201
|
Wu XZ, Zhang TT, Guo JG, Liu Z, Yang FH, Gao XH. Copper bioavailability, blood parameters, and nutrient balance in mink. J Anim Sci 2015; 93:176-84. [PMID: 25568366 DOI: 10.2527/jas.2014-8026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A 3 × 3 + 1 factorial experiment was conducted based on a completely randomized design to evaluate the effects of different sources of copper on plasma metabolites, nutrient digestibility, relative copper bioavailability, and retention of some minerals in male mink. Animals in the control group were fed a basal diet, which mainly consisted of corn, fish meal, meat and bone meal, and soybean oil, with no copper supplementation. Mink in the other 9 treatments were fed the basal diet supplemented with Cu from reagent-grade copper sulfate (CuSO4), tribasic copper chloride (TBCC), or copper methionine (CuMet). Copper concentrations of the experimental diets were 50, 100, and 150 mg Cu/kg DM. Blood samples were collected via the toe clip at the end of study (d 42) to determine blood hematology and blood metabolites. A metabolism trial of 4 d was conducted during the last week of experimental feeding. There was a linear (P < 0.01) effect of dose of Cu on plasma Cu concentrations, ceruloplasmin concentration, and Cu-Zn superoxide dismutase activity. A linear response to Cu dose was noted for fat (P < 0.05) digestibility. Supplemental dose of Cu linearly increased (P < 0.05) liver Cu and decreased (P < 0.05) liver Zn level but did not alter liver Fe. The concentration of liver Cu of the mink fed with TBCC and CuMet diets was greater (P < 0.05) than that fed CuSO4. Compared with CuSO4 (100%), relative bioavailability values of TBCC were 104 and 104%, based on serum ceruloplasmin and liver copper, respectively, and relative bioavailability values of CuMet were 130 and 111%. CuMet and TBCC are more bioavailable than CuSO4. In conclusion, the relative bioavailability of CuMet obtained in this study was greater than that of CuSO4 and TBCC. Dose of Cu had an important effect on the regulating ceruloplasmin concentration, Cu-Zn superoxide dismutase activity, and the digestion of dietary fat in mink.
Collapse
Affiliation(s)
- X Z Wu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun City, Jilin 130112, China
| | - T T Zhang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun City, Jilin 130112, China
| | - J G Guo
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Z Liu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - F H Yang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun City, Jilin 130112, China State Key Lab for Molecular Biology of Special Economic Animals, Changchun City, Jilin 130112, China
| | - X H Gao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
202
|
Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: 'Copper That Cancer'. Metallomics 2015; 7:1459-76. [PMID: 26313539 DOI: 10.1039/c5mt00149h] [Citation(s) in RCA: 528] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.
Collapse
Affiliation(s)
- Delphine Denoyer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | |
Collapse
|
203
|
Esparza A, Gerdtzen ZP, Olivera-Nappa A, Salgado JC, Núñez MT. Iron-induced reactive oxygen species mediate transporter DMT1 endocytosis and iron uptake in intestinal epithelial cells. Am J Physiol Cell Physiol 2015; 309:C558-67. [PMID: 26289753 DOI: 10.1152/ajpcell.00412.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/17/2015] [Indexed: 11/22/2022]
Abstract
Recent evidence shows that iron induces the endocytosis of the iron transporter dimetal transporter 1 (DMT1) during intestinal absorption. We, and others, have proposed that iron-induced DMT1 internalization underlies the mucosal block phenomena, a regulatory response that downregulates intestinal iron uptake after a large oral dose of iron. In this work, we investigated the participation of reactive oxygen species (ROS) in the establishment of this response. By means of selective surface protein biotinylation of polarized Caco-2 cells, we determined the kinetics of DMT1 internalization from the apical membrane after an iron challenge. The initial decrease in DMT1 levels in the apical membrane induced by iron was followed at later times by increased levels of DMT1. Addition of Fe(2+), but not of Cd(2+), Zn(2+), Cu(2+), or Cu(1+), induced the production of intracellular ROS, as detected by 2',7'-dichlorofluorescein (DCF) fluorescence. Preincubation with the antioxidant N-acetyl-l-cysteine (NAC) resulted in increased DMT1 at the apical membrane before and after addition of iron. Similarly, preincubation with the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) resulted in the enhanced presence of DMT1 at the apical membrane. The decrease of DMT1 levels at the apical membrane induced by iron was associated with decreased iron uptake rates. A kinetic mathematical model based on operational rate constants of DMT1 endocytosis and exocytosis is proposed. The model qualitatively captures the experimental observations and accurately describes the effect of iron, NAC, and DMSO on the apical distribution of DMT1. Taken together, our data suggest that iron uptake induces the production of ROS, which modify DMT1 endocytic cycling, thus changing the iron transport activity at the apical membrane.
