201
|
de Souza RF, de Moraes SRA, Augusto RL, de Freitas Zanona A, Matos D, Aidar FJ, da Silveira Andrade-da-Costa BL. Endurance training on rodent brain antioxidant capacity: A meta-analysis. Neurosci Res 2018; 145:1-9. [PMID: 30326252 DOI: 10.1016/j.neures.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
Abstract
The influence of physical exercise on brain antioxidant defense mechanisms has been studied. Nevertheless, the effect of training volume on the brain`s redox balance remains unclear. In this meta-analysis, we compared the effect of training volume on antioxidant enzymatic resource and lipid peroxidation on various brain regions. The activities of the enzymes glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and the levels of thiobarbituric acid reactive substances (TBARS) were also evaluated. The effects of training periods (weeks) and exercise duration were compared. Meta-analysis revealed that protocols over 8 weeks were associated with an increase in SOD (p = 0.0008) and CAT activities (p = 0.0001). Exercise durations for 30 and 60 min were associated with higher CAT activity (p = 0.04). Joint analysis revealed that moderate physical exercise over 4 and 8 weeks promoted a healthy enzymatic balance. However, high volumes of exercise over 8 weeks were associated with the increased antioxidant enzymatic activity, indicating higher reactive oxygen species (ROS) levels. The data also indicated that there is still limited research and inaccurate information, on the safety conditions of training periods that simulate tests of ultra resistance in humans.
Collapse
Affiliation(s)
- Raphael Fabricio de Souza
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil; Department of Physical Education, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil; Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil.
| | | | - Ricielle Lopes Augusto
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Aristela de Freitas Zanona
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Dihogo Matos
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil
| | - Felipe J Aidar
- Department of Physical Education, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil; Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil; Graduate Program in Physiological Science, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil
| | - Belmira Lara da Silveira Andrade-da-Costa
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
202
|
Marek V, Mélik-Parsadaniantz S, Villette T, Montoya F, Baudouin C, Brignole-Baudouin F, Denoyer A. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic Biol Med 2018; 126:27-40. [PMID: 30040995 DOI: 10.1016/j.freeradbiomed.2018.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
AIMS The ocular surface is the very first barrier between the visual system and external environment. It protects the eye from the exposure to various light sources that significantly emit in blue spectrum. However, the impact of blue light on the ocular surface has been poorly explored so far. In this study, we investigated in vitro the phototoxicity of blue light illumination in human epithelial cells of the ocular surface. We worked either in basal conditions or under hyperosmolar stress, in order to mimic dry eye disease (DED) that is the most common disease involving the ocular surface. RESULTS Corneal and conjunctival epithelial cells suffered the most from violet-blue light but also from longer-wave blue light. Exposure to blue wavebands significantly decreased cellular viability, impacted on cellular morphology and provoked reactive oxygen species (ROS) over-production. Conjunctival epithelial cell line had a greater photosensitivity than the corneal epithelial one. Hyperosmolar stress potentiated the blue light phototoxicity, increasing inflammation, altering mitochondrial membrane potential, and triggering the glutathione-based antioxidant system. INNOVATION In human epithelial corneal and conjunctival cells of the ocular surface, we demonstrated the harmful impact of blue light on viability, redox state and inflammation processes, which was modified by hyperosmolarity. CONCLUSION Blue light induced cell death and significant ROS production, and altered the expression of inflammatory genes and operation of the cellular defensive system. We established for the first time that hyperosmolar stress impacted phototoxicity, further suggesting that DED patients might be more sensitive to blue light ocular toxicity.
Collapse
Affiliation(s)
- Veronika Marek
- Essilor International, R&D Department, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | | | | | - Fanny Montoya
- Essilor International, R&D Department, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Versailles-Saint-Quentin-en-Yvelines Université, Versailles, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Sorbonne Paris Cité - Paris Descartes Université, Faculté de Pharmacie de Paris, Département de Toxicologie, Paris, France
| | - Alexandre Denoyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; CHU Robert Debré, Université Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
203
|
Hood WR, Zhang Y, Mowry AV, Hyatt HW, Kavazis AN. Life History Trade-offs within the Context of Mitochondrial Hormesis. Integr Comp Biol 2018; 58:567-577. [PMID: 30011013 PMCID: PMC6145418 DOI: 10.1093/icb/icy073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Evolutionary biologists have been interested in the negative interactions among life history traits for nearly a century, but the mechanisms that would create this negative interaction remain poorly understood. One variable that has emerged as a likely link between reproductive effort and longevity is oxidative stress. Specifically, it has been proposed that reproduction generates free radicals that cause oxidative stress and, in turn, oxidative stress damages cellular components and accelerates senescence. We propose that there is limited support for the hypothesis because reactive oxygen species (ROS), the free radicals implicated in oxidative damage, are not consistently harmful. With this review, we define the hormetic response of mitochondria to ROS, termed mitochondrial hormesis, and describe how to test for a mitohormetic response. We interpret existing data using our model and propose that experimental manipulations will further improve our knowledge of this response. Finally, we postulate how the mitohormetic response curve applies to variation in animal performance and longevity.
Collapse
Affiliation(s)
- W R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Y Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - A V Mowry
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Product Development, Stimlabs, Roswell, GA 30076, USA
| | - H W Hyatt
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - A N Kavazis
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
204
|
Viña J, Borras C, Gomez-Cabrera MC. A free radical theory of frailty. Free Radic Biol Med 2018; 124:358-363. [PMID: 29958933 DOI: 10.1016/j.freeradbiomed.2018.06.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
The free radical theory of ageing provided an intellectual framework for many laboratories working on ageing. However, experimental and clinical evidence showing that high doses of antioxidants do not have an effect on ageing or on age-associated diseases, cast doubts on the validity of this theory. Data from our own laboratory show that oxidative damage does not correlate with age, especially in the geriatric population, but rather with the frailty state. This has led us to postulate the free radical theory of frailty that proposes that oxidative damage is associated with frailty, but not with chronological age itself. Superoxide dismutase deficient mice are more frail than controls. But more importantly, we have observed that animals that are protected against oxidative damage by overexpression of antioxidant enzymes, delay the onset of frailty and are more vigorous than controls. In this review, we describe results from both, experimental animals and human cohorts, that lead us to the formulate this free radical theory of frailty.
Collapse
Affiliation(s)
- Jose Viña
- Freshage Research Group. Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15, Valencia, Spain
| | - Consuelo Borras
- Freshage Research Group. Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15, Valencia, Spain.
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group. Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15, Valencia, Spain
| |
Collapse
|
205
|
A Mitochondrial Encoded Messenger at the Nucleus. Cells 2018; 7:cells7080105. [PMID: 30104535 PMCID: PMC6115982 DOI: 10.3390/cells7080105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondria–nucleus (mitonuclear) retrograde signaling via nuclear import of otherwise mitochondrial targeted factors occurs during mitochondrial unfolded protein response (UPRmt), a mechanism that counters mitochondrial and cellular stresses. Other than nuclear encoded proteins, mitochondrial DNA (mtDNA)-encoded peptides, such as humanin, are known to have important pro-survival and metabolic regulatory functions. A recent report has indicated that another mtDNA-encoded peptide, the mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), could translocate into the nucleus upon stress induction. In the nucleus, MOTS-c binds to DNA and regulates the transcription of stress response genes in concert with other transcription factors. This is the first clear example of a mitochondria-derived peptide (MDP) acting in the nucleus to affect transcriptional responses to stress. Thus, MOTS-c may bear some characteristics of a ‘mitokine’ factor that mediates mitohormesis, influencing cell survival as well as organismal health and longevity.
