201
|
Dias NP, Cagliari D, Dos Santos EA, Smagghe G, Jurat-Fuentes JL, Mishra S, Nava DE, Zotti MJ. Insecticidal Gene Silencing by RNAi in the Neotropical Region. NEOTROPICAL ENTOMOLOGY 2020; 49:1-11. [PMID: 31749122 DOI: 10.1007/s13744-019-00722-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Insecticidal gene silencing by RNA interference (RNAi) involves a post-transcriptional mechanism with great potential for insect control. Here, we aim to summarize the progress on RNAi research toward control of insect pests in the Neotropical region and discuss factors determining its efficacy and prospects for pest management. We include an overview of the available RNAi information for Neotropical pests in the Lepidoptera, Coleoptera, Diptera, and Hemiptera orders. Emphasis is put on significant findings in the use of RNAi against relevant Neotropical pests, including diamondback moth (Plutella xylostella L.), Asian citrus psyllid (Diaphorina citri Kuwayama), and the cotton boll weevil (Anthonomus grandis Boheman). We also examine the main factors involved in insecticidal RNAi efficiency and major advances to improve screening of lethal genes, formulation, and delivery. Few studies detail resistance mechanisms to RNAi, demonstrating a need for more research. Advances in formulation, delivery, and resistance management tools for insecticidal RNAi in the Neotropics can provide a basis for efficient field application.
Collapse
Affiliation(s)
- N P Dias
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil.
| | - D Cagliari
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil
| | - E A Dos Santos
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil
| | - G Smagghe
- Dept of Plants and Crops, Ghent Univ, Ghent, Belgium
| | - J L Jurat-Fuentes
- Dept of Entomology and Plant Pathology, The Univ of Tennessee, Knoxville, USA
| | - S Mishra
- Dept of Entomology and Plant Pathology, The Univ of Tennessee, Knoxville, USA
| | - D E Nava
- Entomology Lab, EmbrapaClima Temperado, Pelotas, Brasil
| | - M J Zotti
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil.
| |
Collapse
|
202
|
Gui S, Taning CNT, Wei D, Smagghe G. First report on CRISPR/Cas9-targeted mutagenesis in the Colorado potato beetle, Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104013. [PMID: 31917244 DOI: 10.1016/j.jinsphys.2020.104013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 05/19/2023]
Abstract
Leptinotarsa decemlineata (Say), commonly known as the Colorado potato beetle (CPB), is an agricultural important pest for potatoes and other solanaceous plants. The CRISPR/Cas system is an efficient genome editing technology, which could be exploited to study the biology of CPB and possibly also lead to the development of better environmentally friendly pest management strategies. However, the use of CRISPR/Cas9 has been limited to only a few model insects. Here, for the first time, a CRISPR/Cas9 protocol for mutagenesis studies in CPB was developed. A gene with a clear phenotype such as the vestigial gene (vest), known to be involved in wing development in other insect species, was selected as a good indicator for the knockout study. First, vest was functionally characterized in CPB by using RNAi technology for knockdown studies. Once the expected deformed wing phenotypes were observed, a CRISPR/Cas9 work flow was established for mutagenesis in CPB. By co-injecting the Cas9 protein and a vest-guide RNA into 539 CPB eggs of <1 h old, sixty-two successfully developed to adults, among which mutation in the vest loci was confirmed in 5 of the 18 wingless CPBs (29% phenotypic mutation efficiency). The mutation in vest resulted in a clear phenotype in the CPBs, which developed to adulthood with no hindwing and elytron formed. Altogether, this study provides for the first time a useful methodology involving the use of the CRISPR/Cas9 system for mutagenesis studies in one of the most important pest insects.
Collapse
Affiliation(s)
- Shunhua Gui
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | | | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
203
|
Farahani S, Bandani AR, Alizadeh H, Goldansaz SH, Whyard S. Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). PLoS One 2020; 15:e0228104. [PMID: 31995629 PMCID: PMC6988935 DOI: 10.1371/journal.pone.0228104] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Insects face diverse biotic and abiotic stresses that can affect their survival. Many of these stressors impact cellular metabolism, often resulting in increased accumulation of reactive oxygen species (ROS). Consequently, insects will respond to these stressors by increasing antioxidant activity and increased production of heat shock proteins (HSPs). In this study, the effect of heat, cold, starvation, and parasitism by Habroacon hebetor wasps was examined in the carob moth, Ectomyelois ceratoniae, to determine which responses were common to different stresses. For all stressors, malondialdehyde levels increased, indicative of oxidative stress in the insects. The activity of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), increased with each stress, suggesting that these enzymes were serving a protective role for the insects. Heat (46°C for 100 min) and cold (-15°C for 30 min) treatments caused significant mortalities to all developmental stages, but pretreatments of moderate heat (37°C for 10 min) or cold (10°C for 10 min) induced thermotolerance and reduced the mortality rates when insects were subsequently exposed to lethal temperatures. Quantitative RT-PCR confirmed that heat and cold tolerance were associated with up-regulation of two HSPs, HSP70 and HSP90. Interestingly, HSP70 transcripts increased to a greater extent with cold treatment, while HSP90 transcripts increased more in response to high temperatures. RNA interference (RNAi)-mediated knockdown of either HSP70 or HSP90 transcripts was achieved by injecting larvae with dsRNA targeting each gene's transcripts, and resulted in a loss of acquired thermotolerance in insects subjected to the heat or cold pretreatments. These observations provide convincing evidence that both HSP70 and HSP90 are important mediators of the acquired thermotolerance. Starvation and parasitism by wasps caused differential expression of the HSP genes. In response to starvation, HSP90 transcripts increased to a greater extent than HSP70, while in contrast, HSP70 transcripts increased to a greater extent than those of HSP90 during the first 48 h of wasp parasitism. These results showed the differential induction of the two HSPs' transcripts with variable stresses. As well as, heat, cold, starvation, and parasitism induce oxidative stress, and antioxidant enzymes likely play an important role in reducing oxidative damage in E. ceratoniae.
Collapse
Affiliation(s)
- Saeed Farahani
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali R. Bandani
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Hossein Goldansaz
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
204
|
Peng L, Wang Q, Zou MM, Qin YD, Vasseur L, Chu LN, Zhai YL, Dong SJ, Liu LL, He WY, Yang G, You MS. CRISPR/Cas9-Mediated Vitellogenin Receptor Knockout Leads to Functional Deficiency in the Reproductive Development of Plutella xylostella. Front Physiol 2020; 10:1585. [PMID: 32038281 PMCID: PMC6989618 DOI: 10.3389/fphys.2019.01585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
The vitellogenin receptor (VgR) belongs to the low-density lipoprotein receptor (LDLR) gene superfamily and plays an indispensable role in Vg transport, yolk deposition, and oocyte development. For this reason, it has become a promising target for pest control. The involvement of VgR in Vg transport and reproductive functions remains unclear in diamondback moths, Plutella xylostella (L.), a destructive pest of cruciferous crops. Here, we cloned and identified the complete cDNA sequence of P. xylostella VgR, which encoded 1805 amino acid residues and contained four conserved domains of LDLR superfamily. PxVgR was mainly expressed in female adults, more specifically in the ovary. PxVgR protein also showed the similar expression profile with the PxVgR transcript. CRISPR/Cas9-mediated PxVgR knockout created a homozygous mutant of P. xylostella with 5-bp-nucleotide deletion in the PxVgR. The expression deficiency of PxVgR protein was detected in the ovaries and eggs of mutant individuals. Vg protein was still detected in the eggs of the mutant individuals, but with a decreased expression level. However, PxVg transcripts were not significantly affected by the PxVgR knockout. Knockout of PxVgR resulted in shorter ovarioles of newly emerged females. No significant difference was detected between wild and mutant individuals in terms of the number of eggs laid in the first 3 days after mating. The loss of PxVgR gene resulted in smaller and whiter eggs and lower egg hatching rate. This study represents the first report on the functions of VgR in Vg transport, ovary development, oviposition, and embryonic development of P. xylostella using CRISPR/Cas9 technology. This study lays the foundation for understanding molecular mechanisms of P. xylostella reproduction, and for making use of VgR as a potential genetic-based molecular target for better control of the P. xylostella.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Jie Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Li Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
205
|
Abstract
The RNA interference (RNAi) triggered by short/small interfering RNA (siRNA) was discovered in nematodes and found to function in most living organisms. RNAi has been widely used as a research tool to study gene functions and has shown great potential for the development of novel pest management strategies. RNAi is highly efficient and systemic in coleopterans but highly variable or inefficient in many other insects. Differences in double-stranded RNA (dsRNA) degradation, cellular uptake, inter- and intracellular transports, processing of dsRNA to siRNA, and RNA-induced silencing complex formation influence RNAi efficiency. The basic dsRNA delivery methods include microinjection, feeding, and soaking. To improve dsRNA delivery, various new technologies, including cationic liposome-assisted, nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries, have been developed. Major challenges to widespread use of RNAi in insect pest management include variable RNAi efficiency among insects, lack of reliable dsRNA delivery methods, off-target and nontarget effects, and potential development of resistance in insect populations.
Collapse
Affiliation(s)
- Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA;
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, USA;
| |
Collapse
|
206
|
Rana S, Rajurkar AB, Kumar KK, Mohankumar S. Comparative Analysis of Chitin SynthaseA dsRNA Mediated RNA Interference for Management of Crop Pests of Different Families of Lepidoptera. FRONTIERS IN PLANT SCIENCE 2020; 11:427. [PMID: 32362904 PMCID: PMC7182115 DOI: 10.3389/fpls.2020.00427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/24/2020] [Indexed: 05/10/2023]
Abstract
RNA interference (RNAi) is a sequence-specific down-regulation in the expression of a particular gene, induced by double-stranded RNA (dsRNA). Feeding of dsRNA either directly or through transgenic plants expressing dsRNA of insect genes has been proven successful against lepidopteran and coleopteran pests, establishing an additional alternative to control insect pests. Lepidopteran crop pests including Spodoptera litura (Fabricius) (Noctuidae), Chilo partellus (Swinhoe) (Crambidae), Plutella xylostella (Linnaeus) (Plutellidae), and Maruca vitrata (Fabricius) (Pyralidae) are the devastating pests of a variety of crops. To tap the potential of RNAi against insect pests, a gene coding for the key enzyme in chitin biosynthesis in arthropods, the chitin synthaseA (CHSA), has been targeted through an exogenous delivery of dsRNA and plant-mediated RNAi. The introduction of dsCHSA caused "Half ecdysis" and "Black body" type lethal phenotypes and a significant reduction in larval body weight. Subsequent RT-qPCR analysis demonstrated the down-regulation of CHSA gene transcripts from 1.38- to 8.33-fold in the four target species. Meanwhile, when S. litura larvae fed with leaves of transgenic tobacco plants expressing dsSlCHSA, the mRNA abundance of CHSA gene was significantly decreased resulting in lethal phenotypes like "Double head formation," "Half ecdysis," and "Black body." In addition, abnormalities in pupal-adult and adult stage were also documented, strongly suggesting the RNAi effect of CHSA gene at late developmental stages. Overall, the results demonstrated that CHSA gene expression in Lepidopteran crop pests could be suppressed by application of dsRNA either as feeding or through transgenic crop plants.