Collapse
Affiliation(s)
- Andrés Esparza
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ziomara P Gerdtzen
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - Alvaro Olivera-Nappa
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - Marco T Núñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile;
| |
Collapse
|
204
|
Paths and determinants for Penicillium janthinellum to resist low and high copper. Sci Rep 2015; 5:10590. [PMID: 26265593 PMCID: PMC4642507 DOI: 10.1038/srep10590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 01/21/2023] Open
Abstract
Copper (Cu) tolerance was well understood in fungi yeasts but not in filamentous fungi. Filamentous fungi are eukaryotes but unlike eukaryotic fungi yeasts, which are a collection of various fungi that are maybe classified into different taxa but all characterized by growth as filamentous hyphae cells and with a complex morphology. The current knowledge of Cu resistance of filamentous fungi is still fragmental and therefore needs to be bridged. In this study, we characterized Cu resistance of Penicillium janthinellum strain GXCR and its Cu-resistance-decreasing mutants (EC-6 and UC-8), and conducted sequencing of a total of 6 transcriptomes from wild-type GXCR and mutant EC-6 grown under control and external Cu. Taken all the results together, Cu effects on the basal metabolism were directed to solute transport by two superfamilies of solute carrier and major facilitator, the buffering free CoA and Acyl-CoA pool in the peroxisome, F-type H(+)-transporting ATPases-based ATP production, V-type H(+)-transporting ATPases-based transmembrane transport, protein degradation, and alternative splicing of pre-mRNAs. Roles of enzymatic and non-enzymatic antioxidants in resistance to low and high Cu were defined. The backbone paths, signaling systems, and determinants that involve resistance of filamentous fungi to high Cu were determined, discussed and outlined in a model.
Collapse
|
205
|
Perlman O, Weitz IS, Azhari H. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 2015; 60:5767-83. [PMID: 26159685 DOI: 10.1088/0031-9155/60/15/5767] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multimodal medical imaging is gaining increased popularity in the clinic. This stems from the fact that data acquired from different physical phenomena may provide complementary information resulting in a more comprehensive picture of the pathological state. In this context, nano-sized contrast agents may augment the potential sensitivity of each imaging modality and allow targeted visualization of physiological points of interest (e.g. tumours). In this study, 7 nm copper oxide nanoparticles (CuO NPs) were synthesized and characterized. Then, in vitro and phantom specimens containing CuO NPs ranging from 2.4 to 320 μg · mL(-1) were scanned, using both 9.4 T MRI and through-transmission ultrasonic imaging. The results show that the CuO NPs induce shortening of the magnetic T1 relaxation time on the one hand, and increase the speed of sound and ultrasonic attenuation coefficient on the other. Moreover, these visible changes are NP concentration-dependent. The change in the physical properties resulted in a substantial increase in the contrast-to-noise ratio (3.4-6.8 in ultrasound and 1.2-19.3 in MRI). In conclusion, CuO NPs are excellent candidates for MRI-ultrasound dual imaging contrast agents. They offer radiation-free high spatial resolution scans by MRI, and cost-effective high temporal resolution scans by ultrasound.