Collapse
|
206
|
Agathokleous E, Kitao M, Calabrese EJ. Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. ENVIRONMENTAL RESEARCH 2018; 165:274-278. [PMID: 29734028 DOI: 10.1016/j.envres.2018.04.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 05/09/2023]
Abstract
It has long been debated whether a little stress may be "good" for you. Extensive evidence has now sufficiently accumulated demonstrating that low doses of a vast range of chemical and physical agents induce protective/beneficial effects while the opposite occurs at higher doses, a phenomenon known as hormesis. Low doses of environmental agents have recently induced autophagy, a critical adaptive response that protects essentially all cell types, as well as being transgenerational via epigenetic mechanisms. These collective findings highlight a generalized and substantial ongoing dose-response transformation with significant implications for disease biology and clinical applications, challenging the history and practice of toxicology and pharmacology along with an appeal to stake holders to reexamine the process of risk assessment, with the goal of optimizing public health rather than simply avoiding harm.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
207
|
Gene Expression of Sirtuin-1 and Endogenous Secretory Receptor for Advanced Glycation End Products in Healthy and Slightly Overweight Subjects after Caloric Restriction and Resveratrol Administration. Nutrients 2018; 10:nu10070937. [PMID: 30037068 PMCID: PMC6073749 DOI: 10.3390/nu10070937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/09/2023] Open
Abstract
Sirtuin-1 (Sirt-1) and an endogenous secretory receptor for an advanced glycation end product (esRAGE) are associated with vascular protection. The purpose of this study was to examine the effects of resveratrol (RSV) and caloric restriction (CR) on gene expression of Sirt-1 and esRAGE on serum levels of Sirt1 and esRAGE in healthy and slightly overweight subjects. The study included 48 healthy subjects randomized to 30 days of RSV (500 mg/day) or CR (1000 cal/day). Waist circumference (p = 0.011), TC (p = 0.007), HDL (p = 0.031), non-HDL (p = 0.025), ApoA1 (p = 0.011), and ApoB (p = 0.037) decreased in the CR group. However, TC (p = 0.030), non-HDL (p = 0.010), ApoB (p = 0.034), and HOMA-IR (p = 0.038) increased in the RSV group. RSV and CR increased serum levels of Sirt-1, respectively, from 1.06 ± 0.71 ng/mL to 5.75 ± 2.98 ng/mL (p < 0.0001) and from 1.65 ± 1.81 ng/mL to 5.80 ± 2.23 ng/mL (p < 0.0001). esRAGE serum levels were similar in RSV (p = NS) and CR (p = NS) groups. Significant positive correlation was observed between gene expression changes of Sirt-1 and esRAGE in RSV (r = 0.86; p < 0.0001) and in CR (r = 0.71; p < 0.0001) groups, but not for the changes in serum concentrations. CR promoted increases in the gene expression of esRAGE (post/pre). Future long-term studies are needed to evaluate the impact of these outcomes on vascular health.
Collapse
|
208
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
209
|
Teo E, Batchu KC, Barardo D, Xiao L, Cazenave-Gassiot A, Tolwinski N, Wenk M, Halliwell B, Gruber J. A novel vibration-induced exercise paradigm improves fitness and lipid metabolism of Caenorhabditis elegans. Sci Rep 2018; 8:9420. [PMID: 29925926 PMCID: PMC6010440 DOI: 10.1038/s41598-018-27330-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Exercise has been known to reduce the risk of obesity and metabolic syndrome, but the mechanisms underlying many exercise benefits remain unclear. This is, in part, due to a lack of exercise paradigms in invertebrate model organisms that would allow rapid mechanistic studies to be conducted. Here we report a novel exercise paradigm in Caenorhabditis elegans (C. elegans) that can be implemented under standard laboratory conditions. Mechanical stimulus in the form of vibration was transduced to C. elegans grown on solid agar media using an acoustic actuator. One day post-exercise, the exercised animals showed greater physical fitness compared to the un-exercised controls. Despite having higher mitochondrial reactive oxygen species levels, no mitohormetic adaptations and lifespan extension were observed in the exercised animals. Nonetheless, exercised animals showed lower triacylglycerides (TAG) accumulation than the controls. Among the individual TAG species, the most significant changes were found in mono- and polyunsaturated fatty acid residues. Such alteration resulted in an overall lower double bond index and peroxidation index which measure susceptibility towards lipid peroxidation. These observations are consistent with findings from mammalian exercise literature, suggesting that exercise benefits are largely conserved across different animal models.
Collapse
Affiliation(s)
- Emelyne Teo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | - Diogo Barardo
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Linfan Xiao
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | | | - Markus Wenk
- Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
- Science Division, Yale-NUS College, Singapore, Singapore.
| |
Collapse
|
210
|
Gusarov I, Nudler E. Glycogen at the Crossroad of Stress Resistance, Energy Maintenance, and Pathophysiology of Aging. Bioessays 2018; 40:e1800033. [DOI: 10.1002/bies.201800033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/31/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York NY 10016 USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York NY 10016 USA
- Howard Hughes Medical Institute; New York University School of Medicine; New York NY 10016 USA
| |
Collapse
|
211
|
Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of Aging and Age-Related Neurodegenerative Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:49-82. [PMID: 30072060 DOI: 10.1016/bs.pmbts.2018.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases are complex, progressive disorders and affect millions of people worldwide, contributing significantly to the global burden of disease. In recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we describe the current state of play for epigenetic research into neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. We focus on the recent evidence for a potential role of DNA modifications, histone modifications and non-coding RNA in the etiology of these disorders. Finally, we discuss how new technological and bioinformatics advances in the field of epigenetics could further progress our understanding about the underlying mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands; University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
212
|
Ross EM, Maxwell PH. Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Exp Gerontol 2018; 108:189-200. [PMID: 29705357 PMCID: PMC5994204 DOI: 10.1016/j.exger.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
A variety of mild stresses have been shown to extend lifespan in diverse species through hormesis, which is a beneficial response to a stress or toxin that would cause a negative response at a higher exposure. Whether particular stresses induce hormesis can vary with genotype for a given species, and the underlying mechanisms of lifespan extension are only partly understood in most cases. We show that low doses of the DNA damaging or replication stress agents hydroxyurea, methyl methanesulfonate, 4-nitroquinoline 1-oxide, or Zeocin (a phleomycin derivative) lengthened chronological lifespan in Saccharomyces cerevisiae if cells were exposed during growth, but not if they were exposed during stationary phase. Treatment with these agents did not change mitochondrial activity, increase resistance to acetic acid, ethanol, or heat stress, and three of four treatments did not increase resistance to hydrogen peroxide. Stationary phase yeast populations consist of both quiescent and nonquiescent cells, and all four treatments increased the proportion of quiescent cells. Several mutant strains with deletions in genes that influence quiescence prevented Zeocin treatment from extending lifespan and from increasing the proportion of quiescent stationary phase cells. These data indicate that mild DNA damage stress can extend lifespan by promoting quiescence in the absence of mitohormesis or improved general stress responses that have been frequently associated with improved longevity in other cases of hormesis. Further study of the underlying mechanism may yield new insights into quiescence regulation that will be relevant to healthy aging.
