201
|
Araújo LDCB, de Matos HK, Facchi DP, de Almeida DA, Gonçalves BMG, Monteiro JP, Martins AF, Bonafé EG. Natural carbohydrate-based thermosensitive chitosan/pectin adsorbent for removal of Pb(II) from aqueous solutions. Int J Biol Macromol 2021; 193:1813-1822. [PMID: 34774866 DOI: 10.1016/j.ijbiomac.2021.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
Biodegradable and eco-friendly adsorbents composed of natural carbohydrates have been used to replace carbon-based materials. This study presents a natural carbohydrate-based chitosan/pectin (CS/Pec) hydrogel adsorbent to remove Pb(II) from aqueous solutions. The physical CS/Pec hydrogel was prepared by blending aqueous CS and Pec solutions at 65 °C, preventing the use of toxic chemistries (crosslinking agents). The thermosensitive CS/Pec hydrogel was quickly created by cooling CS/Pec blend at room temperature. The used strategy created stable CS/Pec hydrogel against disintegration and water dissolution. The as-prepared hydrogel was characterized by infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The adsorbent had 1.688 mmol -COO- for each gram. These ionized sites bind Pb(II) ions, promoting their adsorption. The adsorption kinetic and equilibrium studies indicated that the Elovich and pseudo-second-order models adjusted well to the experimental data, respectively. The maximum removal capacities (qm) predicted by the Langmuir and Sips isotherms achieved 108.2 and 97.55 mg/g at 0.83 g/L adsorbent dosage (pH 4.0). The hydrogel/Pb(II) pair was characterized by scanning electron microscopy (SEM), X-ray dispersive energy (EDS), and differential scanning calorimetry (DSC). The chemisorption seems to play an essential role in the Pb(II) adsorption. Therefore, the adsorbent was not recovered, showing low potential for reusability.
Collapse
Affiliation(s)
- Lucas Del Coli B Araújo
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Henrique K de Matos
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Débora P Facchi
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Débora A de Almeida
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Bruna M G Gonçalves
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Johny P Monteiro
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil.
| | - Elton G Bonafé
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Analitycal Applied in Lipids, Sterols, and Antioxidants (APLE-A), State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
202
|
Anselmo S, Cataldo S, Avola T, Sancataldo G, D'Oca MC, Fiore T, Muratore N, Scopelliti M, Pettignano A, Vetri V. Lead(II) ions adsorption onto amyloid particulates: An in depth study. J Colloid Interface Sci 2021; 610:347-358. [PMID: 34923272 DOI: 10.1016/j.jcis.2021.11.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 01/08/2023]
Abstract
The production of new cost-effective biocompatible sorbent sustainable materials, with natural origins, able to remove heavy metals from water resources is nowadays highly desirable in order to reduce pollution and increase clean water availability. In this context, self-assembled protein materials with amyloid structures seem to have a great potential as natural platform for a broader development of highly-tunable structures. In this work we show how protein particulates, a generic form of protein aggregates, with spherical micro sized shape can be used as adsorbents of Pb2+ ions from aqueous solution. The effect of pH, ionic medium, ionic strength and temperature of the metal ion solution on the adsorption ability and affinity has been evaluated revealing the complexity of adsorption mechanisms which are the result of the balance of specific interactions with functional groups in protein structure and not specific ones common to all polypeptide chains, and possibly related to amyloid state and to modification of particulates hydration layer.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy
| | - Salvatore Cataldo
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy
| | - Tiziana Avola
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy
| | - Maria Cristina D'Oca
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy
| | - Tiziana Fiore
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy
| | - Nicola Muratore
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy
| | - Michelangelo Scopelliti
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy
| | - Alberto Pettignano
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy.
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, Viale delle Scienze, Palermo I-90128, Italy.
| |
Collapse
|
203
|
Lanet P, Deluchat V, Baudu M. Relevant design parameters for a reactor used in P removal with ZVI-based materials. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
204
|
Brião GV, da Silva MGC, Vieira MGA. Dysprosium adsorption on expanded vermiculite: Kinetics, selectivity and desorption. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
205
|
Abstract
To adsorb hexavalent chromium (Cr(VI)) in polluted water, this paper prepared a UiO-66 (Zr6O4(OH)4(BDC)12) modified granular corncob composite adsorbent by hydrothermal method with in situ loading of UiO-66 on pretreated corncob particles. The physicochemical properties of the synthesized samples were characterized. Batch adsorption experiments were conducted to investigate the adsorption process of aqueous Cr(VI) under various conditions (different ionic strength, pH and co-existing anions). The results showed that UiO-66 was successfully loaded on the modified corncob particles. The isothermal adsorption data of Cr(VI) adsorption by the UiO-66 modified corncob fit well with the Langmuir model with the maximum adsorption capacity of Cr(VI) on UiO-66@Corn+ being 90.04 mg/g. UiO-66 loading could increase Cr(VI) adsorption capacity of Corn+. The kinetic study showed that the equilibrium time for Cr(VI) adsorption on UiO-66 modified corncob was about 180 min and the kinetic data followed the pseudo-secondary kinetic model. The Cr(VI) adsorption capacity on UiO-66@Corn+ decreased with the increasing solution pH, and the optimum pH range was 4–6. The ionic strength has little effect on the Cr(VI) adsorption capacity, but the coexistence of CO32−, SO42− and PO43− in the solution could significantly decrease the equilibrium adsorption capacity of Cr(VI). The adsorption mechanism analysis showed that Cr(VI) was adsorbed on the surface of adsorbents through electrostatic attraction and was reduced further to the less toxic Cr(III) by the electron donor on the surface of adsorbent. The electrostatic interaction was the main force affecting the adsorption of Cr(VI) by UiO-66. UiO-66@Corn+ had an excellent removal efficiency of Cr(VI) and excellent reusability. UiO-66@Corn+ could effectively remove Cr(VI) from water and have a promising application.
Collapse
|
206
|
Taraba B, Bulavová P. Second or pseudo-second-order model for adsorption kinetics? SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1998124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Boleslav Taraba
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petra Bulavová
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
207
|
Tipplook M, Sudare T, Shiiba H, Seki A, Teshima K. Single-Step Topochemical Synthesis of NiFe Layered Double Hydroxides for Superior Anion Removal from Aquatic Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51186-51197. [PMID: 34672191 DOI: 10.1021/acsami.1c13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Layered double hydroxides (LDHs) have attracted significant attention as adsorbents for the removal of anions from wastewater. However, it is challenging to develop a simple, economical, and environmentally friendly method for fabricating efficient LDH adsorbents. In this paper, we present an alternative approach for preparing a superb NiFe LDH adsorbent via a single-step topochemical synthesis method based on density functional theory (DFT) calculation. The NiFe LDH adsorbent [Ni0.75Fe0.25(OH)2]·(CO3)0.125·0.25H2O was obtained via the topotactic transformation of an oxide precursor (NaNi0.75Fe0.25O2), which was prepared by utilizing the high-temperature flux method, in ultrapure water. When the oxide precursor was soaked in ultrapure water, the host layer valence state changed from Ni3+ and Fe3+ to Ni2+ and Fe3+, and carbonate (CO32-) ions were simultaneously intercalated in the interlayer. Thereafter, the CO32- ions were deintercalated by Cl- ions to increase the adsorption capacity. The adsorbent exhibited high crystallinity, cation state, and porosity, and unique particle shape. In addition, it showed superior adsorption capacities of approximately 194.92, 176.15, and 146.28 mg g-1 toward phosphate, fluoride, and nitrate ions, respectively. The adsorption capacity toward all the anions reached over 70% within 10 min. The adsorption behavior was investigated by performing from adsorption kinetics, isotherm, and thermodynamics studies. The results showed that the anions were endothermically and spontaneously chemisorbed through an ion exchange process onto the adsorbent in a monolayer. In addition, the as-prepared NiFe LDH adsorbent showed high stability after multicycle testing.
