201
|
Martínez I, García-Carpizo V, Guijarro T, García-Gomez A, Navarro D, Aranda A, Zambrano A. Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus. Virulence 2016; 7:427-42. [PMID: 26809688 DOI: 10.1080/21505594.2016.1144001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) accounts for the majority of lower respiratory tract infections during infancy and childhood and is associated with significant morbidity and mortality. HRSV provokes a proliferation arrest and characteristic syncytia in cellular systems such as immortalized epithelial cells. We show here that HRSV induces the expression of DNA damage markers and proliferation arrest such as P-TP53, P-ATM, CDKN1A and γH2AFX in cultured cells secondary to the production of mitochondrial reactive oxygen species (ROS). The DNA damage foci contained γH2AFX and TP53BP1, indicative of double-strand breaks (DSBs) and could be reversed by antioxidant treatments such as N-Acetylcysteine (NAC) or reduced glutathione ethyl ester (GSHee). The damage observed is associated with the accumulation of senescent cells, displaying a canonical senescent phenotype in both mononuclear cells and syncytia. In addition, we show signs of DNA damage and aging such as γH2AFX and CDKN2A expression in the respiratory epithelia of infected mice long after viral clearance. Altogether, these results show that HRSV triggers a DNA damage-mediated cellular senescence program probably mediated by oxidative stress. The results also suggest that this program might contribute to the physiopathology of the infection, tissue remodeling and aging, and might be associated to long-term consequences of HRSV infections.
Collapse
Affiliation(s)
- Isidoro Martínez
- a Department of Molecular Pathology , Spanish National Center for Microbiology, Institute of Health Carlos III , Madrid , Spain
| | - Verónica García-Carpizo
- b Department of Endocrine Physiopathology and Nervous System , Institute for Biomedical Research (IIBM), CSIC-UAM , Madrid , Spain
| | - Trinidad Guijarro
- a Department of Molecular Pathology , Spanish National Center for Microbiology, Institute of Health Carlos III , Madrid , Spain
| | - Ana García-Gomez
- a Department of Molecular Pathology , Spanish National Center for Microbiology, Institute of Health Carlos III , Madrid , Spain
| | - Diego Navarro
- b Department of Endocrine Physiopathology and Nervous System , Institute for Biomedical Research (IIBM), CSIC-UAM , Madrid , Spain
| | - Ana Aranda
- b Department of Endocrine Physiopathology and Nervous System , Institute for Biomedical Research (IIBM), CSIC-UAM , Madrid , Spain
| | - Alberto Zambrano
- a Department of Molecular Pathology , Spanish National Center for Microbiology, Institute of Health Carlos III , Madrid , Spain
| |
Collapse
|
202
|
Shafirovich V, Kropachev K, Anderson T, Liu Z, Kolbanovskiy M, Martin BD, Sugden K, Shim Y, Chen X, Min JH, Geacintov NE. Base and Nucleotide Excision Repair of Oxidatively Generated Guanine Lesions in DNA. J Biol Chem 2016; 291:5309-19. [PMID: 26733197 DOI: 10.1074/jbc.m115.693218] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 11/06/2022] Open
Abstract
The well known biomarker of oxidative stress, 8-oxo-7,8-dihydroguanine, is more susceptible to further oxidation than the parent guanine base and can be oxidatively transformed to the genotoxic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) lesions. Incubation of 135-mer duplexes with single Sp or Gh lesions in human cell extracts yields a characteristic nucleotide excision repair (NER)-induced ladder of short dual incision oligonucleotide fragments in addition to base excision repair (BER) incision products. The ladders were not observed when NER was inhibited either by mouse monoclonal antibody (5F12) to human XPA or in XPC(-/-) fibroblast cell extracts. However, normal NER activity appeared when the XPC(-/-) cell extracts were complemented with XPC-RAD23B proteins. The Sp and Gh lesions are excellent substrates of both BER and NER. In contrast, 5-guanidino-4-nitroimidazole, a product of the oxidation of guanine in DNA by peroxynitrite, is an excellent substrate of BER only. In the case of mouse embryonic fibroblasts, BER of the Sp lesion is strongly reduced in NEIL1(-/-) relative to NEIL1(+/+) extracts. In summary, in human cell extracts, BER and NER activities co-exist and excise Gh and Sp DNA lesions, suggesting that the relative NER/BER product ratios may depend on competitive BER and NER protein binding to these lesions.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- From the Department of Chemistry, New York University, New York, New York 10003,
| | | | - Thomas Anderson
- From the Department of Chemistry, New York University, New York, New York 10003
| | - Zhi Liu
- From the Department of Chemistry, New York University, New York, New York 10003
| | - Marina Kolbanovskiy
- From the Department of Chemistry, New York University, New York, New York 10003
| | - Brooke D Martin
- Department of Chemistry, University of Montana, Missoula, Montana 59812, and
| | - Kent Sugden
- Department of Chemistry, University of Montana, Missoula, Montana 59812, and
| | - Yoonjung Shim
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Xuejing Chen
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Jung-Hyun Min
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Nicholas E Geacintov
- From the Department of Chemistry, New York University, New York, New York 10003,
| |
Collapse
|
203
|
Jana K, Ganguly B. In silico studies with substituted adenines to achieve a remarkable stability of mispairs with thymine nucleobase. NEW J CHEM 2016. [DOI: 10.1039/c5nj02311d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modified adenine and thymine mispair achieves a remarkable stability, which can presumably help the DNA lesions to be less cytotoxic.
Collapse
Affiliation(s)
- Kalyanashis Jana
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR – Central Salt and Marine Chemicals Research Institute
- Bhavnagar – 364002
- India
- Academy of Scientific and Innovative Research
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR – Central Salt and Marine Chemicals Research Institute
- Bhavnagar – 364002
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
204
|
Khatun M, Choudhury S, Liu B, Lemmens P, Pal SK, Mazumder S. Resveratrol–ZnO nanohybrid enhanced anti-cancerous effect in ovarian cancer cells through ROS. RSC Adv 2016. [DOI: 10.1039/c6ra16664d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The use of nanotechnology in medicine and more specifically in drug delivery is expected to spread rapidly.
Collapse
Affiliation(s)
- Mahamuda Khatun
- Department of Biochemistry
- Ballygunge Science College
- University of Calcutta
- Kolkata 700 019
- India
| | - Susobhan Choudhury
- Department of Chemical
- Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Bo Liu
- Institute for Condensed Matter Physics
- 38106 Braunschweig
- Germany
| | - Peter Lemmens
- Institute for Condensed Matter Physics
- 38106 Braunschweig
- Germany
- Laboratory for Emerging Nanometrology
- 38106 Braunschweig
| | - Samir Kumar Pal
- Department of Chemical
- Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Santasree Mazumder
- Department of Biochemistry
- Ballygunge Science College
- University of Calcutta
- Kolkata 700 019
- India
| |
Collapse
|
205
|
Woods RD, O'Shea VL, Chu A, Cao S, Richards JL, Horvath MP, David SS. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases. Nucleic Acids Res 2015; 44:801-10. [PMID: 26673696 PMCID: PMC4737165 DOI: 10.1093/nar/gkv1469] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for 'retaining' O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer.
