201
|
Abstract
Damaged or aggregated proteins and organelles accumulate with age and contribute to various age-related pathologies including Alzheimer, Parkinson or Huntington diseases. In eukaryotic cells, there are 2 major pathways for degradation of the cytoplasm: The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Both pathways can share the characteristic of initiating the process by ubiquitination of the substrate, but they utilize different ubiquitin receptors. In a paper described in a punctum in this issue, Lu et al. used the yeast Saccharomyces cerevisiae to demonstrate that the decision to use a particular pathway is made through a mechanism that depends on the receptors rather than the specific type of substrate ubiquitination.
Collapse
Affiliation(s)
- Yuchen Feng
- a Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
202
|
Farizatto KLG, Ikonne US, Almeida MF, Ferrari MFR, Bahr BA. Aβ42-mediated proteasome inhibition and associated tau pathology in hippocampus are governed by a lysosomal response involving cathepsin B: Evidence for protective crosstalk between protein clearance pathways. PLoS One 2017; 12:e0182895. [PMID: 28797057 PMCID: PMC5552263 DOI: 10.1371/journal.pone.0182895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Impaired protein clearance likely increases the risk of protein accumulation disorders including Alzheimer’s disease (AD). Protein degradation through the proteasome pathway decreases with age and in AD brains, and the Aβ42 peptide has been shown to impair proteasome function in cultured cells and in a cell-free model. Here, Aβ42 was studied in brain tissue to measure changes in protein clearance pathways and related secondary pathology. Oligomerized Aβ42 (0.5–1.5 μM) reduced proteasome activity by 62% in hippocampal slice cultures over a 4-6-day period, corresponding with increased tau phosphorylation and reduced synaptophysin levels. Interestingly, the decrease in proteasome activity was associated with a delayed inverse effect, >2-fold increase, regarding lysosomal cathepsin B (CatB) activity. The CatB enhancement did not correspond with the Aβ42-mediated phospho-tau alterations since the latter occurred prior to the CatB response. Hippocampal slices treated with the proteasome inhibitor lactacystin also exhibited an inverse effect on CatB activity with respect to diminished proteasome function. Lactacystin caused earlier CatB enhancement than Aβ42, and no correspondence was evident between up-regulated CatB levels and the delayed synaptic pathology indicated by the loss of pre- and postsynaptic markers. Contrasting the inverse effects on the proteasomal and lysosomal pathways by Aβ42 and lactacystin, such were not found when CatB activity was up-regulated two-fold with Z-Phe-Ala-diazomethylketone (PADK). Instead of an inverse decline, proteasome function was increased marginally in PADK-treated hippocampal slices. Unexpectedly, the proteasomal augmentation was significantly pronounced in Aβ42-compromised slices, while absent in lactacystin-treated tissue, resulting in >2-fold improvement for nearly complete recovery of proteasome function by the CatB-enhancing compound. The PADK treatment also reduced Aβ42-mediated tau phosphorylation and synaptic marker declines, corresponding with the positive modulation of both proteasome activity and the lysosomal CatB enzyme. These findings indicate that proteasomal stress contributes to AD-type pathogenesis and that governing such pathology occurs through crosstalk between the two protein clearance pathways.
Collapse
Affiliation(s)
- Karen L. G. Farizatto
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina—Pembroke, Pembroke, North Carolina, United States of America
- Department of Genetics and Evolutionary Biology, Institute for Biosciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Uzoma S. Ikonne
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina—Pembroke, Pembroke, North Carolina, United States of America
| | - Michael F. Almeida
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina—Pembroke, Pembroke, North Carolina, United States of America
| | - Merari F. R. Ferrari
- Department of Genetics and Evolutionary Biology, Institute for Biosciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Ben A. Bahr
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina—Pembroke, Pembroke, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
203
|
Ji C, Tang M, Johnson GVW. Assessing the degradation of tau in primary neurons: The role of autophagy. Methods Cell Biol 2017; 141:229-244. [PMID: 28882304 DOI: 10.1016/bs.mcb.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tau is a neuronal cytosolic, highly regulated protein. Although first identified as a protein that binds and stabilizes microtubules, it is now clear that tau plays numerous other roles in neurons. In addition to its key physiological roles in neuronal structure and function, tau is also involved in the pathogenesis of Alzheimer's disease and numerous other neurodegenerative disorders. In all tauopathies, there are pathogenic accumulations of tau. Given that tau homeostasis requires a balance of synthesis and degradation, understanding the pathways that mediate tau clearance and regulate this process in the disease state is of fundamental importance. In neurons, macroautophagy (referred to as autophagy in this chapter) plays a pivotal role in clearing damaged or misfolded proteins under normal conditions. However, in the disease state autophagy is impaired and tau may not be efficiently targeted for degradation which contributes to the increases in pathological tau species. Therefore, establishing model systems that allow for the analysis of tau clearance by autophagy and quantitative assessment of interventions that increase autophagy and tau clearance are needed. Of particular importance is the use of primary neurons as a model system, as they are more reflective of the relevant in vivo autophagy pathway than clonal or immortalized cell models. In this chapter we present detailed methods for the preparation of neurons, immunoblotting and imaging analyses, genetic and pharmacological manipulation of autophagy with analyses, and methods to quantitatively measure changes in tau and phospho-tau levels.
Collapse
Affiliation(s)
- Changyi Ji
- University of Rochester, Rochester, NY, Unites States
| | - Maoping Tang
- University of Rochester, Rochester, NY, Unites States
| | | |
Collapse
|
204
|
Sha Y, Rao L, Settembre C, Ballabio A, Eissa NT. STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J 2017; 36:2544-2552. [PMID: 28754656 DOI: 10.15252/embj.201796699] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 11/09/2022] Open
Abstract
TFEB is a master regulator for transcription of genes involved in autophagy and lysosome biogenesis. Activity of TFEB is inhibited upon its serine phosphorylation by mTOR The overall mechanisms by which TFEB activity in the cell is regulated are not well elucidated. Specifically, the mechanisms of TFEB turnover and how they might influence its activity remain unknown. Here, we show that STUB1, a chaperone-dependent E3 ubiquitin ligase, modulates TFEB activity by preferentially targeting inactive phosphorylated TFEB for degradation by the ubiquitin-proteasome pathway. Phosphorylated TFEB accumulated in STUB1-deficient cells and in tissues of STUB1-deficient mice resulting in reduced TFEB activity. Conversely, cellular overexpression of STUB1 resulted in reduced phosphorylated TFEB and increased TFEB activity. STUB1 preferentially interacted with and ubiqutinated phosphorylated TFEB, targeting it to proteasomal degradation. Consistent with reduced TFEB activity, accumulation of phosphorylated TFEB in STUB1-deficient cells resulted in reduced autophagy and reduced mitochondrial biogenesis. These studies reveal that the ubiquitin-proteasome pathway participates in regulating autophagy and lysosomal functions by regulating the activity of TFEB.
Collapse
Affiliation(s)
- Youbao Sha
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Lang Rao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Andrea Ballabio
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, USA.,Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - N Tony Eissa
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
205
|
p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat Commun 2017; 8:102. [PMID: 28740232 PMCID: PMC5524641 DOI: 10.1038/s41467-017-00085-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/01/2017] [Indexed: 11/09/2022] Open
Abstract
Macroautophagy mediates the selective degradation of proteins and non-proteinaceous cellular constituents. Here, we show that the N-end rule pathway modulates macroautophagy. In this mechanism, the autophagic adapter p62/SQSTM1/Sequestosome-1 is an N-recognin that binds type-1 and type-2 N-terminal degrons (N-degrons), including arginine (Nt-Arg). Both types of N-degrons bind its ZZ domain. By employing three-dimensional modeling, we developed synthetic ligands to p62 ZZ domain. The binding of Nt-Arg and synthetic ligands to ZZ domain facilitates disulfide bond-linked aggregation of p62 and p62 interaction with LC3, leading to the delivery of p62 and its cargoes to the autophagosome. Upon binding to its ligand, p62 acts as a modulator of macroautophagy, inducing autophagosome biogenesis. Through these dual functions, cells can activate p62 and induce selective autophagy upon the accumulation of autophagic cargoes. We also propose that p62 mediates the crosstalk between the ubiquitin-proteasome system and autophagy through its binding Nt-Arg and other N-degrons.Soluble misfolded proteins that fail to be degraded by the ubiquitin proteasome system (UPS) are redirected to autophagy via specific adaptors, such as p62. Here the authors show that p62 recognises N-degrons in these proteins, acting as a N-recognin from the proteolytic N-end rule pathway, and targets these cargos to autophagosomal degradation.
Collapse
|
206
|
de Rus Jacquet A, Timmers M, Ma SY, Thieme A, McCabe GP, Vest JHC, Lila MA, Rochet JC. Lumbee traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:408-425. [PMID: 28214539 PMCID: PMC6149226 DOI: 10.1016/j.jep.2017.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/28/2017] [Accepted: 02/13/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta and the presence in surviving neurons of Lewy body inclusions enriched with aggregated forms of the presynaptic protein α-synuclein (aSyn). Although current therapies provide temporary symptomatic relief, they do not slow the underlying neurodegeneration in the midbrain. In this study, we analyzed contemporary herbal medicinal practices used by members of the Lumbee tribe to treat PD-related symptoms, in an effort to identify safe and effective herbal medicines to treat PD. AIM OF THE STUDY The aims of this study were to (i) document medicinal plants used by Lumbee Indians to treat PD and PD-related symptoms, and (ii) characterize a subset of plant candidates in terms of their ability to alleviate neurotoxicity elicited by PD-related insults and their potential mechanisms of neuroprotection. MATERIALS AND METHODS Interviews of Lumbee healers and local people were carried out in Pembroke, North Carolina, and in surrounding towns. Plant samples were collected and prepared as water extracts for subsequent analysis. Extracts were characterized in terms of their ability to induce activation of the nuclear factor E2-related factor 2 (Nrf2) antioxidant response in cortical astrocytes. An extract prepared from Sambucus caerulea flowers (elderflower extract) was further examined for the ability to induce Nrf2-mediated transcription in induced pluripotent stem cell (iPSC)-derived astrocytes and primary midbrain cultures, to ameliorate mitochondrial dysfunction, and to alleviate rotenone- or aSyn-mediated neurotoxicity. RESULTS The ethnopharmacological interviews resulted in the documentation of 32 medicinal plants used to treat PD-related symptoms and 40 plants used to treat other disorders. A polyphenol-rich extract prepared from elderflower activated the Nrf2-mediated antioxidant response in cortical astrocytes, iPSC-derived astrocytes, and primary midbrain cultures, apparently via the inhibition of Nrf2 degradation mediated by the ubiquitin proteasome system. Furthermore, the elderflower extract rescued mitochondrial functional deficits in a neuronal cell line and alleviated neurotoxicity elicited by rotenone and aSyn in primary midbrain cultures. CONCLUSIONS These results highlight potential therapeutic benefits of botanical extracts used in traditional Lumbee medicine, and they provide insight into mechanisms by which an elderflower extract could suppress neurotoxicity elicited by environmental and genetic PD-related insults.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Michael Timmers
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Andrew Thieme
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.
| | - Jay Hansford C Vest
- University of North Carolina at Pembroke, PO Box 1510, Pembroke, NC 28372, USA.
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA.
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
207
|
Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T. Proteostasis, oxidative stress and aging. Redox Biol 2017; 13:550-567. [PMID: 28763764 PMCID: PMC5536880 DOI: 10.1016/j.redox.2017.07.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/21/2022] Open
Abstract
The production of reactive species is an inevitable by-product of metabolism and thus, life itself. Since reactive species are able to damage cellular structures, especially proteins, as the most abundant macromolecule of mammalian cells, systems are necessary which regulate and preserve a functional cellular protein pool, in a process termed “proteostasis”. Not only the mammalian protein pool is subject of a constant turnover, organelles are also degraded and rebuild. The most important systems for these removal processes are the “ubiquitin-proteasomal system” (UPS), the central proteolytic machinery of mammalian cells, mainly responsible for proteostasis, as well as the “autophagy-lysosomal system”, which mediates the turnover of organelles and large aggregates. Many age-related pathologies and the aging process itself are accompanied by a dysregulation of UPS, autophagy and the cross-talk between both systems. This review will describe the sources and effects of oxidative stress, preservation of cellular protein- and organelle-homeostasis and the effects of aging on proteostasis in mammalian cells.