Collapse
Affiliation(s)
- Emily M Ross
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA; Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
213
|
Govindan S, Amirthalingam M, Duraisamy K, Govindhan T, Sundararaj N, Palanisamy S. Phytochemicals-induced hormesis protects Caenorhabditis elegans against α-synuclein protein aggregation and stress through modulating HSF-1 and SKN-1/Nrf2 signaling pathways. Biomed Pharmacother 2018; 102:812-822. [PMID: 29605769 DOI: 10.1016/j.biopha.2018.03.128] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/11/2023] Open
Abstract
Mild stress activates the adaptive cellular response for the subsequent severe stress called hormesis. Hormetic stress plays a vital role to activate multiple stress-responsive genes for the benefit of an organism. In tropical regions of world, tubers of Dioscorea spp. has been extensively used in folk medicine and also consumed as food. In this study, we report that the phytochemicals of Dioscorea alata L., tubers extends the lifespan of nematode model Caenorhabditis elegans by hormetic mechanism. We showed that the low dose of tubers extract at 200 and 300 μg/mL extends the mean lifespan of wild-type worms, whereas higher doses are found to be toxic. Supplementation of tubers extract slightly increased the intracellular ROS in second-day adult worms and it might activate the adaptive stress response, which protects the worms from oxidative and thermal stress. Transgenic reporter gene expression assay showed that extract treatment enhanced the expression of stress protective genes such as hsp-16.2, hsp-6, hsp-60 and gst-4. Further studies proved that the transcription factors HSF-1 and SKN-1/Nrf2 were implicated in hormetic stress response of the worms. Moreover, pretreatment of extract reduced the high glucose-mediated lipid accumulation by enhancing the expression of glyoxalase-1. It was also found that the aggregation of Parkinson's related protein α-synuclein reduced in the transgenic strain NL5901 and extended its lifespan. Finally, our results concluded that the presences of hormetic dietary phytochemicals in tubers might drive the stress response in C. elegans via HSF-1 and SKN-1/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Shanmugam Govindan
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Kalaiselvi Duraisamy
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Thiruppathi Govindhan
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Sundararaj Palanisamy
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
214
|
Diet Quality and Its Relationship with Antioxidant Status in Patients with Rheumatoid Arthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8506343. [PMID: 29849918 PMCID: PMC5907524 DOI: 10.1155/2018/8506343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/11/2018] [Accepted: 02/21/2018] [Indexed: 12/29/2022]
Abstract
A direct contribution towards destructive, proliferative synovitis in rheumatoid arthritis (RA) has been attributed to reactive oxygen species action. Some nutrients are considered to be capable of improving the oxidant/antioxidant status in RA; however the impact of diet composition on the antioxidant capacity of serum has not yet been studied in this disease. The aim of the study was to assess the relationship between diet quality and antioxidant status in patients with RA and healthy controls. Nutritional assessment was performed, and antioxidant status in serum, without and with deproteinization (TAS and DSAS, resp.), was determined in 82 RA and 87 healthy subjects. The diet of the RA group was low-energy and imbalanced. TAS and DSAS were significantly lower in RA patients than in controls. Antioxidant status significantly correlated with the supply of foods and nutrients influencing antioxidant and anti-inflammatory defense in RA; however, in this group, TAS was more sensitive to diet than DSAS. In healthy subjects, the nonprotein pool of serum antioxidants was more tightly linked to diet. These outcomes indicate the need to monitor diet quality of patients with RA and the usefulness of TAS measurements in this monitoring.
Collapse
|
215
|
Gureev AP, Shaforostova EA, Starkov AA, Popov VN. β-Guanidinopropionic Acid Stimulates Brain Mitochondria Biogenesis and Alters Cognitive Behavior in Nondiseased Mid-Age Mice. J Exp Neurosci 2018; 12:1179069518766524. [PMID: 29636631 PMCID: PMC5888816 DOI: 10.1177/1179069518766524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 01/29/2023] Open
Abstract
β-guanidinopropionic acid (β-GPA) has been used as a nutritional supplement for increasing physical strength and endurance with positive and predictable results. In muscles, it works as a nonadaptive stimulator of mitochondria biogenesis; it also increases lipid metabolism. There are data indicating that β-GPA can be also neuroprotective, but its mechanisms of action in the brain are less understood. We studied the effects of β-GPA on animal behavior and mitochondrial biogenesis in the cortex and midbrain of mid-age healthy mice. We found that even short-term 3-week-long β-GPA treatment increased the mitochondrial DNA (mtDNA) copy number in the cortex and ventral midbrain, as well as the expression of several key antioxidant and metabolic enzymes—indicators of mitochondria proliferation and the activation of Nrf2/ARE signaling cascade. At the same time, β-GPA downregulated the expression of the β-oxidation genes. Administration of β-GPA in mice for 3 weeks improved the animals’ physical strength and endurance health, ie, increased their physical strength and endurance and alleviated anxiety. Thus, β-GPA might be considered an adaptogene affecting both the muscle and brain metabolism in mammals.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Anatoly A Starkov
- Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
216
|
Santos AL, Sinha S, Lindner AB. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1941285. [PMID: 29743972 PMCID: PMC5878877 DOI: 10.1155/2018/1941285] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with the accumulation of cellular damage over the course of a lifetime. This process is promoted in large part by reactive oxygen species (ROS) generated via cellular metabolic and respiratory pathways. Pharmacological, nonpharmacological, and genetic interventions have been used to target cellular and mitochondrial networks in an effort to decipher aging and age-related disorders. While ROS historically have been viewed as a detrimental byproduct of normal metabolism and associated with several pathologies, recent research has revealed a more complex and beneficial role of ROS in regulating metabolism, development, and lifespan. In this review, we summarize the recent advances in ROS research, focusing on both the beneficial and harmful roles of ROS, many of which are conserved across species from bacteria to humans, in various aspects of cellular physiology. These studies provide a new context for our understanding of the parts ROS play in health and disease. Moreover, we highlight the utility of bacterial models to elucidate the molecular pathways by which ROS mediate aging and aging-related diseases.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sanchari Sinha
- Defence Institute of Physiology and Allied Sciences, DRDO, New Delhi, India
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
217
|
Xu J, Guo Y, Sui T, Wang Q, Zhang Y, Zhang R, Wang M, Guan S, Wang L. Molecular mechanisms of anti-oxidant and anti-aging effects induced by convallatoxin in Caenorhabditis elegans. Free Radic Res 2018; 51:529-544. [PMID: 28503972 DOI: 10.1080/10715762.2017.1331037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Convallatoxin is widely used as a cardiac glycoside in acute and chronic congestive heart-failure and paroxysmal tachycardia, with many effects and underlying protective mechanisms on inflammation and cellular proliferation. However, convallatoxin has not been investigated in its antioxidant effects and lifespan extension in Caenorhabditis elegans. In this study, we found that convallatoxin (20 μM) could significantly prolong the lifespan of wild-type C. elegans up to 16.3% through daf-16, but not sir-2.1 signalling and increased thermotolerance and resistance to paraquat-induced oxidative stress. Convallatoxin also improved pharyngeal pumping, locomotion, reduced lipofuscin accumulation and reactive oxygen species levels in C. elegans, which were attributed to hormesis, free radical-scavenging effects in vivo, and up-regulation of stress resistance-related proteins, such as SOD-3 and HSP-16.1. Furthermore, aging-associated genes daf-16, sod-3, and ctl-2 also appeared to contribute to the stress-resistance effect of convallatoxin. In summary, this study demonstrates that convallatoxin can protect against heat and oxidative stress and extend the lifespan of C. elegans, pointing it as a potential novel drug for retarding the aging process in humans.