Collapse
Affiliation(s)
- Mongkol Tipplook
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Tomohito Sudare
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Hiromasa Shiiba
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Arisa Seki
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Katsuya Teshima
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, Nagano 380-8553, Japan
- Research Center for Space Colony, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
208
|
Gonçalves Júnior DR, Araújo PCC, Simões ALG, Voll FAP, Parizi MPS, Oliveira LH, Ferreira‐Pinto L, Cardozo‐Filho L, Jesus Santos E. Assessment of the adsorption capacity of phenol on magnetic activated carbon. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Leonardo Hadlich Oliveira
- Department of Chemical Engineering (DEQ), Laboratory of Adsorption and Ion Exchange (LATI) State University of Maringá (UEM) Maringá Brazil
| | | | - Lucio Cardozo‐Filho
- Department of Chemical Engineering (DEQ) State University of Maringá (UEM) Maringá Brazil
| | - Edilson Jesus Santos
- Department of Chemical Engineering (DEQ) Federal University of Sergipe (UFS) São Cristóvão Brazil
| |
Collapse
|
209
|
Zamani L, Sadjadi S, Ashouri F, Jahangiri-Rad M. Carbamazepine removal from aqueous solution by synthesized reduced graphene oxide-nano zero valent iron (Fe 0-rGO) composite: theory, process optimization, and coexisting drugs effects. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2557-2577. [PMID: 34810331 DOI: 10.2166/wst.2021.457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthesized Fe0-rGO nanocomposite with ratio of 1/1 (w/w) was prepared and has been used as adsorbent for the removal of Carbamazepine (CBZ) from aqueous solution. The adsorbent was characterized by various techniques such as Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FE-SEM) analyses. Linear experiments were performed to compare the best fitting isotherms and kinetics. The Freundlich isotherm (R2>0.90) and pseudo second order kinetic (R2>0.99) fitted well the experimental data. On the basis of the Langmuir isotherm, the maximum adsorption capacity of Fe0-rGO for CBZ was up to 50 mg g-1 at 30 °C. The pH, adsorbent dose, and initial concentration of CBZ were observed to be the leading parameters that affected the removal of CBZ considering the analysis of variance (ANOVA; p<0.05). The optimum process value of variables obtained by numerical optimization corresponds to pH 3.07, an adsorbent dose of 36.2 mg, an initial CBZ concentration of 5 mg L-1 and at 30.15 °C. The results of optimum conditions reveal that a maximum of 94% removal efficiency can be achieved; whereas, this phenomenon was independent of temperature (p-value>0.05). Moreover, Fe0-rGO can be used to remove diclofenac (DIC) and cetirizine (CTZ) simultaneously. To sum up, the Fe0-rGO is a promising adsorbent not only for the efficient removal of CBZ but also for the reduction of coexisting drugs in aqueous solution.
Collapse
Affiliation(s)
- Leila Zamani
- Department of Environmental Health Engineering, Faculty of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sodeh Sadjadi
- Material and Nuclear Fuel School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Jahangiri-Rad
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran E-mail:
| |
Collapse
|
210
|
Siakavelas GI, Georgiadis AG, Charisiou ND, Yentekakis IV, Goula MA. Cost‐Effective Adsorption of Oxidative Coupling‐Derived Ethylene Using a Molecular Sieve. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Georgios I. Siakavelas
- University of Western Macedonia Department of Chemical Engineering Koila 50100 Kozani Greece
| | - Amvrosios G. Georgiadis
- University of Western Macedonia Department of Chemical Engineering Koila 50100 Kozani Greece
| | - Nikolaos D. Charisiou
- University of Western Macedonia Department of Chemical Engineering Koila 50100 Kozani Greece
| | - Ioannis V. Yentekakis
- Technical University of Crete School of Environmental Engineering 73100 Chania Greece
| | - Maria A. Goula
- University of Western Macedonia Department of Chemical Engineering Koila 50100 Kozani Greece
| |
Collapse
|
211
|
Electron-Scale Insights into the Single and Coadsorption Cd(II) Behaviors of a Metal-Nonmetal-Modified Titanium Dioxide. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/4556493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metal (Fe) and nonmetal (P) were used to modify TiO2, and then, several functional groups such as P-O, P=O, Fe-O, and -OH were introduced on its surface to enhance the adsorption capacity for Cd(II), which could reach 121 mg/g. According to the experimental analysis of adsorption performance, chemical adsorption dominates the adsorption process, and the adsorption capacity increases with increasing temperature within a certain range. The results of competitive adsorption experiments showed that both Pb(II) and Cu(II) affect the adsorption of Cd(II) and that the adsorption order of P-Fe-TiO2 for heavy metal ions is
. We further investigated the adsorption mechanism of P-Fe-TiO2 for Cd(II) and the reasons for the difference in competitive adsorption and used DFT calculations to confirm the experimental results. In the analysis of binding energy and frontier molecular orbitals (FMOs), we confirmed that charge transfer occurred during the adsorption process, so chemical reactions occurred. The binding energy of P-Fe-TiO2 and Pb(II) is the largest. The results of the competitive adsorption experiment also confirmed that the adsorbent has the greatest effect on Pb. Mulliken analysis was used to identify the best binding site on the adsorbent. The results of electrostatic potential, total potential, and differential charge analysis further prove the conclusions described above.
Collapse
|
212
|
Siri C, Liu Y, Masset T, Dudefoi W, Oldham D, Minghetti M, Grandjean D, Breider F. Adsorption of progesterone onto microplastics and its desorption in simulated gastric and intestinal fluids. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1566-1577. [PMID: 34581385 DOI: 10.1039/d1em00226k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sorption of hydrophobic organic compounds (HOC) onto microplastics is relatively well reported in the literature, while their desorption remains poorly investigated, especially in biological fluids. The present study investigated the sorption and desorption of progesterone on polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics. The sorption experiments showed that the equilibrium was reached in a few hours for all plastics. A sorption efficiency of 357.1 μg g-1 was found for PE and PS, and 322.6 μg g-1 for PP. Sorption experiments indicated that adsorption would certainly happen via surface sorption and a potentially pore-filling mechanism. The desorption was carried out in Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF), whose formulations were more complex than similar models reported so far. It has been found that the desorption was higher in SIF as compared to SGF, due to micelle formation in SIF promoting the pollutant solubilization. The sorption of pepsin onto microplastics has also been revealed, suggesting a competition between pollutants and pepsin for sorption sites and a potent reduction in pollutant solubilization. This study indicates that the ingestion of microplastics could be considered as an additional route of exposure to pollutants and therefore emphasizes pollutant bioavailability for aquatic organisms.
Collapse
Affiliation(s)
- Cécilia Siri
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland.
| | - Yang Liu
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland.
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Thibault Masset
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland.