Collapse
|
207
|
Bento FM, Marques RN, Campana FB, Demétrio CG, Leandro RA, Parra JRP, Figueira A. Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta. PEST MANAGEMENT SCIENCE 2020; 76:287-295. [PMID: 31207074 DOI: 10.1002/ps.5513] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) has been evaluated in several insect pests as a novel strategy to be included in integrated pest management. Lepidopterans are recognized to be recalcitrant to gene silencing by RNAi. As such, double-stranded RNA (dsRNA) delivery needs to be adjusted to assure its stability until it reaches the target gene transcript for silencing. Gene silencing by RNAi offers the potential to be used in the control of Tuta absoluta (Meyrick), one of the main insect pests of tomato (Solanum lycopersicum) worldwide. Here, we tested the delivery of dsRNA expressed in Escherichia coli HT115(DE3) and supplied to larvae in an artificial diet by screening target genes for silencing. We tested six target genes: juvenile hormone inducible protein (JHP); juvenile hormone epoxide hydrolase protein (JHEH); ecdysteroid 25-hydroxylase (PHM); chitin synthase A (CHI); carboxylesterase (COE); and arginine kinase (AK). RESULTS Based on larval mortality, the duration of the larval stage in days, pupal weight, and the accumulation of the target gene transcript, we demonstrated the efficacy of bacterial dsRNA delivery for the functional effects on larval development. Providing dsRNA targeted to JHP, CHI, COE and AK by bacteria led to a significant decrease in transcript accumulation and an increase in larval mortality. CONCLUSION Bacteria expressing dsRNA targeting essential T. absoluta genes supplied in artificial diet are efficient to screen RNAi target-genes. The oral delivery of dsRNA by bacteria is a novel potential alternative for the control of T. absoluta based on RNAi. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Flavia Mm Bento
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Rodrigo N Marques
- Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, Brazil
| | - Felippe B Campana
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Clarice Gb Demétrio
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Roseli A Leandro
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - José Roberto P Parra
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
208
|
Peng Y, Wang K, Zhu G, Han Q, Chen J, Elzaki MEA, Sheng C, Zhao C, Palli SR, Han Z. Identification and characterization of multiple dsRNases from a lepidopteran insect, the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:86-95. [PMID: 31836059 DOI: 10.1016/j.pestbp.2019.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 05/10/2023]
Abstract
RNA interference (RNAi) efficiency varies among insects. RNAi is highly efficient and systemic in coleopteran insects but quite variable and inefficient in lepidopteran insects. Degradation of double-stranded RNA (dsRNA) by double-stranded ribonucleases (dsRNases) is thought to contribute to the variability in RNAi efficiency observed among insects. One or two dsRNases involved in dsRNA digestion have been identified in a few insects. To understand the contribution of dsRNases to reduced RNAi efficiency in lepidopteran insects, we searched the transcriptome of Spodoptera litura and identified six genes coding for DNA/RNA non-specific endonucleases. Phylogenetic analysis revealed the evolutionary expansion of dsRNase genes in insects. The mRNA levels of three midgut-specific dsRNases increased during the larval stage, and the highest dsRNA-degrading activity was detected in third-instar larvae. Proteins produced via the expression of three midgut-specific dsRNases, and the widely expressed dsRNase3, in a baculovirus system showed dsRNase activity for four out of five dsRNases tested. In addition, the increase in dsRNA-degrading activity and upregulation of dsRNase1 and 2 in larvae fed on cabbage leaves suggests that the diet of S. litura can influence dsRNase expression, dsRNA stability, and thus probably RNAi efficiency. This is the first report that multiple dsRNases function together in an RNAi-recalcitrant insect. The data included in this paper suggest that multiple dsRNases coded by the S. litura genome might contribute to the lower and variable RNAi efficiency reported in this and other lepidopteran insects.
Collapse
Affiliation(s)
- Yingchuan Peng
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kangxu Wang
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanheng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Qunxin Han
- Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
| | - Jiasheng Chen
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohammed Esmail Abdalla Elzaki
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengwang Sheng
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunqing Zhao
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Zhaojun Han
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
209
|
Miao LJ, Zhang N, Jiang H, Dong F, Yang XM, Xu X, Qian K, Meng XK, Wang JJ. Molecular characterization and functional analysis of the vitellogenin receptor in the rice stem borer, Chilo suppressalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21636. [PMID: 31612557 DOI: 10.1002/arch.21636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a member of the low-density lipoprotein receptor (LDLR) superfamily, vitellogenin (Vg) receptor (VgR) is responsible for the uptake of Vg into developing oocytes and is a potential target for pest control. Here, a full-length VgR complementary DNA (named as CsVgR) was isolated and characterized in the rice stem borer, Chilo suppressalis. The composite CsVgR gene contained an open reading frame of 5,484 bp encoding a protein of 1,827 amino acid residues. Structural analysis revealed that CsVgR contained two ligand-binding domains (LBDs) with four Class A (LDLRA ) repeats in LBD1 and seven in LBD2, which was structurally different from most non-Lepidopteran insect VgRs having five repeats in LBD1 and eight in LBD2. The developmental expression analysis showed that CsVgR messenger RNA expression was first detectable in 3-day-old pupae, sharply increased in newly emerged female adults, and reached a peak in 2-day-old female adults. Consistent with most other insects VgRs, CsVgR was exclusively expressed in the ovary. Notably, injection of dsCsVgR into late pupae resulted in fewer follicles in the ovarioles as well as reduced fecundity, suggesting a critical role of CsVgR in female reproduction. These results may contribute to the development of RNA interference-mediated disruption of reproduction as a control strategy of C. suppressalis.
Collapse
Affiliation(s)
- Li-Jun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fan Dong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xue-Mei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiang-Kun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jian-Jun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
210
|
Guan R, Li H, Zhang H, An S. Comparative analysis of dsRNA-induced lncRNAs in three kinds of insect species. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21640. [PMID: 31667893 DOI: 10.1002/arch.21640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) that have immune responses to various stimuli have been identified in some insects. One type of pathogen-associated molecular pattern, double-stranded RNA (dsRNA), can trigger the RNA interference (RNAi) pathway and immune response. Interestingly, there has been no research into characterizing the relationship between lncRNA and dsRNA-induced RNAi pathways. In this study, dsRNA-induced lncRNAs were investigated in two species of lepidopteran insects, Helicoverpa armigera and Plutella xylostella, and one species of coleopteran insects, Tribolium castaneum. Between untreated group and dsRNA-induced group; 3,463 H. armigera, 6,245 P. xylostella, and 3,067 T. castaneum differentially expressed lncRNAs were identified while 156 H. armigera, 247 P. xylostella, 415 T. castaneum lncRNAs and their putative target genes showed consistent changes in gene expression. In T. castaneum, most target genes of the differentially expressed lncRNAs are enriched in the cyclic adenosine monophosphate signaling pathway, ABC transporters, and Janus kinase-signal transducers and activators of the transcription signaling pathway. Conversely, in H. armigera and P. xylostella, the differentially expressed lncRNAs were mainly enriched in the metabolic, digestive, and synthetic signaling pathways. This result indicates that dsRNA-induced lncRNA is species-dependent. We also found that both Dicer-2 and the lncRNA that targets Dicer-2 were significantly upregulated after dsRNA treatment in P. xylostella, indicating that some lncRNAs may be involved in the regulation of the core RNAi pathway in insects. Our results are the first to identify a relationship between lncRNAs and dsRNA in various insect species with different RNAi efficiencies. These results provide a reference for future study of the dsRNA-induced RNAi pathway and different RNAi efficiencies among insect species.
Collapse
Affiliation(s)
- Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Haichao Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Hao Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
211
|
Lü J, Liu Z, Guo W, Guo M, Chen S, Li H, Yang C, Zhang Y, Pan H. Feeding Delivery of dsHvSnf7 Is a Promising Method for Management of the Pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). INSECTS 2019; 11:insects11010034. [PMID: 31906124 PMCID: PMC7022289 DOI: 10.3390/insects11010034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) techniques have emerged as powerful tools in the development of novel management strategies for the control of insect pests, such as Henosepilachna vigintioctopunctata, which is a major solanaceous pest in Asia. Our results showed that levels of HvSnf7 expression were greater in larval midguts than in other tissues. Silencing of HvSnf7 led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent. Bacterially expressed dsHvSnf7 that was applied to detached plant leaves caused 98, 88, and 60% mortality in 1st and 3rd instars, and adults after 10, 12, and 14 d, respectively; when applied to living plants, bacterially expressed dsHvSnf7 led to mortality in 1st and 3rd instars, with no effect on adults. Bacterially expressed dsHvSnf7 led to improved plant protection against H. vigintioctopunctata. Ultrastructural changes caused by HvSnf7-RNAi in larval midguts showed extensive loss of cellular contents that indicate loss of membrane integrity. This study indicate that HvSnf7 potentially can be used as RNAi target gene for controlling of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Zhuoqi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Z.); (H.P.)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
- Correspondence: (Y.Z.); (H.P.)
| |
Collapse
|
212
|
Lu C, Li Z, Chang L, Dong Z, Guo P, Shen G, Xia Q, Zhao P. Efficient Delivery of dsRNA and DNA in Cultured Silkworm Cells for Gene Function Analysis Using PAMAM Dendrimers System. INSECTS 2019; 11:insects11010012. [PMID: 31877645 PMCID: PMC7022533 DOI: 10.3390/insects11010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023]
Abstract
: Polyamidoamine (PAMAM) dendrimers are emerging as intriguing nanovectors for nucleic acid delivery because of their unique well-defined architecture and high binding capacity, which have been broadly applied in DNA- and RNA-based therapeutics. The low-cost and high-efficiency of PAMAM dendrimers relative to traditional liposomal transfection reagents also promote their application in gene function analysis. In this study, we first investigated the potential use of a PAMAM system in the silkworm model insect. We determined the binding property of G5-PAMAM using dsRNA and DNA in vitro, and substantially achieved the delivery of dsRNA and DNA from culture medium to both silkworm BmN and BmE cells, thus leading to efficient knockdown and expression of target genes. Under treatments with different concentrations of G5-PAMAM, we evaluated its cellular cytotoxicity on silkworm cells, and the results show that G5-PAMAM had no obvious toxicity to cells. The presence of serum in the culture medium did not affect the delivery performance of DNA and dsRNA by G5-PAMAM, revealing its convenient use for various purposes. In conclusion, our data demonstrate that the PAMAM system provides a promising strategy for delivering dsRNA and DNA in cultured silkworm cells and promote its further application in individuals.