Collapse
Affiliation(s)
- Ryan D Woods
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Valerie L O'Shea
- Department of Chemistry, University of California, Davis, CA 95616, USA Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Aurea Chu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Sheng Cao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Jody L Richards
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Martin P Horvath
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
206
|
Aamann MD, Nørregaard R, Kristensen MLV, Stevnsner T, Frøkiær J. Unilateral ureteral obstruction induces DNA repair by APE1. Am J Physiol Renal Physiol 2015; 310:F763-F776. [PMID: 26608791 DOI: 10.1152/ajprenal.00613.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
Ureteral obstruction is associated with oxidative stress and the development of fibrosis of the kidney parenchyma. Apurinic/apyrimidinic endonuclease (APE1) is an essential DNA repair enzyme for repair of oxidative DNA lesions and regulates several transcription factors. The aim of the present study was to investigate whether APE1 is regulated by acute (24 h) and chronic (7 days) unilateral ureteral obstruction (UUO). APE1 was expressed in essentially all kidney cells with the strongest expression in proximal tubuli. After 24 h of UUO, APE1 mRNA was induced in the cortex, inner stripe of the outer medulla (ISOM), and inner medulla (IM). In contrast, the APE1 protein level was not regulated in the IM and ISOM and only slightly increased in the cortex. APE1 DNA repair activity was not significantly changed. A different pattern of regulation was observed after 7 days of UUO, with an increase of the APE1 mRNA level in the cortex but not in the ISOM and IM. The APE1 protein level in the cortex, ISOM, and IM increased significantly. Importantly, we observed a significant increase in APE1 DNA repair activity in the cortex and IM. To confirm our model, we investigated heme oxygenase-1, collagen type I, fibronectin I, and α-smooth muscle actin levels. In vitro, we found the transcriptional regulatory activity of APE1 to be involved in the upregulation of the profibrotic factor connective tissue growth factor. In summary, APE1 is regulated at different levels after acute and chronic UUO. Thus, our results suggest that DNA repair activity is regulated in response to progressive (7 days) obstruction and that APE1 potentially could play a role in the development of fibrosis in kidney disease.
Collapse
Affiliation(s)
- Maria D Aamann
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; and
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; .,Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
207
|
Huang J, Yennie CJ, Delaney S. Klenow Fragment Discriminates against the Incorporation of the Hyperoxidized dGTP Lesion Spiroiminodihydantoin into DNA. Chem Res Toxicol 2015; 28:2325-33. [PMID: 26572218 DOI: 10.1021/acs.chemrestox.5b00330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Defining the biological consequences of oxidative DNA damage remains an important and ongoing area of investigation. At the foundation of understanding the repercussions of such damage is a molecular-level description of the action of DNA-processing enzymes, such as polymerases. In this work, we focus on a secondary, or hyperoxidized, oxidative lesion of dG that is formed by oxidation of the primary oxidative lesion, 2'-deoxy-8-oxo-7,8-dihydroguanosine (8-oxodG). In particular, we examine incorporation into DNA of the diastereomers of the hyperoxidized guanosine triphosphate lesion spiroiminodihydantoin-2'-deoxynucleoside-5'-triphosphate (dSpTP). Using kinetic parameters, we describe the ability of the Klenow fragment of Escherichia coli DNA polymerase I lacking 3' → 5' exonuclease activity (KF(-)) to utilize (S)-dSpTP and (R)-dSpTP as building blocks during replication. We find that both diastereomers act as covert lesions, similar to a Trojan horse: KF(-) incorporates the lesion dNTP opposite dC, which is a nonmutagenic event; however, during the subsequent replication, it is known that dSp is nearly 100% mutagenic. Nevertheless, using kpol/Kd to define the nucleotide incorporation specificity, we find that the extent of oxidation of the dGTP-derived lesion correlates with its ability to be incorporated into DNA. KF(-) has the highest specificity for incorporation of dGTP opposite dC. The selection factors for incorporating 8-oxodGTP, (S)-dSpTP, and (R)-dSpTP are 1700-, 64000-, and 850000-fold lower, respectively. Thus, KF(-) is rigorous in its discrimination against incorporation of the hyperoxidized lesion, and these results suggest that the specificity of cellular polymerases provides an effective mechanism to avoid incorporating dSpTP lesions into DNA from the nucleotide pool.
Collapse
Affiliation(s)
- Ji Huang
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Craig J Yennie
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
208
|
Zhou X, Wang Y, Si J, Zhou R, Gan L, Di C, Xie Y, Zhang H. Laser controlled singlet oxygen generation in mitochondria to promote mitochondrial DNA replication in vitro. Sci Rep 2015; 5:16925. [PMID: 26577055 PMCID: PMC4649627 DOI: 10.1038/srep16925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023] Open
Abstract
Reports have shown that a certain level of reactive oxygen species (ROS) can promote mitochondrial DNA (mtDNA) replication. However, it is unclear whether it is the mitochondrial ROS that stimulate mtDNA replication and this requires further investigation. Here we employed a photodynamic system to achieve controlled mitochondrial singlet oxygen (1O2) generation. HeLa cells incubated with 5-aminolevulinic acid (ALA) were exposed to laser irradiation to induce 1O2 generation within mitochondria. Increased mtDNA copy number was detected after low doses of 630 nm laser light in ALA-treated cells. The stimulated mtDNA replication was directly linked to mitochondrial 1O2 generation, as verified using specific ROS scavengers. The stimulated mtDNA replication was regulated by mitochondrial transcription factor A (TFAM) and mtDNA polymerase γ. MtDNA control region modifications were induced by 1O2 generation in mitochondria. A marked increase in 8-Oxoguanine (8-oxoG) level was detected in ALA-treated cells after irradiation. HeLa cell growth stimulation and G1-S cell cycle transition were also observed after laser irradiation in ALA-treated cells. These cellular responses could be due to a second wave of ROS generation detected in mitochondria. In summary, we describe a controllable method of inducing mtDNA replication in vitro.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China.,Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
209
|
Sekhar KR, Freeman ML. Nrf2 promotes survival following exposure to ionizing radiation. Free Radic Biol Med 2015; 88:268-274. [PMID: 25975985 PMCID: PMC4628893 DOI: 10.1016/j.freeradbiomed.2015.04.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/30/2022]
Abstract
Nrf2 is a transcription factor that promotes antioxidant and drug-metabolizing gene expression. It also regulates the transcription of genes involved in carbohydrate and lipid metabolism, NADPH regeneration, and heme and iron metabolism, as well as proteasome metabolism. Emerging research has identified Nrf2 as a critical factor for promoting survival of mammalian cells subjected to ionizing radiation. At a mechanistic level, Nrf2 promotes the repair of DNA damage and drives detoxification of superoxide that is generated hours to days after irradiation. This review summarizes research in these areas and discusses targeting of Nrf2 in radiation-resistant cancer and Nrf2׳s role in mitigating acute radiation syndrome.
Collapse
Affiliation(s)
- Konjeti R Sekhar
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
210
|
Abstract
This review will focus on published human studies on oxidative stress and DNA damage in inflammatory bowel disease (IBD), both ulcerative colitis and Crohn's disease, assessing their role in the pathophysiology of these diseases. Search was performed over PubMed and ScienceDirect databases to identify relevant bibliography, using keywords including "oxidative stress," "DNA damage," "IBD," and "oxidative DNA damage." Whether as cause or effect, mechanisms underlying oxidative stress have the potential to condition the course of various pathologies, particularly those driven by inflammatory scenarios. IBDs are chronic inflammatory relapsing conditions. Oxidative stress has been associated with some of the characteristic clinical features exhibited in IBD, namely tissue injury and fibrosis, and also to the ulcerative colitis-associated colorectal cancer. The possible influence of oxidative stress over therapeutic behavior and response, as well as their contribution to the oxidative burden and consequences, is also addressed. Due to the high prevalence and incidence of IBD worldwide, and also to its associated morbidity, complications, and disease and treatment costs, it is of paramount importance to better understand the pathophysiology of these diseases.