| | - William Dudefoi
- Department Environmental Toxicology, EAWAG - Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, Oklahoma 74078, USA
| | - Dean Oldham
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, Oklahoma 74078, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, Oklahoma 74078, USA
| | - Dominique Grandjean
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
213
|
Nguyen DTC, Le HTN, Nguyen TT, Nguyen TTT, Bach LG, Nguyen TD, Tran TV. Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126586. [PMID: 34265649 DOI: 10.1016/j.jhazmat.2021.126586] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 05/21/2023]
Abstract
The potential of green nanomaterials for environmental and agricultural fields is emerging due to their biocompatible, eco-friendly, and cost-effective performance. We report the use of Canna indica flowers extract as new capping and stabilizing source to bio-fabricate ZnO nanoparticles (ZnO NPs for dyes removal, seed germination. ZnO NPs was biosynthesized by ultrasound-assisted alkaline-free route to reach the critical green strategy. The physicochemical findings of ZnO revealed small crystallite size (27.82 nm), sufficient band-gap energy (3.08 eV), and diverse functional groups. Minimum‑run resolution IV approach found the most pivotal factors influencing on removal of Coomassie Brilliant Blue G-250. Uptake studies pointed out that pseudo second-order, and Langmuir were the best fitted models. Dye molecules behaved monolayer adsorption on ZnO surface layers, and controlled by chemisorption. Natural solar light was used as effective source for photocatalytic degradation of methylene blue (94.23% of removal and 31.09 mg/g of uptake capacity). Compared with H2O and ZnSO4, ZnO NPs positively affected the growth of shoot and root lengths (10.2-27.8%) of bean seedlings in most cases. ZnO acts an agrochemical for boosting weight gain, and germination ratio. This study may be promising for developing the recyclable, multifunctional ZnO nanoparticles for environmental and agricultural applications.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Hanh T N Le
- Institute of Hygiene and Public Health, 159 Hung Phu, Ward 8, District 8, Ho Chi Minh City 700000, Viet Nam
| | - Thuong Thi Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thi Thanh Thuy Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Long Giang Bach
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Trinh Duy Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuan Van Tran
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
214
|
Lucaci AR, Bulgariu D, Bulgariu L. In Situ Functionalization of Iron Oxide Particles with Alginate: A Promising Biosorbent for Retention of Metal Ions. Polymers (Basel) 2021; 13:polym13203554. [PMID: 34685313 PMCID: PMC8538246 DOI: 10.3390/polym13203554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
In this study, alginate extracted from marine algae biomass was used for the functionalization of iron oxide particles obtained in situ. This procedure ensured a complete recovery of the alginate from the aqueous solution obtained after extraction and allowed the preparation of a new biosorbent. The obtained iron oxide microparticles functionalized with alginate (Alg-Fe3O4-MPs) were analyzed (FTIR spectrometry, energy dispersive X-ray spectroscopy and scanning electron microscopy), and their biosorptive performance was tested for the removal of Cu(II), Co(II) and Zn(II) ions. The optimal conditions were established as pH = 5.4, adsorbent dosage of 2 g/L, contact time of minimum 60 min and room temperature (23 ± 1 °C). The retention of metal ions was quantitative (99% for Cu(II), 89% for Co(II) and 95% for Zn(II)) when the concentration of metal ions was less than 0.80 mmol M(II)/L. The Langmuir model was found to be the best fitted model for the equilibrium data, while biosorption kinetics followed the pseudo-second order model. Biosorption processes were spontaneous (ΔG0 < 0), endothermic (ΔH0 > 0), and accompanied by an increase in entropy (ΔS0 > 0). The high maximum biosorption capacity of Alg-Fe3O4-MPs and its good regeneration highlight the potential of this biosorbent for applications in decontamination processes.
Collapse
Affiliation(s)
- Alina-Roxana Lucaci
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, Technical University Gheorghe Asachi of Iasi, 700050 Iasi, Romania;
| | - Dumitru Bulgariu
- Department of Geology and Geochemistry, Faculty of Geography and Geology, “Al. I. Cuza” University of Iasi, 700506 Iasi, Romania;
- Collective of Geography, Filial of Iasi, Romanian Academy, 700506 Iasi, Romania
| | - Laura Bulgariu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, Technical University Gheorghe Asachi of Iasi, 700050 Iasi, Romania;
- Correspondence:
| |
Collapse
|
215
|
Zanella HG, Spessato L, Lopes GK, Yokoyama JT, Silva MC, Souza PS, Ronix A, Cazetta AL, Almeida VC. Caffeine adsorption on activated biochar derived from macrophytes (Eichornia crassipes). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
216
|
Adsorption of As(III) from aqueous solutions using MnO2 strengthened WTRs-chitosan beads made by homogenous method with freeze-drying. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
217
|
Isiuku BO, Okonkwo PC, Emeagwara CD. Batch adsorption isotherm models applied in single and multicomponent adsorption systems – a review. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1964988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Paul C. Okonkwo
- Mechanical and Mechatronics Engineering, Dhofar University, Salalah, Oman
| | | |
Collapse
|
218
|
Al-Zawahreh K, Barral MT, Al-Degs Y, Paradelo R. Comparison of the sorption capacity of basic, acid, direct and reactive dyes by compost in batch conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113005. [PMID: 34130138 DOI: 10.1016/j.jenvman.2021.113005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Research on biosorption of organic dyes is an important subject for the development of clean technologies for the treatment of textile wastewater. In this work, the process of sorption of four textile dyes of different natures, namely Basic Violet 10 (BV10), Acid Red 27 (AR27), Direct Blue 151 (DB151) and Reactive Violet 4 (RV4) onto two composts, pine bark compost and municipal solid waste compost, has been studied. For this, sorption kinetics and equilibrium sorption at different solution pH values (3.0-7.0) and salinity (0-1.0 M KCl) conditions have been assessed in batch experiments. Sorption rates were relatively slow for BV10, reaching equilibrium only after 24 h, and faster for the rest: around 5-6 h for RV4 and AR27 and 2 h for DB151. Kinetics of dye sorption followed a pseudo-first order model, except that of DB151, which was better described by a pseudo-second order model. The sequence of adsorption capacity for both composts was as follows: BV10 > DB151 > RV4 > AR27. In general, dye sorption at the equilibrium was adequately described by the Langmuir model, what allows to estimate maximum retention capacities for each dye by the composts. At the best removal conditions, pine bark compost presented maximum sorption capacities of 204 mg g-1 for BV10, 54 mg g-1 for DB151, 23 mg g-1 for RV4, and 4.1 mg g-1 for AR27, whereas municipal solid waste compost showed maximum sorption of 74 mg g-1 for DB151, 38 mg g-1 for RV4, 36 mg g-1 for BV10, and 1.6 mg g-1 for AR27. Sorption increased at acid pH in all cases, likely because of modification of charges of the dyes and higher electrostatic attraction, whereas increasing salinity also had a positive effect on sorption, attributed to a solute-aggregation mechanism in solution. In conclusion, organic waste-derived products, like composts, can be applied in the removal of colorants from wastewater, although they would be more effective for the removal of basic cationic dyes than other types, due to electrostatic interaction with mostly negatively-charged composts.
Collapse
Affiliation(s)
- Khaled Al-Zawahreh
- Department of Earth Sciences and Environment, Prince El-Hassan Bin Talal Faculty of Natural Resources and Environment, The Hashemite University, Zarqa, 13133, Jordan
| | - María Teresa Barral
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Yahya Al-Degs
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, 13133, Jordan
| | - Remigio Paradelo
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
219
|
Maleki F, Gholami M, Torkaman R, Torab-Mostaedi M, Asadollahzadeh M. Multivariate optimization of removing of cobalt(II) with an efficient aminated-GMA polypropylene adsorbent by induced-grafted polymerization under simultaneous gamma-ray irradiation. Sci Rep 2021; 11:18317. [PMID: 34526607 PMCID: PMC8443739 DOI: 10.1038/s41598-021-97826-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Nowadays, radiation grafting polymer adsorbents have been widely developed due to their advantages, such as low operating cost, high efficiency. In this research, glycidyl methacrylate monomers were grafted on polypropylene polymer fibers by simultaneous irradiation of gamma-ray with a dose of 20 kGy. The grafted polymer was then modified using different amino groups and tested for adsorption of cobalt ions in an aqueous solution. Finally, the modified polymer adsorbent with a high efficiency for cobalt ions adsorption was synthesized and tested. Different modes of cobalt ions adsorption were tested in other adsorption conditions, including adsorption contact time, pH, different amounts of adsorbent mass, and different concentrations of cobalt ions solution. The adsorbent structure was characterized with FT-IR, XRD, TG and SEM techniques and illustrated having an efficient grafting percentage and adsorption capability for cobalt removing by batch experiments. The optimum conditions were obtained by a central composite design: adsorbent mass = 0.07 g, initial concentration = 40 mg/L, time = 182 min, and pH = 4.5 with ethylenediamine as a modified monomer and high amination percentage. Kinetics and equilibrium isotherms observation described that the experimental data followed pseudo-second-order and Langmuir models, respectively. The maximum adsorption capacity from Langmuir isotherm capacity is obtained equal to 68.02 mg/g.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Nuclear Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Mobina Gholami
- Nuclear Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Rezvan Torkaman
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran
| | - Meisam Torab-Mostaedi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran
| | - Mehdi Asadollahzadeh
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| |
Collapse
|
220
|
