we found that the inhibition of SFKs activity by dasatinib effectively reduced the tumor size and population of MDSCs in the HNSCC mouse model. Molecular analysis indicates that phosphorylation of LYN, rather than SRC, was inhibited by dasatinib treatment. Next, we analyzed LYN expression by immunostaining and found that it was overexpressed in the human HNSCC specimens. Moreover, LYN expression in stromal cells positively correlated with myeloid-derived suppressor cells (MDSCs) makers CD11b and CD33 in human HNSCC. The dual positive expression of LYN in epithelial and stromal cells (EPI+ SRT+ ) was associated with unfavorable overall survival of HNSCC patients. These findings indicate that SFKs may be a potential target for an effective immunotherapy of HNSCC by decreasing MDSCs and moreover, LYN will have an impact on such therapeutic strategy.
Collapse
Affiliation(s)
- Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Wen-Feng Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
234
|
3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 2016; 34:1427-1441. [PMID: 27845258 DOI: 10.1016/j.biotechadv.2016.11.002] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
In comparison with 2D cell culture models, 3D spheroids are able to accurately mimic some features of solid tumors, such as their spatial architecture, physiological responses, secretion of soluble mediators, gene expression patterns and drug resistance mechanisms. These unique characteristics highlight the potential of 3D cellular aggregates to be used as in vitro models for screening new anticancer therapeutics, both at a small and large scale. Nevertheless, few reports have focused on describing the tools and techniques currently available to extract significant biological data from these models. Such information will be fundamental to drug and therapeutic discovery process using 3D cell culture models. The present review provides an overview of the techniques that can be employed to characterize and evaluate the efficacy of anticancer therapeutics in 3D tumor spheroids.
Collapse
|
235
|
Neutralization of TNFα in tumor with a novel nanobody potentiates paclitaxel-therapy and inhibits metastasis in breast cancer. Cancer Lett 2016; 386:24-34. [PMID: 27832973 DOI: 10.1016/j.canlet.2016.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/22/2016] [Accepted: 10/22/2016] [Indexed: 12/27/2022]
Abstract
Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Researchers have suggested that inflammatory factors in the tumor environment can promote cancer invasion and metastasis, stimulating cancer progression. Thus, novel strategies that target cytokines and modulate the tumor microenvironment may emerge as important approaches for treating metastatic breast cancer. Specific neutralization of pathogenic TNF signaling using a TNFα antibody has gained increasing attention. Considering this, a selective human TNFα neutralized antibody was generated based on nanobody technology. A TNFα-specific nanobody was produced in Pichia pastoris with a molecular mass of 15 kDa and affinity constant of 2.05 nM. In the proliferation experiment, the TNFα nanobody could inhibit the proliferation of the breast cancer cell line MCF-7 induced by hTNFα in a dose-dependent manner. In the microinvasion model, the TNFα nanobody could inhibit the migration of the breast cancer cell lines MCF-7, MDA-MB-231 and the invasiveness of MDA-MB-231 induced by hTNFα in a dose-dependent manner. Drug administration of the combination of paclitaxel with the TNFα nanobody in vivo significantly enhanced the efficacy against 4T-1 breast tumor proliferation and lung metastasis; meanwhile, E-cadherin tumor epithelial marker expression was upregulated, supporting the anti-tumor therapeutic relevance of paclitaxel and the TNFα nanobody on EMT. This study highlights the importance of neutralizing low TNFα levels in the tumor microenvironment to sensitize the chemotherapeutic response, which has attractive potential for clinical applications.
Collapse
|
236
|
Pereira JFS, Awatade NT, Loureiro CA, Matos P, Amaral MD, Jordan P. The third dimension: new developments in cell culture models for colorectal research. Cell Mol Life Sci 2016; 73:3971-89. [PMID: 27147463 PMCID: PMC11108567 DOI: 10.1007/s00018-016-2258-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 12/23/2022]
Abstract
Cellular models are important tools in various research areas related to colorectal biology and associated diseases. Herein, we review the most widely used cell lines and the different techniques to grow them, either as cell monolayer, polarized two-dimensional epithelia on membrane filters, or as three-dimensional spheres in scaffold-free or matrix-supported culture conditions. Moreover, recent developments, such as gut-on-chip devices or the ex vivo growth of biopsy-derived organoids, are also discussed. We provide an overview on the potential applications but also on the limitations for each of these techniques, while evaluating their contribution to provide more reliable cellular models for research, diagnostic testing, or pharmacological validation related to colon physiology and pathophysiology.