Collapse
Affiliation(s)
- Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
213
|
Sun R, Jiang X, Reichelt M, Gershenzon J, Pandit SS, Giddings Vassão D. Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance. eLife 2019; 8:e51029. [PMID: 31841109 PMCID: PMC6934381 DOI: 10.7554/elife.51029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Insect herbivores are frequently reported to metabolize plant defense compounds, but the physiological and ecological consequences are not fully understood. It has rarely been studied whether such metabolism is genuinely beneficial to the insect, and whether there are any effects on higher trophic levels. Here, we manipulated the detoxification of plant defenses in the herbivorous pest diamondback moth (Plutella xylostella) to evaluate changes in fitness, and additionally examined the effects on a predatory lacewing (Chrysoperla carnea). Silencing glucosinolate sulfatase genes resulted in the systemic accumulation of toxic isothiocyanates in P. xylostella larvae, impairing larval development and adult reproduction. The predatory lacewing C. carnea, however, efficiently degraded ingested isothiocyanates via a general conjugation pathway, with no negative effects on survival, reproduction, or even prey preference. These results illustrate how plant defenses and their detoxification strongly influence herbivore fitness but might only subtly affect a third trophic level.
Collapse
Affiliation(s)
- Ruo Sun
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Xingcong Jiang
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Sagar Subhash Pandit
- Molecular and Chemical Ecology LabIndian Institute of Science Education and ResearchPuneIndia
| | | |
Collapse
|
214
|
Goodfellow S, Zhang D, Wang MB, Zhang R. Bacterium-Mediated RNA Interference: Potential Application in Plant Protection. PLANTS (BASEL, SWITZERLAND) 2019; 8:E572. [PMID: 31817412 PMCID: PMC6963952 DOI: 10.3390/plants8120572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
RNAi has emerged as a promising tool for targeting agricultural pests and pathogens and could provide an environmentally friendly alternative to traditional means of control. However, the deployment of this technology is still limited by a lack of suitable exogenous- or externally applied delivery mechanisms. Numerous means of overcoming this limitation are being explored. One such method, bacterium-mediated RNA interference, or bmRNAi, has been explored in other systems and shows great potential for application to agriculture. Here, we review the current state of bmRNAi, examine the technical limitations and possible improvements, and discuss its potential applications in crop protection.
Collapse
Affiliation(s)
- Simon Goodfellow
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Daai Zhang
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Ming-Bo Wang
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Ren Zhang
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
215
|
Mansourian S, Fandino RA, Riabinina O. Progress in the use of genetic methods to study insect behavior outside Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:45-56. [PMID: 31494407 DOI: 10.1016/j.cois.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In the span of a decade we have seen a rapid progress in the application of genetic tools and genome editing approaches in 'non-model' insects. It is now possible to target sensory receptor genes and neurons, explore their functional roles and manipulate behavioral responses in these insects. In this review, we focus on the latest examples from Diptera, Lepidoptera and Hymenoptera of how applications of genetic tools advanced our understanding of diverse behavioral phenomena. We further discuss genetic methods that could be applied to study insect behavior in the future.
Collapse
Affiliation(s)
| | - Richard A Fandino
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
216
|
Hines HM, Rahman SR. Evolutionary genetics in insect phenotypic radiations: the value of a comparative genomic approach. CURRENT OPINION IN INSECT SCIENCE 2019; 36:90-95. [PMID: 31541856 DOI: 10.1016/j.cois.2019.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Expanding genome sequencing and transgenic technologies are enabling the discovery of genes driving phenotypic diversity across insect taxa. Limitations in downstream functional genetic approaches, however, have been an obstacle for developing non-model systems for evolutionary genetics. Phenotypically diverse radiations, such as those exhibiting convergence and divergence as a result of mimicry, are ideal for evolutionary genetics as they can lead to insights using comparative genomic approaches alone. The varied and repeated instances of phenotypes in highly polymorphic systems allow assessment of whether similar loci are repeatedly targeted by selection and can inform how alleles sort across lineages. Comparative genomics of these taxa can be used to decipher components of gene regulatory networks, dissect regulatory regions, and validate genes.
Collapse
Affiliation(s)
- Heather M Hines
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
217
|
Du Q, Wen L, Zheng SC, Bi HL, Huang YP, Feng QL, Liu L. Identification and functional characterization of doublesex gene in the testis of Spodoptera litura. INSECT SCIENCE 2019; 26:1000-1010. [PMID: 29808584 DOI: 10.1111/1744-7917.12608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Fusion of the testis occurs in most Lepidoptera insects, including Spodoptera litura, an important polyphagous pest. Testicular fusion in S. litura is advantageous for male reproduction, and the molecular mechanism of fusion remains unknown. Doublesex influences the formation of genitalia, the behavior of courtship, and sexually dimorphic traits in fruit-fly and silkworm, and is essential for sexual differentiation. However, its purpose in the testis of S. litura remains unknown. The doublesex gene of S. litura (Sldsx) has male-specific SldsxM and female-specific SldsxF isoforms, and exhibits a higher expression level in the male testis. At the testicular fusion stage (L6D6), Sldsx attained the highest expression compared to the pre-fusion and post-fusion periods. Moreover, Sldsx had a higher expression in the peritoneal sheaths of testis than that of germ cells in the follicle. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9) was applied to S. litura to determine the role of Sldsx. A mixture of single guide RNA messenger RNA and Cas9 protein (300 ng/μL each) was injected into eggs within 2 h following oviposition. CRISPR/Cas9 successfully induced genomic mutagenesis of Sldsx at G0 generation. The mutant males had smaller testis surrounded by less tracheae. Moreover, the mutant males had abnormal external genitalia and could not finish mating with wild-type females. Additionally, testes were fused for almost all mutant males. The results showed that Sldsx was not related to testicular fusion, and is required for both testis development and the formation and function of external genitalia in S. litura. The main roles of doublesex on the male are similar to other insects.
Collapse
Affiliation(s)
- Qian Du
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liang Wen
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hong-Lun Bi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Qi-Li Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lin Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
218
|
Rauf I, Asif M, Amin I, Naqvi RZ, Umer N, Mansoor S, Jander G. Silencing cathepsin L expression reduces Myzus persicae protein content and the nutritional value as prey for Coccinella septempunctata. INSECT MOLECULAR BIOLOGY 2019; 28:785-797. [PMID: 30980445 DOI: 10.1111/imb.12589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut-expressed aphid genes, which may be more easily inhibited by RNA interference (RNAi) constructs, are attractive targets for pest control efforts involving transgenic plants. Here we show that expression of cathepsin L, which encodes a cysteine protease that functions in aphid guts, can be reduced by expression of an RNAi construct in transgenic tobacco. The effectiveness of this approach is demonstrated by up to 80% adult mortality, reduced fecundity, and delayed nymph production of Myzus persicae (green peach aphids) when cathepsin L expression was reduced by plant-mediated RNAi. Consistent with the function of cathepsin L as a gut protease, M. persicae fed on the RNAi plants had a lower protein content in their bodies and excreted more protein and/or free amino acids in their honeydew. Larvae of Coccinella septempunctata (seven-spotted ladybugs) grew more slowly on aphids having reduced cathepsin L expression, suggesting that prey insect nutritive value, and not just direct negative effects of the RNAi construct, needs to be considered when producing transgenic plants for RNAi-mediated pest control.
Collapse
Affiliation(s)
- I Rauf
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Ithaca, NY, USA
| | - M Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - I Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - R Z Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - N Umer
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Ithaca, NY, USA
| | - S Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - G Jander
- Boyce Thompson Institute, Ithaca, NY, USA
| |
Collapse
|
219
|
You L, Bi HL, Wang YH, Li XW, Chen XE, Li ZQ. CRISPR/Cas9-based mutation reveals Argonaute 1 is essential for pigmentation in Ostrinia furnacalis. INSECT SCIENCE 2019; 26:1020-1028. [PMID: 29938905 DOI: 10.1111/1744-7917.12628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/27/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Ostrinia furnacalis (Lepidoptera: Pyralidae) is one of the most destructive agricultural pests in Asia. Traditional pest-management methods include sex pheromone capture, transgenic crops that produce Bacillus thuringiensis toxin, and pesticides. Although these strategies control pest populations effectively, they also cause negative side effects, including dramatically increased pesticide resistance, severe pollution, and hazards for human health. Recently developed genome editing tools provide new prospects for pest management and have been successfully used in several species. However, few examples have been reported in the agricultural pest O. furnacalis due to a lack in genomic information. In this report, we identified only one transcript of O. furnacalis Argonaute 1 (OfAgo1) gene from the genome and cloned the open reading frame. OfAgo1 presented the maximum expression at the embryo stage or in the fat body during the larval stages. To understand its function, an OfAgo1 mutant was constructed using the Clustered Regularly Interspaced Short Palindromic Repeat/RNA-guided Cas9 nuclease (CRISPR/Cas9). Mutagenesis of OfAgo1 disrupted cuticle pigmentation by down-regulating micro RNAs and pigmentation-related genes. This is the first report for the cloning and functional analysis of OfAgo1, revealing a role of OfAgo1 in cuticle pigmentation. The current report also established a CRISPR/Cas9 system in O. furnacalis, providing a new insight for pest management.
Collapse
Affiliation(s)
- Lang You
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Lun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao-Hui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Wei Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xi-En Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qian Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
220
|
Wen M, Li E, Li J, Chen Q, Zhou H, Zhang S, Li K, Ren B, Wang Y, Yin J. Molecular Characterization and Key Binding Sites of Sex Pheromone-Binding Proteins from the Meadow Moth, Loxostege sticticalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12685-12695. [PMID: 31657923 DOI: 10.1021/acs.jafc.9b03235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The meadow moth, Loxostege sticticalis, is a typical agricultural pest that uses sex pheromones to mediate mating behavior; however, the mechanism underlying the selectivity of its pheromone-binding proteins (PBPs) remains unknown. In this study, LstiPBP1 and LstiPBP3 were cloned, expressed, and purified, and the fluorescence binding assay showed that LstiPBP1 binds to the major sex pheromone component, E-11-tetradecenol (E11-14:OH), with high affinity; moreover, E11-14:OH could evoke a significant antennal electrophysiological response and attract L. sticticalis males. After LstiPBP1 was silenced, both the antennal response and attractiveness of E11-14:OH decreased significantly. Molecular docking predicted that a hydrogen bonding site, Leu37, played key role in the binding of LstiPBP1 to E11-14:OH. After Leu37 was mutated, the E11-14:OH-binding affinity decreased drastically. These results suggest that LstiPBP1 participates in E11-14:OH recognition and could be used as a target gene to disturb the mating behavior of L. sticticalis and develop new odorants for pest control.