Jamaluddin NA, Mohamed A, Bakar SA, Ardyani T, Sagisaka M, Saito H, Mamat MH, Ahmad MK, Abdul Khalil HPS, King SM, Rogers SE, Eastoe J. Fabrication and application of composite adsorbents made by one-pot electrochemical exfoliation of graphite in surfactant ionic liquid/nanocellulose mixtures. Phys Chem Chem Phys 2021; 23:19313-19328. [PMID: 34524298 DOI: 10.1039/d1cp02206g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously, surfactant-assisted exfoliated graphene oxide (sEGO) formed with the triple-chain surfactant TC14 (sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate) was applied in wastewater treatment. The extent of dye-removal and the adsorption capacity of the sEGO formed with this triple-chain surfactant outperformed those of two other systems, namely, the di-chain version of TC14 (AOT14; sodium 1,2-bis-(2,2-dimethyl-propoxycarbonyl)-ethanesulfonate) and the single-chain surfactant sodium n-dodecylsulfate. In the present study, to further optimise the surfactant chemical structure, the sodium ion of TC14 was substituted with 1-butyl-3-methyl-imidazolium (BMIM) generating surfactant ionic liquids (SAILs; 1-butyl-3-imidazolium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate), hereafter denoted as BMIM-TC14. This SAIL, together with nanofibrillated kenaf cellulose (NFC), was used to electrochemically exfoliate graphite, yielding BMIM-TC14 sEGO/NFC composites. These highly hydrophobic polymer composites were then used for the removal of methylene blue (MB) from aqueous solution. 1H NMR spectroscopy was used to elucidate the structure of the synthesised SAILs. The morphologies of the resulting nanocomposites were investigated using Raman spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. Analysis using small-angle neutron scattering was performed to examine the aggregation behaviour of sEGO and custom-made SAILs. Zeta potential, surface tension, and dynamic light-scattering measurements were used to study the aqueous properties and colloidal stability of the suspension. Amongst the surfactants tested, BMIM-TC14 sEGO/NFC exhibited the highest MB adsorption ability, achieving 99% dye removal under optimum conditions. These results highlight the importance of modifying the hydrophilic moieties of amphiphilic compounds to improve the performance of sEGO/NFC composites as effective adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Nur Amirah Jamaluddin
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| | - Azmi Mohamed
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia. .,Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Tretya Ardyani
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| | - Masanobu Sagisaka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Haruka Saito
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Mohamad Hafiz Mamat
- NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronic and Nanotechnology - Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - H P S Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, 11700, Gelugor, Penang, Malaysia
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QT, UK
| | - Sarah E Rogers
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QT, UK
| | - Julian Eastoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
221
|
Singh R, Munya V, Are VN, Nayak D, Chattopadhyay S. A Biocompatible, pH-Sensitive, and Magnetically Separable Superparamagnetic Hydrogel Nanocomposite as an Efficient Platform for the Removal of Cationic Dyes in Wastewater Treatment. ACS OMEGA 2021; 6:23139-23154. [PMID: 34549115 PMCID: PMC8444210 DOI: 10.1021/acsomega.1c02720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
A series of environment-friendly cationic dye adsorbents, namely, pH-sensitive superparamagnetic hydrogel nanocomposite AA-VSA-P/SPIONs systems with different concentrations of superparamagnetic iron oxide nanoparticles (SPIONs; 1.2, 3.2, and 5.2 wt %), was synthesized by free-radical polymerization reaction using two pH-sensitive monomers, acrylic acid (AA) and vinylsulfonic acid (VSA), in an optimum ratio, in the presence of presynthesized SPIONs. The structural properties, thermal stability, and chemical configuration of AA-VSA-P/SPIONs systems with different weight percentages of SPIONs were characterized by XRD, TGA, Raman spectroscopy, and FTIR spectroscopy. The systems show substantial efficiency as dye adsorbents for removing cationic dyes (MB dye) from aqueous solution in neutral to alkaline medium. Further, these systems exhibit easy magnetic separation capabilities from aqueous solutions after dye adsorption, even for a very low weight percentage of SPIONs. The adsorption kinetics, mechanism, and isotherms of these systems were evaluated. The study suggests consistency with the pseudo-second-order kinetic model, following an intraparticle diffusion mechanism, where the heterogeneous surface of the system having different activation energies for adsorption plays the crucial role in dye adsorption via chemisorption for higher pH medium, which was further substantiated by excellent data fit with the Freundlich isotherm model. Biocompatibility and regeneration-ability studies establish the environment-friendliness and cost effectivity of the system.
Collapse
Affiliation(s)
- Rinki Singh
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vikas Munya
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
| | - Venkata Narayana Are
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Debasis Nayak
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sudeshna Chattopadhyay
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
- Department
of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
222
|
Rápó E, Tonk S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 2021; 26:5419. [PMID: 34500848 PMCID: PMC8433845 DOI: 10.3390/molecules26175419] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/07/2022] Open
Abstract
The primary, most obvious parameter indicating water quality is the color of the water. Not only can it be aesthetically disturbing, but it can also be an indicator of contamination. Clean, high-quality water is a valuable, essential asset. Of the available technologies for removing dyes, adsorption is the most used method due to its ease of use, cost-effectiveness, and high efficiency. The adsorption process is influenced by several parameters, which are the basis of all laboratories researching the optimum conditions. The main objective of this review is to provide up-to-date information on the most studied influencing factors. The effects of initial dye concentration, pH, adsorbent dosage, particle size and temperature are illustrated through examples from the last five years (2017-2021) of research. Moreover, general trends are drawn based on these findings. The removal time ranged from 5 min to 36 h (E = 100% was achieved within 5-60 min). In addition, nearly 80% efficiency can be achieved with just 0.05 g of adsorbent. It is important to reduce adsorbent particle size (with Φ decrease E = 8-99%). Among the dyes analyzed in this paper, Methylene Blue, Congo Red, Malachite Green, Crystal Violet were the most frequently studied. Our conclusions are based on previously published literature.
Collapse
Affiliation(s)
- Eszter Rápó
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
- Department of Genetics, Microbiology and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly No. 1, H-2100 Gödöllő, Hungary
| | - Szende Tonk
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
| |
Collapse
|
223
|
Kumar A, Bhattacharya T, Shaikh WA, Roy A, Mukherjee S, Kumar M. Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management. ENVIRONMENTAL RESEARCH 2021; 200:111758. [PMID: 34303680 DOI: 10.1016/j.envres.2021.111758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Biochar was produced from wheat straw (Triticum aestivum), rice straw (Oryza sativa), and kitchen waste at varying pyrolysis temperatures (300°C-700 °C). The biochars were screened depending on their production and physicochemical properties for the adsorptive removal of arsenic (As). The morphological analysis by Field emission scanning electron microscope revealed a porous biochar surface. Spectroscopic characterization of biochars indicated the co-existence of minerals, carboxyl, carbonyl, amide, and hydroxyl groups, which implies the suitability of biochar to immobilize metal (loid)s from soils. Changes in peaks were observed in Fourier-transform infrared and X-ray diffraction images after As sorption indicating the involvement of chemisorption. The thermogravimetric analysis and a low H/C value derived from the CHNS analyzer confirmed the high stability of biochar. The BET analysis was used to estimate the surface areas of wheat straw (15.8 m2 g-1), rice straw (12.5 m2 g-1), and kitchen waste (2.57 m2 g-1) -derived biochars. Batch sorption studies were performed to optimize experimental parameters for maximum removal of As. Maximum removal of As was observed for wheat straw-derived biochar (pyrolyzed at 500 °C) at 8 mg L-1 initial concentration (IC), 7.5 % dose, 25 °C temperature, and 60 min contact time (83.7 ± 0.06 %); in rice straw-derived biochar (pyrolyzed at 500 °C) at 8 mg L-1 IC, 7.5 % dose, 25 °C temperature, 90 min contact time (83.6 ± 0.37 %); and in kitchen waste-derived biochar (pyrolyzed at 500 °C) at 8 mg L-1 IC, 5 % dose, 25 °C temperature, 60 min contact time (76.7 ± 0.16 %). The sorption model parameters suggested the possibility of chemisorption, physisorption, diffusion, and ion exchange for the removal of As. Therefore, it could be recommended to farmers that instead of disposing or burning straws and waste openly, they could adopt the process of charring to generate livelihood security and mitigation of geogenic contaminants from the soil/water dynamic systems.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Tanushree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Wasim Akram Shaikh
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Arpita Roy
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology, Gandhinagar, 382355, India
| |
Collapse
|
224
|
Cellulose and its cationic derivative obtained from soybean hull as a tool for the remediation of textile dyes in wastewater: Physicochemical characterization and molecular mechanism interaction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
225
|
Neolaka YA, Lawa Y, Naat J, Riwu AA, Lindu YE, Darmokoesoemo H, Widyaningrum BA, Iqbal M, Kusuma HS. Evaluation of magnetic material IIP@GO-Fe3O4 based on Kesambi wood (Schleichera oleosa) as a potential adsorbent for the removal of Cr(VI) from aqueous solutions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105000] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
226
|
van Veenhuyzen B, Tichapondwa S, Hörstmann C, Chirwa E, Brink HG. High capacity Pb(II) adsorption characteristics onto raw- and chemically activated waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125943. [PMID: 34492870 DOI: 10.1016/j.jhazmat.2021.125943] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
The Pb(II) adsorption characteristics of chemically activated waste activated sewage sludge (WAS) were compared to raw WAS. Adsorption kinetics and equilibrium isotherm parameters were fit using classic adsorption models. HCl and H2SO4 activation terminated any significant sludge-based adsorption. Raw and ZnCl2 activated WAS displayed Langmuir adsorption capacities of 307 mg/g and 274 mg/g, respectively. Surface characterization revealed that chemical activation with ZnCl2 increased the BET surface area for raw WAS from 0.97 m2/g to 1.78 m2/g, but did not significantly change the surface structure. FTIR analyzes and XPS were used to further investigate the nature of lead binding. The relationships between equilibrium ion concentration and Pb(II) adsorption suggest cationic exchange with hydrogen, calcium, and zinc as a significant mechanism of Pb(II) removal alongside electrostatic attraction. The pHPZC was determined as 2.58 and 2.30 for ZnCl2 activated WAS and raw WAS respectively. HNO3 and Ca(NO3)2 demonstrated sufficient elution properties for WAS recovery. For authentic industrial effluent both raw and ZnCl2 activated WAS displayed Pb(II) removal behavior comparable to simulated Pb(II) solutions. In comparison with modified and unmodified sludges from literature, this study demonstrates the auspicious potential of raw WAS as an effective Pb(II) adsorbent independent of pyrolytic or chemical activation.