Collapse
Affiliation(s)
- Ioanna Korovila
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Martín Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
208
|
Zientara-Rytter K, Sirko A. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. FEBS J 2017; 283:3534-3555. [PMID: 26991113 DOI: 10.1111/febs.13712] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/21/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The efficient utilization and subsequent reuse of cell components is a key factor in determining the proper growth and functioning of all cells under both optimum and stress conditions. The process of intracellular and intercellular recycling is especially important for the appropriate control of cellular metabolism and nutrient management in immobile organisms, such as plants. Therefore, the accurate recycling of amino acids, lipids, carbohydrates or micro- and macronutrients available in the plant cell becomes a critical factor that ensures plant survival and growth. Plant cells possess two main degradation mechanisms: a ubiquitin-proteasome system and autophagy, which, as a part of an intracellular trafficking system, is based on vesicle transport. This review summarizes knowledge of both the ubiquitin-proteasome system and autophagy pathways, describes the cross-talk between the two and discusses the relationships between autophagy and the vesicular transport systems.
Collapse
Affiliation(s)
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
209
|
Abstract
Clearing misfolded proteins from the cytoplasm is essential to maintain cellular homeostasis. Now, a parallel clearance system is described that uses the deubiquitylase USP19 to enable secretion of misfolded cytoplasmic proteins when conventional proteasomal degradation is compromised. Misfolding-associated protein secretion (MAPS) has important implications for protein quality control and prion-like transmission.
Collapse
|
210
|
Wang X, Cui T. Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2017; 313:H304-H319. [PMID: 28576834 DOI: 10.1152/ajpheart.00145.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
Autophagy is an evolutionarily conserved process used by the cell to degrade cytoplasmic contents for quality control, survival for temporal energy crisis, and catabolism and recycling. Rapidly increasing evidence has revealed an important pathogenic role of altered activity of the autophagosome-lysosome pathway (ALP) in cardiac hypertrophy and heart failure. Although an early study suggested that cardiac autophagy is increased and that this increase is maladaptive to the heart subject to pressure overload, more recent reports have overwhelmingly supported that myocardial ALP insufficiency results from chronic pressure overload and contributes to maladaptive cardiac remodeling and heart failure. This review examines multiple lines of preclinical evidence derived from recent studies regarding the role of autophagic dysfunction in pressure-overloaded hearts, attempts to reconcile the discrepancies, and proposes that resuming or improving ALP flux through coordinated enhancement of both the formation and the removal of autophagosomes would benefit the treatment of cardiac hypertrophy and heart failure resulting from chronic pressure overload.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota; and
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
211
|
Aung T, Ozaki M, Lee MC, Schlötzer-Schrehardt U, Thorleifsson G, Mizoguchi T, Igo RP, Haripriya A, Williams SE, Astakhov YS, Orr AC, Burdon KP, Nakano S, Mori K, Abu-Amero K, Hauser M, Li Z, Prakadeeswari G, Bailey JNC, Cherecheanu AP, Kang JH, Nelson S, Hayashi K, Manabe SI, Kazama S, Zarnowski T, Inoue K, Irkec M, Coca-Prados M, Sugiyama K, Järvelä I, Schlottmann P, Lerner SF, Lamari H, Nilgün Y, Bikbov M, Park KH, Cha SC, Yamashiro K, Zenteno JC, Jonas JB, Kumar RS, Perera SA, Chan ASY, Kobakhidze N, George R, Vijaya L, Do T, Edward DP, de Juan Marcos L, Pakravan M, Moghimi S, Ideta R, Bach-Holm D, Kappelgaard P, Wirostko B, Thomas S, Gaston D, Bedard K, Greer WL, Yang Z, Chen X, Huang L, Sang J, Jia H, Jia L, Qiao C, Zhang H, Liu X, Zhao B, Wang YX, Xu L, Leruez S, Reynier P, Chichua G, Tabagari S, Uebe S, Zenkel M, Berner D, Mossböck G, Weisschuh N, Hoja U, Welge-Luessen UC, Mardin C, Founti P, Chatzikyriakidou A, Pappas T, Anastasopoulos E, Lambropoulos A, Ghosh A, Shetty R, Porporato N, Saravanan V, Venkatesh R, Shivkumar C, Kalpana N, Sarangapani S, Kanavi MR, Beni AN, Yazdani S, Lashay A, Naderifar H, Khatibi N, Fea A, Lavia C, Dallorto L, Rolle T, Frezzotti P, Paoli D, Salvi E, Manunta P, Mori Y, Miyata K, Higashide T, Chihara E, Ishiko S, Yoshida A, Yanagi M, Kiuchi Y, Ohashi T, Sakurai T, Sugimoto T, Chuman H, Aihara M, Inatani M, Miyake M, Gotoh N, Matsuda F, Yoshimura N, Ikeda Y, Ueno M, Sotozono C, Jeoung JW, Sagong M, Park KH, Ahn J, Cruz-Aguilar M, Ezzouhairi SM, Rafei A, Chong YF, Ng XY, Goh SR, Chen Y, Yong VHK, Khan MI, Olawoye OO, Ashaye AO, Ugbede I, Onakoya A, Kizor-Akaraiwe N, Teekhasaenee C, Suwan Y, Supakontanasan W, Okeke S, Uche NJ, Asimadu I, Ayub H, Akhtar F, Kosior-Jarecka E, Lukasik U, Lischinsky I, Castro V, Grossmann RP, Sunaric Megevand G, Roy S, Dervan E, Silke E, Rao A, Sahay P, Fornero P, Cuello O, Sivori D, Zompa T, Mills RA, Souzeau E, Mitchell P, Wang JJ, Hewitt AW, Coote M, Crowston JG, Astakhov SY, Akopov EL, Emelyanov A, Vysochinskaya V, Kazakbaeva G, Fayzrakhmanov R, Al-Obeidan SA, Owaidhah O, Aljasim LA, Chowbay B, Foo JN, Soh RQ, Sim KS, Xie Z, Cheong AWO, Mok SQ, Soo HM, Chen XY, Peh SQ, Heng KK, Husain R, Ho SL, Hillmer AM, Cheng CY, Escudero-Domínguez FA, González-Sarmiento R, Martinon-Torres F, Salas A, Pathanapitoon K, Hansapinyo L, Wanichwecharugruang B, Kitnarong N, Sakuntabhai A, Nguyn HX, Nguyn GTT, Nguyn TV, Zenz W, Binder A, Klobassa DS, Hibberd ML, Davila S, Herms S, Nöthen MM, Moebus S, Rautenbach RM, Ziskind A, Carmichael TR, Ramsay M, Álvarez L, García M, González-Iglesias H, Rodríguez-Calvo PP, Fernández-Vega Cueto L, Oguz Ç, Tamcelik N, Atalay E, Batu B, Aktas D, Kasım B, Wilson MR, Coleman AL, Liu Y, Challa P, Herndon L, Kuchtey RW, Kuchtey J, Curtin K, Chaya CJ, Crandall A, Zangwill LM, Wong TY, Nakano M, Kinoshita S, den Hollander AI, Vesti E, Fingert JH, Lee RK, Sit AJ, Shingleton BJ, Wang N, Cusi D, Qamar R, Kraft P, Pericak-Vance MA, Raychaudhuri S, Heegaard S, Kivelä T, Reis A, Kruse FE, Weinreb RN, Pasquale LR, Haines JL, Thorsteinsdottir U, Jonasson F, Allingham RR, Milea D, Ritch R, Kubota T, Tashiro K, Vithana EN, Micheal S, Topouzis F, Craig JE, Dubina M, Sundaresan P, Stefansson K, Wiggs JL, Pasutto F, Khor CC. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet 2017; 49:993-1004. [PMID: 28553957 DOI: 10.1038/ng.3875] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results across populations, and to identify new variants associated with XFS. We identified a rare protective allele at LOXL1 (p.Phe407, odds ratio (OR) = 25, P = 2.9 × 10-14) through deep resequencing of XFS cases and controls from nine countries. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10-8). We identified association signals at 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.