Collapse
Affiliation(s)
- Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Ertao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Jinqiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Haifeng Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
221
|
Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci 2019; 20:E5695. [PMID: 31739393 PMCID: PMC6888613 DOI: 10.3390/ijms20225695] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
It is known that extracellular vesicles (EVs) are shed from cells of almost every type of cell or organism, showing their ubiquity in all empires of life. EVs are defined as naturally released particles from cells, delimited by a lipid bilayer, and cannot replicate. These nano- to micrometer scaled spheres shuttle a set of bioactive molecules. EVs are of great interest as vehicles for drug targeting and in fundamental biological research, but in vitro culture of animal cells usually achieves only small yields. The exploration of other biological kingdoms promises comprehensive knowledge on EVs broadening the opportunities for basic understanding and therapeutic use. Thus, plants might be sustainable biofactories producing nontoxic and highly specific nanovectors, whereas bacterial and fungal EVs are promising vaccines for the prevention of infectious diseases. Importantly, EVs from different eukaryotic and prokaryotic kingdoms are involved in many processes including host-pathogen interactions, spreading of resistances, and plant diseases. More extensive knowledge of inter-species and interkingdom regulation could provide advantages for preventing and treating pests and pathogens. In this review, we present a comprehensive overview of EVs derived from eukaryota and prokaryota and we discuss how better understanding of their intercommunication role provides opportunities for both fundamental and applied biology.
Collapse
Affiliation(s)
- Eric Woith
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Matthias F. Melzig
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| |
Collapse
|
222
|
Rajapakse S, Qu D, Sayed Ahmed A, Rickers-Haunerland J, Haunerland NH. Effects of FABP knockdown on flight performance of the desert locust, Schistocerca gregaria. ACTA ACUST UNITED AC 2019; 222:jeb.203455. [PMID: 31597730 DOI: 10.1242/jeb.203455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/01/2019] [Indexed: 11/20/2022]
Abstract
During migratory flight, desert locusts rely on fatty acids as their predominant source of energy. Lipids mobilized in the fat body are transported to the flight muscles and enter the muscle cells as free fatty acids. It has been postulated that muscle fatty acid binding protein (FABP) is needed for the efficient translocation of fatty acids through the aqueous cytosol towards mitochondrial β-oxidation. To assess whether FABP is required for this process, dsRNA was injected into freshly emerged adult males to knock down the expression of FABP. Three weeks after injection, FABP and its mRNA were undetectable in flight muscle, indicating efficient silencing of FABP expression. At rest, control and treated animals exhibited no morphological or behavioral differences. In tethered flight experiments, both control and treated insects were able to fly continually in the initial, carbohydrate-fueled phase of flight, and in both groups, lipids were mobilized and released into the hemolymph. Flight periods exceeding 30 min, however, when fatty acids become the main energy source, were rarely possible for FABP-depleted animals, while control insects continued to fly for more than 2 h. These results demonstrate that FABP is an essential element of skeletal muscle energy metabolism in vivo.
Collapse
Affiliation(s)
- Sanjeeva Rajapakse
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - David Qu
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - Ahmed Sayed Ahmed
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | | | - Norbert H Haunerland
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| |
Collapse
|
223
|
Tian L, Zeng Y, Xie W, Wu Q, Wang S, Zhou X, Zhang Y. Genome-wide identification and analysis of genes associated with RNA interference in Bemisia tabaci. PEST MANAGEMENT SCIENCE 2019; 75:3005-3014. [PMID: 30891929 DOI: 10.1002/ps.5415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND As a method of RNA-mediated gene silencing, RNA interference (RNAi) is a useful reverse genetic tool with which to study gene function, and holds great promise for pest management. Bemisia tabaci is a cosmopolitan pest that causes extensive damage to crops. The mechanism underlying RNAi efficiency in B. tabaci is not well known. We identified and analyzed candidate genes in the RNAi pathway to understand the RNAi mechanism and provide a basis for the application of RNAi in pest management. RESULTS We identified 33 genes putatively involved in the RNAi pathway from the B. tabaci Q genome. Phylogenetic and structural analyses confirmed the characteristics of these genes. Furthermore, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and transcriptomic analysis profiled gene expression patterns during different developmental stages. Gene expression levels estimated by qRT-PCR and RNA-seq analyses were significantly correlated. Moreover, gene functions were verified by RNAi. When accompanied by knockdown of AGO2, Dicer2 and Sid1, the efficiency of CYP6DB3 RNAi decreased correspondingly. CONCLUSION In this study, we annotated and validated genes involved in B. tabaci RNAi. A better understanding of the building blocks of the RNAi process in B. tabaci facilitates integration of this novel biotechnology into the management of this emerging pest, either directly or indirectly. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixia Tian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
224
|
Guan R, Chen Q, Li H, Hu S, Miao X, Wang G, Yang B. Knockout of the HaREase Gene Improves the Stability of dsRNA and Increases the Sensitivity of Helicoverpa armigera to Bacillus thuringiensis Toxin. Front Physiol 2019; 10:1368. [PMID: 31708803 PMCID: PMC6823249 DOI: 10.3389/fphys.2019.01368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
Double-stranded RNA (dsRNA)-induced genes are usually related to RNA interference (RNAi) mechanisms and are involved in immune-related pathways. In a previous study, we found a lepidopteran-specific nuclease gene REase that was up-regulated by dsRNA and that affected RNAi efficiency in Asian corn borer (Ostrinia furnacalis). In this study, to verify the function of REase, the homologous gene HaREase in cotton bollworm (Helicoverpa armigera) was knocked out using CRISPR/Cas9 system. We found that the midgut epithelium structure was apparently not affected in the ΔHaREase mutant [Knock out (KO)]. Transcript sequencing results showed that most of the known insect immune-related genes were up-regulated in KO. When second instar larvae were fed artificial diet with Cry1Ac, a protoxin from Bacillus thuringiensis (Bt), in sublethal doses (2.5 or 4 μg/g), the growth rate of KO was repressed significantly. The dsRNA stability was also enhanced in midgut extraction of KO; however, RNAi efficiency was not obviously improved compared with the wild type (WT). The KO and WT were injected with dsEGFP (Enhanced green fluorescent protein) and subjected to transcriptome sequencing. The results showed that the expression levels of 14 nuclease genes were enhanced in KO after the dsRNA treatment. These findings revealed that HaREase expression level was not only related with dsRNA stability, but also with Bt resistance in cotton bollworm. When HaREase was knocked out, other immune- or nuclease-related genes were enhanced significantly. These results remind us that insect immune system is complex and pest control for cotton bollworm is an arduous task.
Collapse
Affiliation(s)
- Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haichao Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaoru Hu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
225
|
Zhang LL, Jing XD, Chen W, Wang Y, Lin JH, Zheng L, Dong YH, Zhou L, Li FF, Yang FY, Peng L, Vasseur L, He WY, You MS. Host Plant-Derived miRNAs Potentially Modulate the Development of a Cosmopolitan Insect Pest, Plutella xylostella. Biomolecules 2019; 9:biom9100602. [PMID: 31614786 PMCID: PMC6843310 DOI: 10.3390/biom9100602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 01/02/2023] Open
Abstract
Plant microRNAs (miRNAs) have recently been reported to be involved in the cross-kingdom regulation of specific cellular and physiological processes in animals. However, little of this phenomenon is known for the communication between host plant and insect herbivore. In this study, the plant-derived miRNAs in the hemolymph of a cruciferous specialist Plutella xylostella were identified by small RNAs sequencing. A total of 39 miRNAs with typical characteristics of plant miRNAs were detected, of which 24 had read counts ≥ 2 in each library. Three plant-derived miRNAs with the highest read counts were validated, and all of them were predicted to target the hemocyanin domains-containing genes of P. xylostella. The luciferase assays in the Drosophila S2 cell demonstrated that miR159a and novel-7703-5p could target BJHSP1 and PPO2 respectively, possibly in an incomplete complementary pairing mode. We further found that treatment with agomir-7703-5p significantly influenced the pupal development and egg-hatching rate when reared on the artificial diet. The developments of both pupae and adults were severely affected upon their transfer to Arabidopsis thaliana, but this might be independent of the cross-kingdom regulation of the three plant-derived miRNAs on their target genes in P. xylostella, based on expression analysis. Taken together, our work reveals that the plant-derived miRNAs could break the barrier of the insect mid-gut to enter the circulatory system, and potentially regulate the development of P. xylostella. Our findings provide new insights into the co-evolution of insect herbivore and host plant, and novel direction for pest control using plant-derived miRNAs.
Collapse
Affiliation(s)
- Ling-Ling Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiao-Dong Jing
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yue Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Han Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Hong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Li Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fei-Fei Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fei-Ying Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lu Peng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S3A1, Canada.
| | - Wei-Yi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Min-Sheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
226
|
Inhibition of dicer activity in lepidopteran and dipteran cells by baculovirus-mediated expression of Flock House virus B2. Sci Rep 2019; 9:14494. [PMID: 31601846 PMCID: PMC6787241 DOI: 10.1038/s41598-019-50851-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
Prior studies have suggested that insect DNA viruses are negatively affected by dicer-2-mediated RNA interference (RNAi). To examine this further, we utilized an in vitro assay to measure dicer activity in lepidopteran and dipteran cells, combined with baculoviruses expressing the RNAi suppressor B2 from Flock House virus or Aedes aegypti dicer-2 (Aedicer-2) using a constitutive heat shock promoter. Addition of cell lysates containing baculovirus-expressed B2 to lysates from dipteran (S2, Aag2) or lepidopteran (Sf9) cells inhibited endogenous dicer activity in a dose-dependent manner, while expression of Aedicer-2 restored siRNA production in Ae. albopictus C6/36 cells, which are dicer-2 defective. However, B2 expression from the constitutive heat shock promoter had no impact on baculovirus replication or virulence in cell lines or larvae that were either highly permissive (Trichoplusia ni) or less susceptible (Spodoptera frugiperda) to infection. We determined that this constitutive level of B2 expression had little to no ability to suppress dicer activity in cell lysates, but higher expression of B2, following heat shock treatment, inhibited dicer activity in all cells tested. Thus, we cannot rule out the possibility that optimized expression of B2 or other RNAi suppressors may increase baculovirus replication and expression of heterologous proteins by baculoviruses.