Collapse
Affiliation(s)
- B van Veenhuyzen
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - S Tichapondwa
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - C Hörstmann
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - E Chirwa
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - H G Brink
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
227
|
Machado DB, Skoronski E, Soares C, Padoin N. Immobilisation of phosphonium-based ionic liquid in polysulfone capsules for the removal of phenolic compounds, with an emphasis on 2,4-dichlorophenol, in aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112670. [PMID: 33962283 DOI: 10.1016/j.jenvman.2021.112670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Phosphonium-based ionic liquid immobilised in polysulfone capsules were prepared by the phase inversion technique for the adsorption of different phenolic compounds from aqueous solution. Some techniques, including Scanning Electron Microscopy (SEM), surface analysis by Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FT-IR) and Thermogravimetric Analysis (TGA), were used to characterize the capsule and indicated that trihexyltetradecylphosphonium decanoate (ionic liquid) was successfully immobilised in polysulfone, the immobilisation was determined to be 63.29%. Adsorption tests showed that the developed capsules have the potential to remove varied phenolic compounds. For compounds 2,4-dichlorophenol (2,4-DCP) the best removal was achieved between pH 3.0 and 9.0. Temperature variation (25-70 °C) and sodium chloride concentration (0-1000 mg⋅L-1) had no significant changes in adsorption, demonstrating the scope for using this adsorbent with real effluents. Adsorption kinetics demonstrated the mechanism occurs in second order, the Weber-Morris model delimited the intraparticle diffusion as the adsorption limiter. The Redlich-Peterson model was the isothermal analysis that best suited the experimental data, with a β value equal to 0.821 approaching the Langmuir model, which obtained a qmax of 404.50 mg⋅g-1. Consequently, these results demonstrate that these capsules have potential application in the treatment of environmental pollution caused by phenolic compounds.
Collapse
Affiliation(s)
- Diego Bittencourt Machado
- Federal University of Santa Catarina, Department of Chemical and Food Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil.
| | - Everton Skoronski
- Santa Catarina State University, Department of Environmental and Sanitary Engineering, 2090 Luis de Camões Avenue, 88520-000, Lages, Santa Catarina, Brazil
| | - Cíntia Soares
- Federal University of Santa Catarina, Department of Chemical and Food Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil.
| | - Natan Padoin
- Federal University of Santa Catarina, Department of Chemical and Food Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
228
|
Liu Z, Zhao G, Brewer M, Lv Q, Sudhölter EJR. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv Colloid Interface Sci 2021; 294:102467. [PMID: 34175528 DOI: 10.1016/j.cis.2021.102467] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 01/20/2023]
Abstract
With the increasing demand for efficient extraction of residual oil, enhanced oil recovery (EOR) offers prospects for producing more reservoirs' original oil in place. As one of the most promising methods, chemical EOR (cEOR) is the process of injecting chemicals (polymers, alkalis, and surfactants) into reservoirs. However, the main issue that influences the recovery efficiency in surfactant flooding of cEOR is surfactant losses through adsorption to the reservoir rocks. This review focuses on the key issue of surfactant adsorption in cEOR and addresses major concerns regarding surfactant adsorption processes. We first describe the adsorption behavior of surfactants with particular emphasis on adsorption mechanisms, isotherms, kinetics, thermodynamics, and adsorption structures. Factors that affect surfactant adsorption such as surfactant characteristics, solution chemistry, rock mineralogy, and temperature were discussed systematically. To minimize surfactant adsorption, the chemical additives of alkalis, polymers, nanoparticles, co-solvents, and ionic liquids are highlighted as well as implementing with salinity gradient and low salinity water flooding strategies. Finally, current trends and future challenges related to the harsh conditions in surfactant based EOR are outlined. It is expected to provide solid knowledge to understand surfactant adsorption involved in cEOR and contribute to improved flooding strategies with reduced surfactant loss.
Collapse
Affiliation(s)
- Zilong Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China; Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ge Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China
| | - Mark Brewer
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam (STCA), Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Qichao Lv
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China.
| | - Ernst J R Sudhölter
- Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
229
|
González-López ME, Laureano-Anzaldo CM, Pérez-Fonseca AA, Arellano M, Robledo-Ortíz JR. A Critical Overview of Adsorption Models Linearization: Methodological and Statistical Inconsistencies. SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2021.1951757] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Martín E. González-López
- Departamento de Ingeniería Química, CUCEI, Universidad de Guadalajara,Guadalajara, Jalisco, Mexico
| | | | - Aida A. Pérez-Fonseca
- Departamento de Ingeniería Química, CUCEI, Universidad de Guadalajara,Guadalajara, Jalisco, Mexico
| | - Martín Arellano
- Departamento de Ingeniería Química, CUCEI, Universidad de Guadalajara,Guadalajara, Jalisco, Mexico
| | - Jorge R. Robledo-Ortíz
- Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
230
|
Preparation of forcespun γ-irradiated chitin from shrimp shell wastes and its evaluation as uranyl ion adsorbent. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
231
|
Bhuvaneswari R, Nagarajan V, Chandiramouli R. Red tricycle phosphorene nanoribbon as a removing medium of sulfadiazine and sulfamethoxazole molecules based on first-principles studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116294] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
232
|
Hu Q, Pang S, Wang D, Yang Y, Liu H. Deeper Insights into the Bohart-Adams Model in a Fixed-Bed Column. J Phys Chem B 2021; 125:8494-8501. [PMID: 34296879 DOI: 10.1021/acs.jpcb.1c03378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Bohart-Adams model was one of the most widely used breakthrough models in column experiments. However, it usually provided a poor fit for the modeling of an asymmetric breakthrough curve. This work proposed the n-order Bohart-Adams and fractal-like Bohart-Adams models. The former indicated a nonlinear decay process of the concentration of the adsorbate or residual capacity of the adsorbent, while the latter reflected a diffusion-limited process on the heterogeneous surfaces. The Bohart-Adams and modified Bohart-Adams models were mathematically equivalent. The applicability of the n-order Bohart-Adams and fractal-like Bohart-Adams models was validated by norfloxacin and Cu(II) adsorption in a fixed-bed column. Compared with the Bohart-Adams model, the two new models had better fitting performance with higher R2 and lower χ2 values, and all of the residuals were randomly distributed. The fractal-like Bohart-Adams and modified dose-response models provided the best fitting quality for the adsorption of Cu(II) (R2 = 0.9956 and χ2 = 7.56 × 10-4) and norfloxacin (R2 = 0.9991 and χ2 = 1.37 × 10-4), respectively. This work may provide a practical method for the modeling of the asymmetric breakthrough curves.