Collapse
Affiliation(s)
- Tin Aung
- Singapore Eye Research Institute, Singapore.,Singapore National Eye Center, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mineo Ozaki
- Ozaki Eye Hospital, Hyuga, Miyazaki, Japan.,Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mei Chin Lee
- Singapore Eye Research Institute, Singapore.,Academic Clinical Program for Ophthalmology and Visual Sciences, Office of Clinical and Academic Faculty Affairs, Duke-NUS Graduate Medical School, Singapore
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Susan E Williams
- Division of Ophthalmology, University of the Witwatersrand, Johannesburg, South Africa
| | - Yury S Astakhov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Andrew C Orr
- Department of Ophthalmology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Satoko Nakano
- Department of Ophthalmology, Oita University Faculty of Medicine, Oita, Japan
| | - Kazuhiko Mori
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Khaled Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology, College of Medicine, University of Florida, Jacksonville, Florida, USA
| | - Michael Hauser
- Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, USA.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Zheng Li
- Genome Institute of Singapore, Singapore
| | | | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alina Popa Cherecheanu
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.,Department of Ophthalmology, University Emergency Hospital, Bucharest, Romania
| | - Jae H Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Nelson
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | | | | | | | - Tomasz Zarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | | | - Murat Irkec
- Department of Ophthalmology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Miguel Coca-Prados
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain.,Fernández-Vega Ophthalmological Institute, Oviedo, Spain.,Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kazuhisa Sugiyama
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | - S Fabian Lerner
- Fundación para el Estudio del Glaucoma, Buenos Aires, Argentina
| | - Hasnaa Lamari
- Clinique Spécialisée en Ophtalmologie Mohammedia, Mohammedia, Morocco
| | - Yildirim Nilgün
- Department of Ophthalmology, Eskisehir Osmangazi University, Meselik, Eskisehir, Turkey
| | | | - Ki Ho Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon Cheol Cha
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Ophthalmology, Otsu Red Cross Hospital, Otsu, Japan
| | - Juan C Zenteno
- Genetics Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico.,Biochemistry Department, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht Karls University of Heidelberg, Mannheim, Germany.,Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | | | - Shamira A Perera
- Singapore Eye Research Institute, Singapore.,Singapore National Eye Center, Singapore
| | - Anita S Y Chan
- Singapore Eye Research Institute, Singapore.,Singapore National Eye Center, Singapore.,Academic Clinical Program for Ophthalmology and Visual Sciences, Office of Clinical and Academic Faculty Affairs, Duke-NUS Graduate Medical School, Singapore
| | | | - Ronnie George
- Jadhavbhai Nathamal Singhvi Department of Glaucoma, Medical Research Foundation, Chennai, India
| | - Lingam Vijaya
- Jadhavbhai Nathamal Singhvi Department of Glaucoma, Medical Research Foundation, Chennai, India
| | - Tan Do
- Vietnam National Institute of Ophthalmology, Hanoi, Vietnam
| | - Deepak P Edward
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lourdes de Juan Marcos
- Department of Ophthalmology, University Hospital of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Mohammad Pakravan
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sasan Moghimi
- Farabi Eye Hospital, Tehran University Eye Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Barbara Wirostko
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, Utah, USA
| | - Samuel Thomas
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel Gaston
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Karen Bedard
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Wenda L Greer
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueyi Chen
- Department of Ophthalmology, First Affiliated Hospital of Xinjiang Medical University, Urumchi, China
| | - Lulin Huang
- Center for Human Molecular Biology and Genetics, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Jinghong Sang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Hongyan Jia
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Liyun Jia
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chunyan Qiao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Hui Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Xuyang Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Bowen Zhao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liang Xu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Stéphanie Leruez
- Département d'Ophtalmologie, Centre Hospitalier Universitaire, Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | | | | | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Zenkel
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Berner
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Mossböck
- Department of Ophthalmology, Medical University Graz, Graz, Austria
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ursula Hoja
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich-Christoph Welge-Luessen
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Mardin
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Panayiota Founti
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anthi Chatzikyriakidou
- Laboratory of General Biology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theofanis Pappas
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Anastasopoulos
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Lambropoulos
- Laboratory of General Biology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Rohit Shetty
- Narayana Nethralaya Eye Hospital, Bangalore, India
| | | | - Vijayan Saravanan
- Department of Genetics, Aravind Medical Research Foundation, Madurai, India
| | | | | | | | | | - Mozhgan R Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Naderi Beni
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Lashay
- Farabi Eye Hospital, Tehran University Eye Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Naderifar
- Farabi Eye Hospital, Tehran University Eye Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nassim Khatibi
- Farabi Eye Hospital, Tehran University Eye Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Antonio Fea
- Dipartimento di Scienze Chirurgiche, Università di Torino, Turin, Italy
| | - Carlo Lavia
- Dipartimento di Scienze Chirurgiche, Università di Torino, Turin, Italy
| | - Laura Dallorto
- Dipartimento di Scienze Chirurgiche, Università di Torino, Turin, Italy
| | - Teresa Rolle
- Dipartimento di Scienze Chirurgiche, Università di Torino, Turin, Italy
| | - Paolo Frezzotti
- Ophthalmology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Daniela Paoli
- Department of Ophthalmology, Monfalcone Hospital, Gorizia, Italy
| | - Erika Salvi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Paolo Manunta
- Department of Nephrology, University Vita-Salute San Raffaele, Milan, Italy
| | | | | | - Tomomi Higashide
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | - Satoshi Ishiko
- Department of Medicine and Engineering Combined Research Institute, Asahikawa Medical University, Asahikawa, Japan
| | - Akitoshi Yoshida
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Masahide Yanagi
- Department of Ophthalmology and Visual Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | - Takako Sugimoto
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideki Chuman
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo, Tokyo, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimoto Gotoh
- Center for Genomic Medicine, INSERM U852, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, INSERM U852, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tazuke Kofukai Foundation, Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Yoko Ikeda
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Wook Jeoung
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Sagong
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Marisa Cruz-Aguilar
- Genetics Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico
| | - Sidi M Ezzouhairi
- Clinique Spécialisée en Ophtalmologie Mohammedia, Mohammedia, Morocco
| | | | | | - Xiao Yu Ng
- Singapore Eye Research Institute, Singapore
| | | | | | | | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Olusola O Olawoye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Ophthalmology, University College Hospital, Ibadan, Nigeria
| | - Adeyinka O Ashaye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Ophthalmology, University College Hospital, Ibadan, Nigeria
| | | | - Adeola Onakoya
- Department of Ophthalmology, University of Lagos, Lagos, Nigeria.,Guinness Eye Centre, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Nkiru Kizor-Akaraiwe
- Department of Ophthalmology, ESUT Teaching Hospital Parklane, Enugu, Nigeria.,Eye Specialists Hospital, Enugu, Nigeria
| | - Chaiwat Teekhasaenee
- Department of Ophthalmology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yanin Suwan
- Department of Ophthalmology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wasu Supakontanasan
- Department of Ophthalmology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suhanya Okeke
- Department of Ophthalmology, ESUT Teaching Hospital Parklane, Enugu, Nigeria.,Eye Specialists Hospital, Enugu, Nigeria
| | - Nkechi J Uche
- Eye Specialists Hospital, Enugu, Nigeria.,Department of Ophthalmology, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria.,Department of Ophthalmology, College of Medicine, University of Nigeria, Nsukka, Ituku Ozalla Campus, Enugu, Nigeria
| | - Ifeoma Asimadu
- Department of Ophthalmology, ESUT Teaching Hospital Parklane, Enugu, Nigeria
| | - Humaira Ayub
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Farah Akhtar
- Pakistan Institute of Ophthalmology, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | - Urszula Lukasik
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | | | - Vania Castro
- Universidad Peruana Cayetano Heredia, Hospital Nacional Arzobispo Loayza, Lima, Peru
| | | | - Gordana Sunaric Megevand
- Clinical Research Centre Adolphe de Rothschild, Société Médicale de Beaulieu, Geneva, Switzerland
| | - Sylvain Roy
- Clinical Research Centre Adolphe de Rothschild, Société Médicale de Beaulieu, Geneva, Switzerland
| | - Edward Dervan
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Eoin Silke
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Aparna Rao
- Shri Mithu Tulsi, LV Prasad Eye Institute, Bhubaneswar, India
| | - Priti Sahay
- Shri Mithu Tulsi, LV Prasad Eye Institute, Bhubaneswar, India
| | | | | | - Delia Sivori
- Fundación para el Estudio del Glaucoma, Buenos Aires, Argentina
| | - Tamara Zompa
- Centro Oftalmologico Charles, Buenos Aires, Argentina
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Jie Jin Wang
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Michael Coote
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jonathan G Crowston
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Sergei Y Astakhov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Eugeny L Akopov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Anton Emelyanov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia.,St. Petersburg Academic University, St. Petersburg, Russia
| | | | | | | | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud Owaidhah
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Balram Chowbay
- Clinical Pharmacology, SingHealth, Singapore.,Clinical Pharmacology Laboratory, National Cancer Centre, Singapore.,Office of Clinical Sciences, Duke-NUS Medical School, Singapore
| | - Jia Nee Foo
- Genome Institute of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | | | | | - Shi Qi Mok
- Genome Institute of Singapore, Singapore
| | | | | | - Su Qin Peh
- Genome Institute of Singapore, Singapore
| | | | | | - Su-Ling Ho
- Department of Ophthalmology, Tan Tock Seng Hospital, Singapore
| | | | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore.,Singapore National Eye Center, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Academic Clinical Program for Ophthalmology and Visual Sciences, Office of Clinical and Academic Faculty Affairs, Duke-NUS Graduate Medical School, Singapore
| | | | - Rogelio González-Sarmiento
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Frederico Martinon-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Kessara Pathanapitoon
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Linda Hansapinyo
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Naris Kitnarong
- Department of Ophthalmology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anavaj Sakuntabhai
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Paris, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| | - Hip X Nguyn
- Vietnam National Institute of Ophthalmology, Hanoi, Vietnam
| | | | - Trình V Nguyn
- Vietnam National Institute of Ophthalmology, Hanoi, Vietnam
| | - Werner Zenz
- Department of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Alexander Binder
- Department of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Daniela S Klobassa
- Department of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Martin L Hibberd
- Genome Institute of Singapore, Singapore.,Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Stefan Herms
- Department of Genomics, Life &Brain Center, University of Bonn, Bonn, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Markus M Nöthen
- Department of Genomics, Life &Brain Center, University of Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Robyn M Rautenbach
- Division of Ophthalmology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Ari Ziskind
- Division of Ophthalmology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Trevor R Carmichael
- Division of Ophthalmology, University of the Witwatersrand, Johannesburg, South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lydia Álvarez
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain.,Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Montserrat García
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain.,Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Héctor González-Iglesias
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain.,Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Pedro P Rodríguez-Calvo
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain.,Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Luis Fernández-Vega Cueto
- Fernández-Vega University Institute and Foundation of Ophthalmological Research, University of Oviedo, Oviedo, Spain.,Fernández-Vega Ophthalmological Institute, Oviedo, Spain
| | - Çilingir Oguz
- Department of Genetics, Eskisehir Osmangazi University, Meselik, Eskisehir, Turkey
| | - Nevbahar Tamcelik
- Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Eray Atalay
- Singapore Eye Research Institute, Singapore.,Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Bilge Batu
- Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Dilek Aktas
- DAMAGEN Genetic Diagnostic Center, Ankara, Turkey
| | - Burcu Kasım
- Department of Ophthalmology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - M Roy Wilson
- School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Anne L Coleman
- Center for Community Outreach and Policy, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Center for Biotechnology and Genomic Medicine, James and Jean Culver Discovery Institute, Augusta University, Augusta, Georgia, USA
| | - Pratap Challa
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, USA
| | - Leon Herndon
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, USA
| | - Rachel W Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Karen Curtin
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, Utah, USA
| | - Craig J Chaya
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, Utah, USA
| | - Alan Crandall
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, Utah, USA
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, San Diego, California, USA
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore.,Singapore National Eye Center, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eija Vesti
- Department of Ophthalmology, University of Turku and Turku University Hospital, Turku, Finland
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Arthur J Sit
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Daniele Cusi
- Institute of Biomedical Technologies, Italian National Research Centre (ITB-CNR), Segrate-Milano, Italy
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Department of Biochemistry, Al-Nafees Medical College and Hospital, Isra University, Islamabad, Pakistan
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Soumya Raychaudhuri
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet, Eye Pathology Section, University of Copenhagen, Copenhagen, Denmark
| | - Tero Kivelä
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - André Reis
- David Tvildiani Medical University, Tbilisi, Georgia
| | - Friedrich E Kruse
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, San Diego, California, USA
| | - Louis R Pasquale
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Institute of Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fridbert Jonasson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Ophthalmology, Landspitali University Hospital, Reykjavik, Iceland
| | - R Rand Allingham
- Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, USA
| | - Dan Milea
- Singapore Eye Research Institute, Singapore.,Singapore National Eye Center, Singapore.,Academic Clinical Program for Ophthalmology and Visual Sciences, Office of Clinical and Academic Faculty Affairs, Duke-NUS Graduate Medical School, Singapore
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, USA
| | - Toshiaki Kubota
- Department of Ophthalmology, Oita University Faculty of Medicine, Oita, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eranga N Vithana
- Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazia Micheal
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Michael Dubina
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia.,St. Petersburg Academic University, St. Petersburg, Russia
| | - Periasamy Sundaresan
- Dr. G.Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | - Kari Stefansson
- deCODE Genetics, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chiea Chuen Khor
- Singapore Eye Research Institute, Singapore.,Genome Institute of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
212
|
Lu K, den Brave F, Jentsch S. Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation. Nat Cell Biol 2017; 19:732-739. [PMID: 28504708 DOI: 10.1038/ncb3531] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022]
Abstract
Abnormal or aggregated proteins have a strong cytotoxic potential and are causative for human disorders such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. If not restored by molecular chaperones, abnormal proteins are typically degraded by proteasomes or eliminated by selective autophagy. The discovery that both pathways are initiated by substrate ubiquitylation but utilize different ubiquitin receptors incited a debate over how pathway choice is achieved. Here, we demonstrate in yeast that pathway choice is made after substrate ubiquitylation by competing ubiquitin receptors harbouring either proteasome- or autophagy-related protein 8 (Atg8/LC3)-binding modules. Proteasome pathway receptors bind ubiquitin moieties more efficiently, but autophagy receptors gain the upper hand following substrate aggregation and receptor bundling. Indeed, by using sets of modular artificial receptors harbouring identical ubiquitin-binding modules we found that proteasome/autophagy pathway choice is independent of the ubiquitin-binding properties of the receptors but largely determined by their oligomerization potentials. Our work thus suggests that proteasomal degradation and selective autophagy are two branches of an adaptive protein quality control pathway, which uses substrate ubiquitylation as a shared degradation signal.