Collapse
Affiliation(s)
- Joana F S Pereira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Nikhil T Awatade
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cláudia A Loureiro
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Margarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Peter Jordan
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
237
|
Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression. Oncotarget 2016; 6:22081-97. [PMID: 26098779 PMCID: PMC4673148 DOI: 10.18632/oncotarget.4203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022] Open
Abstract
Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy.
Collapse
|
238
|
Kalluri R. The biology and function of fibroblasts in cancer. NATURE REVIEWS. CANCER 2016. [PMID: 27550820 DOI: 10.1038/nrc.2016.73.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
239
|
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
240
|
Tezcan O, Ojha T, Storm G, Kiessling F, Lammers T. Targeting cellular and microenvironmental multidrug resistance. Expert Opin Drug Deliv 2016; 13:1199-202. [PMID: 27461854 DOI: 10.1080/17425247.2016.1214570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Okan Tezcan
- a Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging , University Clinic and Helmholtz Institute for Biomedical Engineering , Aachen , Germany
| | - Tarun Ojha
- a Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging , University Clinic and Helmholtz Institute for Biomedical Engineering , Aachen , Germany.,c Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS) , Utrecht University , Utrecht , The Netherlands
| | - Gert Storm
- b Department of Targeted Therapeutics, Enschede MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , Enschede , The Netherlands.,c Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS) , Utrecht University , Utrecht , The Netherlands
| | - Fabian Kiessling
- a Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging , University Clinic and Helmholtz Institute for Biomedical Engineering , Aachen , Germany
| | - Twan Lammers
- a Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging , University Clinic and Helmholtz Institute for Biomedical Engineering , Aachen , Germany.,b Department of Targeted Therapeutics, Enschede MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , Enschede , The Netherlands.,c Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS) , Utrecht University , Utrecht , The Netherlands
| |
Collapse
|
241
|
Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 2016; 40:41-48. [PMID: 26938687 PMCID: PMC4975620 DOI: 10.1016/j.copbio.2016.02.007] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/23/2022]
Abstract
The tumor microenvironment is increasingly understood to contribute to cancer development and progression by affecting the complex interplay of genetic and epigenetic changes within the cells themselves. Moreover, recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior such as proliferation, cancer stem cell properties, and metastatic potential. Whereas initial assays have focused on basic ECM physical properties, such as stiffness, novel in vitro systems are becoming increasingly sophisticated in differentiating between distinct physical cues-ECM pore size, fiber alignment, and molecular composition-and elucidating the different roles these properties play in driving tumor progression and metastasis. Combined with advances in our understanding of the mechanisms responsible for how cells sense these properties, a new appreciation for the role of mechanics in cancer is emerging.
Collapse
Affiliation(s)
- Fabian Spill
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Daniel S Reynolds
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, United States
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, United States; Howard Hughes Medical Institute, Boston University, Boston, MA 00215, United States.
| |
Collapse
|
242
|
Hartmann S, Bhola NE, Grandis JR. HGF/Met Signaling in Head and Neck Cancer: Impact on the Tumor Microenvironment. Clin Cancer Res 2016; 22:4005-13. [PMID: 27370607 DOI: 10.1158/1078-0432.ccr-16-0951] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Studies to date have revealed several major molecular alterations that contribute to head and neck squamous cell carcinoma (HNSCC) initiation, progression, metastatic spread, and therapeutic failure. The EGFR is the only FDA-approved therapeutic target, yet responses to cetuximab have been limited. Activation and cross-talk of cellular receptors and consequent activation of different signaling pathways contribute to limited activity of blockade of a single pathway. The hepatocyte growth factor (HGF) receptor, Met, has been implicated in HNSCC tumorigenesis and EGFR inhibitor resistance. HGF, the sole ligand of Met, is overexpressed in the tumor microenvironment. The role of HGF/Met signaling in proliferation, metastasis, and angiogenesis has been investigated in HNSCC, leading to clinical trials with various Met inhibitors and HGF antibodies. However, the role of the HGF/Met signaling axis in mediating the tumor microenvironment has been relatively understudied in HNSCC. In this review, we discuss the functional roles of Met and HGF in HNSCC with a focus on the tumor microenvironment and the immune system. Clin Cancer Res; 22(16); 4005-13. ©2016 AACR.