Collapse
Affiliation(s)
- Jia Xu
- a School of Life Science , Jilin University , Changchun , PR China
| | - Youming Guo
- a School of Life Science , Jilin University , Changchun , PR China
| | - Tianzhuo Sui
- a School of Life Science , Jilin University , Changchun , PR China
| | - Qifei Wang
- b College of Chemistry , Jilin University , Changchun , PR China
| | - Yue Zhang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Ruining Zhang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Mingyang Wang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Shuwen Guan
- a School of Life Science , Jilin University , Changchun , PR China
| | - Liping Wang
- a School of Life Science , Jilin University , Changchun , PR China
| |
Collapse
|
218
|
Silvestri E, Cioffi F, De Matteis R, Senese R, de Lange P, Coppola M, Salzano AM, Scaloni A, Ceccarelli M, Goglia F, Lanni A, Moreno M, Lombardi A. 3,5-Diiodo-L-Thyronine Affects Structural and Metabolic Features of Skeletal Muscle Mitochondria in High-Fat-Diet Fed Rats Producing a Co-adaptation to the Glycolytic Fiber Phenotype. Front Physiol 2018; 9:194. [PMID: 29593557 PMCID: PMC5854997 DOI: 10.3389/fphys.2018.00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/23/2018] [Indexed: 11/22/2022] Open
Abstract
Hyperlipidemic state-associated perturbations in the network of factors controlling mitochondrial functions, i. e., morphogenesis machinery and metabolic sensor proteins, produce metabolic inflexibility, insulin resistance and reduced oxidative capacity in skeletal muscle. Moreover, intramyocellular lipid (IMCL) accumulation leads to tissue damage and inflammation. The administration of the naturally occurring metabolite 3,5-diiodo-L-thyronine (T2) with thyromimetic actions to high fat diet (HFD)-fed rats exerts a systemic hypolipidemic effect, which produces a lack of IMCL accumulation, a shift toward glycolytic fibers and amelioration of insulin sensitivity in gastrocnemius muscle. In this study, an integrated approach combining large-scale expression profile and functional analyses was used to characterize the response of skeletal muscle mitochondria to T2 during a HFD regimen. Long-term T2 administration to HDF rats induced a glycolytic phenotype of gastrocnemius muscle as well as an adaptation of mitochondria to the fiber type, with a decreased representation of enzymes involved in mitochondrial oxidative metabolism. At the same time, T2 stimulated the activity of individual respiratory complex I, IV, and V. Moreover, T2 prevented the HFD-associated increase in the expression of peroxisome proliferative activated receptor γ coactivator-1α and dynamin-1-like protein as well as mitochondrial morphological aberrations, favoring the appearance of tubular and tethered organelles in the intermyofibrillar regions. Remarkably, T2 reverted the HDF-associated expression pattern of proinflammatory factors, such as p65 subunit of NF-kB, and increased the fiber-specific immunoreactivity of adipose differentiation–related protein in lipid droplets. All together, these results further support a role of T2 in counteracting in vivo some of the HFD-induced impairment in structural/metabolic features of skeletal muscle by impacting the mitochondrial phenotype.
Collapse
Affiliation(s)
- Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | - Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | - Maria Coppola
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Anna M Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Michele Ceccarelli
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | - Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
219
|
Kaszubowska L, Foerster J, Kaczor JJ, Schetz D, Ślebioda TJ, Kmieć Z. NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70. IMMUNITY & AGEING 2018. [PMID: 29541147 PMCID: PMC5840822 DOI: 10.1186/s12979-018-0115-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 (‘the oldest’; n = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 (‘the old’; n = 30; 75.6 ± 0.9 years) and the young (n = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. Results The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. Conclusions The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between expression of these cellular protective proteins both in stimulated and non-stimulated cells. These phenomena may contribute to the long lifespan of this group of elderly. Interestingly, in NK cells SOD2 revealed a distinct role in cellular stress response since it showed sensitivity to stimulation increasing with age of participants. These observations provide novel data concerning the role of NK cells in the process of ageing.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- 1Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Foerster
- 2Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jan Jacek Kaczor
- 3Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Daria Schetz
- 4Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204 Gdańsk, Poland
| | - Tomasz Jerzy Ślebioda
- 1Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Zbigniew Kmieć
- 1Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
220
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
221
|
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling. Sci Rep 2018; 8:2446. [PMID: 29402993 PMCID: PMC5799251 DOI: 10.1038/s41598-018-20901-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is usually associated with various metabolic disorders and ageing. However, salutary effects in response to mild mitochondrial perturbations have been reported in multiple organisms, whereas molecular regulators of cell-autonomous stress responses remain elusive. We addressed this question by asking whether the nuclear factor erythroid-derived-like 2 (Nrf2), a transcription factor and master regulator of cellular redox status is involved in adaptive physiological responses including muscle mitohormesis. Using a transgenic mouse model with skeletal muscle-specific mitochondrial uncoupling and oxidative phosphorylation (OXPHOS) inefficiency (UCP1-transgenic, TG) we show that additional genetic ablation of Nrf2 abolishes an adaptive muscle NAD(P)H quinone dehydrogenase 1 (NQO1) and catalase induction. Deficiency of Nrf2 also leads to decreased mitochondrial respiratory performance although muscle functional integrity, fiber-type profile and mitochondrial biogenesis were not significantly altered. Importantly, Nrf2 ablation did not abolish the induction of key genes and proteins of muscle integrated stress response including the serine, one-carbon cycle, and glycine synthesis (SOG) pathway in TG mice while further increasing glutathione peroxidase (GPX) activity linked to increased GPX1 protein levels. Conclusively, our results tune down the functions controlled by Nrf2 in muscle mitohormesis and oxidative stress defense during mitochondrial OXPHOS inefficiency.