Collapse
Affiliation(s)
- Kefeng Lu
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Fabian den Brave
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
213
|
Takayama K, Matsuura A, Itakura E. Dissection of ubiquitinated protein degradation by basal autophagy. FEBS Lett 2017; 591:1199-1211. [PMID: 28369861 PMCID: PMC5435929 DOI: 10.1002/1873-3468.12641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/16/2017] [Accepted: 03/25/2017] [Indexed: 11/23/2022]
Abstract
Basal autophagy plays an essential role as a protein quality control system. Although it has been demonstrated that the loss of autophagy results in the accumulation of ubiquitin‐positive aggregates and the development of neurodegenerative diseases, the precise autophagy substrate(s) remain unclear. Here, we determined whether ubiquitinated proteins are direct substrates for basal autophagy using a fluorescent ratiometric probe for ubiquitin. We show that the degradation of polyubiquitinated proteins is not dependent on basal autophagy. Although ubiquitin‐positive aggregates are observed in autophagy knockout cultured cells, the aggregates consist of soluble and mobile polyubiquitinated proteins, which are trapped by p62 without an increase in the total amount of ubiquitinated proteins. These results suggest that ubiquitinated proteins are not major targets for basal autophagy.
Collapse
Affiliation(s)
- Kaori Takayama
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Japan
| | - Akira Matsuura
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Japan
| | - Eisuke Itakura
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Japan
| |
Collapse
|
214
|
Meßling S, Matthias J, Xiong Q, Fischer S, Eichinger L. The two Dictyostelium discoideum autophagy 8 proteins have distinct autophagic functions. Eur J Cell Biol 2017; 96:312-324. [PMID: 28413119 DOI: 10.1016/j.ejcb.2017.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a highly conserved cellular degradation pathway which is crucial for various cellular processes. The autophagic process is subdivided in the initiation, autophagosome maturation and lysosomal degradation phases and involves more than forty core and accessory autophagy-related (ATG) proteins. Autophagy 8 (ATG8, in mammals LC3) is a well-established marker of autophagy and is linked to the autophagic membrane from initiation until fusion with the lysosome. We generated single and double knock-out mutants of the two Dictyostelium paralogues, ATG8a and ATG8b, as well as strains that expressed RFP-ATG8a and/or GFP-ATG8b, RFP-ATG8b, RFP-GFP-ATG8a or RFP-GFP-ATG8b in different knock-out mutants. The ATG8b¯ mutant displayed only subtle phenotypic changes in comparison to AX2 wild-type cells. In contrast, deletion of ATG8a resulted in a complex phenotype with delayed development, reduced growth, phagocytosis and cell viability, an increase in ubiquitinylated proteins and a concomitant decrease in proteasomal activity. The phenotype of the ATG8a¯/b¯ strain was, except for cell viability, in all aforementioned aspects more severe, showing that both proteins function in parallel during most analysed cellular processes. Immunofluorescence analysis of knock-out strains expressing either RFP-GFP-ATG8a or RFP-GFP-ATG8b suggests a crucial function for ATG8b in autophagosome-lysosome fusion. Quantitative analysis of strains expressing RFP-ATG8a, RFP-ATG8b, or RFP-ATG8a and GFP-ATG8b revealed that ATG8b generally localised to small and large vesicles, whereas ATG8a preferentially co-localised with ATG8b on large vesicles, indicating that ATG8b associated with nascent autophagosomes before ATG8a, which is supported by previous results (Matthias et al., 2016). Deconvoluted confocal fluorescence images showed that ATG8b localised around ATG8a and was presumably mainly present on the outer membrane of the autophagosome while ATG8a appears to be mainly associated with the inner membrane. In summary, our data show that ATG8a and ATG8b have distinct functions and are involved in canonical as well as non-canonical autophagy. The data further suggest that ATG8b predominantly acts as adapter for the autophagy machinery at the outer and ATG8a as cargo receptor at the inner membrane of the autophagosome.
Collapse
Affiliation(s)
- Susanne Meßling
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Jan Matthias
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Qiuhong Xiong
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Sarah Fischer
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany.
| |
Collapse
|
215
|
Zhou Y, Zhao Y, Gao Y, Hu W, Qu Y, Lou N, Zhu Y, Zhang X, Yang H. Hepatitis C virus NS3 protein enhances hepatocellular carcinoma cell invasion by promoting PPM1A ubiquitination and degradation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:42. [PMID: 28283039 PMCID: PMC5345236 DOI: 10.1186/s13046-017-0510-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023]
Abstract
Background Growing evidence suggests that hepatitis C virus (HCV) contributes to hepatocellular carcinoma (HCC) by directly modulating oncogenic signaling pathways. Protein phosphatase magnesium-dependent 1A (PPM1A) has recently emerged as an important tumor suppressor as it can block a range of tumor-centric signaling pathways through protein dephosphorylation. However, the role and regulatory mechanisms of PPM1A in HCV-infected cells have not been reported. Methods Total, cytoplasmic, and nuclear PPM1A protein after HCV infection or overexpression of HCV nonstructural protein 3 (NS3) were detected by western blotting. The expression of PPM1A in normal liver and HCV-related HCC tissues was quantified by immunohistochemistry. The effects of HCV infection and NS3 expression on the PPM1A protein level were systematically analyzed, and the ubiquitination level of PPM1A was determined by precipitation with anti-PPM1A and immunoblotting with either anti-ubiquitin or anti-PPM1A antibody. Finally, the roles of NS3 and PPM1A in hepatoma cell migration and invasion were assessed by wound healing and transwell assays, respectively. Results HCV infection and replication decreased PPM1A abundance, mediated by NS3, in hepatoma cells. Compared to normal liver tissues, the expression of PPM1A was significantly decreased in the HCC tumor tissues and adjacent non-tumor tissues. NS3 directly interacted with PPM1A to promote PPM1A ubiquitination and degradation, which was dependent on its protease domain. Blockade of PPM1A through small interfering RNA significantly promoted HCC cell migration, invasion, and epithelial mesenchymal transition (EMT), which were further intensified by TGF-β1 stimulation, in vitro. Furthermore, restoration of PPM1A abrogated the NS3-mediated promotion of HCC migration and invasion to a great extent, which was dependent on its protein phosphatase function. Conclusions Our findings demonstrate that the HCV protein NS3 can downregulate PPM1A by promoting its ubiquitination and proteasomal degradation, which might contribute to the migration and invasion of hepatoma cells and may represent a new strategy of HCV in carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0510-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yali Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yan Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yaoying Gao
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yan Qu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Ying Zhu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China.
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
216
|
Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol 2017; 10:67. [PMID: 28279189 PMCID: PMC5345270 DOI: 10.1186/s13045-017-0436-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
The 2016 Nobel Prize in Physiology or Medicine was awarded to the researcher that discovered autophagy, which is an evolutionally conserved catabolic process which degrades cytoplasmic constituents and organelles in the lysosome. Autophagy plays a crucial role in both normal tissue homeostasis and tumor development and is necessary for cancer cells to adapt efficiently to an unfavorable tumor microenvironment characterized by hypo-nutrient conditions. This protein degradation process leads to amino acid recycling, which provides sufficient amino acid substrates for cellular survival and proliferation. Autophagy is constitutively activated in cancer cells due to the deregulation of PI3K/Akt/mTOR signaling pathway, which enables them to adapt to hypo-nutrient microenvironment and exhibit the robust proliferation at the pre-metastatic niche. That is why just the activation of autophagy with mTOR inhibitor often fails in vain. In contrast, disturbance of autophagy–lysosome flux leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR), which finally leads to increased apoptotic cell death in the tumor tissue. Accumulating evidence suggests that autophagy has a close relationship with programmed cell death, while uncontrolled autophagy itself often induces autophagic cell death in tumor cells. Autophagic cell death was originally defined as cell death accompanied by large-scale autophagic vacuolization of the cytoplasm. However, autophagy is a “double-edged sword” for cancer cells as it can either promote or suppress the survival and proliferation in the tumor microenvironment. Furthermore, several studies of drug re-positioning suggest that “conventional” agents used to treat diseases other than cancer can have antitumor therapeutic effects by activating/suppressing autophagy. Because of ever increasing failure rates and high cost associated with anticancer drug development, this therapeutic development strategy has attracted increasing attention because the safety profiles of these medicines are well known. Antimalarial agents such as artemisinin and disease-modifying antirheumatic drug (DMARD) are the typical examples of drug re-positioning which affect the autophagy regulation for the therapeutic use. This review article focuses on recent advances in some of the novel therapeutic strategies that target autophagy with a view to treating/preventing malignant neoplasms.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. .,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| |
Collapse
|
217
|
Tramutola A, Di Domenico F, Barone E, Arena A, Giorgi A, di Francesco L, Schininà ME, Coccia R, Head E, Butterfield DA, Perluigi M. Polyubiquitinylation Profile in Down Syndrome Brain Before and After the Development of Alzheimer Neuropathology. Antioxid Redox Signal 2017; 26:280-298. [PMID: 27627691 PMCID: PMC5327052 DOI: 10.1089/ars.2016.6686] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Among the putative mechanisms proposed to be common factors in Down syndrome (DS) and Alzheimer's disease (AD) neuropathology, deficits in protein quality control (PQC) have emerged as a unifying mechanism of neurodegeneration. Considering that disturbance of protein degradation systems is present in DS and that oxidized/misfolded proteins require polyubiquitinylation for degradation via the ubiquitin proteasome system, this study investigated if dysregulation of protein polyubiquitinylation is associated with AD neurodegeneration in DS. RESULTS Postmortem brains from DS cases before and after development of AD neuropathology and age-matched controls were analyzed. By selectively isolating polyubiquitinated proteins, we were able to identify specific proteins with an altered pattern of polyubiquitinylation as a function of age. Interestingly, we found that oxidation is coupled with polyubiquitinylation for most proteins mainly involved in PQC and energy metabolism. INNOVATION This is the first study showing alteration of the polyubiquitinylation profile as a function of aging in DS brain compared with healthy controls. Understanding the onset of the altered ubiquitome profile in DS brain may contribute to identification of key molecular regulators of age-associated cognitive decline. CONCLUSIONS Disturbance of the polyubiquitinylation machinery may be a key feature of aging and neurodegeneration. In DS, age-associated deficits of the proteolytic system may further exacerbate the accumulation of oxidized/misfolded/polyubiquitinated proteins, which is not efficiently degraded and may become harmful to neurons and contribute to AD neuropathology. Antioxid. Redox Signal. 26, 280-298.
Collapse
Affiliation(s)
- Antonella Tramutola
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Fabio Di Domenico
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Eugenio Barone
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Andrea Arena
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Alessandra Giorgi
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Laura di Francesco
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | | | - Raffaella Coccia
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Elizabeth Head
- 2 Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,3 Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - D Allan Butterfield
- 2 Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,4 Department of Chemistry, University of Kentucky , Lexington, Kentucky
| | - Marzia Perluigi
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| |
Collapse
|
218
|
Liu YH, Weng YP, Lin HY, Tang SW, Chen CJ, Liang CJ, Ku CY, Lin JY. Aqueous extract of Polygonum bistorta modulates proteostasis by ROS-induced ER stress in human hepatoma cells. Sci Rep 2017; 7:41437. [PMID: 28134285 PMCID: PMC5278379 DOI: 10.1038/srep41437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/16/2016] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains the leading cause of cancer mortality with limited therapeutic targets. The endoplasmic reticulum (ER) plays a pivotal role in maintaining proteostasis in normal cells. However, alterations in proteostasis are often found in cancer cells, making it a potential target for therapy. Polygonum bistorta is used in traditional Chinese medicine owing to its anticancer activities, but the molecular and pharmacological mechanisms remain unclear. Using hepatoma cells as a model system, this study demonstrated that P. bistorta aqueous extract (PB) stimulated ER stress by increasing autophagosomes but by blocking degradation, followed by the accumulation of ubiquitinated proteins and cell apoptosis. In addition, an autophagy inhibitor did not enhance ubiquitinated protein accumulation whereas a reactive oxygen species (ROS) scavenger diminished both ubiquitinated protein accumulation and ligand-stimulated epidermal growth factor receptor (EGFR) expression, suggesting that ROS generation by PB may be upstream of PB-triggered cell death. Nevertheless, PB-exerted proteostasis impairment resulted in cytoskeletal changes, impairment of cell adhesion and motility, and inhibition of cell cycle progression. Oral administration of PB delayed tumour growth in a xenograft model without significant body weight loss. These findings indicate that PB may be a potential new alternative or complementary medicine for HCC.