Collapse
|
227
|
Cao C, Sun L, Du H, Moural TW, Bai H, Liu P, Zhu F. Physiological functions of a methuselah-like G protein coupled receptor in Lymantria dispar Linnaeus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:1-10. [PMID: 31519242 DOI: 10.1016/j.pestbp.2019.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Insect G protein coupled receptors (GPCRs) have been identified as a highly attractive target for new generation insecticides discovery due to their critical physiological functions. However, few insect GPCRs have been functionally characterized. Here, we cloned the full length of a methuselah-like GPCR gene (Ldmthl1) from the Asian gypsy moth, Lymantria dispar. We then characterized the secondary and tertiary structures of Ldmthl1. We also predicted the global structure of this insect GPCR protein which is composed of three major domains. RNA interference of Ldmthl1 resulted in a reduction of gypsy moths' resistance to deltamethrin and suppressed expression of downstream stress-associated genes, such as P450s, glutathione S transferases, and heat shock proteins. The function of Ldmthl1 was further investigated using transgenic lines of Drosophila melanogaster. Drosophila with overexpression of Ldmthl1 showed significantly longer lifespan than control flies. Taken together, our studies revealed that the physiological functions of Ldmthl1 in L. dispar are associated with longevity and resistance to insecticide stresses. Potentially, Ldmthl1 can be used as a target for new insecticide discovery in order to manage this notorious forest pest.
Collapse
Affiliation(s)
- Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Hui Du
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Peng Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
228
|
Wen M, Li E, Chen Q, Kang H, Zhang S, Li K, Wang Y, Jiao Y, Ren B. A herbivore-induced plant volatile of the host plant acts as a collective foraging signal to the larvae of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyralidae). JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103941. [PMID: 31499032 DOI: 10.1016/j.jinsphys.2019.103941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The meadow moth Loxostege sticticalis is a serious agricultural pest that feeds on the leaves of many economic crops, such as sugar beet, soybean, sunflower, and potato. In addition to the rapid migration of adult moths, the collective foraging behavior of the larvae is also thought to be involved in the search for new food sources and substantially contributes to the expansion of the infested area. However, whether and how the chemical signals take part in this process remains unknown. In this study, two larva-specific expressed odorants, LstiOR5 and LstiOR6, were successfully cloned and deophanized. A heterologous study on Xenopus laevis oocytes showed that several host plant volatiles could evoke LstiOR responses in a dose-dependent manner. One herbivore-induced plant volatile (HIPV) of soybean leaves, methyl salicylate (MeSA), exerted attractive effects on the L. sticticalis larvae at all tested concentrations. Further foraging choice assays showed that the L. sticticalis larvae preferred foraged soybean leaves over unforaged leaves. When MeSA was artificially added to unforaged leaves, the unforaged leaves were preferred over the foraged leaves. In addition, GC-MS analysis demonstrated that MeSA was induced by the foraging behavior of the larvae and acted as a collective food signal in L. sticticalis. Moreover, in situ hybridization showed that LstiOR5 was highly expressed in larval antenna neurons. When LstiOR5 was silenced, both the electrophysiological response of the antenna to MeSA and the preference for foraged leaves were significantly decreased, suggesting that LstiOR5 is involved in the collective foraging behavior of L. sticticalis. Our results clarified the chemical signals that trigger the collective foraging behavior of L. sticticalis and provided more evidence for the molecular mechanism underlying the expansions of their infested areas at a peripheral olfactory sensing level. These findings could facilitate the development of potential control strategies for controlling this pest and provide a potential gene target that correlates with the collective foraging behavior of L. sticticalis, which might lead to better pest management.
Collapse
Affiliation(s)
- Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ertao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hui Kang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| | - Yin Jiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
229
|
Jin M, Liao C, Fu X, Holdbrook R, Wu K, Xiao Y. Adaptive regulation of detoxification enzymes in Helicoverpa armigera to different host plants. INSECT MOLECULAR BIOLOGY 2019; 28:628-636. [PMID: 30834601 DOI: 10.1111/imb.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cotton plants produce gossypol as a major secondary metabolite to resist insect herbivores and pathogens. Helicoverpa armigera may employ multigene families of detoxification enzymes to deal with this metabolite. So far, the strength of the transcriptional response to gossypol detoxification in the cotton bollworms remains poorly understood. Here, we investigated the genomewide transcriptional changes that occur in cotton bollworm larvae after one generation feeding on various host plants (cotton, corn, soybean and chili) or an artificial diet. Six genes potentially involved in detoxification of xenobiotics were highly upregulated in bollworms fed on cotton, and the expression of five of these differed significantly in insects that fed on gossypol diet compared with the artificial diet. When these six genes were downregulated using RNA interference, downregulation only of CYP4L11, CYP6AB9 and CCE001b led to reduced growth of bollworm larvae feeding on gossypol diets. These data suggest that the three genes are involved in response of H. armigera to gossypol of cotton. Our results proved that H. armigera may have a broad mechanism for gossypol detoxification.
Collapse
Affiliation(s)
- M Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| | - C Liao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - X Fu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - R Holdbrook
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - K Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| | - Y Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| |
Collapse
|
230
|
Singh S, Gupta M, Pandher S, Kaur G, Goel N, Rathore P. Using de novo transcriptome assembly and analysis to study RNAi in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Sci Rep 2019; 9:13710. [PMID: 31548628 PMCID: PMC6757040 DOI: 10.1038/s41598-019-49997-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Phenacoccus solenopsis is one of the major polyphagous crop pests in India. Inadequate genomic or transcriptomic resources have limited the molecular studies in this insect despite its huge economic importance. The existing molecular sequence resources of this insect were supplemented through RNA sequencing, de novo transcriptome assembly and analysis, which generated 12, 925 CDS from 23,643 contigs with an average size of 1077.5 bp per CDS and 85.1% positive BLAST hits with NCBI Non redundant (nr) database. Twenty three genes involved in RNAi machinery identified through BLASTx search against NCBI nr database suggested the existence of robust RNAi in mealybug. RNAi in P. solenopsis was demonstrated through knockdown of IAP (Inhibitor of Apoptosis), AQP (Aquaporin), CAL (Calcitonin), VATPase (V-type proton ATPase subunit F 1), bursicon, chitin synthase, SNF7 and α-amylase by injecting sequence specific dsRNA of respective genes in adult female. Additionally, feeding RNAi has been demonstrated in 2nd instar nymph through dsRNA uptake in plant. The knockdown of core RNAi machinery genes such as Dicer, Argonaute and Staufen significantly hampered RNAi efficiency in this insect. However, downregulation of dsRNases improved RNAi efficiency. Sequential studies for understanding RNAi in P. solenopsis using transcriptome sequences have also been reported. The present study provides a base for future research on developing RNAi as strategy for management of this pest.
Collapse
Affiliation(s)
- Satnam Singh
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India.
| | - Mridula Gupta
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| | - Suneet Pandher
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| | - Gurmeet Kaur
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| | - Neha Goel
- Forest Research Institute, Dehradun, Uttaranchal, India
| | - Pankaj Rathore
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| |
Collapse
|
231
|
Alshukri B, Astarita F, Al‐Esawy M, El Halim HMESA, Pennacchio F, Gatehouse AMR, Edwards MG. Targeting the potassium ion channel genes SK and SH as a novel approach for control of insect pests: efficacy and biosafety. PEST MANAGEMENT SCIENCE 2019; 75:2505-2516. [PMID: 31207012 PMCID: PMC6771844 DOI: 10.1002/ps.5516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Potassium ion channels play a critical role in the generation of electrical signals and thus provide potential targets for control of insect pests by RNA interference. RESULTS Genes encoding the small conductance calcium-activated potassium channel (SK) and the voltage-gated potassium channel (SH) were knocked down in Tribolium castaneum by injection and oral delivery of dsRNA (dsTcSK and dsTcSH, respectively). Irrespective of the delivery mechanism a dose-dependent effect was observed for knockdown (KD) of gene expression and insect mortality for both genes. Larvae fed a 400 ng dsRNA mg-1 diet showed significant gene (P < 0.05) knockdown (98% and 83%) for SK and SH, respectively, with corresponding mortalities of 100% and 98% after 7 days. When injected (248.4 ng larva-1 ), gene KD was 99% and 98% for SK and SH, causing 100% and 73.4% mortality, respectively. All developmental stages tested (larvae, early- and late-stage pupae and adults) showed an RNAi-sensitive response for both genes. LC50 values were lower for SK than SH, irrespective of delivery method, demonstrating that the knockdown of SK had a greater effect on larval mortality. Biosafety studies using adult honeybee Apis mellifera showed that there were no significant differences either in expression levels or mortality of honeybees orally dosed with dsTcSK and dsTcSH compared to control-fed bees. Similarly, there was no significant difference in the titre of deformed wing virus, used as a measure of immune suppression, between experimental and control bees. CONCLUSION This study demonstrates the potential of using RNAi targeting neural receptors as a technology for the control of T. castaneum. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Baida Alshukri
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Federica Astarita
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
- Department of Agricultural Sciences, Laboratory of Entomology “E. Tremblay”University of Napoli “Federico II”PorticiItaly
| | - Mushtaq Al‐Esawy
- Institute of Neuroscience, Newcastle UniversityNewcastle‐upon‐TyneUK
- Department of Plant ProtectionUniversity of KufaIraq
| | - Hesham Mohamed El Sayed Abd El Halim
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
- Entomology Department, Faculty of ScienceBenha UniversityBenhaEgypt
| | - Francesco Pennacchio
- Department of Agricultural Sciences, Laboratory of Entomology “E. Tremblay”University of Napoli “Federico II”PorticiItaly
| | | | - Martin Gethin Edwards
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
232
|
Peng L, Wang L, Zou MM, Vasseur L, Chu LN, Qin YD, Zhai YL, You MS. Identification of Halloween Genes and RNA Interference-Mediated Functional Characterization of a Halloween Gene shadow in Plutella xylostella. Front Physiol 2019; 10:1120. [PMID: 31555150 PMCID: PMC6724230 DOI: 10.3389/fphys.2019.01120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids play an essential role in controlling insect development and reproduction. Their pathway is regulated by a group of enzymes called Halloween gene proteins. The relationship between the Halloween genes and ecdysteroid synthesis has yet to be clearly understood in diamondback moth, Plutella xylostella (L.), a worldwide Lepidoptera pest attacking cruciferous crops and wild plants. In this study, complete sequences for six Halloween genes, neverland (nvd), shroud (sro), spook (spo), phantom (phm), disembodied (dib), shadow (sad), and shade (shd), were identified. Phylogenetic analysis revealed a strong conservation in insects, including Halloween genes of P. xylostella that was clustered with all other Lepidoptera species. Three Halloween genes, dib, sad, and shd were highly expressed in the adult stage, while nvd and spo were highly expressed in the egg and pupal stages, respectively. Five Halloween genes were highly expressed specifically in the prothorax, which is the major site of ecdysone production. However, shd was expressed predominantly in the fat body to convert ecdysone into 20-hydroxyecdysone. RNAi-based knockdown of sad, which is involved in the last step of ecdysone biosynthesis, significantly reduced the 20E titer and resulted in a longer developmental duration and lower pupation of fourth-instar larvae, as well as caused shorter ovarioles and fewer fully developed eggs of P. xylostella. Furthermore, after the knockdown of sad, the expression levels of Vg and VgR genes were significantly decreased by 77.1 and 53.0%. Meanwhile, the number of eggs laid after 3 days was significantly reduced in sad knockdown females. These results suggest that Halloween genes may play a critical role in the biosynthesis of ecdysteroids and be involved in the development and reproduction of P. xylostella. Our work provides a solid basis for understanding the functional importance of these genes, which will help to screening potential genes for pest management of P. xylostella.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
233
|
Molecular Characterization and Functional Study of Insulin-Like Androgenic Gland Hormone Gene in the Red Swamp Crayfish, Procambarus clarkii. Genes (Basel) 2019; 10:genes10090645. [PMID: 31455039 PMCID: PMC6770367 DOI: 10.3390/genes10090645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/07/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The androgenic gland (AG) is a male-specific endocrine organ that controls the primary and secondary sexual characteristics in male crustaceans. More evidence indicates that the insulin-like androgenic gland hormone gene (IAG) is the key male sexual differentiation factor, particularly the application of RNA interference (RNAi) technology on IAG. In this study, the full-length cDNA of IAG (termed PcIAG) was isolated from the red swamp crayfish, Procambarusclarkii. Tissue distribution analysis showed that in addition to its expression in the AG of male P. clarkii, PcIAG was widely expressed in female tissues and other male tissues. The PcIAG protein was detected in the reproductive and nervous systems of adult male P. clarkii. Additionally, RNAi results showed that the PcIAG expression could be silenced efficiently, and the male sperm maturation and release possibly present a transient adverse interference at lower doses (0.1 μg/g and 1 μg/g) of PcIAG–dsRNA (PcIAG double-stranded RNA). Dramatically, the expression level of PcIAG increased sharply shortly after the injection of higher doses (5 μg/g and 10 μg/g) of PcIAG–dsRNA, which might accelerate the maturation and release of sperm. Moreover, the expression of PcSxl (P. clarkii Sex-lethal) was detected by Quantitative Real-Time PCR (qPCR) after the injection of PcIAG–dsRNA to explore whether the PcIAG gene regulates the PcSxl gene, and we found that the PcIAG did not directly regulate PcSxl in P. clarkii. The study could help accelerate the progress of PcIAG functional research and provide a useful reference for the single-sex selective breeding of P. clarkii.