Collapse
Affiliation(s)
- Stefan Hartmann
- Department of Otolaryngology, University of California San Francisco, San Francisco, California. Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Neil E Bhola
- Department of Otolaryngology, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
243
|
Januchowski R, Świerczewska M, Sterzyńska K, Wojtowicz K, Nowicki M, Zabel M. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines. J Cancer 2016; 7:1295-310. [PMID: 27390605 PMCID: PMC4934038 DOI: 10.7150/jca.15371] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in cytostatic drug resistance of cancer cells. The exact role of these COL genes in drug resistance requires further investigation.
Collapse
Affiliation(s)
- Radosław Januchowski
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Monika Świerczewska
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Karolina Sterzyńska
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Karolina Wojtowicz
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Michał Nowicki
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Maciej Zabel
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland;; 2. Department of Histology and Embryology, Wroclaw Medical University, Poland
| |
Collapse
|
244
|
English DP, Menderes G, Black J, Schwab CL, Santin AD. Molecular diagnosis and molecular profiling to detect treatment-resistant ovarian cancer. Expert Rev Mol Diagn 2016; 16:769-82. [PMID: 27169329 DOI: 10.1080/14737159.2016.1188692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer remains the gynecologic tumor with the highest rate of recurrence after initial optimal cytoreductive surgery followed by adjuvant chemotherapy. Unfortunately, with the development of recurrent ovarian cancer often comes the discovery of chemo-resistant disease. The absence of improvement in long term survival, notwithstanding the use of newer agents as is seen in other cancers, emphasizes the need for improved understanding of the processes that lead to chemo-resistant disease. AREAS COVERED This review will cover the following topics: 1. Molecular and cellular mechanisms in platinum and paclitaxel resistance 2. Other molecular mediators of chemo-resistance 3. Expression of stem cell markers in ovarian cancer and relationship to chemo-resistance 4. MicroRNA and long non-coding RNA expression in chemo-resistant ovarian cancer 5. Determination of chromosomal aberrations as markers of chemo-resistance 6. Molecular profiling in chemo-resistant disease. A standard MEDLINE search was performed using the key words; ovarian cancer, chemo-resistant disease, molecular profiling, cancer stem cells and chemotherapy. Expert Commentary: Over the next few years the challenge remains to precisely determine the mechanisms responsible for the onset and maintenance of chemo-resistance and to effectively target these mechanisms.
Collapse
Affiliation(s)
- Diana P English
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , Stanford University , Stanford , CA , USA
| | - Gulden Menderes
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , Stanford University , Stanford , CA , USA
| | - Carlton L Schwab
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
245
|
Ham SL, Joshi R, Thakuri PS, Tavana H. Liquid-based three-dimensional tumor models for cancer research and drug discovery. Exp Biol Med (Maywood) 2016; 241:939-54. [PMID: 27072562 PMCID: PMC4950350 DOI: 10.1177/1535370216643772] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors are three-dimensional tissues where close contacts between cancer cells, intercellular interactions between cancer and stromal cells, adhesion of cancer cells to the extracellular matrix, and signaling of soluble factors modulate functions of cancer cells and their response to therapeutics. Three-dimensional cultures of cancer cells overcome limitations of traditionally used monolayer cultures and recreate essential characteristics of tumors such as spatial gradients of oxygen, growth factors, and metabolites and presence of necrotic, hypoxic, quiescent, and proliferative cells. As such, three-dimensional tumor models provide a valuable tool for cancer research and oncology drug discovery. Here, we describe different tumor models and primarily focus on a model known as tumor spheroid. We summarize different technologies of spheroid formation, and discuss the use of spheroids to address the influence of stromal fibroblasts and immune cells on cancer cells in tumor microenvironment, study cancer stem cells, and facilitate compound screening in the drug discovery process. We review major techniques for quantification of cellular responses to drugs and discuss challenges ahead to enable broad utility of tumor spheroids in research laboratories, integrate spheroid models into drug development and discovery pipeline, and use primary tumor cells for drug screening studies to realize personalized cancer treatment.