Collapse
Affiliation(s)
- Yu-Huei Liu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan.,Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yui-Ping Weng
- Graduate Institute of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan.,Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Hsuan-Yuan Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Sai-Wen Tang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chi-Jung Liang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chung-Yu Ku
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Jung-Yaw Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
219
|
Vonk JJ, Yeshaw WM, Pinto F, Faber AIE, Lahaye LL, Kanon B, van der Zwaag M, Velayos-Baeza A, Freire R, van IJzendoorn SC, Grzeschik NA, Sibon OCM. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain. PLoS One 2017; 12:e0170106. [PMID: 28107480 PMCID: PMC5249141 DOI: 10.1371/journal.pone.0170106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/10/2016] [Indexed: 11/22/2022] Open
Abstract
Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A) gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2)P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis.
Collapse
Affiliation(s)
- Jan J. Vonk
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wondwossen M. Yeshaw
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Francesco Pinto
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anita I. E. Faber
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Liza L. Lahaye
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart Kanon
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marianne van der Zwaag
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Laguna, Tenerife, Spain
| | - Sven C. van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicola A. Grzeschik
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ody C. M. Sibon
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
220
|
Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis 2017; 8:e2531. [PMID: 28055010 PMCID: PMC5386360 DOI: 10.1038/cddis.2016.443] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
The ubiquitin–proteasome system (UPS) and macroautophagy (autophagy) are central to normal proteostasis and interdependent in that autophagy is known to compensate for the UPS to alleviate ensuing proteotoxic stress that impairs cell function. UPS and autophagy dysfunctions are believed to have a major role in the pathomechanisms of neurodegenerative disease. Here we show that continued 26S proteasome dysfunction in mouse brain cortical neurons causes paranuclear accumulation of fragmented dysfunctional mitochondria, associated with earlier recruitment of Parkin and lysine 48-linked ubiquitination of mitochondrial outer membrane (MOM) proteins, including Mitofusin-2. Early events also include phosphorylation of p62/SQSTM1 (p62) and increased optineurin, as well as autophagosomal LC3B and removal of some mitochondria, supporting the induction of selective autophagy. Inhibition of the degradation of ubiquitinated MOM proteins with continued 26S proteasome dysfunction at later stages may impede efficient mitophagy. However, continued 26S proteasome dysfunction also decreases the levels of essential autophagy proteins ATG9 and LC3B, which is characterised by decreases in their gene expression, ultimately leading to impaired autophagy. Intriguingly, serine 351 phosphorylation of p62 did not enhance its binding to Keap1 or stabilise the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor in this neuronal context. Nrf2 protein levels were markedly decreased despite transcriptional activation of the Nrf2 gene. Our study reveals novel insights into the interplay between the UPS and autophagy in neurons and is imperative to understanding neurodegenerative disease where long-term proteasome inhibition has been implicated.
Collapse
|
221
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
222
|
Abstract
Maintenance of proper cellular homeostasis requires constant surveillance and precise regulation of intracellular protein content. Protein monitoring and degradation is performed by two distinct pathways in a cell: the autophage-lysosome pathway and the ubiquitin-proteasome pathway. Protein degradation pathways are frequently dysregulated in multiple cancer types and can be both tumor suppressive and tumor promoting. This knowledge has presented the ubiquitin proteasome system (UPS) and autophagy as attractive cancer therapeutic targets. Deubiquitinating enzymes of the UPS have garnered recent attention in the field of cancer therapeutics due to their frequent dysregulation in multiple cancer types. The content of this chapter discusses reasoning behind and advances toward targeting autophagy and the deubiquitinating enzymes of the UPS in cancer therapy, as well as the compelling evidence suggesting that simultaneous targeting of these protein degradation systems may deliver the most effective, synergistic strategy to kill cancer cells.
Collapse
Affiliation(s)
- Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
223
|
Longato L, Andreola F, Davies SS, Roberts JL, Fusai G, Pinzani M, Moore K, Rombouts K. Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro. Free Radic Biol Med 2017; 102:162-173. [PMID: 27890721 DOI: 10.1016/j.freeradbiomed.2016.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
AIMS Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of HSC. RESULTS Primary human HSC were exposed to 15-E2-IsoLG for up to 48h. Exposure to 5μM 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500nM) 15-E2-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response. INNOVATION This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis. CONCLUSIONS IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy.
Collapse
Affiliation(s)
- Lisa Longato
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jackson L Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Giuseppe Fusai
- Division of Surgery, University College London, Royal Free, London, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Kevin Moore
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK.
| |
Collapse
|
224
|
Rinaldi C, Mäger I, Wood MJ. Proteostasis and Diseases of the Motor Unit. Front Mol Neurosci 2016; 9:164. [PMID: 28082869 PMCID: PMC5187379 DOI: 10.3389/fnmol.2016.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
The accumulation in neurons of aberrant protein species, the pathological hallmark of many neurodegenerative diseases, results from a global impairment of key cellular processes governing protein synthesis/degradation and repair mechanisms, also known as the proteostasis network (PN). The growing number of connections between dysfunction of this intricate network of pathways and diseases of the motor unit, where both motor neurons and muscle are primarily affected, has provided momentum to investigate the muscle- and motor neuron-specific response to physiological and pathological stressors and to explore the therapeutic opportunities that manipulation of this process may offer. Furthermore, these diseases offer an unparalleled opportunity to deepen our understanding of the molecular mechanisms behind the intertissue communication and transfer of signals of proteostasis. The most compelling aspect of these investigations is their immediate potential for therapeutic impact: targeting muscle to stem degeneration of the motor unit would represent a dramatic paradigm therapeutic shift for treating these devastating diseases. Here we will review the current state of the art of the research on the alterations of the PN in diseases of the motor unit and its potential to result in effective treatments for these devastating neuromuscular disorders.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
225
|
Ott C, König J, Höhn A, Jung T, Grune T. Macroautophagy is impaired in old murine brain tissue as well as in senescent human fibroblasts. Redox Biol 2016; 10:266-273. [PMID: 27825071 PMCID: PMC5099282 DOI: 10.1016/j.redox.2016.10.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022] Open
Abstract
The overall decrease in proteolytic activity in aging can promote and accelerate protein accumulation and metabolic disturbances. To specifically analyze changes in macroautophagy (MA) we quantified different autophagy-related proteins (ATGs) in young, adult and old murine tissue as well as in young and senescent human fibroblasts. Thus, we revealed significantly reduced levels of ATG5-ATG12, LC3-II/LC3-I ratio, Beclin-1 and p62 in old brain tissue and senescent human fibroblasts. To investigate the role of mTOR, the protein itself and its target proteins p70S6 kinase and 4E-BP1 were quantified. Significant increased mTOR protein levels were determined in old tissue and cells. Determination of phosphorylated and basal amount of both proteins suggested higher mTOR activity in old murine tissue and senescent human fibroblasts. Besides the reduced levels of ATGs, mTOR can additionally reduce MA, promoting further acceleration of protein accumulation and metabolic disturbances during aging.
Collapse
Affiliation(s)
- Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
226
|
A human carboxypeptidase E/NF-α1 gene mutation in an Alzheimer's disease patient leads to dementia and depression in mice. Transl Psychiatry 2016; 6:e973. [PMID: 27922637 PMCID: PMC5315563 DOI: 10.1038/tp.2016.237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/16/2016] [Indexed: 12/11/2022] Open
Abstract
Patients with Alzheimer's disease (AD), a common dementia among the aging population, often also suffer from depression. This comorbidity is poorly understood. Although most forms of AD are not genetically inherited, we have identified a new human mutation in the carboxypeptidase E (CPE)/neurotrophic factor-α1 (NF-α1) gene from an AD patient that caused memory deficit and depressive-like behavior in transgenic mice. This mutation consists of three adenosine inserts, introducing nine amino acids, including two glutamines into the mutant protein, herein called CPE-QQ. Expression of CPE-QQ in Neuro2a cells demonstrated that it was not secreted, but accumulated in the endoplasmic reticulum and was subsequently degraded by proteasomes. Expression of CPE-QQ in rat hippocampal neurons resulted in cell death, through increased ER stress and decreased expression of pro-survival protein, BCL-2. Transgenic mice expressing CPE-QQ did not show any difference in the processing enzyme activity of CPE compared with wild-type mice. However, the transgenic mice exhibited poor memory, depressive-like behavior, severely decreased dendrites in the hippocampal CA3 region and medial prefrontal cortex indicative of neurodegeneration, hyperphosphorylation of tau at Ser396, and diminished neurogenesis in the dentate gyrus at 50 weeks old. All these pathologies are associated with AD and the latter with depression and were observed in 50-week-old mice. Interestingly, the younger CPE-QQ mice (11 weeks old) did not show deficits in dendrite outgrowth and neurogenesis. This study has uncovered a human CPE/NF-α1 gene mutation that could lead to comorbidity of dementia and depression, emphasizing the importance of this gene in cognitive function.
Collapse
|
227
|
Carmona-Gutierrez D, Hughes AL, Madeo F, Ruckenstuhl C. The crucial impact of lysosomes in aging and longevity. Ageing Res Rev 2016; 32:2-12. [PMID: 27125853 DOI: 10.1016/j.arr.2016.04.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/26/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
Lysosomes are the main catabolic organelles of a cell and play a pivotal role in a plethora of cellular processes, including responses to nutrient availability and composition, stress resistance, programmed cell death, plasma membrane repair, development, and cell differentiation. In line with this pleiotropic importance for cellular and organismal life and death, lysosomal dysfunction is associated with many age-related pathologies like Parkinson's and Alzheimer's disease, as well as with a decline in lifespan. Conversely, targeting lysosomal functional capacity is emerging as a means to promote longevity. Here, we analyze the current knowledge on the prominent influence of lysosomes on aging-related processes, such as their executory and regulatory roles during general and selective macroautophagy, or their storage capacity for amino acids and ions. In addition, we review and discuss the roles of lysosomes as active players in the mechanisms underlying known lifespan-extending interventions like, for example, spermidine or rapamycin administration. In conclusion, this review aims at critically examining the nature and pliability of the different layers, in which lysosomes are involved as a control hub for aging and longevity.
Collapse
|
228
|
Shahani N, Huang WC, Varnum M, Page DT, Subramaniam S. Forebrain depletion of Rheb GTPase elicits spatial memory deficits in mice. Neurobiol Aging 2016; 50:134-143. [PMID: 27960107 DOI: 10.1016/j.neurobiolaging.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/20/2016] [Accepted: 11/12/2016] [Indexed: 12/19/2022]
Abstract
The precise molecular and cellular events responsible for age-dependent cognitive dysfunctions remain unclear. We report that Rheb (ras homolog enriched in brain) GTPase, an activator of mammalian target of rapamycin (mTOR), regulates memory functions in mice. Conditional depletion of Rheb selectively in the forebrain of mice obtained from crossing Rhebf/f and CamKIICre results in spontaneous signs of age-related memory loss, that is, spatial memory deficits (T-maze, Morris water maze) without affecting locomotor (open-field test), anxiety-like (elevated plus maze), or contextual fear conditioning functions. Partial depletion of Rheb in forebrain was sufficient to elicit memory defects with little effect on the neuronal size, cortical thickness, or mammalian target of rapamycin activity. Rheb depletion, however, increased the levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein elevated in aging and Alzheimer's disease. Overall, our study demonstrates that forebrain Rheb promotes aging-associated cognitive defects. Thus, molecular understanding of Rheb pathway in brain may provide new therapeutic targets for aging and/or Alzheimer's disease-associated memory deficits.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Wen-Chin Huang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Megan Varnum
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
229
|
Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front Oncol 2016; 6:240. [PMID: 27896217 PMCID: PMC5108812 DOI: 10.3389/fonc.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell's adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Shaun Martin
- Laboratory for Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Hannelore Maes
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| |
Collapse
|
230
|
Farkas T, Jäättelä M. Renilla Luciferase-LC3 Based Reporter Assay for Measuring Autophagic Flux. Methods Enzymol 2016; 588:1-13. [PMID: 28237095 DOI: 10.1016/bs.mie.2016.09.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macroautophagy (autophagy) is a dynamic intracellular degradation pathway. Monitoring the flux through the autophagy pathway is experimentally challenging but obviously a prerequisite for the proper investigation of the process. Here, we present an indirect autophagy flux assay based on monitoring the degradation of an autophagosome-associated fusion protein Rluc-LC3 by luminescence detection. The method is suitable for screening purposes with a high number of parallel samples and can be used for measurements in cell lysates as well as in living cells. The Rluc-LC3 assay has proven useful for the identification of genes, miRNAs, and small molecules that regulate autophagy flux in mammalian cells.