Collapse
|
211
|
Effects of Stratospheric Conditions on the Viability, Metabolism and Proteome of Prokaryotic Cells. ATMOSPHERE 2015. [DOI: 10.3390/atmos6091290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
212
|
Akhmedov AT, Marín-García J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem 2015; 409:283-305. [DOI: 10.1007/s11010-015-2532-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
|
213
|
A State-Specific PCM–DFT method to include dynamic solvent effects in the calculation of ionization energies: Application to DNA bases. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
214
|
Cai Y, Kropachev K, Terzidis MA, Masi A, Chatgilialoglu C, Shafirovich V, Geacintov NE, Broyde S. Differences in the Access of Lesions to the Nucleotide Excision Repair Machinery in Nucleosomes. Biochemistry 2015; 54:4181-5. [PMID: 26091016 PMCID: PMC4862310 DOI: 10.1021/acs.biochem.5b00564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nucleosomes, the access of DNA lesions to nucleotide excision repair is hindered by histone proteins. However, evidence that the nature of the DNA lesions may play a role in facilitating access is emerging, but these phenomena are not well-understood. We have used molecular dynamics simulations to elucidate the structural, dynamic, and energetic properties of the R and S 5'-8-cyclo-2'-dG and the (+)-cis-anti-B[a]P-dG lesions in a nucleosome. Our results show that the (+)-cis-anti-B[a]P-dG adduct is more dynamic and more destabilizing than the smaller and more constrained 5',8-cyclo-2'-dG lesions, suggesting more facile access to the more bulky (+)-cis-anti-B[a]P-dG lesion.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, New York 10003, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, 15341 Agia, Paraskevi, Athens, Greece
| | - Vladimir Shafirovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Suse Broyde
- Department of Biology, New York University, New York, New York 10003, United States
| |
Collapse
|
215
|
Reinardy HC, Bodnar AG. Profiling DNA damage and repair capacity in sea urchin larvae and coelomocytes exposed to genotoxicants. Mutagenesis 2015; 30:829-39. [PMID: 26175033 DOI: 10.1093/mutage/gev052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to protect the genome from harmful DNA damage is critical for maintaining genome stability and protecting against disease, including cancer. Many echinoderms, including sea urchins, are noted for the lack of neoplastic disease, but there are few studies investigating susceptibility to DNA damage and capacity for DNA repair in these animals. In this study, DNA damage was induced in adult sea urchin coelomocytes and larvae by exposure to a variety of genotoxicants [UV-C (0-3000 J/m(2)), hydrogen peroxide (0-10mM), bleomycin (0-300 µM) and methylmethanesulfonate (MMS, 0-30 mM)] and the capacity for repair was measured over a 24-h period of recovery. Larvae were more sensitive than coelomocytes, with higher levels of initial DNA damage (fast micromethod) for all genotoxicants except MMS and increased levels of mortality 24h following treatment for all genotoxicants. The larvae that survived were able to efficiently repair damage within 24-h recovery. The ability to repair DNA damage differed depending on treatments, but both larvae and coelomocytes were able to most efficiently repair H2O2-induced damage. Time profiles of expression of a panel of DNA repair genes (ddb1, ercc1, xpc, xrcc1, pcna, ogg1, parp1, parp2, ape, brca1, rad51, xrcc2, xrcc3, xrcc4, xrcc5, xrcc6 and gadd45), throughout the period of recovery, showed greater gene induction in coelomocytes compared with larvae, with particularly high expression of xrcc1, ercc1, parp2 and pcna. The heterogeneous response of larvae to DNA damage may reflect a strategy whereby a subset of the population is equipped to withstand acute genotoxic stress, while the ability of coelomocytes to resist and repair DNA damage confirm their significant role in protection against disease. Consideration of DNA repair capacity is critical for understanding effects of genotoxicants on organisms, in addition to shedding light on life strategies and disease susceptibility.
Collapse
Affiliation(s)
- Helena C Reinardy
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE 01 Bermuda
| | - Andrea G Bodnar
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE 01 Bermuda
| |
Collapse
|
216
|
Menachery SPM, Laprévote O, Nguyen TP, Aravind UK, Gopinathan P, Aravindakumar CT. Identification of position isomers by energy-resolved mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:944-950. [PMID: 26349650 DOI: 10.1002/jms.3607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/14/2015] [Accepted: 04/22/2015] [Indexed: 06/05/2023]
Abstract
This study reports an energy-resolved mass spectrometric (ERMS) strategy for the characterization of position isomers derived from the reaction of hydroxyl radicals ((●)OH) with diphenhydramine (DPH) that are usually hard to differentiate by other methods. The isomer analogues formed by (●)OH attack on the side chain of DPH are identified with the help of a specific fragment ion peak (m/z 88) in the collision-induced dissociation (CID) spectrum of the protonated molecule. In the negative ion mode, the breakdown curves of the deprotonated molecules show an order of stability (supported by density functional theory (DFT) calculations) ortho > meta > para of the positional isomers formed by the hydroxylation of the aromatic ring. The gas phase stability of the deprotonated molecules [M - H](-) towards the benzylic cleavage depends mainly on the formation of intramolecular hydrogen bonds and of the mesomeric effect of the phenol hydroxyl. The [M - H](-) molecules of ortho and meta isomers result a peak at m/z 183 with notably different intensities because of the presence/absence of an intramolecular hydrogen bonding between the OH group and C9 protons. The ERMS approach discussed in this report might be an effective replacement for the conventional methods that requires very costly and time-consuming separation/purification methods along with the use of multi-spectroscopic methods.
Collapse
Affiliation(s)
- Sunil Paul M Menachery
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala, India
| | - Olivier Laprévote
- Laboratory of Analytical Chemistry and Experimental Toxicology, University Paris Descartes, Paris, France
| | - Thao P Nguyen
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Usha K Aravind
- Advanced Centre of Environmental Studies and Sustainable Development (ACESSD), Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala, India
| | - Pramod Gopinathan
- Department of Chemistry, N.S.S. Hindu College, Changanachery, Kerala, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala, India
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala, India
| |
Collapse
|
217
|
Karwowski BT, Bellon S, O'Neill P, Lomax ME, Cadet J. Effects of (5'S)-5',8-cyclo-2'-deoxyadenosine on the base excision repair of oxidatively generated clustered DNA damage. A biochemical and theoretical study. Org Biomol Chem 2015; 12:8671-82. [PMID: 25253544 DOI: 10.1039/c4ob01089b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The presence of 5',8-cyclo-2'-deoxyadenosine (5'S)-cdA induces modifications in the geometry of the DNA duplex in the 5'-end direction of the strand and in the 3'-end direction of the complementary strand. As a consequence, the enzymes are probably not able to adjust their active sites in this rigid structure. Additionally, clustered DNA damage sites, a signature of ionising radiation, pose a severe challenge to a cell's repair machinery, particularly base excision repair (BER). To date, clusters containing a DNA base lesion, (5'S)-cdA, which is repaired by nucleotide excision repair, have not been explored. We have therefore investigated whether bistranded clusters containing (5'S)-cdA influence the repairability of an opposed AP site lesion, which is repaired by BER. Using synthetic oligonucleotides containing a bistranded cluster with (5'S)-cdA and an AP site at different interlesion separations, we have shown that in the presence of (5'S)-cdA on the 5'-end side, repair of the AP site by the BER machinery is retarded when the AP site is ≤8 bases from the (5'S)-cdA. However, if (5'S)-cdA is located on the 3'-end side with respect to the AP site, the effect on its repair is much weaker and totally disappears for distances ≥8 bases.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- Food Science Department, Medical University of Lodz, Muszynskiego str. 1, 90-151 Lodz, Poland.