Collapse
Affiliation(s)
- Stephanie L Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Pradip S Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
246
|
Baar M, Coquille L, Mayer H, Hölzel M, Rogava M, Tüting T, Bovier A. A stochastic model for immunotherapy of cancer. Sci Rep 2016; 6:24169. [PMID: 27063839 PMCID: PMC4827069 DOI: 10.1038/srep24169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/21/2016] [Indexed: 12/04/2022] Open
Abstract
We propose an extension of a standard stochastic individual-based model in population dynamics which broadens the range of biological applications. Our primary motivation is modelling of immunotherapy of malignant tumours. In this context the different actors, T-cells, cytokines or cancer cells, are modelled as single particles (individuals) in the stochastic system. The main expansions of the model are distinguishing cancer cells by phenotype and genotype, including environment-dependent phenotypic plasticity that does not affect the genotype, taking into account the effects of therapy and introducing a competition term which lowers the reproduction rate of an individual in addition to the usual term that increases its death rate. We illustrate the new setup by using it to model various phenomena arising in immunotherapy. Our aim is twofold: on the one hand, we show that the interplay of genetic mutations and phenotypic switches on different timescales as well as the occurrence of metastability phenomena raise new mathematical challenges. On the other hand, we argue why understanding purely stochastic events (which cannot be obtained with deterministic models) may help to understand the resistance of tumours to therapeutic approaches and may have non-trivial consequences on tumour treatment protocols. This is supported through numerical simulations.
Collapse
Affiliation(s)
- Martina Baar
- Institute for Applied Mathematics, Bonn University, Bonn, Germany
| | - Loren Coquille
- Institute for Applied Mathematics, Bonn University, Bonn, Germany
| | - Hannah Mayer
- Institute for Applied Mathematics, Bonn University, Bonn, Germany
| | - Michael Hölzel
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, Bonn University, Bonn, Germany
| | - Meri Rogava
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University Hospital, Bonn University, Bonn, Germany
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University Hospital, Bonn University, Bonn, Germany
- Department of Dermatology, University Hospital, Magdeburg University, Germany
| | - Anton Bovier
- Institute for Applied Mathematics, Bonn University, Bonn, Germany
| |
Collapse
|
247
|
Qin Y, Sundaram S, Essaid L, Chen X, Miller SM, Yan F, Darr DB, Galanko JA, Montgomery SA, Major MB, Johnson GL, Troester MA, Makowski L. Weight loss reduces basal-like breast cancer through kinome reprogramming. Cancer Cell Int 2016; 16:26. [PMID: 27042159 PMCID: PMC4818517 DOI: 10.1186/s12935-016-0300-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC). BBC has no targeted therapies, making the need for mechanistic insight urgent. Reducing adiposity in adulthood can lower incidence of BBC in humans. Thus, this study investigated whether a dietary intervention to reduce adiposity prior to tumor onset would reverse HFD-induced BBC. METHODS Adult C3(1)-Tag mice were fed a low or high fat diet (LFD, HFD), and an obese group initially exposed to HFD was then switched to LFD to induce weight loss. A subset of mice was sacrificed prior to average tumor latency to examine unaffected mammary gland. Latency, tumor burden and progression was evaluated for effect of diet exposure. Physiologic, histology and proteomic analysis was undertaken to determine mechanisms regulating obesity and weight loss in BBC risk. Statistical analysis included Kaplan-Meier and log rank analysis to investigate latency. Student's t tests or ANOVA compared variables. RESULTS Mice that lost weight displayed significantly delayed latency compared to mice fed HFD, with latency matching those on LFD. Plasma leptin concentrations significantly increased with adiposity, were reduced to control levels with weight loss, and negatively correlated with tumor latency. HFD increased atypical ductal hyperplasia and ductal carcinoma in situ in mammary gland isolated prior to mean latency-a phenomenon that was lost in mice induced to lose weight. Importantly, kinome analysis revealed that weight loss reversed HFD-upregulated activity of PKC-α, PKD1, PKA, and MEK3 and increased AMPKα activity in unaffected mammary glands isolated prior to tumor latency. CONCLUSIONS Weight loss prior to tumor onset protected against the effects of HFD on latency and pre-neoplastic lesions including atypical ductal hyperplasia and DCIS. Using innovative kinomics, multiple kinases upstream of MAPK/P38α were demonstrated to be activated by HFD-induced weight gain and reversed with weight loss, providing novel targets in obesity-associated BBC. Thus, the HFD-exposed microenvironment that promoted early tumor onset was reprogrammed by weight loss and the restoration of a lean phenotype. Our work contributes to an understanding of underlying mechanisms associated with tumor and normal mammary changes that occur with weight loss.