Collapse
Affiliation(s)
- T Farkas
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - M Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
231
|
A Central Role for Phosphorylated p38α in Linking Proteasome Inhibition-Induced Apoptosis and Autophagy. Mol Neurobiol 2016; 54:7597-7609. [PMID: 27832521 DOI: 10.1007/s12035-016-0260-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022]
Abstract
Autophagy and the ubiquitin proteasome system (UPS), as two major protein degradation pathways, coordinate with each other in regulating programmed cell death. Autophagy can compensate for the UPS impairment-induced cell dysfunction and apoptosis. However, it is not clear how cells maintain the delicate balance between UPS-related apoptosis and autophagy. Here, we showed that proteasome inhibition-mediated UPS impairment can activate the phosphorylated p38α (p-p38α)-dependent apoptotic pathway and autophagy pathway in both neuroblastoma cell line N2a and primary cortical neuronal cells. Multiple indices were utilized for the autophagy detection including LC3II transition, acidic vesicle formation, lysosomal accumulation, and p62 reduction. Blockade of autophagy flux with autophagy inhibitor 3-methyladenine or bafilomycin A1 resulted in further phosphorylation of p38α, polyubiquitinated protein aggregation, and greater apoptotic cell death. On the contrary, enhancement of autophagy by rapamycin attenuated the cell loss by lowering p-p38α level and degrading protein aggregates, indicating a protective role of autophagy in cell stress and apoptosis. Moreover, de-activation of p38α with pharmaceutical p38α inhibitor BIRB796 greatly increased autophagy activation, reduced protein aggregates, and attenuated cell loss, suggesting a bidirectional regulation between p-p38α and autophagy. In addition, manipulation of p-p38α by BIRB796 or p38α knockdown decreased the phosphorylation of key components of the mammalian target of rapamycin (mTOR)-dependent pathway, indicating that the mTOR pathway mediates the p-p38α regulation on autophagy. Overall, our data emphasize p-p38α as a key mediator in the antagonistic interaction between apoptosis and autophagy in response to UPS impairment. Centering p-p38α as a potential regulatory target may provide a dual advantage of proteostasis maintenance and cell survival for simultaneous inhibition of apoptosis and activation of autophagy.
Collapse
|
232
|
Hu Y, Carraro-Lacroix LR, Wang A, Owen C, Bajenova E, Corey PN, Brumell JH, Voronov I. Lysosomal pH Plays a Key Role in Regulation of mTOR Activity in Osteoclasts. J Cell Biochem 2016. [PMID: 26212375 DOI: 10.1002/jcb.25287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in the regulation of cell growth. It has been shown to play an important role in osteoclast differentiation, particularly at the earlier stages of osteoclastogenesis. mTOR activation and function, as part of mTORC1 complex, is dependent on lysosomal localization and the vacuolar H(+) -ATPase (V-ATPase) activity; however, the precise mechanism is still not well understood. Using primary mouse osteoclasts that are known to have higher lysosomal pH due to R740S mutation in the V-ATPase a3 subunit, we investigated the role of lysosomal pH in mTORC1 signaling. Our results demonstrated that +/R740S cells had increased basal mTOR protein levels and mTORC1 activity compared to +/+ osteoclasts, while mTOR gene expression was decreased. Treatment with lysosomal inhibitors chloroquine and ammonium chloride, compounds known to raise lysosomal pH, significantly increased mTOR protein levels in +/+ cells, confirming the importance of lysosomal pH in mTOR signaling. These results also suggested that mTOR could be degraded in the lysosome. To test this hypothesis, we cultured osteoclasts with chloroquine or proteasomal inhibitor MG132. Both chloroquine and MG132 increased mTOR and p-mTOR protein levels in +/+ osteoclasts, suggesting that mTOR undergoes both lysosomal and proteasomal degradation. Treatment with cycloheximide, an inhibitor of new protein synthesis, confirmed that mTOR is constitutively expressed and degraded. These results show that, in osteoclasts, the lysosome plays a key role not only in mTOR activation but also in its deactivation through protein degradation, representing a novel molecular mechanism of mTOR regulation.
Collapse
Affiliation(s)
- Yingwei Hu
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Institute of Dental Medicine, Qilu Hospital, Shandong University, Jinan, China
| | | | - Andrew Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Celeste Owen
- Centre for Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Elena Bajenova
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Paul N Corey
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Irina Voronov
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
233
|
Abstract
Amebiasis is caused by Entamoeba histolytica infection and can produce a broad range of clinical signs, from asymptomatic cases to patients with obvious symptoms. The current epidemiological and clinical statuses of amebiasis make it a serious public health problem worldwide. The Entamoeba life cycle consists of the trophozoite, the causative agent for amebiasis, and the cyst, the form responsible for transmission. These two stages are connected by "encystation" and "excystation." Hence, developing novel strategies to control encystation and excystation will potentially lead to new measures to block the transmission of amebiasis by interrupting the life cycle of the causative agent. Here, we highlight studies investigating encystation using inhibitory chemicals and categorize them based on the molecules inhibited. We also present a perspective on new strategies to prevent the transmission of amebiasis.
Collapse
Affiliation(s)
- Fumika Mi-ichi
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
- * E-mail:
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
234
|
Shin GC, Kang HS, Lee AR, Kim KH. Hepatitis B virus-triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response. Autophagy 2016; 12:2451-2466. [PMID: 27740879 DOI: 10.1080/15548627.2016.1239002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Death receptors of TNFSF10/TRAIL (tumor necrosis factor superfamily member 10) contribute to immune surveillance against virus-infected or transformed cells by promoting apoptosis. Many viruses evade antiviral immunity by modulating TNFSF10 receptor signaling, leading to persistent infection. Here, we report that hepatitis B virus (HBV) X protein (HBx) restricts TNFSF10 receptor signaling via macroautophagy/autophagy-mediated degradation of TNFRSF10B/DR5, a TNFSF10 death receptor, and thus permits survival of virus-infected cells. We demonstrate that the expression of the TNFRSF10B protein is dramatically reduced both in liver tissues of chronic hepatitis B patients and in cell lines transfected with HBV or HBx. HBx-mediated downregulation of TNFRSF10B is caused by the lysosomal, but not proteasomal, degradation pathway. Immunoblotting analysis of LC3B and SQSTM1, and microscopy analysis of tandem-fluorescence-tagged LC3B revealed that HBx promotes complete autophagy. Inhibition of autophagy with a pharmacological inhibitor and LC3B knockdown revealed that HBx-induced autophagy is crucial for TNFRSF10B degradation. Immunoprecipitation and GST affinity isolation assays showed that HBx directly interacts with TNFRSF10B and recruits it to phagophores, the precursors to autophagosomes. We confirmed that autophagy activation is related to the downregulation of the TNFRSF10B protein in liver tissues of chronic hepatitis B patients. Inhibition of autophagy enhanced the susceptibility of HBx-infected hepatocytes to TNFSF10. These results identify the dual function of HBx in TNFRSF10B degradation: HBx plays a role as an autophagy receptor-like molecule, which promotes the association of TNFRSF10B with LC3B; HBx is also an autophagy inducer. Our data suggest a molecular mechanism for HBV evasion from TNFSF10-mediated antiviral immunity, which may contribute to chronic HBV infection.
Collapse
Affiliation(s)
- Gu-Choul Shin
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea.,b KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University , Seoul , Korea
| | - Hong Seok Kang
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea
| | - Ah Ram Lee
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea
| | - Kyun-Hwan Kim
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea.,b KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University , Seoul , Korea.,c Research Institute of Medical Sciences, Konkuk University , Seoul , Korea
| |
Collapse
|
235
|
Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A. A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? Front Mol Neurosci 2016; 9:93. [PMID: 27757073 PMCID: PMC5047891 DOI: 10.3389/fnmol.2016.00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with the help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their associations with multiple pathologies make it a key molecule to work upon and focus for future therapeutic interventions. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside cells by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore Madhya Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| |
Collapse
|
236
|
Inaba Y, Ueno N, Numata M, Zhu X, Messer JS, Boone DL, Fujiya M, Kohgo Y, Musch MW, Chang EB. Soluble bioactive microbial mediators regulate proteasomal degradation and autophagy to protect against inflammation-induced stress. Am J Physiol Gastrointest Liver Physiol 2016; 311:G634-G647. [PMID: 27514476 PMCID: PMC5142193 DOI: 10.1152/ajpgi.00092.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/07/2016] [Indexed: 01/31/2023]
Abstract
Bifidobacterium breve and other Gram-positive gut commensal microbes protect the gastrointestinal epithelium against inflammation-induced stress. However, the mechanisms whereby these bacteria accomplish this protection are poorly understood. In this study, we examined soluble factors derived from Bifidobacterium breve and their impact on the two major protein degradation systems within intestinal epithelial cells, proteasomes and autophagy. Conditioned media from gastrointestinal Gram-positive, but not Gram-negative, bacteria activated autophagy and increased expression of the autophagy proteins Atg5 and Atg7 along with the stress response protein heat shock protein 27. Specific examination of media conditioned by the Gram-positive bacterium Bifidobacterium breve (Bb-CM) showed that this microbe produces small molecules (<3 kDa) that increase expression of the autophagy proteins Atg5 and Atg7, activate autophagy, and inhibit proteasomal enzyme activity. Upregulation of autophagy by Bb-CM was mediated through MAP kinase signaling. In vitro studies using C2BBe1 cells silenced for Atg7 and in vivo studies using mice conditionally deficient in intestinal epithelial cell Atg7 showed that Bb-CM-induced cytoprotection is dependent on autophagy. Therefore, this work demonstrates that Gram-positive bacteria modify protein degradation programs within intestinal epithelial cells to promote their survival during stress. It also reveals the therapeutic potential of soluble molecules produced by these microbes for prevention and treatment of gastrointestinal disease.
Collapse
Affiliation(s)
- Yuhei Inaba
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuhiro Ueno
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masatsugu Numata
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Life Style and Digestive Diseases, Kagoshima Medical University, Kagoshima, Japan
| | - Xiaorong Zhu
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - Jeannette S Messer
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - David L Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mark W Musch
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois;
| |
Collapse
|
237
|
de Munck E, Palomo V, Muñoz-Sáez E, Perez DI, Gómez-Miguel B, Solas MT, Gil C, Martínez A, Arahuetes RM. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy. PLoS One 2016; 11:e0162723. [PMID: 27631495 PMCID: PMC5025054 DOI: 10.1371/journal.pone.0162723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA), a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.