Collapse
|
222
|
Sies H. On the history of oxidative stress: Concept and some aspects of current development. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
223
|
Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ, Franceschi C. Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 2018; 115:80-91. [PMID: 29080843 DOI: 10.1016/j.freeradbiomed.2017.10.379] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022]
Abstract
In order to better understand the pathogenesis of Parkinson's Disease (PD) it is important to consider possible contributory factors inherent to the aging process, as age-related changes in a number of physiological systems (perhaps incurred within particular environments) appear to influence the onset and progression of neurodegenerative disorders. Accordingly, we posit that a principal mechanism underlying PD is inflammaging, i.e. the chronic inflammatory process characterized by an imbalance of pro- and anti-inflammatory mechanisms which has been recognized as operative in several age-related, and notably neurodegenerative diseases. Recent conceptualization suggests that inflammaging is part of the complex adaptive mechanisms ("re-modeling") that are ongoing through the lifespan, and which function to prevent or mitigate endogenous processes of tissue disruption and degenerative change(s). The absence of an adequate anti-inflammatory response can fuel inflammaging, which propagates on both local (i.e.- from cell to cell) and systemic levels (e.g.- via exosomes and other molecules present in the blood). In general, this scenario is compatible with the hypothesis that inflammaging represents a hormetic or hormetic-like effect, in which low levels of inflammatory stress may prompt induction of anti-inflammatory mediators and mechanisms, while sustained pro-inflammatory stress incurs higher and more durable levels of inflammatory substances, which, in turn prompt a local-to-systemic effect and more diverse inflammatory response(s). Given this perspective, new treatments of PD may be envisioned that strategically are aimed at exerting hormetic effects to sustain anti-inflammatory responses, inclusive perhaps, of modulating the inflammatory influence of the gut microbiota.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, via Santa Sofia 97, 95123 Catania, Italy; IBREGENS, Nutraceuticals and Functional Food Biotechnologies Research Associated, University of Catania, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy; Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Saverio Latteri
- Department of General Surgery, Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mario Zappia
- Department of Medical Sciences, Surgical and Advanced Technologies G.F. Ingrassia, Section of Neurosciences, University of Catania, Italy
| | - James Giordano
- Departments of Neurology and Biochemistry, and Neuroethics Studies Program, Georgetown University Medical Center, Washington, DC, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA, USA
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Via Altura 3, 40139 Bologna, Italy
| |
Collapse
|
224
|
Picca A, Riezzo G, Lezza AMS, Clemente C, Pesce V, Orlando A, Chimienti G, Russo F. Mitochondria and redox balance in coeliac disease: A case-control study. Eur J Clin Invest 2018; 48. [PMID: 29243228 DOI: 10.1111/eci.12877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 12/10/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Coeliac disease (CD) is a gluten-sensitive autoimmune disorder. Gluten toxicity encompasses a wide spectrum of target organ functions and pathologies, including the activation of the immune response and triggering of oxidative stress. The aim of this study was to investigate inflammation and the redox balance in patients with active CD, and to evaluate whether alteration of mitochondrial function is involved in the disease status. DESIGN In this prospective case-control study, blood samples from sixteen adult CD patients and sixteen healthy controls (HC) were investigated for IL-1β, IL-6 and IL-8 plasma concentrations, for serum PON1 arylesterase, total and MnSOD antioxidant enzyme activities, induced TBARs levels, and for lymphocyte mtDNA content. RESULTS Patients showed IL-8 and IL-1β concentrations significantly higher than HC counterparts. Patients had a significantly higher content of induced TBARS compared to HC value, indicating a shift in their serum redox balance towards pro-oxidant species. The assay of antioxidant enzyme activities showed a significant 25% increase in PON1, a higher total SOD, and a significant 21% higher MnSOD in patients compared to HC. Lymphocyte mtDNA content in patients was significantly twofold higher than in HC, supporting the induction of mitochondrial biogenesis. The patients' mitochondrial compensatory response may explain the correlation between MnSOD activity and mtDNA content. The patients' mitochondrial oxidative stress, cooperating to cytokines secretion, may justify the correlation between IL-1β concentration and mtDNA content. CONCLUSIONS These results highlight the mitochondrial involvement in CD and suggest the evaluation of the mtDNA content as a potential diagnostic and follow-up parameter.
Collapse
Affiliation(s)
- Anna Picca
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Riezzo
- Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases - I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Italy
| | - Angela M S Lezza
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Caterina Clemente
- Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases - I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases - I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Italy
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases - I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Italy
| |
Collapse
|
225
|
Kim SA, Lee YM, Choi JY, Jacobs DR, Lee DH. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:725-734. [PMID: 29126094 DOI: 10.1016/j.envpol.2017.10.124] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 05/06/2023]
Abstract
Although the toxicity of synthetic chemicals at high doses is well known, chronic exposure to low-dose chemical mixtures has only recently been linked to many age-related diseases. However, it is nearly impossible to avoid the exposure to these low-dose chemical mixtures as humans are exposed to a myriad of synthetic chemicals as a part of their daily lives. Therefore, coping with possible harms due to low dose chemical mixtures is challenging. Interestingly, within the range of environmental exposure, disease risk does not increase linearly with increasing dose of chemicals, but often tends to plateau or even decrease with increasing dose. Hormesis, the over-compensation of various adaptive responses through cellular stresses, is one possible mechanism for this non-linearity. Although the hormetic effects of synthetic chemicals or radiation have long been debated in the field of toxicology, the hormesis concept has recently been generalized in the field of molecular biology; similar to responses to synthetic chemicals, mild to moderate intermittent stressors from any source can induce hormetic responses. Examples of stressors are exercise, calorie restriction, intermittent fasting, cognitive stimulation, and phytochemicals. Mitohormesis is hormesis induced by such stressors through mitochondrial retrograde signalling including the increased production of mild reactive oxygen species. Xenohormesis is phytochemical-induced hormesis, reflective of a mutualistic relationship between plant and animals. As humans had repeated exposure to all of these stressors during their evolution, the hormetic effects of these health behaviours may be considered to be evolutionarily adapted. Although hormesis induced by synthetic chemicals occurs in humans, such hormesis may not be recommended to the public due to unresolved issues on safety including the impossibility of control exposure. However, the use of personal health behaviors which enhance mitohormetic- or xenohormetic-stress can be readily incorporated into everyone's daily lives as a practical way to counteract harmful effects of unavoidable low-dose chemical mixtures.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea
| | - Yu-Mi Lee
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yong Choi
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea; Department of Biochemistry & Cell Biology, Skeletal Diseases Genome Researcher Analysis Center, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University and Hospital, Daegu, Republic of Korea
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Duk-Hee Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea; Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
226
|
Oxidant/Antioxidant Imbalance in Alzheimer's Disease: Therapeutic and Diagnostic Prospects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6435861. [PMID: 29636850 PMCID: PMC5831771 DOI: 10.1155/2018/6435861] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a great socioeconomic burden in the aging society. Compelling evidence demonstrates that molecular change characteristics for AD, such as oxidative stress and amyloid β (Aβ) oligomerization, precede by decades the onset of clinical dementia and that the disease represents a biological and clinical continuum of stages, from asymptomatic to severely impaired. Nevertheless, the sequence of the early molecular alterations and the interplay between them are incompletely understood. This review presents current knowledge about the oxidative stress-induced impairments and compromised oxidative stress defense mechanisms in AD brain and the cross-talk between various pathophysiological insults, with the focus on excessive reactive oxygen species (ROS) generation and Aβ overproduction at the early stages of the disease. Prospects for AD therapies targeting oxidant/antioxidant imbalance are being discussed, as well as for the development of novel oxidative stress-related, blood-based biomarkers for early, noninvasive AD diagnostics.
Collapse
|
227
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2018; 7:44879-44905. [PMID: 27270647 PMCID: PMC5216692 DOI: 10.18632/oncotarget.9821] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga L Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | |
Collapse
|
228
|
Abstract
Impaired mitochondrial energy metabolism contributes to a wide range of pathologic conditions, including neurodegenerative diseases. Mitochondrial apoptosis-inducing factor (AIF) is required for the correct maintenance of mitochondrial electron transport chain. An emerging body of clinical evidence indicates that several mutations in the AIFM1 gene are causally linked to severe forms of mitochondrial disorders. Here we investigate the consequence of WAH-1/AIF deficiency in the survival of the nematode Caenorhabditis elegans. Moreover, we assess the survival of C. elegans strains expressing a disease-associated WAH-1/AIF variant. We demonstrate that wah-1 downregulation compromises the function of the oxidative phosphorylation system and reduces C. elegans lifespan. Notably, the loss of respiratory subunits induces a nuclear-encoded mitochondrial stress response independently of an evident increase of oxidative stress. Overall, our data pinpoint an evolutionarily conserved role of WAH-1/AIF in the maintenance of proper mitochondrial activity.
Collapse
|
229
|
Theurey P, Pizzo P. The Aging Mitochondria. Genes (Basel) 2018; 9:genes9010022. [PMID: 29315229 PMCID: PMC5793175 DOI: 10.3390/genes9010022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/15/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is a central event in many pathologies and contributes as well to age-related processes. However, distinguishing between primary mitochondrial dysfunction driving aging and a secondary mitochondrial impairment resulting from other cell alterations remains challenging. Indeed, even though mitochondria undeniably play a crucial role in aging pathways at the cellular and organismal level, the original hypothesis in which mitochondrial dysfunction and production of free radicals represent the main driving force of cell degeneration has been strongly challenged. In this review, we will first describe mitochondrial dysfunctions observed in aged tissue, and how these features have been linked to mitochondrial reactive oxygen species (ROS)–mediated cell damage and mitochondrial DNA (mtDNA) mutations. We will also discuss the clues that led to consider mitochondria as the starting point in the aging process, and how recent research has showed that the mitochondria aging axis represents instead a more complex and multifactorial signaling pathway. New working hypothesis will be also presented in which mitochondria are considered at the center of a complex web of cell dysfunctions that eventually leads to cell senescence and death.