Collapse
Affiliation(s)
- Qili Hu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Shuyue Pang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Dan Wang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yuhang Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Hengyuan Liu
- College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| |
Collapse
|
233
|
|
234
|
Maia LC, Soares LC, Alves Gurgel LV. A review on the use of lignocellulosic materials for arsenic adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112397. [PMID: 33823440 DOI: 10.1016/j.jenvman.2021.112397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
In this review, bibliometric analysis was made of recent studies and current trends concerning the application of lignocellulosic materials as bioadsorbents for the removal of arsenic from aqueous systems. Evaluation was made of lignocellulosic adsorbents and their chemical characteristics, as well as interactions involved in the adsorption of arsenic, bioadsorbent reusage (desorption and re-adsorption), competition between co-existing ions in multi-element aqueous solutions, and applications of bioadsorbents in batch and continuous systems. Lignocellulosic biomass has been shown to be a promising source of new adsorbents, since it is a low-cost and renewable material. However, there seems to be no commercially available technology that uses bioadsorbents based on lignocellulosic biomass for arsenic removal. In addition, the structural modification of lignocellulosic biomass to improve its adsorption capacity and selectivity has proved to be a suitable strategy, with the service time and the selectivity of the bioadsorbent in the presence of co-existing ions the most critical aspects to be pursued. The competitive adsorption of co-existing anions (PO43-, SO42-, NO3-, and Cl-) by the adsorption sites, as well as life-cycle assessment and cost analysis are rarely reported. Complexation, electrostatic attraction, ion exchange and precipitation were the main interactions involved in the adsorption of arsenic on lignocellulosic materials. However, most studies have failed to prove the nature of the interactions. Macroscopic methods can be useful to evaluate the adsorption mechanism of arsenic on bioadsorbents of complex structure, such as lignocellulosic biomass (modified or not). Nevertheless, the elucidation of the adsorption mechanism requires experiments based on measurements at the microscopic level. The upscaling of biosorption technology for arsenic removal will only be possible through studies that investigate: i) the interactions involved in the adsorption process; ii) the transfer of bench-scale experiments to pilot-scale experiments with real contaminated water with low arsenic concentration; and iii) the life-cycle assessment of biosorbents produced from lignocellulosic biomass.
Collapse
Affiliation(s)
- Luisa Cardoso Maia
- Group of Physical Organic Chemistry (GPOC), Department of Chemistry, Institute of Biological and Exact Sciences (ICEB), Federal University of Ouro Preto, Campus Morro do Cruzeiro s/n°, Bauxita, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Liliane Catone Soares
- Group of Physical Organic Chemistry (GPOC), Department of Chemistry, Institute of Biological and Exact Sciences (ICEB), Federal University of Ouro Preto, Campus Morro do Cruzeiro s/n°, Bauxita, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Leandro Vinícius Alves Gurgel
- Group of Physical Organic Chemistry (GPOC), Department of Chemistry, Institute of Biological and Exact Sciences (ICEB), Federal University of Ouro Preto, Campus Morro do Cruzeiro s/n°, Bauxita, Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
235
|
Pawlaczyk M, Schroeder G. Deferoxamine-Modified Hybrid Materials for Direct Chelation of Fe(III) Ions from Aqueous Solutions and Indication of the Competitiveness of In Vitro Complexing toward a Biological System. ACS OMEGA 2021; 6:15168-15181. [PMID: 34151096 PMCID: PMC8210399 DOI: 10.1021/acsomega.1c01411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Deferoxamine (DFO) is one of the most potent iron ion complexing agent belonging to a class of trihydroxamic acids. The extremely high stability constant of the DFO-Fe complex (log β = 30.6) prompts the use of deferoxamine as a targeted receptor for scavenging Fe(III) ions. The following study aimed at deferoxamine immobilization on three different supports: poly(methyl vinyl ether-alt-maleic anhydride), silica particles, and magnetite nanoparticles, leading to a class of hybrid materials exhibiting effectiveness in ferric ion adsorption. The formed deferoxamine-loaded hybrid materials were characterized with several analytical techniques. Their adsorptive properties toward Fe(III) ions in aqueous samples, including pH-dependence, isothermal, kinetic, and thermodynamic experiments, were investigated. The materials were described with high values of maximal adsorption capacity q m, which varied between 87.41 and 140.65 mg g-1, indicating the high adsorptive potential of the DFO-functionalized materials. The adsorption processes were also described as intense, endothermic, and spontaneous. Moreover, an exemplary magnetically active deferoxamine-modified material has been proven for competitive in vitro binding of ferric ions from the biological complex protoporphyrin IX-Fe(III), which may lead to a further examination of the materials' biological or medical applicability.
Collapse
|
236
|
Dias D, Don D, Jandosov J, Bernardo M, Pinto F, Fonseca I, Sanches A, Caetano PS, Lyubchyk S, Lapa N. Highly efficient porous carbons for the removal of W(VI) oxyanion from wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125201. [PMID: 33524731 DOI: 10.1016/j.jhazmat.2021.125201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Pyrolysis chars derived from rice wastes were chemically activated and used in W(VI) oxyanion adsorption assays in synthetic and mining wastewaters. For comparison purposes, a commercial activated carbon (CAC) was also used. Different experimental conditions were tested in the adsorption assays: solid/liquid ratio (S/L), initial pH, contact time, and initial W concentration. The porous carbon P2C+KOH presented the overall best performance in both media, due to its high surface area (2610 m2 g-1), mesopore volume (1.14 cm3 g-1), and neutral pHpzc (6.92). In the synthetic wastewater, the highest uptake capacity of P2C+KOH (854 mg g-1) was found in the assays with an S/L 0.1 g L-1, an initial pH 2, and an initial W concentration of 150 mg L-1, for 24 h. This value was almost 8 times higher than the one obtained for CAC (113 mg g-1). In the mining wastewater, P2C+KOH showed an even higher uptake capacity (1561 mg g-1) in the assay with the same experimental conditions, which was almost 3 times higher than for CAC (561 mg g-1). These results suggest that P2C+KOH seems to be an efficient alternative to CAC in the W(VI) adsorption from liquid effluents.
Collapse
Affiliation(s)
- Diogo Dias
- LAQV/REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa (DCTB), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Davide Don
- DICEA, Dipartimento di Ingegneria Civile, Edile e Ambientale; Università di Padova, Padova, Italy
| | - Jakpar Jandosov
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tole bi Street, Almaty, Kazakhstan
| | - Maria Bernardo
- LAQV/REQUIMTE, Departamento de Química (DQ), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Filomena Pinto
- Unidade de Bioenergia (UB), Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar, Ed. J, 1649-038 Lisboa, Portugal
| | - Isabel Fonseca
- LAQV/REQUIMTE, Departamento de Química (DQ), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - André Sanches
- GeoBioTec, Polo FCTNOVA, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Paulo Sá Caetano
- GeoBioTec, Polo FCTNOVA, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Svitlana Lyubchyk
- LAQV/REQUIMTE, Departamento de Química (DQ), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Nuno Lapa
- LAQV/REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa (DCTB), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal.
| |
Collapse
|
237
|
Georgiadis A, Charisiou ND, Gaber S, Polychronopoulou K, Yentekakis IV, Goula MA. Adsorption of Hydrogen Sulfide at Low Temperatures Using an Industrial Molecular Sieve: An Experimental and Theoretical Study. ACS OMEGA 2021; 6:14774-14787. [PMID: 34151059 PMCID: PMC8209825 DOI: 10.1021/acsomega.0c06157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
In the work presented herein, a joint experimental and theoretical approach has been carried out to obtain an insight into the desulfurization performance of an industrial molecular sieve (IMS), resembling a zeolitic structure with a morphology of cubic crystallites and a high surface area of 590 m2 g-1, with a view to removing H2S from biogas. The impact of temperature, H2S inlet concentration, gas matrix, and regeneration cycles on the desulfurization performance of the IMS was thoroughly probed. The adsorption equilibrium, sorption kinetics, and thermodynamics were also examined. Experimental results showed that the relationship between H2S uptake and temperature increase was inversely proportional. Higher H2S initial concentrations led to lower breakpoints. The presence of CO2 negatively affected the desulfurization performance. The IMS was fully regenerated after 15 adsorption/desorption cycles. Theoretical studies revealed that the Langmuir isotherm better described the sorption behavior, pore diffusion was the controlling step of the process (Bangham model), and that the activation energy was 42.7 kJ mol-1 (physisorption). Finally, the thermodynamic studies confirmed that physisorption predominated.