Collapse
|
234
|
Ghodke AB, Good RT, Golz JF, Russell DA, Edwards O, Robin C. Extracellular endonucleases in the midgut of Myzus persicae may limit the efficacy of orally delivered RNAi. Sci Rep 2019; 9:11898. [PMID: 31417162 PMCID: PMC6695413 DOI: 10.1038/s41598-019-47357-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 07/12/2019] [Indexed: 12/04/2022] Open
Abstract
Myzus persicae is a major pest of many crops including canola and Brassica vegetables, partly because it vectors plant viruses. Previously it has been reported that double-stranded RNA delivered to aphids by injection, artificial diet or transgenic plants has knocked down target genes and caused phenotypic effects. While these studies suggest that RNA interference (RNAi) might be used to suppress aphid populations, none have shown effects sufficient for field control. The current study analyses the efficacy of dsRNA directed against previously reported gene-targets on Green peach aphid (Myzus persicae) strains. No silencing effect was observed when dsRNA was delivered in artificial diet with or without transfection reagents. dsRNA produced in planta also failed to induce significant RNAi in M. persicae. Transcriptome analyses of the midgut suggested other potential targets including the Ferritin heavy chain transcripts, but they also could not be knocked down with dsRNA. Here we show that dsRNA is rapidly degraded by midgut secretions of Myzus persicae. Analysis of the transcriptome of the M. persicae midgut revealed that an ortholog of RNases from other insects was abundant.
Collapse
Affiliation(s)
- Amol Bharat Ghodke
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Robert Trygve Good
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - John F Golz
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Derek A Russell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Australia
| | | | - Charles Robin
- School of BioSciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
235
|
Chen CH, Di YQ, Shen QY, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone induces phosphorylation and aggregation of stromal interacting molecule 1 for store-operated calcium entry. J Biol Chem 2019; 294:14922-14936. [PMID: 31413111 DOI: 10.1074/jbc.ra119.008484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Oligomerization of stromal interacting molecule 1 (STIM1) promotes store-operated calcium entry (SOCE); however, the mechanism of STIM1 aggregation is unclear. Here, using the lepidopteran insect and agricultural pest cotton bollworm (Helicoverpa armigera) as a model and immunoblotting, RT-qPCR, RNA interference (RNAi), and ChIP assays, we found that the steroid hormone 20-hydroxyecdysone (20E) up-regulates STIM1 expression via G protein-coupled receptors (GPCRs) and the 20E nuclear receptor (EcRB1). We also identified an ecdysone-response element (EcRE) in the 5'-upstream region of the STIM1 gene and also noted that STIM1 is located in the larval midgut during metamorphosis. STIM1 knockdown in larvae delayed pupation time, prevented midgut remodeling, and decreased 20E-induced gene transcription. STIM1 knockdown in a H. armigera epidermal cell line, HaEpi, repressed 20E-induced calcium ion influx and apoptosis. Moreover, 20E-induced STIM1 clustering to puncta and translocation toward the cell membrane. Inhibitors of GPCRs, phospholipase C (PLC), and inositol trisphosphate receptor (IP3R) repressed 20E-induced STIM1 phosphorylation, and we found that two GPCRs are involved in 20E-induced STIM1 phosphorylation. 20E-induced STIM1 phosphorylation on Ser-485 through protein kinase C (PKC), and we observed that Ser-485 phosphorylation is critical for STIM1 clustering, interaction with calcium release-activated calcium channel modulator 1 (Orai1), calcium ion influx, and 20E-induced apoptosis. These results suggest that 20E up-regulates STIM1 phosphorylation for aggregation via GPCRs, followed by interaction with Orai1 to induce SOCE, thereby promoting apoptosis in the midgut during insect metamorphosis.
Collapse
Affiliation(s)
- Cai-Hua Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.,Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Qin-Yong Shen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
236
|
Tobacco Cutworm ( Spodoptera Litura) Larvae Silenced in the NADPH-Cytochrome P450 Reductase Gene Show Increased Susceptibility to Phoxim. Int J Mol Sci 2019; 20:ijms20153839. [PMID: 31390813 PMCID: PMC6696589 DOI: 10.3390/ijms20153839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductases (CPRs) function as redox partners of cytochrome P450 monooxygenases (P450s). CPRs and P450s in insects have been found to participate in insecticide resistance. However, the CPR of the moth Spodoptera litura has not been well characterized yet. Based on previously obtained transcriptome information, a full-length CPR cDNA of S. litura (SlCPR) was PCR-cloned. The deduced amino acid sequence contains domains and residues predicted to be essential for CPR function. Phylogenetic analysis with insect CPR amino acid sequences showed that SlCPR is closely related to CPRs of Lepidoptera. Quantitative reverse transcriptase PCR (RT-qPCR) was used to determine expression levels of SlCPR in different developmental stages and tissues of S. litura. SlCPR expression was strongest at the sixth-instar larvae stage and fifth-instar larvae showed highest expression in the midgut. Expression of SlCPR in the midgut and fat body was strongly upregulated when fifth-instar larvae were exposed to phoxim at LC15 (4 μg/mL) and LC50 (20 μg/mL) doses. RNA interference (RNAi) mediated silencing of SlCPR increased larval mortality by 34.6% (LC15 dose) and 53.5% (LC50 dose). Our results provide key information on the SlCPR gene and indicate that SlCPR expression levels in S. litura larvae influence their susceptibility to phoxim and possibly other insecticides.
Collapse
|
237
|
Sato K, Miyata K, Ozawa S, Hasegawa K. Systemic RNAi of V-ATPase subunit B causes molting defect and developmental abnormalities in Periplaneta fuliginosa. INSECT SCIENCE 2019; 26:721-731. [PMID: 29285882 DOI: 10.1111/1744-7917.12565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
The vacuolar (H+ )-ATPases (V-ATPases) are ATP-driven proton pumps with multiple functions in many organisms. In this study, we performed structural and functional analysis of vha55 gene that encodes V-ATPase subunit B in the smokybrown cockroach Periplaneta fuliginosa (Blattodea). We observed a high homology score of the deduced amino acid sequences between 10 species in seven orders. RNAi of the vha55 gene in P. fuliginosa caused nymphal/nymphal molting defects with incomplete shedding of old cuticles, growth inhibition, as well as bent and wrinkled cuticles of thoraxes and abdominal segments. Since growth inhibition caused by vha55 RNAi did not interfere in the commencement of cockroach molting, molting timing and body growth might be controlled by independent mechanism. Our study suggested V-ATPases might be a good candidate molecule for evolutionary and developmental studies of insect molting.
Collapse
Affiliation(s)
- Kazuki Sato
- Laboratory of Nematology, Department of Applied Biological Sciences, Saga University, Honjo 1, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - Keita Miyata
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Sota Ozawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
238
|
A Novel Splice Variant of the Masculinizing Gene Masc with piRNA-Cleavage-Site Defect Functions in Female External Genital Development in the Silkworm, Bombyx mori. Biomolecules 2019; 9:biom9080318. [PMID: 31366115 PMCID: PMC6723575 DOI: 10.3390/biom9080318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
In the silkworm, the sex-determination primary signal Fem controls sex differentiation by specific binding of Fem-derived piRNA to the cleavage site in Masc mRNA, thus inhibiting Masc protein production in the female. In this study, we identified a novel splicing isoform of Masc, named Masc-S, which lacks the intact sequence of the cleavage site, encoding a C-terminal truncated protein. Results of RT-PCR showed that Masc-S was expressed in both sexes. Over-expression of Masc-S and Masc in female-specific cell lines showed that Masc-S could be translated against the Fem-piRNA cut. By RNA-protein pull-down, LC/MS/MS, and EMSA, we identified a protein BmEXU that specifically binds to an exclusive RNA sequence in Masc compared to Masc-S. Knockdown of Masc-S resulted in abnormal morphology in female external genital and increased expression of the Hox gene Abd-B, which similarly occurred by Bmexu RNAi. These results suggest that the splice variant Masc-S against Fem-piRNA plays an important role in female external genital development, of which function is opposite to that of full-length Masc. Our study provides new insights into the regulatory mechanism of sex determination in the silkworm.