Collapse
Affiliation(s)
- Pierre Theurey
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy.
- Neuroscience Institute, National Research Council (CNR), Padova 35121, Italy.
| |
Collapse
|
230
|
Abstract
Reactive oxygen species (ROS), generated externally and during aerobic metabolism, are a potent cause of cell damage. Oxidative damage is a feature of many diseases and ageing, including age-associated diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Indeed, this association helped lead to the widely expounded 'Free Radical Theory of Aging', proposing that the accumulation of ROS-induced damage is the underlying cause of ageing. In the last decade, it has become apparent that ROS play more complex roles in ageing than simply causing damage. This includes the induction of signalling pathways that protect against/repair cell damage. Cells encode a variety of enzymes that metabolise ROS, some of which reduce them to less reactive species. In this chapter, we review the evidence that manipulating the levels of these enzymes has any effect/s on ageing. We will also highlight a few examples illustrating why it is an over-simplification to describe the activities of some of these enzymes as 'antioxidants'. We discuss how these studies have helped refine our view of how ROS and ROS-metabolising enzymes contribute to the ageing process.
Collapse
Affiliation(s)
- Elizabeth Veal
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK.
| | - Thomas Jackson
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| | - Heather Latimer
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| |
Collapse
|
231
|
Lee YM, Jacobs Jr. DR, Lee DH. Persistent Organic Pollutants and Type 2 Diabetes: A Critical Review of Review Articles. Front Endocrinol (Lausanne) 2018; 9:712. [PMID: 30542326 PMCID: PMC6277786 DOI: 10.3389/fendo.2018.00712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Low dose persistent organic pollutants (POPs) have emerged as a new risk for type 2 diabetes (T2D). Despite substantial evidence from human and experimental studies, there are several critical issues which have not been properly addressed by POPs researchers. First, as POPs exist as mixtures, findings about POPs from human studies should be interpreted from the viewpoint of lipophilic chemical mixtures which include both measured and unmeasured POPs. Second, as POPs can directly reduce insulin secretion of beta cells, the role of POPs may be more prominent in the development of beta-cell dysfunction-dominant T2D rather than insulin resistance-dominant T2D. Third, there are multidimensional interrelationships between POPs and adipose tissue. Even though POPs are now considered as a new risk factor for T2D, independent of obesity, POPs and obesity are mechanistically linked to each other. POPs are involved in key mechanisms linking obesity and T2D, such as chronic inflammation of adipose tissue and lipotoxicity with ectopic fat accumulation. Also, POPs can explain puzzling human findings which suggest benefits of obesity because healthy adipose tissue can be protective by reducing the amount of POPs reaching other organs. Fourth, non-linear dose-response relationships between POPs and T2D are biologically possible. Although POPs are well-known endocrine disrupting chemicals (EDCs), mitochondrial dysfunction may be a more plausible mechanism due to unpredictability of EDC mixtures. As adipose tissue plays a role as an internal exposure source of POPs, how to manage POPs inside us may be essential to protect against harms of POPs.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - David R. Jacobs Jr.
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, DaeguSouth Korea
- *Correspondence: Duk-Hee Lee
| |
Collapse
|
232
|
Which is the Most Reasonable Anti-aging Strategy: Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:267-282. [DOI: 10.1007/978-981-13-1117-8_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
233
|
Adamczyk J, Deregowska A, Skoneczny M, Skoneczna A, Kwiatkowska A, Potocki L, Rawska E, Pabian S, Kaplan J, Lewinska A, Wnuk M. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts. Oncotarget 2017; 7:29958-76. [PMID: 27074556 PMCID: PMC5058656 DOI: 10.18632/oncotarget.8673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/03/2016] [Indexed: 12/23/2022] Open
Abstract
Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.
Collapse
Affiliation(s)
- Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Leszek Potocki
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Ewa Rawska
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Sylwia Pabian
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Jakub Kaplan
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| |
Collapse
|
234
|
The Mitochondrial Basis of Aging and Age-Related Disorders. Genes (Basel) 2017; 8:genes8120398. [PMID: 29257072 PMCID: PMC5748716 DOI: 10.3390/genes8120398] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is a natural phenomenon characterized by progressive decline in tissue and organ function leading to increased risk of disease and mortality. Among diverse factors that contribute to human aging, the mitochondrial dysfunction has emerged as one of the key hallmarks of aging process and is linked to the development of numerous age-related pathologies including metabolic syndrome, neurodegenerative disorders, cardiovascular diseases and cancer. Mitochondria are central in the regulation of energy and metabolic homeostasis, and harbor a complex quality control system that limits mitochondrial damage to ensure mitochondrial integrity and function. The intricate regulatory network that balances the generation of new and removal of damaged mitochondria forms the basis of aging and longevity. Here, I will review our current understanding on how mitochondrial functional decline contributes to aging, including the role of somatic mitochondrial DNA (mtDNA) mutations, reactive oxygen species (ROS), mitochondrial dynamics and quality control pathways. I will further discuss the emerging evidence on how dysregulated mitochondrial dynamics, mitochondrial biogenesis and turnover mechanisms contribute to the pathogenesis of age-related disorders. Strategies aimed to enhance mitochondrial function by targeting mitochondrial dynamics, quality control, and mitohormesis pathways might promote healthy aging, protect against age-related diseases, and mediate longevity.
Collapse
|
235
|
Edenharter O, Clement J, Schneuwly S, Navarro JA. Overexpression of Drosophila frataxin triggers cell death in an iron-dependent manner. J Neurogenet 2017; 31:189-202. [PMID: 28838288 DOI: 10.1080/01677063.2017.1363200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 10/24/2022]
Abstract
Friedreich ataxia (FRDA) is the most important autosomal recessive ataxia in the Caucasian population. FRDA patients display severe neurological and cardiac symptoms that reflect a strong cellular and axonal degeneration. FRDA is caused by a loss of function of the mitochondrial protein frataxin which impairs the biosynthesis of iron-sulfur clusters and in turn the catalytic activity of several enzymes in the Krebs cycle and the respiratory chain leading to a diminished energy production. Although FRDA is due to frataxin depletion, overexpression might also be very helpful to better understand cellular functions of frataxin. In this work, we have increased frataxin expression in neurons to elucidate specific roles that frataxin might play in these tissues. Using molecular, biochemical, histological and behavioral methods, we report that frataxin overexpression is sufficient to increase oxidative phosphorylation, modify mitochondrial morphology, alter iron homeostasis and trigger oxidative stress-dependent cell death. Interestingly, genetic manipulation of mitochondrial iron metabolism by silencing mitoferrin successfully improves cell survival under oxidative-attack conditions, although enhancing antioxidant defenses or mitochondrial fusion failed to ameliorate frataxin overexpression phenotypes. This result suggests that cell degeneration is directly related to enhanced incorporation of iron into the mitochondria. Drosophila frataxin overexpression might also provide an alternative approach to identify processes that are important in FRDA such as changes in mitochondrial morphology and oxidative stress induced cell death.