Collapse
Affiliation(s)
- Amvrosios
G. Georgiadis
- Laboratory
of Alternative Fuels and Environmental Catalysis (LAFEC), Department
of Chemical Engineering, University of Western
Macedonia, GR-50100 Koila, Greece
| | - Nikolaos D. Charisiou
- Laboratory
of Alternative Fuels and Environmental Catalysis (LAFEC), Department
of Chemical Engineering, University of Western
Macedonia, GR-50100 Koila, Greece
| | - Safa Gaber
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE
| | - Kyriaki Polychronopoulou
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE
| | - Ioannis V. Yentekakis
- Laboratory
of Physical Chemistry & Chemical Processes, School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece
| | - Maria A. Goula
- Laboratory
of Alternative Fuels and Environmental Catalysis (LAFEC), Department
of Chemical Engineering, University of Western
Macedonia, GR-50100 Koila, Greece
| |
Collapse
|
238
|
Zeng H, Xu K, Wang F, Sun S, Li D, Zhang J. Preparation of adsorbent based on water treatment residuals and chitosan by homogeneous method with freeze-drying and its As(V) removal performance. Int J Biol Macromol 2021; 184:313-324. [PMID: 34118290 DOI: 10.1016/j.ijbiomac.2021.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
Although the chitosan-WTRs particulate adsorbent prepared by embedding method has been proved to have arsenic adsorption capacity, the capacity of it is greatly weakened compared with the original water treatment residuals (WTRs). In this study, WTRs and chitosan were used as raw materials to prepare a new kind of adsorbent beads by a homogeneous method. At the same time, in order to enhance the adsorption capacity and reduce the limitation of kinetics, freeze-drying method was chosen to dry the adsorbent. The WTRs-chitosan beads by homogeneous method (WCB) were characterized by SEM, XRD, XPS and other methods. According to the characterization results, there are regularly arranged pores inside the particles, and the iron in the particles mainly exists in the form of amorphous iron oxyhydroxide. According to the results of batch experiment, the pseudo-second-order kinetic model has a higher degree of fit, indicating that the WCB adsorbs As(V) mainly by chemical adsorption. The maximum adsorption capacity estimated from the Langmuir isotherm model is 42.083 mg/g, which is almost same as the WTRs. Weak acid and neutral conditions are conducive to adsorption, while alkaline conditions have a significant inhibitory effect on arsenic adsorption.
Collapse
Affiliation(s)
- Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ke Xu
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fanshuo Wang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Siqi Sun
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jie Zhang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
239
|
Cáceres-Jensen L, Rodríguez-Becerra J, Garrido C, Escudey M, Barrientos L, Parra-Rivero J, Domínguez-Vera V, Loch-Arellano B. Study of Sorption Kinetics and Sorption-Desorption Models to Assess the Transport Mechanisms of 2,4-Dichlorophenoxyacetic Acid on Volcanic Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6264. [PMID: 34207880 PMCID: PMC8296012 DOI: 10.3390/ijerph18126264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
The sorption behavior of 2,4-dichlorophenoxyacetic acid (2,4-D) in the abundant agricultural volcanic ash-derived soils (VADS) is not well understood despite being widely used throughout the world, causing effects to the environment and human health. The environmental behavior and risk assessment of groundwater pollution by pesticides can be evaluated through kinetic models. This study evaluated the sorption kinetics and 2,4-D sorption-desorption in ten VADS through batch sorption experiments. Differences in the sorption extent for the fast and slow phases was observed through the IPD model where 2,4-D sorption kinetics was controlled by external mass transfer and intra organic matter diffusion in Andisols (C1 ≠ 0). We confirmed from the spectroscopic analysis that the carboxylate group directly drives the interaction of 2,4-D on Andisol soil. The MLR model showed that IEP, FeDCB, and pH×Silt are important soil descriptors in the 2,4-D sorption in VADS. The Freundlich model accurately represented sorption equilibrium data in all cases (Kf values between 1.1 and 24.1 µg1-1/n mL1/ng-1) with comparatively higher sorption capacity on Andisols, where the highest hysteresis was observed in soils that presented the highest and lowest OC content (H close to 0).
Collapse
Affiliation(s)
- Lizethly Cáceres-Jensen
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile; (J.R.-B.); (J.P.-R.); (V.D.-V.); (B.L.-A.)
| | - Jorge Rodríguez-Becerra
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile; (J.R.-B.); (J.P.-R.); (V.D.-V.); (B.L.-A.)
| | - Carlos Garrido
- Laboratorio de Química Inorgánica, Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Mauricio Escudey
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170020, Chile
| | - Lorena Barrientos
- Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago 7820436, Chile
| | - Jocelyn Parra-Rivero
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile; (J.R.-B.); (J.P.-R.); (V.D.-V.); (B.L.-A.)
| | - Valentina Domínguez-Vera
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile; (J.R.-B.); (J.P.-R.); (V.D.-V.); (B.L.-A.)
| | - Bruno Loch-Arellano
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile; (J.R.-B.); (J.P.-R.); (V.D.-V.); (B.L.-A.)
- Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|
240
|
Spessato L, Duarte VA, Viero P, Zanella H, Fonseca JM, Arroyo PA, Almeida VC. Optimization of Sibipiruna activated carbon preparation by simplex-centroid mixture design for simultaneous adsorption of rhodamine B and metformin. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125166. [PMID: 33858109 DOI: 10.1016/j.jhazmat.2021.125166] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The present paper reports the application of augmented simplex-centroid mixture design to obtain a high BET surface area activated carbon using as reactants KOH, K2CO3 and K2C2O4. The optimum mixture composition was 2.51 g of KOH, 0.49 g of K2CO3 and absence of K2C2O4, generating an optimized AC (ACop) with SBET value equals to 1984 m2 g-1. The results herein obtained show that low amounts of K2CO3 can catalyze the pore development in the presence of KOH, increasing the surface area. Furthermore, the fractal dimensions of ACop are greater than 2.72, indicating the material has a complex pore structure with irregularities self-similar upon variations of resolution, as seen by SEM images. The TPD curves showed that the ACop has different oxygenated molecular fragments, which agrees with the pHPZC value (5.05). The ACop was applied in the adsorption of rhodamine B (RhB) and metformin (Met) in both binary and monocomponent systems. The simultaneous adsorption at 30 °C reveals that the adsorption capacity of RhB is 630.94 mg g-1, while for Met the value is 103.83 mg g-1.