Collapse
|
239
|
Kotwica-Rolinska J, Chodakova L, Chvalova D, Kristofova L, Fenclova I, Provaznik J, Bertolutti M, Wu BCH, Dolezel D. CRISPR/Cas9 Genome Editing Introduction and Optimization in the Non-model Insect Pyrrhocoris apterus. Front Physiol 2019; 10:891. [PMID: 31379599 PMCID: PMC6644776 DOI: 10.3389/fphys.2019.00891] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The CRISPR/Cas9 technique is widely used in experimentation with human cell lines as well as with other model systems, such as mice Mus musculus, zebrafish Danio reiro, and the fruit fly Drosophila melanogaster. However, publications describing the use of CRISPR/Cas9 for genome editing in non-model organisms, including non-model insects, are scarce. The introduction of this relatively new method presents many problems even for experienced researchers, especially with the lack of procedures to tackle issues concerning the efficiency of mutant generation. Here we present a protocol for efficient genome editing in the non-model insect species Pyrrhocoris apterus. We collected data from several independent trials that targeted several genes using the CRISPR/Cas9 system and determined that several crucial optimization steps led to a remarkably increased efficiency of mutant production. The main steps are as follows: the timing of embryo injection, the use of the heteroduplex mobility assay as a screening method, in vivo testing of sgRNA efficiency, and G0 germline mosaicism screening. The timing and the method of egg injections used here need to be optimized for other species, but other here-described optimization solutions can be applied immediately for genome editing in other insect species.
Collapse
Affiliation(s)
- Joanna Kotwica-Rolinska
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Lenka Chodakova
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Daniela Chvalova
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Lucie Kristofova
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Iva Fenclova
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Jan Provaznik
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Maly Bertolutti
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Bulah Chia-Hsiang Wu
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - David Dolezel
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
240
|
Prentice K, Smagghe G, Gheysen G, Christiaens O. Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:80-89. [PMID: 31009678 DOI: 10.1016/j.ibmb.2019.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
RNA interference (RNAi) refers to the process of suppression of gene expression in eukaryotes, which has a great potential for the control of pest and diseases. Unfortunately, the efficacy of this technology is limited or at best variable in some insects. In the African sweet potato weevil (SPW) Cylas puncticollis, a devastating pest that affects the sweet potato production in Sub-Saharan Africa (SSA), the RNAi response was highly efficient when dsRNA was delivered by injection, but it showed a reduced response by oral feeding. In the present study, the role of nucleases in the reduced RNAi efficiency in C. puncticollis is investigated. Several putative dsRNases were first identified in the transcriptome of the SPW through homology search and were subsequently further characterized. Two of these dsRNases were specifically expressed in the gut tissue of the insect and we could demonstrate through RNAi experiments that these affected dsRNA stability in the gut. Furthermore, RNAi-of-RNAi studies, using snf7 as a reporter gene, demonstrated that silencing one of these nucleases, Cp-dsRNase-3, clearly increases RNAi efficacy. After silencing this nuclease, significantly higher mortality was observed in dssnf7-treated insects 14 days post-feeding as compared to control treatments, and the gene downregulation was confirmed at the transcript level via qPCR analysis. Taken together, our results demonstrate that the RNAi efficiency is certainly impaired by nuclease activity in the gut environment of the SPW Cylas puncticollis.
Collapse
Affiliation(s)
- Katterinne Prentice
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.
| |
Collapse
|
241
|
Zheng Y, Hu Y, Yan S, Zhou H, Song D, Yin M, Shen J. A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. PEST MANAGEMENT SCIENCE 2019; 75:1993-1999. [PMID: 30610748 DOI: 10.1002/ps.5313] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/07/2018] [Accepted: 12/21/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND It is difficult to efficiently silence gene expression in some insects, probably because of the degradation of dsRNA by enzymes present in the gut and hemolymph post-oral feeding or body injecting of dsRNA. We previously developed a nanocarrier delivery system that can systemically deliver dsRNA into chewing mouthpart insects by oral feeding and efficiently silence gene expression. For the purpose of pest control in the field, there is a great demand to develop a spray method to apply dsRNA formulation. RESULTS A formulation of the nanocarrier/dsRNA/detergent was developed and could be easily applied just by dropping it on the notum of the aphid. The formulation penetrated the body wall into the hemocoel and then spread into various tissues within 1 h. The delivered dsRNA efficiently silenced the target gene expression at a high knockdown effect (95.4%) and the aphid population was largely suppressed (80.5%). CONCLUSION A novel dsRNA formulation was developed with the help of a nanocarrier and detergent that can quickly penetrate the insect body wall and efficiently silence gene expression. The formulation may provide a fast and easy tool for gene silence in some tough insects and for pest control in the field. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Yiseng Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Shuo Yan
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Hang Zhou
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Dunlun Song
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| |
Collapse
|
242
|
Li Z, Tian S, Yang H, Zhou X, Xu S, Zhang Z, Gong J, Hou Y, Xia Q. Genome-wide identification of chitin-binding proteins and characterization of BmCBP1 in the silkworm, Bombyx mori. INSECT SCIENCE 2019; 26:400-412. [PMID: 29087606 PMCID: PMC7379184 DOI: 10.1111/1744-7917.12552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/16/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
The insect cuticle plays important roles in numerous physiological functions to protect the body from invasion of pathogens, physical injury and dehydration. In this report, we conducted a comprehensive genome-wide search for genes encoding proteins with peritrophin A-type (ChtBD2) chitin-binding domain (CBD) in the silkworm, Bombyx mori. One of these genes, which encodes the cuticle protein BmCBP1, was additionally cloned, and its expression and location during the process of development and molting in B. mori were investigated. In total, 46 protein-coding genes were identified in the silkworm genome, including those encoding 15 cuticle proteins analogous to peritrophins with one CBD (CPAP1s), nine cuticle proteins analogous to peritrophins with three CBD (CPAP3s), 15 peritrophic membrane proteins (PMPs), four chitinases, and three chitin deacetylases, which contained at least one ChtBD2 domain. Microarray analysis indicated that CPAP-encoding genes were widely expressed in various tissues, whereas PMP genes were highly expressed in the midgut. Quantitative polymerase chain reaction and western blotting showed that the cuticle protein BmCBP1 was highly expressed in the epidermis and head, particularly during molting and metamorphosis. An immunofluorescence study revealed that chitin co-localized with BmCBP1 at the epidermal surface during molting. Additionally, BmCBP1 was notably up-regulated by 20-hydroxyecdysone treatment. These results provide a genome-level view of the chitin-binding protein in silkworm and suggest that BmCBP1 participates in the formation of the new cuticle during molting.
Collapse
Affiliation(s)
- Zhi‐Lang Li
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Sha Tian
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Huan Yang
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Xia Zhou
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Shu‐Ping Xu
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Zi‐Yu Zhang
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Jing Gong
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Yong Hou
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| | - Qing‐You Xia
- State Key Laboratory of Silkworm Genome BiologyCollege of BiotechnologySouthwest UniversityChongqingChina
| |
Collapse
|
243
|
Dong X, Liao H, Zhu G, Khuhro SA, Ye Z, Yan Q, Dong S. CRISPR/Cas9-mediated PBP1 and PBP3 mutagenesis induced significant reduction in electrophysiological response to sex pheromones in male Chilo suppressalis. INSECT SCIENCE 2019; 26:388-399. [PMID: 29058383 PMCID: PMC7379591 DOI: 10.1111/1744-7917.12544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 05/12/2023]
Abstract
Pheromone-binding proteins (PBPs) are thought to bind and transport sex pheromones onto the olfactory receptors on the dendrite membrane of olfactory neurons, and thus play a vital role in sex pheromone perception. However, the function of PBPs has rarely been demonstrated in vivo. In this study, two PBPs (PBP1 and PBP3) of Chilo suppressalis, one of the most notorious pyralid pests, were in vivo functionally characterized using insects with the PBP gene knocked out by the CRISPR/Cas9 system. First, through direct injection of PBP-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, a high rate of target-gene editing (checked with polled eggs) was induced at 24 h after injection, 21.3% for PBP1-sgRNA injected eggs and 19.5% for PBP3-sgRNA injected eggs. Second, by an in-crossing strategy, insects with mutant PBP1 or PBP3 (both with a premature stop codon) were screened, and homozygous mutants were obtained in the G3 generation. Third, the mutant insects were measured for electroantennogram (EAG) response to female sex pheromones. As a result, both PBP mutant males displayed significant reduction in EAG response, and this reduction in PBP1 mutants was higher than that in PBP3 mutants, indicating a more important role of PBP1. Finally, the relative importance of two PBPs and the possible off target effect induced by sgRNA-injection are discussed. Taken together, our study provides a deeper insight into the function of and interaction between different PBP genes in sex pheromone perception of C. suppressalis, as well as a valuable reference in methodology for gene functional study in other genes and other moth species.