Collapse
Affiliation(s)
- Oliver Edenharter
- a Institute of Zoology , University of Regensburg , Regensburg , Germany
| | - Janik Clement
- a Institute of Zoology , University of Regensburg , Regensburg , Germany
| | - Stephan Schneuwly
- a Institute of Zoology , University of Regensburg , Regensburg , Germany
| | - Juan A Navarro
- a Institute of Zoology , University of Regensburg , Regensburg , Germany
| |
Collapse
|
236
|
Hung SSC, Van Bergen NJ, Jackson S, Liang H, Mackey DA, Hernández D, Lim SY, Hewitt AW, Trounce I, Pébay A, Wong RCB. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells. Aging (Albany NY) 2017; 8:945-57. [PMID: 27127184 PMCID: PMC4931846 DOI: 10.18632/aging.100950] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/17/2016] [Indexed: 01/19/2023]
Abstract
Reprogramming of somatic cells into a pluripotent state is known to be accompanied by extensive restructuring of mitochondria and switch in metabolic requirements. Here we utilized Leber's hereditary optic neuropathy (LHON) as a mitochondrial disease model to study the effects of homoplasmic mtDNA mutations and subsequent oxidative phosphorylation (OXPHOS) defects in reprogramming. We obtained fibroblasts from a total of 6 LHON patients and control subjects, and showed a significant defect in complex I respiration in LHON fibroblasts by high-resolution respiratory analysis. Using episomal vector reprogramming, our results indicated that human induced pluripotent stem cell (hiPSC) generation is feasible in LHON fibroblasts. In particular, LHON-specific OXPHOS defects in fibroblasts only caused a mild reduction and did not significantly affect reprogramming efficiency, suggesting that hiPSC reprogramming can tolerate a certain degree of OXPHOS defects. Our results highlighted the induction of genes involved in mitochondrial biogenesis (TFAM, NRF1), mitochondrial fusion (MFN1, MFN2) and glycine production (GCAT) during reprogramming. However, LHON-associated OXPHOS defects did not alter the kinetics or expression levels of these genes during reprogramming. Together, our study provides new insights into the effects of mtDNA mutation and OXPHOS defects in reprogramming and genes associated with various aspects of mitochondrial biology.
Collapse
Affiliation(s)
- Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Nicole J Van Bergen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Stacey Jackson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Helena Liang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - David A Mackey
- Lions Eye Institute and University of Western Australia, Nedlands, Australia
| | - Damián Hernández
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Shiang Y Lim
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia.,School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Ian Trounce
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital and Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
237
|
Eder K, Siebers M, Most E, Scheibe S, Weissmann N, Gessner DK. An excess dietary vitamin E concentration does not influence Nrf2 signaling in the liver of rats fed either soybean oil or salmon oil. Nutr Metab (Lond) 2017; 14:71. [PMID: 29176993 PMCID: PMC5693465 DOI: 10.1186/s12986-017-0225-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Background Reactive oxygen species (ROS) are known to stimulate the activation of nuclear factor-erythroid 2-related factor-2 (Nrf2), the key regulator of the antioxidant and cytoprotective defense system in the body. The hypothesis underlying this study was that high dietary concentrations of vitamin E suppress Nrf2 activation, and thus could weaken the body’s antioxidative and cytoprotective capacity. As the effect of vitamin E on Nrf2 pathway might be influenced by concentrations of fatty acids susceptible to oxidation in the diet, we used also diets containing either soybean oil as a reference oil or salmon oil as a source of oil rich in n-3 polyunsatuated fatty acids. Methods Seventy-two rats were divided into 6 groups of rats which received diets with either 25, 250 or 2500 mg vitamin E/kg, with either soybean oil or salmon oil as dietary fat sources according to a bi-factorial experimental design. Electron spin resonance spectroscopy was used to determine ROS production in the liver. qPCR analysis and western blot were performed to examine the expression of Nrf2 target genes in the liver of rats. Results Rats fed the salmon oil diet with 25 mg vitamin E/kg showed a higher production of ROS in the liver than the 5 other groups of rats which did not differ in ROS production. Relative mRNA concentrations of NFE2L2 (encoding Nrf2), KEAP1 and various Nrf2 target genes, protein concentrations of glutathione peroxidase (GPX), heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1) and activities of the antioxidant enzymes GPX, superoxide dismutase and catalase were not influenced by the dietary vitamin E concentration. The dietary fat had also less effect on Nrf2 target genes and no effect on protein concentrations of GPX, HO-1, NQO1 and activities of antioxidant enzymes. Dietary vitamin E concentration and type of fat moreover had less effect on mRNA concentrations of genes and concentrations of proteins involved in the unfolded protein response, a pathway which is closely linked with activation of Nrf2. Conclusion We conclude that excess dietary concentrations of vitamin E do not suppress Nrf2 signaling, and thus do not weaken the endogenous antioxidant and cytoprotective capacity in the liver of rats.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Marina Siebers
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Susan Scheibe
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-Universität Gießen, Aulweg 130, 35392 Gießen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-Universität Gießen, Aulweg 130, 35392 Gießen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
238
|
Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett 2017; 592:743-758. [PMID: 29106705 DOI: 10.1002/1873-3468.12902] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging.
Collapse
Affiliation(s)
- Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
239
|
Zhu L, Lu Y, Zhang J, Hu Q. Subcellular Redox Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:385-398. [DOI: 10.1007/978-3-319-63245-2_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
240
|
Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents. Int J Mol Sci 2017; 18:ijms18102098. [PMID: 28981461 PMCID: PMC5666780 DOI: 10.3390/ijms18102098] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract: Reductive stress (RS) is the counterpart oxidative stress (OS), and can occur in response to conditions that shift the redox balance of important biological redox couples, such as the NAD⁺/NADH, NADP⁺/NADPH, and GSH/GSSG, to a more reducing state. Overexpression of antioxidant enzymatic systems leads to excess reducing equivalents that can deplete reactive oxidative species, driving the cells to RS. A feedback regulation is established in which chronic RS induces OS, which in turn, stimulates again RS. Excess reducing equivalents may regulate cellular signaling pathways, modify transcriptional activity, induce alterations in the formation of disulfide bonds in proteins, reduce mitochondrial function, decrease cellular metabolism, and thus, contribute to the development of some diseases in which NF-κB, a redox-sensitive transcription factor, participates. Here, we described the diseases in which an inflammatory condition is associated to RS, and where delayed folding, disordered transport, failed oxidation, and aggregation are found. Some of these diseases are aggregation protein cardiomyopathy, hypertrophic cardiomyopathy, muscular dystrophy, pulmonary hypertension, rheumatoid arthritis, Alzheimer's disease, and metabolic syndrome, among others. Moreover, chronic consumption of antioxidant supplements, such as vitamins and/or flavonoids, may have pro-oxidant effects that may alter the redox cellular equilibrium and contribute to RS, even diminishing life expectancy.