| | | | | | | | | |
Collapse
|
218
|
Kellie JL, Wilson KA, Wetmore SD. An ONIOM and MD Investigation of Possible Monofunctional Activity of Human 8-Oxoguanine–DNA Glycosylase (hOgg1). J Phys Chem B 2015; 119:8013-23. [PMID: 26018802 DOI: 10.1021/acs.jpcb.5b04051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer L. Kellie
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada, T1K 3M4
| | - Katie A. Wilson
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada, T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada, T1K 3M4
| |
Collapse
|
219
|
Hassim F, Papadopoulos AO, Kana BD, Gordhan BG. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis. Mutat Res 2015; 779:24-32. [PMID: 26125998 DOI: 10.1016/j.mrfmmm.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Hydroxyl radical (OH) among reactive oxygen species cause damage to nucleobases with thymine being the most susceptible, whilst in contrast, the singlet oxygen ((1)02) targets only guanine bases. The high GC content of mycobacterial genomes predisposes these organisms to oxidative damage of guanine. The exposure of cellular DNA to OH and one-electron oxidants results in the formation of two main degradation products, the pro-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and the cytotoxic 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). These lesions are repaired through the base excision repair (BER) pathway and we previously, demonstrated a combinatorial role for the mycobacterial Endonuclease III (Nth) and the Nei family of DNA glycosylases in mutagenesis. In addition, the formamidopyrimidine (Fpg/MutM) and MutY DNA glycosylases have also been implicated in mutation avoidance and BER in mycobacteria. In this study, we further investigate the combined role of MutY and the Fpg/Nei DNA glycosylases in Mycobacterium smegmatis and demonstrate that deletion of mutY resulted in enhanced sensitivity to oxidative stress, an effect which was not exacerbated in Δfpg1 Δfpg2 or Δnei1 Δnei2 double mutant backgrounds. However, combinatorial loss of the mutY, fpg1 and fpg2 genes resulted in a significant increase in mutation rates suggesting interplay between these enzymes. Consistent with this, there was a significant increase in C → A mutations with a corresponding change in cell morphology of rifampicin resistant mutants in the Δfpg1 Δfpg2 ΔmutY deletion mutant. In contrast, deletion of mutY together with the nei homologues did not result in any growth/survival defects or changes in mutation rates. Taken together these data indicate that the mycobacterial mutY, in combination with the Fpg DNA N-glycosylases, plays an important role in controlling mutagenesis under oxidative stress.
Collapse
Affiliation(s)
- Farzanah Hassim
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Andrea O Papadopoulos
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Bhavna G Gordhan
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa.
| |
Collapse
|
220
|
Pfeiffer C, Bach M, Bauer T, Campos da Ponte J, Schömig E, Gründemann D. Knockout of the ergothioneine transporter ETT in zebrafish results in increased 8-oxoguanine levels. Free Radic Biol Med 2015; 83:178-85. [PMID: 25746775 DOI: 10.1016/j.freeradbiomed.2015.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/02/2015] [Accepted: 02/24/2015] [Indexed: 02/02/2023]
Abstract
Ergothioneine (ET) is a natural compound that humans and other vertebrates must absorb from dietary sources. In general, ET is considered an intracellular antioxidant. However, the precise physiological purpose of ET and the consequences of ET deficiency are still unclear. The ergothioneine transporter ETT (human gene symbol SLC22A4) is a highly specific transporter for the uptake of ET. Here, we sought to identify and knock out ETT from zebrafish (Danio rerio) to determine the function of ET. We cloned and assayed three related proteins from zebrafish, only one of which catalyzed the uptake of ET. RT-PCR analysis revealed that the protein is strongly expressed in the skin, brain, kidney, intestine, and eye. In ETT-knockout animals generated by retroviral insertion into exon 1, ET content was reduced by more than 1000-fold compared to the wild type. Thus, ETT is the sole transporter responsible for uptake of ET into zebrafish. ETT-knockout fish did not exhibit obvious differences in morphology or behavior. In whole-fish homogenates, an increase in 4-hydroxy-2,3-trans-nonenal and malondialdehyde was observed, but only after stress caused by incubation with Pb(2+) or Cu(2+). Comparison of unstressed fish at the level of small molecules by LC-MS difference shading revealed a 3.8-fold increase in 8-oxoguanine (8-oxo-7,8-dihydroguanine) in the skin of ETT-knockout animals. Our knockout represents a new model for examining the consequences of complete absence of ET. Based on the phenotype observed here, we hypothesize that the specific purpose of ET could be to eliminate singlet oxygen.
Collapse
Affiliation(s)
- Carolin Pfeiffer
- Department of Pharmacology, University of Cologne, 50931 Cologne, Germany
| | - Markus Bach
- Department of Pharmacology, University of Cologne, 50931 Cologne, Germany
| | - Tim Bauer
- Department of Pharmacology, University of Cologne, 50931 Cologne, Germany
| | | | - Edgar Schömig
- Department of Pharmacology, University of Cologne, 50931 Cologne, Germany
| | - Dirk Gründemann
- Department of Pharmacology, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
221
|
Brissos RF, Caubet A, Gamez P. Possible DNA-Interacting Pathways for Metal-Based Compounds Exemplified with Copper Coordination Compounds. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
222
|
Photocleavage of DNA and adenine–thymine inclined binding by a novel ruthenium(II) complex with 3,4-dibromo-imidazo[4,5-f][1,10]phenanthroline ligand. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
223
|
Calabretta A, Küpfer PA, Leumann CJ. The effect of RNA base lesions on mRNA translation. Nucleic Acids Res 2015; 43:4713-20. [PMID: 25897124 PMCID: PMC4482091 DOI: 10.1093/nar/gkv377] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/26/2022] Open
Abstract
The biological effect of oxidatively damaged RNA, unlike oxidatively damaged DNA, has rarely been investigated, although it poses a threat to any living cell. Here we report on the effect of the commonly known RNA base-lesions 8-oxo-rG, 8-oxo-rA, ε-rC, ε-rA, 5-HO-rC, 5-HO-rU and the RNA abasic site (rAS) on ribosomal translation. To this end we have developed an in vitro translation assay based on the mRNA display methodology. A short synthetic mRNA construct containing the base lesion in a predefined position of the open reading frame was 32P-labeled at the 5′-end and equipped with a puromycin unit at the 3′-end. Upon in vitro translation in rabbit reticulocyte lysates, the encoded peptide chain is transferred to the puromycin unit and the products analyzed by gel electrophoresis. Alternatively, the unlabeled mRNA construct was used and incubated with 35S-methionine to prove peptide elongation of the message. We find that all base-lesions interfere substantially with ribosomal translation. We identified two classes, the first containing modifications at the base coding edge (ε-rC, ε-rA and rAS) which completely abolish peptide synthesis at the site of modification, and the second consisting of 8-oxo-rG, 8-oxo-rA, 5-HO-rC and 5-HO-rU that significantly retard full-length peptide synthesis, leading to some abortive peptides at the site of modification.