Collapse
Affiliation(s)
- Yuanyuan Qin
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Sneha Sundaram
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Luma Essaid
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Xin Chen
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Samantha M. Miller
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Feng Yan
- />Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - David B. Darr
- />Mouse Phase I Unit, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Joseph A. Galanko
- />Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Stephanie A. Montgomery
- />Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Michael B. Major
- />Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Gary L. Johnson
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Melissa A. Troester
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- />Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Liza Makowski
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
248
|
Salamanna F, Contartese D, Maglio M, Fini M. A systematic review on in vitro 3D bone metastases models: A new horizon to recapitulate the native clinical scenario? Oncotarget 2016; 7:44803-44820. [PMID: 27027241 PMCID: PMC5190136 DOI: 10.18632/oncotarget.8394] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Melania Maglio
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
249
|
Chang FC, Tsao CT, Lin A, Zhang M, Levengood SL, Zhang M. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells. Polymers (Basel) 2016; 8:112. [PMID: 27595012 PMCID: PMC5004991 DOI: 10.3390/polym8040112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 01/23/2023] Open
Abstract
Mechanical properties of the extracellular matrix have a profound effect on the behavior of anchorage-dependent cells. However, the mechanisms that define the effects of matrix stiffness on cell behavior remains unclear. Therefore, the development and fabrication of synthetic matrices with well-defined stiffness is invaluable for studying the interactions of cells with their biophysical microenvironment in vitro. We demonstrate a methoxypolyethylene glycol (mPEG)-modified chitosan hydrogel network where hydrogel stiffness can be easily modulated under physiological conditions by adjusting the degree of mPEG grafting onto chitosan (PEGylation). We show that the storage modulus of the hydrogel increases as PEGylation decreases and the gels exhibit instant self-recovery after deformation. Breast cancer cells cultured on the stiffest hydrogels adopt a more malignant phenotype with increased resistance to doxorubicin as compared with cells cultured on tissue culture polystyrene or Matrigel. This work demonstrates the utility of mPEG-modified chitosan hydrogel, with tunable mechanical properties, as an improved replacement of conventional culture system for in vitro characterization of breast cancer cell phenotype and evaluation of cancer therapies.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Ching-Ting Tsao
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Anqi Lin
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Mengying Zhang
- Department of Molecular Engineering and Science Institute, University of Washington, Seattle, WA 98195, USA;
| | - Sheeny Lan Levengood
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| |
Collapse
|
250
|
Friberg S, Nyström AM. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer? J Nanobiotechnology 2016; 14:17. [PMID: 26955956 PMCID: PMC4784447 DOI: 10.1186/s12951-016-0172-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
This review is written with the purpose to review the current nanomedicine literature and provide an outlook on the developments in utilizing nanoscale drug constructs in treatment of solid cancers as well as in the potential treatment of multi-drug resistant cancers. No specific design principles for this review have been utilized apart from our active choice to avoid results only based on in vitro studies. Few drugs based on nanotechnology have progressed to clinical trials, since most are based only on in vitro experiments which do not give the necessary data for the research to progress towards pre-clinical studies. The area of nanomedicine has indeed spark much attention and holds promise for improved future therapeutics in the treatment of solid cancers. However, despite much investment few targeted therapeutics have successfully progressed to early clinical trials, indicating yet again that the human body is complicated and that much more understanding of the fundamentals of receptor interactions, physics of nanomedical constructs and their circulation in the body is indeed needed. We believe that nanomedical therapeutics can allow for more efficient treatments of resistant cancers, and may well be a cornerstone for RNA based therapeutics in the future given their general need for shielding from the harsh environment in the blood stream.
Collapse
Affiliation(s)
- Sten Friberg
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Retzius väg 8, 171 77, Stockholm, Sweden.
| | - Andreas M Nyström
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77, Stockholm, Sweden.
| |
Collapse
|