Collapse
|
241
|
Romano A, Serviddio G, Calcagnini S, Villani R, Giudetti AM, Cassano T, Gaetani S. Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radic Biol Med 2017; 111:281-293. [PMID: 28063940 DOI: 10.1016/j.freeradbiomed.2016.12.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 12/25/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is considered to be a strong marker of oxidative stress; the interaction between HNE and cellular proteins leads to the formation of HNE-protein adducts able to alter cellular homeostasis and cause the development of a pathological state. By virtue of its high lipid concentration, oxygen utilization, and the presence of metal ions participating to redox reactions, the brain is highly susceptible to the formation of free radicals and HNE-related compounds. A variety of neuropsychiatric disorders have been associated with elevations of HNE concentration. For example, increased levels of HNE were found in the cortex of bipolar and schizophrenic patients, while HNE plasma concentrations resulted high in patients with major depression. On the same line, high brain concentrations of HNE were found associated with Huntington's inclusions. The incidence of high HNE levels is relevant also in the brain and cerebrospinal fluid of patients suffering from Parkinson's disease. Intriguingly, in this case the increase of HNE was associated with an accumulation of iron in the substantia nigra, a brain region highly affected by the pathology. In the present review we recapitulate the findings supporting the role of HNE in the pathogenesis of different neuropsychiatric disorders to highlight the pathogenic mechanisms ascribed to HNE accumulation. The aim of this review is to offer novel perspectives both for the understanding of etiopathogenetic mechanisms that remain still unclear and for the identification of new useful biological markers. We conclude suggesting that targeting HNE-driven cellular processes may represent a new more efficacious therapeutical intervention.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Centro Ecotekne, sp Lecce-Monteroni 73100 Lecce, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
242
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
243
|
Cai H, Rasulova M, Vandemeulebroucke L, Meagher L, Vlaeminck C, Dhondt I, Braeckman BP. Life-Span Extension by Axenic Dietary Restriction Is Independent of the Mitochondrial Unfolded Protein Response and Mitohormesis in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2017; 72:1311-1318. [PMID: 28329170 PMCID: PMC5861982 DOI: 10.1093/gerona/glx013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/16/2017] [Indexed: 11/14/2022] Open
Abstract
In Caenorhabditis elegans, a broad range of dietary restriction regimens extend life span to different degrees by separate or partially overlapping molecular pathways. One of these regimens, axenic dietary restriction, doubles the worm's life span but currently, almost nothing is known about the underlying molecular mechanism. Previous studies suggest that mitochondrial stress responses such as the mitochondrial unfolded protein response (UPRmt) or mitohormesis may play a vital role in axenic dietary restriction-induced longevity. Here, we provide solid evidence that axenic dietary restriction treatment specifically induces an UPRmt response in C elegans but this induction is not required for axenic dietary restriction-mediated longevity. We also show that reactive oxygen species-mediated mitohormesis is not involved in this phenotype. Hence, changes in mitochondrial physiology and induction of a mitochondrial stress response are not necessarily causal to large increases in life span.
Collapse
Affiliation(s)
- Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Madina Rasulova
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | | | - Lea Meagher
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Caroline Vlaeminck
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| |
Collapse
|
244
|
Graf BL, Kamat S, Cheong KY, Komarnytsky S, Driscoll M, Di R. Phytoecdysteroid-enriched quinoa seed leachate enhances healthspan and mitochondrial metabolism in Caenorhabditis elegans. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
245
|
Schmidt A, Bekeschus S, Jablonowski H, Barton A, Weltmann KD, Wende K. Role of Ambient Gas Composition on Cold Physical Plasma-Elicited Cell Signaling in Keratinocytes. Biophys J 2017; 112:2397-2407. [PMID: 28591612 DOI: 10.1016/j.bpj.2017.04.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 01/22/2023] Open
Abstract
A particularly promising medical application of cold physical plasma is the support of wound healing. This is presumably achieved by modulating inflammation as well as skin cell signaling and migration. Plasma-derived reactive oxygen and nitrogen species (ROS/RNS) are assumed the central biologically active plasma components. We hypothesized that modulating the environmental plasma conditions from pure nitrogen (N2) to pure oxygen (O2) in an atmospheric pressure argon plasma jet (kINPen) will change type and concentration of ROS/RNS and effectively tune the behavior of human skin cells. To investigate this, HaCaT keratinocytes were studied in vitro with regard to cell metabolism, viability, growth, gene expression signature, and cytokine secretion. Flow cytometry demonstrated only slight effects on cytotoxicity. O2 shielding provided stronger apoptotic effects trough caspase-3 activation compared to N2 shielding. Gene array technology revealed induction of signaling and communication proteins such as immunomodulatory interleukin 6 as well as antioxidative and proproliferative molecules (HMOX1, VEGFA, HBEGF, CSF2, and MAPK) in response to different plasma shielding gas compositions. Cell response was correlated to reactive species: oxygen-shielding plasma induces a cell response more efficiently despite an apparent decrease of hydrogen peroxide (H2O2), which was previously shown to be a major player in plasma-cell regulation, emphasizing the role of non-H2O2 ROS like singlet oxygen. Our results suggest differential effects of ROS- and RNS-rich plasma, and may have a role in optimizing clinical plasma applications in chronic wounds.
Collapse
Affiliation(s)
- Anke Schmidt
- Plasma Life Science, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.
| | - Sander Bekeschus
- Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany
| | | | - Annemarie Barton
- Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Plasma Life Science, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany; Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany
| |
Collapse
|
246
|
What modulates animal longevity? Fast and slow aging in bivalves as a model for the study of lifespan. Semin Cell Dev Biol 2017; 70:130-140. [PMID: 28778411 DOI: 10.1016/j.semcdb.2017.07.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Delineating the physiological and biochemical causes of aging process in the animal kingdom is a highly active area of research not only because of potential benefits for human health but also because aging process is related to life history strategies (growth and reproduction) and to responses of organisms to environmental conditions and stress. In this synthesis, we advocate studying bivalve species as models for revealing the determinants of species divergences in maximal longevity. This taxonomic group includes the longest living metazoan on earth (Arctica islandica), which insures the widest range of maximum life span when shorter living species are also included in the comparative model. This model can also be useful for uncovering factors modulating the pace of aging in given species by taking advantages of the wide disparity of lifespan among different populations of the same species. For example, maximal lifespan in different populations of A islandica range from approximately 36 years to over 500 years. In the last 15 years, research has revealed that either regulation or tolerance to oxidative stress is tightly correlated to longevity in this group which support further investigations on this taxon to unveil putative mechanistic links between Reactive Oxygen Species and aging process.
Collapse
|
247
|
Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9860841. [PMID: 28811869 PMCID: PMC5546064 DOI: 10.1155/2017/9860841] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans.
Collapse
|
248
|
Origins of mtDNA mutations in ageing. Essays Biochem 2017; 61:325-337. [PMID: 28698307 DOI: 10.1042/ebc20160090] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
MtDNA mutations are one of the hallmarks of ageing and age-related diseases. It is well established that somatic point mutations accumulate in mtDNA of multiple organs and tissues with increasing age and heteroplasmy is universal in mammals. However, the origin of these mutations remains controversial. The long-lasting hypothesis stating that mtDNA mutations emanate from oxidative damage via a self-perpetuating mechanism has been extensively challenged in recent years. Contrary to this initial ascertainment, mtDNA appears to be well protected from action of reactive oxygen species (ROS) through robust protein coating and endomitochondrial microcompartmentalization. Extensive development of scrupulous high-throughput DNA sequencing methods suggests that an imperfect replication process, rather than oxidative lesions are the main sources of mtDNA point mutations, indicating that mtDNA polymerase γ (POLG) might be responsible for the majority of mtDNA mutagenic events. Here, we summarize the recent knowledge in prevention and defence of mtDNA oxidative lesions and discuss the plausible mechanisms of mtDNA point mutation generation and fixation.
Collapse
|
249
|
Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mech Ageing Dev 2017; 165:115-128. [DOI: 10.1016/j.mad.2016.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
|
250
|
Abstract
A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging. Glycogen is a storage form of glucose in cells. Here, Gusarov et al. show that glycogen-derived glucose can be used to quickly regenerate the antioxidant glutathione and that inhibiting glycogen synthesis extends C. elegans lifespan, whereas glycogen accumulation drives organismal ageing in worms.
Collapse
|