Collapse
Affiliation(s)
- Alessandro Calabretta
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Pascal A Küpfer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
224
|
Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015; 5:472-84. [PMID: 25884116 PMCID: PMC4496681 DOI: 10.3390/biom5020472] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022] Open
Abstract
In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity.
Collapse
|
225
|
Solar UV radiation-induced DNA Bipyrimidine photoproducts: formation and mechanistic insights. Top Curr Chem (Cham) 2015; 356:249-75. [PMID: 25370518 DOI: 10.1007/128_2014_553] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review chapter presents a critical survey of the main available information on the UVB and UVA bipyrimidine photoproducts which constitute the predominant recipient classes of photo-induced DNA damage. Evidence is provided that UVB irradiation of isolated DNA in aqueous solutions and in cells gives rise to the predominant generation of cis-syn cyclobutane pyrimidine dimers (CPDs) and, to a lesser extent, of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), the importance of which is strongly primary sequence dependent. A notable change in the photoproduct distribution is observed when DNA either in the dry or in desiccated microorganisms is exposed to UVC or UVB photons with an overwhelming formation of 5-(α-thymidyl)-5,6-dihydrothymidine, also called spore photoproduct (dSP), at the expense of CPDs and 6-4PPs. UVA irradiation of isolated and cellular DNA gives rise predominantly to bipyrimidine photoproducts with the overwhelming formation of thymine-containing cyclobutane pyrimidine dimers at the exclusion of 6-4PPs. UVA photons have been shown to modulate the distribution of UVB dimeric pyrimidine photoproducts by triggering isomerization of the 6-4PPs into related Dewar valence isomers. Mechanistic aspects of the formation of bipyrimidine photoproducts are discussed in the light of recent photophysical and theoretical studies.
Collapse
|
226
|
Batir MB, Candan F, Buyuk I, Aras S. The determination of physiological and DNA changes in seedlings of maize (Zea mays L.) seeds exposed to the waters of the Gediz River and copper heavy metal stress. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:169. [PMID: 25750069 DOI: 10.1007/s10661-015-4389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
In this study, the effects of the heavy metal-polluted waters of the Gediz River, which flow into the Aegean Sea, and different concentrations of copper (Cu) solutions on maize (Zea mays L.) seedlings are investigated with physiological parameters and random amplified polymorphic DNA (RAPD) assay. Results displayed physiologically a significant difference in root and stem length between the control seedlings and the seedlings grown with the waters of the Gediz River. Also, the certain ascending concentrations of copper solution (80, 160, 320, 640, and 1280 ppm) caused a significant decrease in root and stem length of seedlings compared to the control seedlings. As a result of the waters of the Gediz River and copper solution treatment, the changes occurred in RAPD profiles of seedlings observed as variations like increment and/or loss of bands compared with the control seedlings. And these changes were reflected as a decrease in genomic template stability (GTS, changes in RAPD profile) derived by genotoxicity. RAPD band profiles and GTS values showed consistent results with physiological parameter. In conclusion, the study revealed the environmental risk and negative effect of waters of the Gediz River on maize seedlings and the suitability of RAPD assay for the detection of environmental toxicology.
Collapse
Affiliation(s)
- Muhammet Burak Batir
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, Manisa, Turkey,
| | | | | | | |
Collapse
|
227
|
Martins M, Santos JM, Diniz MS, Ferreira AM, Costa MH, Costa PM. Effects of carcinogenic versus non-carcinogenic AHR-active PAHs and their mixtures: lessons from ecological relevance. ENVIRONMENTAL RESEARCH 2015; 138:101-111. [PMID: 25704830 DOI: 10.1016/j.envres.2015.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental mutagens and carcinogens that occur in the aquatic environment as mixtures rather than the individual compounds for which guidelines are issued. The present work aimed at understanding the interaction effects between carcinogenic and non-carcinogenic PAHs in a model marine fish (Dicentrarchus labrax) in realistic scenarios. Laboratory assays under ecologically-relevant parameters were conducted for 28 days with sediments spiked with low-moderate concentrations (250-800ngg(-1)) of two model PAHs, phenanthrene (non-carcinogenic) and benzo[b]fluoranthene (carcinogenic to experimental animals). Both PAHs induced hepatic histopathological changes that indicate metabolic failure and inflammation, especially in animals exposed to mixtures. Phenanthrene elicited biochemical changes better related to oxidative stress (lipid peroxidation, glutathione and glutathione S-transferase activity) and CYP function, whereas B[b]F disrupted metabolic responses and defences to toxicological challenge. Conversely, mixed PAHs yielded lesions and responses that, altogether, are compatible with the AHR dependent pathway (the basis of PAH mutagenicity), potentially generating supra-additive effects. Nonetheless, the low, ecologically-relevant, concentrations of PAHs diluted dose and time-response relations. Overall, although seemingly predicting the risk of individual PAHs, environmental guidelines may not apply to mixtures by underestimating adverse effects, which calls for a redefinition of standards when determining the true risk of toxicants under realistic circumstances.
Collapse
Affiliation(s)
- Marta Martins
- MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; IPMA-Instituto Português do Mar e da Atmosfera, Avenida do Brasil, 1449-006 Lisboa, Portugal.
| | - José M Santos
- MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Mário S Diniz
- UCIBIO-Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana M Ferreira
- IPMA-Instituto Português do Mar e da Atmosfera, Avenida do Brasil, 1449-006 Lisboa, Portugal
| | - Maria H Costa
- MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro M Costa
- MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
228
|
Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic Res 2015; 49:525-48. [PMID: 25812590 DOI: 10.3109/10715762.2015.1014814] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidatively induced damage caused by free radicals and other DNA-damaging agents generate a plethora of products in the DNA of living organisms. There is mounting evidence for the involvement of this type of damage in the etiology of numerous diseases including carcinogenesis. For a thorough understanding of the mechanisms, cellular repair, and biological consequences of DNA damage, accurate measurement of resulting products must be achieved. There are various analytical techniques, with their own advantages and drawbacks, which can be used for this purpose. Mass spectrometric techniques with isotope dilution, which include gas chromatography (GC) and liquid chromatography (LC), provide structural elucidation of products and ascertain accurate quantification, which are absolutely necessary for reliable measurement. Both gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), in single or tandem versions, have been used for the measurement of numerous DNA products such as sugar and base lesions, 8,5'-cyclopurine-2'-deoxynucleosides, base-base tandem lesions, and DNA-protein crosslinks, in vitro and in vivo. This article reviews these techniques and their applications in the measurement of oxidatively induced DNA damage and its repair.