Collapse
Affiliation(s)
- Estefanía de Munck
- Departamento de Biología Animal II, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Emma Muñoz-Sáez
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Daniel I. Perez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Begoña Gómez-Miguel
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - M. Teresa Solas
- Departamento de Biología Celular, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
- * E-mail: (AM); (RMA)
| | - Rosa M. Arahuetes
- Departamento de Biología Animal II, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
- * E-mail: (AM); (RMA)
| |
Collapse
|
238
|
Miyahara K, Kazama H, Kokuba H, Komatsu S, Hirota A, Takemura J, Hirasawa K, Moriya S, Abe A, Hiramoto M, Ishikawa T, Miyazawa K. Targeting bortezomib-induced aggresome formation using vinorelbine enhances the cytotoxic effect along with ER stress loading in breast cancer cell lines. Int J Oncol 2016; 49:1848-1858. [PMID: 27601063 PMCID: PMC5063435 DOI: 10.3892/ijo.2016.3673] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin-proteasome and autophagy-lysosome pathways are two major self-digestive systems for cellular proteins. Ubiquitinated misfolded proteins are degraded mostly by proteasome. However, when ubiquitinated proteins accumulate beyond the capacity of proteasome clearance, they are transported to the microtubule-organizing center (MTOC) along the microtubules to form aggresomes, and subsequently some of them are degraded by the autophagy-lysosome system. We previously reported that macrolide antibiotics such as azithromycin and clarithromycin block autophagy flux, and that concomitant treatment with the proteasome inhibitor bortezomib (BZ) and macrolide enhances endoplasmic reticulum (ER) stress-mediated apoptosis in breast cancer cells. As ubiquitinated proteins are concentrated at the aggresome upon proteasome failure, we focused on the microtubule as the scaffold of this transport pathway for aggresome formation. Treatment of metastatic breast cancer cell lines (e.g., MDA-MB‑231 cells) with BZ resulted in induction of aggresomes, which immunocytochemistry detected as a distinctive eyeball-shaped vimentin-positive inclusion body that formed in a perinuclear lesion, and that electron microscopy detected as a sphere of fibrous structure with some dense amorphous deposit. Vinorelbine (VNR), which inhibits microtubule polymerization, more effectively suppressed BZ-induced aggresome formation than paclitaxel (PTX), which stabilizes microtubules. Combined treatment using BZ and VNR, but not PTX, enhanced the cytotoxic effect and apoptosis induction along with pronounced ER stress loading such as upregulation of GRP78 and CHOP/GADD153. The addition of azithromycin to block autophagy flux in the BZ plus VNR-containing cell culture further enhanced the cytotoxicity. These data suggest that suppression of BZ-induced aggresome formation using an inhibitory drug such as VNR for microtubule polymerization is a novel strategy for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Kana Miyahara
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo, Japan
| | - Seiichiro Komatsu
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | - Ayako Hirota
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Jun Takemura
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiro Hirasawa
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Akihisa Abe
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
239
|
All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget 2016; 6:29914-28. [PMID: 26359359 PMCID: PMC4745772 DOI: 10.18632/oncotarget.4939] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Hutchinson Gilford progeria syndrome is a fatal disorder characterized by accelerated aging, bone resorption and atherosclerosis, caused by a LMNA mutation which produces progerin, a mutant lamin A precursor. Progeria cells display progerin and prelamin A nuclear accumulation, altered histone methylation pattern, heterochromatin loss, increased DNA damage and cell cycle alterations. Since the LMNA promoter contains a retinoic acid responsive element, we investigated if all-trans retinoic acid administration could lower progerin levels in cultured fibroblasts. We also evaluated the effect of associating rapamycin, which induces autophagic degradation of progerin and prelamin A. We demonstrate that all-trans retinoic acid acts synergistically with low-dosage rapamycin reducing progerin and prelamin A, via transcriptional downregulation associated with protein degradation, and increasing the lamin A to progerin ratio. These effects rescue cell dynamics and cellular proliferation through recovery of DNA damage response factor PARP1 and chromatin-associated nuclear envelope proteins LAP2α and BAF. The combined all-trans retinoic acid-rapamycin treatment is dramatically efficient, highly reproducible, represents a promising new approach in Hutchinson-Gilford Progeria therapy and deserves investigation in ageing-associated disorders.
Collapse
|
240
|
Ding X, Ma M, Teng J, Teng RKF, Zhou S, Yin J, Fonkem E, Huang JH, Wu E, Wang X. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 2016; 6:24178-91. [PMID: 26172304 PMCID: PMC4695178 DOI: 10.18632/oncotarget.4680] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent a continuum of devastating neurodegenerative diseases, characterized by transactive response DNA-binding protein of 43 kDa (TDP-43) aggregates accumulation throughout the nervous system. Despite rapidly emerging evidence suggesting the hypothesis of 'prion-like propagation' of TDP-43 positive inclusion in the regional spread of ALS symptoms, whether and how TDP-43 aggregates spread between cells is not clear. Herein, we established a cerebrospinal fluid (CSF)-cultured cell model to dissect mechanisms governing TDP-43 aggregates formation and propagation. Remarkably, intracellular TDP-43 mislocalization and aggregates were induced in the human glioma U251 cells following exposure to ALS-FTD-CSF but not ALS-CSF and normal control (NC) -CSF for 21 days. The exosomes derived from ALS-FTD-CSF were enriched in TDP-43 C-terminal fragments (CTFs). Incubation of ALS-FTD-CSF induced the increase of mislocated TDP-43 positive exosomes in U251 cells. We further demonstrated that exposure to ALS-FTD-CSF induced the generations of tunneling nanotubes (TNTs)-like structure and exosomes at different stages, which mediated the propagation of TDP-43 aggregates in the cultured U251 cells. Moreover, immunoblotting analyses revealed that abnormal activations of apoptosis and autophagy were induced in U251 cells, following incubation of ALS-CSF and ALS-FTD-CSF. Taken together, our data provide direct evidence that ALS-FTD-CSF has prion-like transmissible properties. TNTs-like structure and exosomes supply the routes for the transfer of TDP-43 aggregates, and selective inhibition of their over-generations may interrupt the progression of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingming Ma
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Robert K F Teng
- College of Engineering, California State University, Los Angeles, CA, USA
| | - Shuang Zhou
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Jingzheng Yin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ekokobe Fonkem
- Scott & White Neuroscience Institute, Texas A & M Health Science Center, College of Medicine, Temple, TX, USA
| | - Jason H Huang
- Scott & White Neuroscience Institute, Texas A & M Health Science Center, College of Medicine, Temple, TX, USA
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
241
|
Luo T, Fu J, Xu A, Su B, Ren Y, Li N, Zhu J, Zhao X, Dai R, Cao J, Wang B, Qin W, Jiang J, Li J, Wu M, Feng G, Chen Y, Wang H. PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy 2016; 12:1355-71. [PMID: 25905985 PMCID: PMC4968225 DOI: 10.1080/15548627.2015.1034405] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 02/12/2015] [Accepted: 02/25/2015] [Indexed: 01/07/2023] Open
Abstract
Although autophagy is most critical for survival of cancer cells, especially in fast-growing tumors, the mechanism remains to be fully characterized. Herein we report that PSMD10/gankyrin promotes autophagy in hepatocellular carcinoma (HCC) in response to starvation or stress through 2 complementary routes. PSMD10 was physically associated with ATG7 in the cytoplasm, and this association was enhanced by initial nutrient deprivation. Subsequently, PSMD10 translocated into the nucleus and bound cooperatively with nuclear HSF1 (heat shock transcription factor 1) onto the ATG7 promoter, upregulated ATG7 expression in the advanced stage of starvation. Intriguingly, the type of PSMD10-mediated autophagy was independent of the proteasome system, although PSMD10 has been believed to be an indispensable chaperone for assembly of the 26S proteasome. A significant correlation between PSMD10 expression and ATG7 levels was detected in human HCC biopsies, and the combination of these 2 parameters is a powerful predictor of poor prognosis. The median survival of sorafenib-treated HCC patients with high expression of PSMD10 was much shorter than those with low expression of PSMD10. Furthermore, PSMD10 augmented autophagic flux to resist sorafenib or conventional chemotherapy, and inhibition of autophagy suppressed PSMD10-mediated resistance. We conclude that these results present a novel mechanism involving modulation of ATG7 by PSMD10 in sustaining autophagy, promoting HCC cell survival against starvation or chemotherapy. Targeting of PSMD10 might therefore be an attractive strategy in HCC treatment by suppressing autophagy and inducing HCC cell sensitivity to drugs.
Collapse
Affiliation(s)
- Tao Luo
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - An Xu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Bo Su
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Yibing Ren
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Ning Li
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Junjie Zhu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Xiaofang Zhao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Rongyang Dai
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Jie Cao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Bibo Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Wenhao Qin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Jinhua Jiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Juan Li
- Department of Nutrition and Endocrinology, Changhai Hospital, Shanghai, China
| | - Mengchao Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Gensheng Feng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Yao Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
242
|
Activation of salt-inducible kinase 2 promotes the viability of peritoneal mesothelial cells exposed to stress of peritoneal dialysis. Cell Death Dis 2016; 7:e2298. [PMID: 27441650 PMCID: PMC4973365 DOI: 10.1038/cddis.2016.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
Abstract
Maintaining mesothelial cell viability is critical to long-term successful peritoneal dialysis (PD) treatment. To clarify the viability mechanism of peritoneal mesothelial cells under PD solutions exposure, we examined the mechanisms of cellular response to this stress conditions. Here we report that the proteasome activity is inhibited when treated with PD solutions. Proteasome inhibition-mediated activation of salt-inducible kinase 2 (SIK2), an endoplasmic reticulum-resident protein, is important for mesothelial cell viability. SIK2 is mobilized to promote autophagy and protect the cells from apoptosis under PD solution or MG132 treatment. Immunofluorescence staining showed that SIK2 is colocalized with LC3B in the autophagosomes of mesothelial cells treated with PD solution or derived from patients undergoing PD treatment. SIK2 activation is likely via a two-step mechanism, upstream kinases relieving the autoinhibitory conformation of SIK2 molecule followed by autophosphorylation of Thr175 and activation of kinase activity. These results suggest that activation of SIK2 is required for the cell viability when proteasome activity is inhibited by PD solutions. Maintaining or boosting the activity of SIK2 may promote peritoneal mesothelial cell viability and evolve as a potential therapeutic target for maintaining or restoring peritoneal membrane integrity in PD therapy.
Collapse
|
243
|
Hewitt G, Carroll B, Sarallah R, Correia-Melo C, Ogrodnik M, Nelson G, Otten EG, Manni D, Antrobus R, Morgan BA, von Zglinicki T, Jurk D, Seluanov A, Gorbunova V, Johansen T, Passos JF, Korolchuk VI. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy 2016; 12:1917-1930. [PMID: 27391408 PMCID: PMC5391493 DOI: 10.1080/15548627.2016.1210368] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SQSTM1/p62 (sequestosome 1) selectively targets polyubiquitinated proteins for degradation via macroautophagy and the proteasome. Additionally, SQSTM1 shuttles between the cytoplasmic and nuclear compartments, although its role in the nucleus is relatively unknown. Here, we report that SQSTM1 dynamically associates with DNA damage foci (DDF) and regulates DNA repair. Upon induction of DNA damage SQSTM1 interacts with FLNA (filamin A), which has previously been shown to recruit DNA repair protein RAD51 (RAD51 recombinase) to double-strand breaks and facilitate homologous recombination (HR). SQSTM1 promotes proteasomal degradation of FLNA and RAD51 within the nucleus, resulting in reduced levels of nuclear RAD51 and slower DNA repair. SQSTM1 regulates the ratio between HR and nonhomologous end joining (NHEJ) by promoting the latter at the expense of the former. This SQSTM1-dependent mechanism mediates the effect of macroautophagy on DNA repair. Moreover, nuclear localization of SQSTM1 and its association with DDF increase with aging and are prevented by life-span-extending dietary restriction, suggesting that an imbalance in the mechanism identified here may contribute to aging and age-related diseases.