Collapse
Affiliation(s)
- Xiao‐Tong Dong
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Hui Liao
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Guan‐Heng Zhu
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Sajjad Ali Khuhro
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Zhan‐Feng Ye
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Qi Yan
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Shuang‐Lin Dong
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| |
Collapse
|
244
|
Song H, Fan Y, Zhang J, Cooper AM, Silver K, Li D, Li T, Ma E, Zhu KY, Zhang J. Contributions of dsRNases to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. PEST MANAGEMENT SCIENCE 2019; 75:1707-1717. [PMID: 30525311 DOI: 10.1002/ps.5291] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The efficiency of RNA interference (RNAi) varies considerably among different insect species, and there is growing evidence to suggest that degradation of double-stranded (dsRNA) prior to uptake is an important factor that limits the efficiency of RNAi in insects. In Locusta migratoria, RNAi is highly efficient when dsRNA is delivered by injection, but not by feeding. However, detailed mechanisms causing such differential RNAi efficiency are still elusive. RESULTS We identified and characterized the full-length complementary DNAs (cDNAs) of two new dsRNA nuclease (dsRNase) genes from L. migratoria, which were named LmdsRNase1 and LmdsRNase4. Transcript analyses revealed that LmdsRNase1 and LmdsRNase4 were highly expressed in hemolymph with relatively lower expression in other tested tissues. Our study using heterologously expressed LmdsRNase1 and LmdsRNase4 fusion proteins showed that LmdsRNase1 can degrade dsRNA rapidly at an optimal pH of 5, whereas LmdsRNase4 had no activity at any of the pH values examined. In comparing the substrate specificity of the four LmdsRNases, we found that only LmdsRNase1 and LmdsRNase2 digested dsRNA; however, our experiments suggested that the physiological pH of hemolymph (7.0) suppresses LmdsRNase1 activity permitting significant dsRNA stability in this tissue. Conversely, the physiological pH of midgut juice (6.8) is ideal for LmdsRNase2 activity, resulting in degradation of dsRNA in midgut. CONCLUSION The physiological pH of different insect tissues or compartments can significantly alter the stability of dsRNA by influencing LmdsRNase activity in L. migratoria. Thus, new strategies to overcome such obstacles are expected to help implement RNAi-based technologies for insect pest management. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huifang Song
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Yunhe Fan
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Jianqin Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | | | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Daqi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- Institute of Plant Protection, Shanxi Academy of Agricultural Science, Taiyuan, China
| | - Tao Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
245
|
Zhang YN, Zhang XQ, Zhu GH, Zheng MY, Yan Q, Zhu XY, Xu JW, Zhang YY, He P, Sun L, Palli SR, Zhang LW, Dong SL. A Δ9 desaturase (SlitDes11) is associated with the biosynthesis of ester sex pheromone components in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:152-159. [PMID: 31027575 DOI: 10.1016/j.pestbp.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
Sex pheromone biosynthesis in moths relies on the activity of multiple enzymes, including Δ9 desaturase, which plays an important role in catalyzing desaturation at the Δ9 position of the carbon chain. However, the physiological function of moth Δ9 desaturase has not been elucidated in vivo. In this study, we used the CRISPR/Cas9 system to knockout the Δ9 desaturase gene (SlitDes11) of Spodoptera litura to analyze its role in sex pheromone biosynthesis. First, through the direct injection of SlitDes11-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, gene editing was induced in around 30% of eggs 24 h after injection and was induced in 20.8% of the resulting adult moths. Second, using a sibling-crossing strategy, insects with mutant SlitDes11 (bearing a premature stop codon) were selected, and homozygous mutants were obtained in the G5 generation. Third, pheromone gland extracts of adult female homozygous SlitDes11 mutants were analyzed using Gas chromatography (GC). The results showed that titers of all three ester sex pheromone components; Z9, E11-14:Ac, Z9,E12-14:Ac, and Z9-14:Ac; were reduced by 62.40%, 78.50%, and 72.50%, respectively. This study provides the first direct evidence for the role of SlitDes11 in sex pheromone biosynthesis in S. litura, and indicates the gene could be as potential target to disrupt sexual communication in S. litura for developing a new pollution-free insecticide.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guan-Heng Zhu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China; Department of Entomology, University of Kentucky, Lexington, USA
| | - Mei-Yan Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yun-Ying Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | | | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China.
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
246
|
Oberemok VV, Laikova KV, Gal'chinsky NV, Useinov RZ, Novikov IA, Temirova ZZ, Shumskykh MN, Krasnodubets AM, Repetskaya AI, Dyadichev VV, Fomochkina II, Bessalova EY, Makalish TP, Gninenko YI, Kubyshkin AV. DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection. Sci Rep 2019; 9:6197. [PMID: 30996277 PMCID: PMC6470133 DOI: 10.1038/s41598-019-42688-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Having observed how botanicals and other natural compounds are used by nature to control pests in the environment, we began investigating natural polymers, DNA and RNA, as promising tools for insect pest management. Over the last decade, unmodified short antisense DNA oligonucleotides have shown a clear potential for use as insecticides. Our research has concentrated mainly on Lymantria dispar larvae using an antisense oligoRING sequence from its inhibitor-of-apoptosis gene. In this article, we propose a novel biotechnology to protect plants from insect pests using DNA insecticide with improved insecticidal activity based on a new antisense oligoRIBO-11 sequence from the 5.8S ribosomal RNA gene. This investigational oligoRIBO-11 insecticide causes higher mortality among both L. dispar larvae grown in the lab and those collected from the forest; in addition, it is more affordable and faster acting, which makes it a prospective candidate for use in the development of a ready-to-use preparation.
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Kateryna V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Nikita V Gal'chinsky
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Refat Z Useinov
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Ilya A Novikov
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Zenure Z Temirova
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Maksym N Shumskykh
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine.
| | - Alisa M Krasnodubets
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Anna I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Valeriy V Dyadichev
- Engineering Center, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Iryna I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Evgenia Y Bessalova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Tatiana P Makalish
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Yuri I Gninenko
- All-Russian Research Institute for Silviculture and Mechanization of Forestry, Institutskaya Street 15, 141200, Pushkino, Russia
| | - Anatoly V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| |
Collapse
|
247
|
Jin H, Seki T, Yamaguchi J, Fujiwara H. Prepatterning of Papilio xuthus caterpillar camouflage is controlled by three homeobox genes: clawless, abdominal-A, and Abdominal-B. SCIENCE ADVANCES 2019; 5:eaav7569. [PMID: 30989117 PMCID: PMC6457947 DOI: 10.1126/sciadv.aav7569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/14/2019] [Indexed: 06/02/2023]
Abstract
Color patterns often function as camouflage to protect insects from predators. In most swallowtail butterflies, younger larvae mimic bird droppings but change their pattern to mimic their host plants during their final molt. This pattern change is determined during the early fourth instar by juvenile hormone (JH-sensitive period), but it remains unclear how the prepatterning process is controlled. Using Papilio xuthus larvae, we performed transcriptome comparisons to identify three camouflage pattern-associated homeobox genes [clawless, abdominal-A, and Abdominal-B (Abd-B)] that are up-regulated during the JH-sensitive period in a region-specific manner. Electroporation-mediated knockdown of each gene at the third instar caused loss or change of original fifth instar patterns, but not the fourth instar mimetic pattern, and knockdown of Abd-B after the JH-sensitive period had no effect on fifth instar patterns. These results indicate the role of these genes during the JH-sensitive period and in the control of the prepatterning gene network.
Collapse
|
248
|
Wang K, Peng Y, Fu W, Shen Z, Han Z. Key factors determining variations in RNA interference efficacy mediated by different double-stranded RNA lengths in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2019; 28:235-245. [PMID: 30325555 DOI: 10.1111/imb.12546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Double-stranded RNA (dsRNA) length may affect RNA interference (RNAi) efficacy. Herein, variation in RNAi efficacy associated with dsRNA molecular length was confirmed via comparison of knockdown results following dsRNA injection into Tribolium castaneum. Through in vitro experiments with T. castaneum midgut, dsRNA accumulation in the midgut, degradation by midgut homogenates and persistence in haemolymph after injection were tested to determine the causes of RNAi efficacy variation. The comparative efficacies of dsRNAs were 480 bp ≈ 240 bp > 120 bp > 60 bp >> 21 bp. The combined midgut dsRNA accumulation and midgut homogenate-induced degradation analyses suggested cellular uptake to be the key barrier for 21 bp dsRNA functioning, but was likely not the main determinant of the variation in longer dsRNAs' (≥60 bp) bioactivity. In vitro RNAi experiment with T. castaneum midgut showed that long dsRNAs all significantly depleted the expression of corresponding genes, suggesting little variation in intracellular RNAi machinery's affinity for different dsRNA lengths. In vivo haemolymph content dynamics of different dsRNAs following injection indicated higher persistence of longer dsRNAs. In addition, comparison of the in vivo and in vitro RNAi efficacy also indicated the importance of haemolymph degradation. Thus, the varied efficacy of long dsRNAs resulted from their degradation by nucleases, which varied with dsRNA length.
Collapse
Affiliation(s)
- K Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Y Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - W Fu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Z Shen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Z Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| |
Collapse
|
249
|
Burke WG, Kaplanoglu E, Kolotilin I, Menassa R, Donly C. RNA Interference in the Tobacco Hornworm, Manduca sexta, Using Plastid-Encoded Long Double-Stranded RNA. FRONTIERS IN PLANT SCIENCE 2019; 10:313. [PMID: 30923533 PMCID: PMC6426776 DOI: 10.3389/fpls.2019.00313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2019] [Indexed: 05/05/2023]
Abstract
RNA interference (RNAi) is a promising method for controlling pest insects by silencing the expression of vital insect genes to interfere with development and physiology; however, certain insect Orders are resistant to this process. In this study, we set out to test the ability of in planta-expressed dsRNA synthesized within the plastids to silence gene expression in an insect recalcitrant to RNAi, the lepidopteran species, Manduca sexta (tobacco hornworm). Using the Manduca vacuolar-type H+ ATPase subunit A (v-ATPaseA) gene as the target, we first evaluated RNAi efficiency of two dsRNA products of different lengths by directly feeding the in vitro-synthesized dsRNAs to M. sexta larvae. We found that a long dsRNA of 2222 bp was the most effective in inducing lethality and silencing the v-ATPaseA gene, when delivered orally in a water droplet. We further transformed the plastid genome of the M. sexta host plant, Nicotiana tabacum, to produce this long dsRNA in its plastids and performed bioassays with M. sexta larvae on the transplastomic plants. In the tested insects, the plastid-derived dsRNA had no effect on larval survival and no statistically significant effect on expression of the v-ATPaseA gene was observed. Comparison of the absolute quantities of the dsRNA present in transplastomic leaf tissue for v-ATPaseA and a control gene, GFP, of a shorter size, revealed a lower concentration for the long dsRNA product compared to the short control product. We suggest that stability and length of the dsRNA may have influenced the quantities produced in the plastids, resulting in inefficient RNAi in the tested insects. Our results imply that many factors dictate the effectiveness of in planta RNAi, including a likely trade-off effect as increasing the dsRNA product length may be countered by a reduction in the amount of dsRNA produced and accumulated in the plastids.
Collapse
Affiliation(s)
- William G. Burke
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Emine Kaplanoglu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
250
|
Abstract
Zika virus infection and dengue and chikungunya fevers are emerging viral diseases that have become public health threats. Their aetiologic agents are transmitted by the bite of genus Aedes mosquitoes. Without effective therapies or vaccines, vector control is the main strategy for preventing the spread of these diseases. Increased insecticide resistance calls for biorational actions focused on control of the target vector population. The chitin required for larval survival structures is a good target for biorational control. Chitin synthases A and B (CHS) are enzymes in the chitin synthesis pathway. Double-stranded RNA (dsRNA)-mediated gene silencing (RNAi) achieves specific knockdown of target proteins. Our goal in this work, a new proposed RNAi-based bioinsecticide, was developed as a potential strategy for mosquito population control. DsRNA molecules that target five different regions in the CHSA and B transcript sequences were produced in vitro and in vivo through expression in E. coli HT115 and tested by direct addition to larval breeding water. Mature and immature larvae treated with dsRNA targeting CHS catalytic sites showed significantly decreased viability associated with a reduction in CHS transcript levels. The few larval and adult survivors displayed an altered morphology and chitin content. In association with diflubenzuron, this bioinsecticide exhibited insecticidal adjuvant properties.
Collapse
|