Collapse
Affiliation(s)
- M Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, MD , USA
| | | | | |
Collapse
|
229
|
Cerón-Carrasco JP, Requena A, Zúñiga J, Jacquemin D. Mutagenic effects induced by the attack of NO2 radical to the guanine-cytosine base pair. Front Chem 2015; 3:13. [PMID: 25798437 PMCID: PMC4351615 DOI: 10.3389/fchem.2015.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/16/2015] [Indexed: 12/04/2022] Open
Abstract
We investigate the attack of the nitrogen dioxide radical (NO•2) to the guanine—cytosine (GC) base pair and the subsequent tautomeric reactions able to induce mutations, by means of density functional theory (DFT) calculations. The conducted simulations allow us to identify the most reactive sites of the GC base pair. Indeed, the computed relative energies demonstrate that the addition of the NO•2 radical to the C8 position of the guanine base forms to the most stable adduct. Although the initial adducts might evolve to non-canonical structures via inter-base hydrogen bonds rearrangements, the probability for the proton exchange to occur lies in the same range as that observed for undamaged DNA. As a result, tautomeric errors in NO2-attacked DNA arises at the same rate as in canonical DNA, with no macroscopic impact on the overall stability of DNA. The potential mutagenic effects of the GC–NO•2 radical adducts likely involve side reactions, e.g., the GC deprotonation to the solvent, rather than proton exchange between guanine and cytosine basis.
Collapse
Affiliation(s)
| | - Alberto Requena
- Departamento de Química Física, Universidad de Murcia Murcia, Spain
| | - José Zúñiga
- Departamento de Química Física, Universidad de Murcia Murcia, Spain
| | - Denis Jacquemin
- Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR Centre National de la Recherche Scientifique, Université de Nantes Nantes, France ; Institut Universitaire de France Paris, France
| |
Collapse
|
230
|
Ishii T, Hayakawa H, Sekiguchi T, Adachi N, Sekiguchi M. Role of Auf1 in elimination of oxidatively damaged messenger RNA in human cells. Free Radic Biol Med 2015; 79:109-16. [PMID: 25486179 DOI: 10.1016/j.freeradbiomed.2014.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
In aerobically growing cells, in which reactive oxygen species are produced, the guanine base of RNA is oxidized to 8-oxo-7,8-dihydroguanine, which induces alterations in gene expression. Here we show that the human Auf1 protein, also called HNRNPD, binds specifically to RNA containing this oxidized base and may be involved in cellular processes associated with managing the problems caused by RNA oxidation. Auf1-deficient cells were constructed from human HeLa and Nalm-6 lines using two different targeting procedures. Both types of Auf1-deficient cells are viable, but exhibit growth retardation. The stability of messenger RNA for four different housekeeping genes was determined in Auf1-deficient and -proficient cells, treated with or without hydrogen peroxide. The level of oxidized messenger RNA was considerably higher in Auf1-deficient cells than in Auf1-proficient cells. Auf1 may play a role in the elimination of oxidized RNA, which is required for the maintenance of proper gene expression under conditions of oxidative stress.
Collapse
Affiliation(s)
- Takashi Ishii
- Frontier Research Center and Department of Biochemistry, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hiroshi Hayakawa
- Frontier Research Center and Department of Biochemistry, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Mutsuo Sekiguchi
- Frontier Research Center and Department of Biochemistry, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| |
Collapse
|
231
|
Fleming AM, Armentrout EI, Zhu J, Muller JG, Burrows CJ. Spirodi(iminohydantoin) products from oxidation of 2'-deoxyguanosine in the presence of NH4Cl in nucleoside and oligodeoxynucleotide contexts. J Org Chem 2015; 80:711-21. [PMID: 25539403 PMCID: PMC4301082 DOI: 10.1021/jo502665p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Upon oxidation of the heterocyclic ring in 2'-deoxyguanosine (dG), the initial electrophilic intermediate displays a wide range of reactivities with nucleophiles leading to many downstream products. In the present study, the product profiles were mapped when aqueous solutions of dG were allowed to react with NH4Cl in the presence of the photooxidants riboflavin and Rose Bengal as well as the diffusible one-electron oxidant Na2IrCl6. Product characterization identified the 2'-deoxyribonucleosides of spiroiminodihydantoin, 5-guanidinohydantoin, and oxazolone resulting from H2O as the nucleophile. When NH3 was the nucleophile, a set of constitutional isomers that are diastereotopic were also observed, giving characteristic masses of dG + 31. ESI(+)-MS/MS of these NH3 adducts identified them to be spirocycles with substitution of either the C5 or C8 carbonyl with an amine. The NH3 adducts exhibit acid-catalyzed hydrolysis to spiroiminodihydantoin. Quantification of the NH3 and H2O adducts resulting from oxidation of dG in the nucleoside, single-stranded, and duplex oligodeoxynucleotide contexts were monitored allowing mechanisms for product formation to be proposed. These data also provide a cautionary note to those who purify their oligonucleotide samples with ammonium salts before oxidation because this will lead to unwanted side reactions in which ammonia participates in product formation.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | | | | | | | |
Collapse
|
232
|
Sowlati-Hashjin S, Wetmore SD. Quantum mechanical study of the β- and δ-lyase reactions during the base excision repair process: application to FPG. Phys Chem Chem Phys 2015; 17:24696-706. [PMID: 26352486 DOI: 10.1039/c5cp04250j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The β- and δ-elimination reactions catalyzed by FPG during the base excision repair of 8-oxoguanine are intrinsically different.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Department of Chemistry and Biochemistry
- University of Lethbridge
- 4401 University Drive West
- Lethbridge
- Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry
- University of Lethbridge
- 4401 University Drive West
- Lethbridge
- Canada
| |
Collapse
|
233
|
Piekarski DG, Delaunay R, Maclot S, Adoui L, Martín F, Alcamí M, Huber BA, Rousseau P, Domaracka A, Díaz-Tendero S. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase. Phys Chem Chem Phys 2015; 17:16767-78. [DOI: 10.1039/c5cp01628b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental and theoretical investigations show that hydroxyl migration leads to unexpected fragmentation dynamics of β-alanine dication in the gas phase.
Collapse
Affiliation(s)
| | - Rudy Delaunay
- CIMAP (UMR 6252) - CEA
- CNRS
- ENSICAEN
- Unicaen
- 14070 Caen Cedex 5
| | - Sylvain Maclot
- CIMAP (UMR 6252) - CEA
- CNRS
- ENSICAEN
- Unicaen
- 14070 Caen Cedex 5
| | - Lamri Adoui
- CIMAP (UMR 6252) - CEA
- CNRS
- ENSICAEN
- Unicaen
- 14070 Caen Cedex 5
| | - Fernando Martín
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Manuel Alcamí
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Bernd A. Huber
- CIMAP (UMR 6252) - CEA
- CNRS
- ENSICAEN
- Unicaen
- 14070 Caen Cedex 5
| | | | | | - Sergio Díaz-Tendero
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
234
|
von der Lippen C, Sahu S, Seifermann M, Tiwari VK, Epe B. The repair of oxidized purines in the DNA of human lymphocytes requires an activation involving NF-YA-mediated upregulation of OGG1. DNA Repair (Amst) 2015; 25:1-8. [DOI: 10.1016/j.dnarep.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
|
235
|
Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract 2015; 24 Suppl 1:14-28. [PMID: 24820409 PMCID: PMC6489067 DOI: 10.1159/000362416] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used for the management of a variety of cancers and benign diseases. The destruction of unwanted cells and tissues in PDT is achieved by the use of visible or near-infrared radiation to activate a light-absorbing compound (a photosensitizer, PS), which, in the presence of molecular oxygen, leads to the production of singlet oxygen and other reactive oxygen species. These cytotoxic species damage and kill target cells. The development of new PSs with properties optimized for PDT applications is crucial for the improvement of the therapeutic outcome. This review outlines the principles of PDT and discusses the relationship between the structure and physicochemical properties of a PS, its cellular uptake and subcellular localization, and its effect on PDT outcome and efficacy.