Collapse
Affiliation(s)
- Or Perlman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | | | | |
Collapse
|
206
|
The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans. J Bacteriol 2015; 197:2545-57. [PMID: 26013484 DOI: 10.1128/jb.02433-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans CopYAZ system in copper export and have further expanded knowledge on the importance of copper homeostasis and the CopYAZ system in modulating streptococcal physiology, including stress tolerance, membrane potential, genetic competence, and biofilm formation. IMPORTANCE S. mutans is best known for its role in the initiation and progression of human dental caries, one of the most common chronic diseases worldwide. S. mutans is also implicated in bacterial endocarditis, a life-threatening inflammation of the heart valve. The core virulence factors of S. mutans include its ability to produce and sustain acidic conditions and to form a polysaccharide-encased biofilm that provides protection against environmental insults. Here, we demonstrate that the addition of copper and/or deletion of copYAZ (the copper homeostasis system) have serious implications in modulating biofilm formation, stress tolerance, and genetic transformation in S. mutans. Manipulating the pathways affected by copper and the copYAZ system may help to develop potential therapeutics to prevent S. mutans infection in and beyond the oral cavity.
Collapse
|
207
|
Zhao Z, Zhou Z, Li L, Xian X, Ke X, Chen M, Zhang Y. A copper-responsive gene cluster is required for copper homeostasis and contributes to oxidative resistance in Deinococcus radiodurans R1. MOLECULAR BIOSYSTEMS 2015; 10:2607-16. [PMID: 25030084 DOI: 10.1039/c4mb00320a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Excess copper is toxic to organisms, and therefore, copper homeostasis is important for the limitation of its cellular levels. However, copper homeostasis has not been studied to date in the bacteria Deinococcus radiodurans R1, which exhibits extreme resistance to various environmental stresses. We have identified a copper-responsive gene cluster that encodes CopA, which is a copper-transporting P1-type ATPase, CopZ, which is a copper metallochaperone, and CsoR, which is a copper-sensing repressor. Copper induces the transcription of genes in this cluster. Mutants lacking copA exhibited reduced copper resistance and the overaccumulation of copper compared with the wild-type strain. Additionally, both in the absence and presence of copper, the copZ mutation increased the expression of copA and led to the accumulation of lower levels of copper compared with the wild type. The bioinformatic analysis showed that CsoR in D. radiodurans R1 shares high sequence similarity and identity with the CsoR of Mycobacterium tuberculosis and Bacillus subtilis. We also demonstrated through DNase I footprinting and electrophoretic mobility shift assays that CsoR binds to the promoter of the cluster and that copper ions eliminate this interaction. This implies that CsoR is the repressor of this cluster and that CopA, CopZ and CsoR participate in the regulation of copper homeostasis. Our data also indicate that after treatment with H2O2 and cumene hydroperoxide, the viability of the copA mutants was significantly reduced. This suggests that copper homeostasis plays an important role in oxidative resistance in D. radiodurans R1.
Collapse
Affiliation(s)
- Zhongchao Zhao
- China University of Mining and Technology (Beijing), Beijing 100083, China.
| | | | | | | | | | | | | |
Collapse
|
208
|
Feng W, Huang X, Zhang C, Liu C, Cui X, Zhou Y, Sun H, Qiu G, Guo H, He M, Zhang X, Yuan J, Chen W, Wu T. The dose-response association of urinary metals with altered pulmonary function and risks of restrictive and obstructive lung diseases: a population-based study in China. BMJ Open 2015; 5:e007643. [PMID: 25998037 PMCID: PMC4442249 DOI: 10.1136/bmjopen-2015-007643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE Reduced pulmonary function is an important predictor of environment-related pulmonary diseases; however, evidence of an association between exposures to various metals from all possible routes and altered pulmonary function is limited. We aimed to investigate the association of various metals in urine with pulmonary function, restrictive lung disease (RLD) and obstructive lung disease (OLD) risks in the general Chinese population. DESIGN A cross-sectional investigation in the Wuhan cohort population. SETTING A heavily polluted Chinese city. PARTICIPANTS A total of 2460 community-living Chinese adults from the Wuhan cohort were included in our analysis. MAIN OUTCOME MEASURES Spirometric parameters (FVC, forced vital capacity; FEV1, forced expiratory volumes in 1 s; FEV1/FVC ratio), RLD and OLD. RESULTS The dose-response associations of pulmonary function, and RLD and OLD, with 23 urinary metals were assessed using regression analysis after adjusting for potential confounders. The false discovery rate (FDR) method was used to correct for multiple hypothesis tests. Our results indicated that there were positive dose-response associations of urinary iron with FEV1 and FEV1/FVC ratio, vanadium with FEV1, and copper and selenium with FEV1/FVC ratio, while a negative dose-response association was observed between urinary lead and FEV1/FVC ratio (all p<0.05). After additional adjusting for multiple comparisons, only iron was dose dependently related to FEV1/FVC ratio (FDR adjusted p<0.05). The dose-response association of iron and lead, with decreased and increased chronic obstructive pulmonary disease risk, respectively, was also observed (both p<0.05). Additionally, we found significant association of urinary zinc with RLD and interaction effects of smoking status with lead on FEV1/FVC, and with cadmium on FVC and FEV1. CONCLUSIONS These results suggest that multiple urinary metals are associated with altered pulmonary function, and RLD and OLD prevalences.