Collapse
Affiliation(s)
- Lucas Spessato
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil.
| | - Vitor A Duarte
- Department of Chemical Engineering, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Patrícia Viero
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Heloisa Zanella
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Jhessica M Fonseca
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Pedro A Arroyo
- Department of Chemical Engineering, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Vitor C Almeida
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil.
| |
Collapse
|
241
|
Wang P, Zhi M, Cui G, Chu Z, Wang S. A comparative study on phosphate removal from water using Phragmites australis biochars loaded with different metal oxides. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201789. [PMID: 34109032 PMCID: PMC8170202 DOI: 10.1098/rsos.201789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/14/2021] [Indexed: 05/26/2023]
Abstract
Metal oxide-loaded biochars are a promising material to remove phosphate from polluted water to ultra-low concentrations. To facilitate preparing the metal oxide-loaded biochar with the best phosphate adsorption performance, five biochars loaded with Al, Ca, Fe, La and Mg oxides, respectively (Al-BC, Ca-BC, Fe-BC, La-BC and Mg-BC) were produced using Phragmites australis pretreated with 0.1 mol AlCl3, CaCl2, FeCl3, LaCl3 and MgCl2, respectively, characterized, and phosphate adsorption kinetics and isotherms of the biochars were determined. The maximum phosphate adsorption capacities (Qm ) of the biochars ranked as Al-BC (219.87 mg g-1) > Mg-BC (112.45 mg g-1) > Ca-BC (81.46 mg g-1) > Fe-BC (46.61 mg g-1) > La-BC (38.93 mg g-1). The time to reach the adsorption equilibrium ranked as La-BC (1 h) < Ca-BC (12 h) < Mg-BC (24 h) = Fe-BC (24 h)
Collapse
Affiliation(s)
- Pengfei Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Mengmeng Zhi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Guannan Cui
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Zhaosheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Shuhang Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| |
Collapse
|
242
|
|
243
|
Singh RJ, Martin CE, Barr D, Rosengren RJ. Cucumber peel bead biosorbent for multi-ion decontamination of drinking water collected from a mine region in New Zealand. ENVIRONMENTAL TECHNOLOGY 2021; 42:2461-2477. [PMID: 31825744 DOI: 10.1080/09593330.2019.1703824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Cucumber peel as a bead was examined for its ability to remove heavy metals from drinking water. Deionised laboratory water was spiked with seven toxic ions namely, arsenic, cadmium, chromium, copper, mercury, lead and nickel at 0.1 mg L-1 and kinetic studies were performed over 72 h. Kinetic data were modelled using film diffusion, pore diffusion, Weber-Morris, pseudo-first-order, pseudo-second-order and Elovich equation. The bead surface was imaged before and after biosorption using scanning electron microscopy coupled with energy dispersive spectroscopy (EDS). Results indicated that different ions contained in a multi-ion solution were biosorbed by different mechanisms and at different rates. Equilibrium biosorption for Cd, Hg and Ni was ∼91, 90 and 67%, respectively, at 24 h. These ions diffused through the pores of the bead, as they were not identified by EDS, and their biosorption increased with an increase in temperature. The least biosorbed ions were As and Cr with ∼21 and 17% equilibrium biosorption, respectively. The removal of only Cu, Hg, Pb and Ni was pH-dependent. Cucumber peel beads removed all spiked ions from real drinking water collected near the Macraes gold mine in New Zealand, but the biosorption percentage was lower for Cd, Cu, Pb and Ni compared to spiked deionised laboratory water. The results of this study suggest that cucumber peel when immobilised on a sodium alginate bead can be used as a potential biosorbent for the removal of multiple toxic ions from drinking water and their use warrants further examination in contaminated drinking water.
Collapse
Affiliation(s)
- Risha Jasmine Singh
- Pharmacology & Toxicology Department, University of Otago, Dunedin, New Zealand
- Geology Department, University of Otago, Dunedin, New Zealand
| | | | - Dave Barr
- Centre for Trace Element Analysis, Chemistry Department, University of Otago, Dunedin, New Zealand
| | - Rhonda J Rosengren
- Pharmacology & Toxicology Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
244
|
Adsorption of Malachite Green by extracellular polymeric substance of Lysinibacillus sp. SS1: kinetics and isotherms. Heliyon 2021; 7:e07169. [PMID: 34141930 PMCID: PMC8188059 DOI: 10.1016/j.heliyon.2021.e07169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Use of novel biological materials as adsorbents for removal of xenobiotics is gaining significance owing to their exceptional advantages. An extracellular polymeric substance (EPS) produced by Lysinibacillus sp. SS1 had rough porous surface as observed by SEM analysis. Adsorption ability of EPS was estimated against various textile dyes such as Malachite Green (MG), Methyl Orange, Congo Red and Coomassie Blue. About 82% of MG (100 mg/L) was adsorbed onto 2.5 mg EPS within 30 min. Effect of MG concentration, EPS weight, agitation speed and incubation time on adsorption, studied by one factor at a time approach, revealed that adsorption was influenced by all factors. Maximum adsorption of 99.01 ± 0.61% was achieved at 100 mg/L MG, 10 mg EPS, 120 RPM in 75 min with maximum adsorption capacity of 247.5 mg/g. Kinetics was affected by MG and EPS amounts, with shift from pseudo first to pseudo second order with increase in concentration. Adsorption of MG by EPS of Lysinibacillus sp. SS1 was identified as unilayer chemisorption as it followed Langmuir isotherm with maximum adsorption capacity (Q m ) of 178.57 mg/g (R 2 = 0.9889). This is the first report on potential of EPS produced by Lysinibacillus sp. SS1 as novel biodegradable adsorbent with high efficacy of MG removal from aqueous solutions.
Collapse
|
245
|
Bulin C, Zhang B, Guo T, Ma Z, Li B, Zhang Y, Xing R, Ge X. Graphene oxide–starch composite as an efficient adsorbent for removing Cu(II): removal performance and adsorption mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04487-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
246
|
Lee J, Seo M. Downsizing of Block Polymer-Templated Nanopores to One Nanometer via Hyper-Cross-Linking of High χ-Low N Precursors. ACS NANO 2021; 15:9154-9166. [PMID: 33950684 DOI: 10.1021/acsnano.1c02690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesizing nanoporous polymer from the block polymer template by selective removal of the sacrificial domain offers straightforward pore size control as a function of the degree of polymerization (N). Downscaling pore size into the microporous regime (<2 nm) has been thermodynamically challenging, because the low N drives the system to disorder and the small-sized pore is prone to collapse. Herein, we report that maximizing cross-linking density of a block polymer precursor with an increased interaction parameter (χ) can help successfully stabilize the structure bearing pore sizes of 1.1 nm. We adopt polymerization-induced microphase separation (PIMS) combined with hyper-cross-linking as a strategy for the preparation of the bicontinuous block polymer precursors with a densely cross-linked framework by copolymerization of vinylbenzyl chloride with divinylbenzene and also Friedel-Crafts alkylation. Incorporating 4-vinylbiphenyl as a higher-χ comonomer to the sacrificial polylactide (PLA) block and optimizing the segregation strength versus cross-linking density allow for further downscaling. Control of pore size by N of PLA is demonstrated in the range of 9.9-1.1 nm. Accessible surface area to fluorescein-tagged dextrans is regulated by the relative size of the pore to the guest, and pore size is controlled. These findings will be useful for designing microporous polymers with tailored pore size for advanced catalytic and separation applications.
Collapse
Affiliation(s)
| | - Myungeun Seo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
- KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
247
|
|
248
|
Bambaeero A, Bazargan-Lari R. Simultaneous removal of copper and zinc ions by low cost natural snail shell/hydroxyapatite/chitosan composite. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
249
|
Mokrzycki J, Michalak I, Rutkowski P. Tomato green waste biochars as sustainable trivalent chromium sorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24245-24255. [PMID: 31879878 DOI: 10.1007/s11356-019-07373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Chromium removal from aqueous solutions has gained attention due to its hazardous impact on life organisms. In the present study, sorption processes were performed to examine the opportunity to apply biochar derived from waste tomato leaves and stems for Cr(III) ion removal. Biochars were produced through pyrolysis in a wide range of temperature (250-800 °C). The obtained biochars were investigated in detail by means of ultimate and proximate analyses, pH point of zero charge, FT-IR, scanning electron microscopy, and mercury porosimetry. Biochars are characterized by high amount of ash varying from 23 to 44% and as a result high pHpzc values of about 13. It was proven that increasing pyrolysis temperature positively affected sorption of Cr(III) ions. Mineral matter in the biochars plays a crucial role in the removal of Cr(III) ions from aqueous solution mainly due to their precipitation. The sorption capacity of biochar produced at 800 °C was 169.5 mg g-1, whereas at 250 °C only 62.2 mg g-1. It was found that biochar can be reused in sorption process after desorption using 0.1 M HCl, while the sorption capacity decreased 4-fold.
Collapse
Affiliation(s)
- Jakub Mokrzycki
- Department of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Piotr Rutkowski
- Department of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
250
|
Rostamian R, Firouzzare M, Zahakifar F. Preparation and evaluation of amidoximated poly(styrene-acrylonitrile) nanofibers for uranium adsorption from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|