Collapse
Affiliation(s)
- Ludmil Benov
- *Ludmil Benov, Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
236
|
Gul MZ, Kalam S, Singh R, Ankati S. Free Radicals: Implications in Etiology of Chronic Diseases and Their Amelioration through Nutraceuticals. ACTA ACUST UNITED AC 2015. [DOI: 10.5567/pharmacologia.2015.11.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
237
|
Martins M, Costa PM. The comet assay in Environmental Risk Assessment of marine pollutants: applications, assets and handicaps of surveying genotoxicity in non-model organisms. Mutagenesis 2014; 30:89-106. [DOI: 10.1093/mutage/geu037] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
238
|
Costa PM, Pinto M, Vicente AM, Gonçalves C, Rodrigo AP, Louro H, Costa MH, Caeiro S, Silva MJ. An integrative assessment to determine the genotoxic hazard of estuarine sediments: combining cell and whole-organism responses. Front Genet 2014; 5:437. [PMID: 25540652 PMCID: PMC4261831 DOI: 10.3389/fgene.2014.00437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022] Open
Abstract
The application of the Comet assay in environmental monitoring remains challenging in face of the complexity of environmental stressors, e.g., when dealing with estuarine sediments, that hampers the drawing of cause-effect relationships. Although the in vitro Comet assay may circumvent confounding factors, its application in environmental risk assessment (ERA) still needs validation. As such, the present work aims at integrating genotoxicity and oxidative DNA damage induced by sediment-bound toxicants in HepG2 cells with oxidative stress-related effects observed in three species collected from an impacted estuary. Distinct patterns were observed in cells exposed to crude mixtures of sediment contaminants from the urban/industrial area comparatively to the ones from the rural/riverine area of the estuary, with respect to oxidative DNA damage and oxidative DNA damage. The extracts obtained with the most polar solvent and the crude extracts caused the most significant oxidative DNA damage in HepG2 cells, as measured by the formamidopyrimidine-DNA glycosylase (FPG)-modified Comet assay. This observation suggests that metals and unknown toxicants more hydrophilic than polycyclic aromatic hydrocarbons may be important causative agents, especially in samples from the rural part of the estuary, where oxidative DNA damage was the most significant. Clams, sole, and cuttlefish responded differentially to environmental agents triggering oxidative stress, albeit yielding results accordant with the oxidative DNA damage observed in HepG2 cells. Overall, the integration of in vivo biomarker responses and Comet assay data in HepG2 cells yielded a comparable pattern, indicating that the in vitro FPG-modified Comet assay may be an effective and complementary line-of-evidence in ERA even in particularly challenging, natural, scenarios such as estuarine environments.
Collapse
Affiliation(s)
- Pedro M Costa
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr.Ricardo Jorge Lisboa, Portugal ; MARE - Marine and Environmental Sciences Centre/IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Caparica, Portugal
| | - Miguel Pinto
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr.Ricardo Jorge Lisboa, Portugal
| | - Ana M Vicente
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr.Ricardo Jorge Lisboa, Portugal
| | - Cátia Gonçalves
- MARE - Marine and Environmental Sciences Centre/IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Caparica, Portugal
| | - Ana P Rodrigo
- MARE - Marine and Environmental Sciences Centre/IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Caparica, Portugal
| | - Henriqueta Louro
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr.Ricardo Jorge Lisboa, Portugal
| | - Maria H Costa
- MARE - Marine and Environmental Sciences Centre/IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Caparica, Portugal
| | - Sandra Caeiro
- MARE - Marine and Environmental Sciences Centre/IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Caparica, Portugal ; Departamento de Ciências e Tecnologia, Universidade Aberta, Rua da Escola Politécnica Lisboa, Portugal ; Centre for Environmental and Sustainability Research, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Caparica, Portugal
| | - Maria J Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr.Ricardo Jorge Lisboa, Portugal
| |
Collapse
|
239
|
Genetic polymorphisms of glutathione S-transferase M1 and T1, and evaluation of oxidative stress in patients with non-small cell lung cancer. Eur J Med Res 2014; 19:67. [PMID: 25472599 PMCID: PMC4258804 DOI: 10.1186/s40001-014-0067-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 11/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our objective is to investigate the genetic polymorphisms of the glutathione S-transferase M1 and T1 genes (GSTM1 and GSTT1) and evaluate oxidative damage in patients with non-small lung cancer (N-SCLC). METHODS One hundred and ten patients with N-SCLC and 100 controls are included in this case-control study. Multiplex polymerase chain reaction (PCR) analyses were used to identify the genotypes. The activities of malondialdehyde (MDA) and nitric oxide (NO) and total antioxidant capacity (T-AOC) were detected by spectroscopic analysis. RESULTS The frequencies of the GSTM1, T1, and GSTM1/T1 null genotypes in the patient group were significantly higher than that in the control group (OR = 2.071, P = 0.009; OR = 1.900, P = 0.024; OR = 3.258, P = 0.003). The activities of MDA and NO were significantly higher in the patient group than that in the control group (P <0.001), and T-AOC was significantly lower in patient group than that in control group (P <0.001). The activities of MDA, and NO were higher but the T-AOC was lower in patients with the GSTM1, T1 and M1/T1 null genotypes than those in patients with GSTM1, T1 and M1/T1 present genotypes (P <0.001). CONCLUSIONS Our results suggest that oxidative damage may be play a important role in patients with N-SCLC, and that GSTM1 and GSTT1 null genotypes may predispose the cells of patients with N-SCLC to increased oxidative damage.
Collapse
|
240
|
Sowlati-Hashjin S, Wetmore SD. Computational Investigation of Glycosylase and β-Lyase Activity Facilitated by Proline: Applications to FPG and Comparisons to hOgg1. J Phys Chem B 2014; 118:14566-77. [PMID: 25415645 DOI: 10.1021/jp507783d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shahin Sowlati-Hashjin
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
241
|
Nardi G, Manet I, Monti S, Miranda MA, Lhiaubet-Vallet V. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer. Free Radic Biol Med 2014; 77:64-70. [PMID: 25236741 DOI: 10.1016/j.freeradbiomed.2014.08.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies.
Collapse
Affiliation(s)
- Giacomo Nardi
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Sandra Monti
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Miguel A Miranda
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
242
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 2014; 91:140-55. [PMID: 25327445 DOI: 10.1111/php.12368] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
This review article focuses on a critical survey of the main available information on the UVB and UVA oxidative reactions to cellular DNA as the result of direct interactions of UV photons, photosensitized pathways and biochemical responses including inflammation and bystander effects. UVA radiation appears to be much more efficient than UVB in inducing oxidatively generated damage to the bases and 2-deoxyribose moieties of DNA in isolated cells and skin. The UVA-induced generation of 8-oxo-7,8-dihydroguanine is mostly rationalized in terms of selective guanine oxidation by singlet oxygen generated through type II photosensitization mechanism. In addition, hydroxyl radical whose formation may be accounted for by metal-catalyzed Haber-Weiss reactions subsequent to the initial generation of superoxide anion radical contributes in a minor way to the DNA degradation. This leads to the formation of both oxidized purine and pyrimidine bases together with DNA single-strand breaks at the exclusion, however, of direct double-strand breaks. No evidence has been provided so far for the implication of delayed oxidative degradation pathways of cellular DNA. In that respect putative characteristic UVA-induced DNA damage could include single and more complex lesions arising from one-electron oxidation of the guanine base together with aldehyde adducts to amino-substituted nucleobases.