Collapse
Affiliation(s)
- Graeme Hewitt
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Bernadette Carroll
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | | | - Clara Correia-Melo
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Mikołaj Ogrodnik
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Glyn Nelson
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Elsje G Otten
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Diego Manni
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Robin Antrobus
- b Cambridge Institute for Medical Research , Cambridge University , Cambridge , UK
| | - Brian A Morgan
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Thomas von Zglinicki
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Diana Jurk
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Andrei Seluanov
- c Department of Biology , University of Rochester , Rochester , NY USA
| | - Vera Gorbunova
- c Department of Biology , University of Rochester , Rochester , NY USA
| | - Terje Johansen
- d Molecular Cancer Research Group , Department of Medical Biology , University of Tromsø - The Arctic University of Norway , Tromsø , Norway
| | - João F Passos
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| | - Viktor I Korolchuk
- a Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
244
|
Toulorge D, Schapira AHV, Hajj R. Molecular changes in the postmortem parkinsonian brain. J Neurochem 2016; 139 Suppl 1:27-58. [PMID: 27381749 DOI: 10.1111/jnc.13696] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/14/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease after Alzheimer disease. Although PD has a relatively narrow clinical phenotype, it has become clear that its etiological basis is broad. Post-mortem brain analysis, despite its limitations, has provided invaluable insights into relevant pathogenic pathways including mitochondrial dysfunction, oxidative stress and protein homeostasis dysregulation. Identification of the genetic causes of PD followed the discovery of these abnormalities, and reinforced the importance of the biochemical defects identified post-mortem. Recent genetic studies have highlighted the mitochondrial and lysosomal areas of cell function as particularly significant in mediating the neurodegeneration of PD. Thus the careful analysis of post-mortem PD brain biochemistry remains a crucial component of research, and one that offers considerable opportunity to pursue etiological factors either by 'reverse biochemistry' i.e. from defective pathway to mutant gene, or by the complex interplay between pathways e.g. mitochondrial turnover by lysosomes. In this review we have documented the spectrum of biochemical defects identified in PD post-mortem brain and explored their relevance to metabolic pathways involved in neurodegeneration. We have highlighted the complex interactions between these pathways and the gene mutations causing or increasing risk for PD. These pathways are becoming a focus for the development of disease modifying therapies for PD. Parkinson's is accompanied by multiple changes in the brain that are responsible for the progression of the disease. We describe here the molecular alterations occurring in postmortem brains and classify them as: Neurotransmitters and neurotrophic factors; Lewy bodies and Parkinson's-linked genes; Transition metals, calcium and calcium-binding proteins; Inflammation; Mitochondrial abnormalities and oxidative stress; Abnormal protein removal and degradation; Apoptosis and transduction pathways. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
| | | | - Rodolphe Hajj
- Department of Discovery, Pharnext, Issy-Les-Moulineaux, France.
| |
Collapse
|
245
|
Li X, Zhu F, Jiang J, Sun C, Zhong Q, Shen M, Wang X, Tian R, Shi C, Xu M, Peng F, Guo X, Hu J, Ye D, Wang M, Qin R. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells. Autophagy 2016; 12:1521-37. [PMID: 27308733 DOI: 10.1080/15548627.2016.1191722] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In contrast to normal tissue, cancer cells display profound alterations in protein synthesis and degradation. Therefore, proteins that regulate endoplasmic reticulum (ER) homeostasis are being increasingly recognized as potential therapeutic targets. The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. However, interactions between autophagy, the proteasome, and ER stress pathways in cancer remain largely undefined. This study demonstrated that withaferin-A (WA), the biologically active withanolide extracted from Withania somnifera, significantly increased autophagosomes, but blocked the degradation of autophagic cargo by inhibiting SNARE-mediated fusion of autophagosomes and lysosomes in human pancreatic cancer (PC) cells. WA specifically induced proteasome inhibition and promoted the accumulation of ubiquitinated proteins, which resulted in ER stress-mediated apoptosis. Meanwhile, the impaired autophagy at early stage induced by WA was likely activated in response to ER stress. Importantly, combining WA with a series of ER stress aggravators enhanced apoptosis synergistically. WA was well tolerated in mice, and displayed synergism with ER stress aggravators to inhibit tumor growth in PC xenografts. Taken together, these findings indicate that simultaneous suppression of 2 key intracellular protein degradation systems rendered PC cells vulnerable to ER stress, which may represent an avenue for new therapeutic combinations for this disease.
Collapse
Affiliation(s)
- Xu Li
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Feng Zhu
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jianxin Jiang
- b Department of Hepatic-Biliary-Pancreatic Surgery , Hubei Cancer Hospital , Wuhan , China
| | - Chengyi Sun
- c Department of Biliary-Hepatic Surgery , Affiliated Hospital of Guiyang Medical College , Guizhou , China
| | - Qing Zhong
- d Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Ming Shen
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xin Wang
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Rui Tian
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Chengjian Shi
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Meng Xu
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Feng Peng
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xingjun Guo
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jun Hu
- e Department of Colon Cancer , Tianjin Medical University Cancer Institute and Hospital , Tianjin , China
| | - Dawei Ye
- f Department of Oncology , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Min Wang
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Renyi Qin
- a Department of Biliary-Pancreatic Surgery , Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
246
|
Cui D, Xiong X, Zhao Y. Cullin-RING ligases in regulation of autophagy. Cell Div 2016; 11:8. [PMID: 27293474 PMCID: PMC4902950 DOI: 10.1186/s13008-016-0022-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022] Open
Abstract
Cullin-RING ligases (CRLs), the largest E3 ubiquitin ligase family, promote ubiquitination and degradation of various cellular key regulators involved in a broad array of physiological and pathological processes, including cell cycle progression, signal transduction, transcription, cardiomyopathy, and tumorigenesis. Autophagy, an intracellular catabolic reaction that delivers cytoplasmic components to lysosomes for degradation, is crucial for cellular metabolism and homeostasis. The dysfunction of autophagy has been proved to associate with a variety of human diseases. Recent evidences revealed the emerging roles of CRLs in the regulation of autophagy. In this review, we will focus mainly on recent advances in our understandings of the regulation of autophagy by CRLs and the cross-talk between CRLs and autophagy, two degradation systems. We will also discuss the pathogenesis of human diseases associated with the dysregulation of CRLs and autophagy. Finally, we will discuss current efforts and future perspectives on basic and translational research on CRLs and autophagy.
Collapse
Affiliation(s)
- Danrui Cui
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing-Chun Road, Hangzhou, Zhejiang 310003 People's Republic of China ; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kai-Xuan Road, Hangzhou, Zhejiang 310029 People's Republic of China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kai-Xuan Road, Hangzhou, Zhejiang 310029 People's Republic of China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing-Chun Road, Hangzhou, Zhejiang 310003 People's Republic of China ; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kai-Xuan Road, Hangzhou, Zhejiang 310029 People's Republic of China
| |
Collapse
|
247
|
Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med 2016; 21:1406-15. [PMID: 26646497 DOI: 10.1038/nm.4001] [Citation(s) in RCA: 558] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Accumulation of intracellular damage is an almost universal hallmark of aging. An improved understanding of the systems that contribute to cellular protein quality control has shed light on the reasons for the increased vulnerability of the proteome to stress in aging cells. Maintenance of protein homeostasis, or proteostasis, is attained through precisely coordinated systems that rapidly correct unwanted proteomic changes. Here we focus on recent developments that highlight the multidimensional nature of the proteostasis networks, which allow for coordinated protein homeostasis intracellularly, in between cells and even across organs, as well as on how they affect common age-associated diseases when they malfunction in aging.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, New York, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
248
|
Goode A, Butler K, Long J, Cavey J, Scott D, Shaw B, Sollenberger J, Gell C, Johansen T, Oldham NJ, Searle MS, Layfield R. Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy 2016; 12:1094-104. [PMID: 27158844 PMCID: PMC4990988 DOI: 10.1080/15548627.2016.1170257] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Growing evidence implicates impairment of autophagy as a candidate pathogenic mechanism in the spectrum of neurodegenerative disorders which includes amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS-FTLD). SQSTM1, which encodes the autophagy receptor SQSTM1/p62, is genetically associated with ALS-FTLD, although to date autophagy-relevant functional defects in disease-associated variants have not been described. A key protein-protein interaction in autophagy is the recognition of a lipid-anchored form of LC3 (LC3-II) within the phagophore membrane by SQSTM1, mediated through its LC3-interacting region (LIR), and notably some ALS-FTLD mutations map to this region. Here we show that although representing a conservative substitution and predicted to be benign, the ALS-associated L341V mutation of SQSTM1 is defective in recognition of LC3B. We place our observations on a firm quantitative footing by showing the L341V-mutant LIR is associated with a ∼3-fold reduction in LC3B binding affinity and using protein NMR we rationalize the structural basis for the effect. This functional deficit is realized in motor neuron-like cells, with the L341V mutant EGFP-mCherry-SQSTM1 less readily incorporated into acidic autophagic vesicles than the wild type. Our data supports a model in which the L341V mutation limits the critical step of SQSTM1 recruitment to the phagophore. The oligomeric nature of SQSTM1, which presents multiple LIRs to template growth of the phagophore, potentially gives rise to avidity effects which amplify the relatively modest impact of any single mutation on LC3B binding. Over the lifetime of a neuron, impaired autophagy could expose a vulnerability, which ultimately tips the balance from cell survival toward cell death.
Collapse
Affiliation(s)
- Alice Goode
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Kevin Butler
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Jed Long
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - James Cavey
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Daniel Scott
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Barry Shaw
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Jill Sollenberger
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Christopher Gell
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Terje Johansen
- d Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway , Tromsø , Norway
| | - Neil J Oldham
- b School of Chemistry, University of Nottingham , Nottingham , UK
| | - Mark S Searle
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Robert Layfield
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| |
Collapse
|
249
|
Li YX, Huang Y, Liu S, Mao Y, Yuan CY, Yang X, Yao LJ. Glycogen Synthase Kinase-3 Modulates Hyperosmotic-Induced Urea Transporter A1 Relocation in the Inner Medullary Collecting Duct Cells. Nephron Clin Pract 2016; 133:71-9. [PMID: 27161213 DOI: 10.1159/000446158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/28/2016] [Indexed: 11/19/2022] Open
Abstract
AIM Glycogen synthase kinase 3 (GSK3) regulates urine concentration by mediating the vasopressin-induced aquaporin 2 expression and water permeability, although it is unknown whether GSK3 also mediates the accumulation of the urea transporter A1 (UT-A1). The aim of this study is to investigate the effect of GSK3 on UT-A1 distribution. METHODS Mouse inner medullary collecting duct 3 cells were transfected with UT-A1-GFP construct. The stable transfected cells were cultured under hypertonic conditions, treated with GSK3 inhibitor lithium chloride, GSK3 activator, lysosome or proteasome inhibitor. The expression levels of UT-A1, GSK3, and phospho-GSK3 were analyzed using western blot. The interaction between UT-A1 and the Golgi apparatus was examined using confocal immunofluorescence microscope. The UT-A1 trafficking was examined using the biotinylation of surface membranes. RESULTS UT-A1 dissociated away from the Golgi apparatus and translocated to the plasma membrane under hypertonic-NaCl and NaCl plus urea stimulation. This movement was accompanied by the increased phosphorylation of GSK3 and its localization on the cellular membrane. Moreover, these results were duplicated by treating the cells with the GSK3 inhibitor, and by contrast, were partially reversed by the GSK3 activator. Treating cells with a lysosome or proteasome inhibitor failed to attenuate the effects of hypertonic stimulus, indicating that the loss of UT-A1 from the Golgi was not due to degradation. CONCLUSION Our results suggest that GSK3 may in part modulate the hypertonic-induced intracellular UT-A1 redistribution and its accumulation on the plasma membrane, which may constitute another mechanism by which GSK3 modulates urine concentration.
Collapse
Affiliation(s)
- Yong-Xia Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
250
|
Maier K, He Y, Esser PR, Thriene K, Sarca D, Kohlhase J, Dengjel J, Martin L, Has C. Single Amino Acid Deletion in Kindlin-1 Results in Partial Protein Degradation Which Can Be Rescued by Chaperone Treatment. J Invest Dermatol 2016; 136:920-929. [DOI: 10.1016/j.jid.2015.12.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
|