Collapse
Affiliation(s)
- Jean Cadet
- University Grenoble Alpes, INAC, Grenoble, France; CEA, INAC, Grenoble, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
243
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
244
|
Chen Y, Williams V, Filippova M, Filippov V, Duerksen-Hughes P. Viral carcinogenesis: factors inducing DNA damage and virus integration. Cancers (Basel) 2014; 6:2155-86. [PMID: 25340830 PMCID: PMC4276961 DOI: 10.3390/cancers6042155] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022] Open
Abstract
Viruses are the causative agents of 10%-15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Vonetta Williams
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Maria Filippova
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Valery Filippov
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | | |
Collapse
|
245
|
Thapa B, Schlegel HB. Calculations of pKa's and redox potentials of nucleobases with explicit waters and polarizable continuum solvation. J Phys Chem A 2014; 119:5134-44. [PMID: 25291241 DOI: 10.1021/jp5088866] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The SMD implicit solvation model augmented with one and four explicit water molecules was used to calculate pKa's and redox potentials of N-methyl-substituted nucleic acid bases guanine, adenine, cytosine, thymine, and uracil. Calculations were carried out with the B3LYP/6-31+G(d,p) level of theory. The same numbers of water molecules were hydrogen bonded to the neutral, protonated, and deprotonated nucleobases in their unoxidized and oxidized forms. The improvement in pKa1 involving neutrals and cations was modest. By contrast, the improvement in pKa2 involving neutrals and anions was quite significant, reducing the mean absolute error from 4.6 pKa units with no waters, to 2.6 with one water and 1.7 with four waters. For the oxidation of nucleobases, adding explicit waters did little to improve E(X(•),H(+)/XH), possibly because both species in the redox couple are neutral molecules at pH 7.
Collapse
Affiliation(s)
- Bishnu Thapa
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
246
|
Pawlowska E, Wysokiński D, Tokarz P, Piastowska-Ciesielska A, Szczepanska J, Blasiak J. Dexamethasone and 1,25-dihydroxyvitamin D3 reduce oxidative stress-related DNA damage in differentiating osteoblasts. Int J Mol Sci 2014; 15:16649-64. [PMID: 25244015 PMCID: PMC4200756 DOI: 10.3390/ijms150916649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/13/2014] [Accepted: 09/09/2014] [Indexed: 01/22/2023] Open
Abstract
The process of osteoblast differentiation is regulated by several factors, including RUNX2. Recent reports suggest an involvement of RUNX2 in DNA damage response (DDR), which is important due to association of differentiation with oxidative stress. In the present work we explore the influence of two RUNX2 modifiers, dexamethasone (DEX) and 1,25-dihydroxyvitamin D3 (1,25-D3), in DDR in differentiating MC3T3-E1 preosteoblasts challenged by oxidative stress. The process of differentiation was associated with reactive oxygen species (ROS) production and tert-butyl hydroperoxide (TBH) reduced the rate of differentiation. The activity of alkaline phosphatase (ALP), a marker of the process of osteoblasts differentiation, increased in a time-dependent manner and TBH further increased this activity. This may indicate that additional oxidative stress, induced by TBH, may accelerate the differentiation process. The cells displayed changes in the sensitivity to TBH in the course of differentiation. DEX increased ALP activity, but 1,25-D3 had no effect on it. These results suggest that DEX might stimulate the process of preosteoblasts differentiation. Finally, we observed a protective effect of DEX and 1,25-D3 against DNA damage induced by TBH, except the day 24 of differentiation, when DEX increased the extent of TBH-induced DNA damage. We conclude that oxidative stress is associated with osteoblasts differentiation and induce DDR, which may be modulated by RUNX2-modifiers, DEX and 1,25-D3.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Daniel Wysokiński
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Paulina Tokarz
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
247
|
Osipov AN, Smetanina NM, Pustovalova MV, Arkhangelskaya E, Klokov D. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation. Free Radic Biol Med 2014; 73:34-40. [PMID: 24816295 DOI: 10.1016/j.freeradbiomed.2014.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
The potency of UVA radiation, representing 90% of solar UV light reaching the earth's surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1J/cm(2) was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5M Na(+), implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.
Collapse
Affiliation(s)
- Andreyan N Osipov
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nadezhda M Smetanina
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia
| | - Margarita V Pustovalova
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia
| | - Ekaterina Arkhangelskaya
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Klokov
- Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, ON K0J1P0, Canada.
| |
Collapse
|
248
|
Irvoas J, Trzcionka J, Pratviel G. Formation of the carboxamidine precursor of cyanuric acid from guanine oxidative lesion dehydro-guanidinohydantoin. Bioorg Med Chem 2014; 22:4711-6. [PMID: 25092522 DOI: 10.1016/j.bmc.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 11/30/2022]
Abstract
DNA damage under oxidative stress leads to oxidation of guanine base. The identification of the resulting guanine lesions in cellular DNA is difficult due to the sensitivity of the primary oxidation products to hydrolysis and/or further oxidation. We isolated dehydroguanidino-hydantoin (DGh) (or oxidized guanidinohydantoin), a secondary oxidation product of guanine, and showed that this lesion reacts readily with nucleophiles such as asymmetric peroxides and transforms to 2,4,6-trioxo-1,3,5-triazinane-1-carboxamidine residue. Further hydrolysis of this intermediate leads to cyanuric acid and finally to urea residue. This work demonstrates a new possible pathway for the formation of the well-known carboxamidine precursor of cyanuric acid lesion.
Collapse
Affiliation(s)
- Joris Irvoas
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, BP 44099, 31077 Toulouse cedex 04, France; Universitè de Toulouse, Université Paul Sabatier, UPS, INPT, Toulouse, France
| | - Jérôme Trzcionka
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, BP 44099, 31077 Toulouse cedex 04, France; Universitè de Toulouse, Université Paul Sabatier, UPS, INPT, Toulouse, France
| | - Geneviève Pratviel
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, BP 44099, 31077 Toulouse cedex 04, France; Universitè de Toulouse, Université Paul Sabatier, UPS, INPT, Toulouse, France.
| |
Collapse
|
249
|
Parveen A, Rao S. Cytotoxicity and Genotoxicity of Biosynthesized Gold and Silver Nanoparticles on Human Cancer Cell Lines. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0744-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
250
|
Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P, Spitz MR, Le Marchand L, Chan AT, Goode EL, Ulrich CM, Hung RJ. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev 2014; 23:1729-51. [PMID: 24962838 DOI: 10.1158/1055-9965.epi-14-0064] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways, including increased levels of DNA adduct formation, increased angiogenesis, and altered antiapoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute-phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers, we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker, including strengths, weaknesses, and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multifaceted approaches to examine the relationship between inflammatory markers and their roles in cancer development.
Collapse
Affiliation(s)
- Darren R Brenner
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. Department of Cancer Epidemiology and Prevention, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | | | | | - Andrew T Chan
- Dana Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany. Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|