Collapse
Affiliation(s)
- Wei Feng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiji Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ce Zhang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Chuanyao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuqing Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huizhen Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaokun Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangchun Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation),School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
209
|
Amin MN, Liza KF, Sarwar MS, Ahmed J, Adnan MT, Chowdhury MI, Hossain MZ, Islam MS. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema. Arch Dermatol Res 2015; 307:617-23. [PMID: 25967637 DOI: 10.1007/s00403-015-1570-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 02/04/2023]
Abstract
The exact etiology and pathogenesis of eczema are not yet fully understood, although different factors are considered as pathogenic mechanisms in the development of eczema. Our study was designed to determine extent of serum lipid peroxidation, antioxidants, macro minerals and trace elements in patients with eczema, and thereby, find any pathophysiological correlation. The study was conducted as a case-control study with 65 eczema patients as cases and 65 normal healthy individuals as controls. Lipid peroxidation was assessed by measuring the serum level of malondialdehyde (MDA). Antioxidants- vitamin A and E concentration was determined by RP-HPLC method whereas vitamin C was evaluated for serum ascorbic acid by UV spectrophotometric method. Serum macro minerals (Na, K, Ca) and trace elements (Zn, Fe) were determined by Atomic Absorption Spectroscopy (AAS). This study found significantly higher level of MDA (p < 0.001) and lower level of antioxidants (p < 0.05) in patients in comparison to the control subjects. Analysis of serum macro minerals (Na, K and Ca) and trace elements (Zn, Fe) found that the mean values of Na, K, Ca, Zn and Fe were 2771.60 ± 75.64, 66.33 ± 3.03, 48.41 ± 2.50, 0.30 ± 0.02 and 0.29 ± 0.009 mg/L for the patient group and 3284.81 ± 34.51, 162.18 ± 3.72, 87.66 ± 2.10, 0.75 ± 0.06 and 0.87 ± 0.06 mg/L for the control group, accordingly. There was a significant difference for all the minerals between the patients and controls (p < 0.001). This study suggests a strong association between the pathogenesis of eczema with the elevated level of MDA and depleted level of antioxidants, macro minerals, and trace elements.
Collapse
Affiliation(s)
- Mohammad Nurul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Feng W, Nie W, Cheng Y, Zhou X, Chen L, Qiu K, Chen Z, Zhu M, He C. In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:901-12. [DOI: 10.1016/j.nano.2014.12.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/30/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022]
|
211
|
Dudakova L, Liskova P, Jirsova K. Is copper imbalance an environmental factor influencing keratoconus development? Med Hypotheses 2015; 84:518-24. [PMID: 25758858 DOI: 10.1016/j.mehy.2015.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- L Dudakova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - P Liskova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Ophthalmology, General Teaching Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
212
|
Marelli B, Le Nihouannen D, Hacking SA, Tran S, Li J, Murshed M, Doillon CJ, Ghezzi CE, Zhang YL, Nazhat SN, Barralet JE. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling. Biomaterials 2015; 54:126-35. [PMID: 25907046 DOI: 10.1016/j.biomaterials.2015.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery.
Collapse
Affiliation(s)
- Benedetto Marelli
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, 3610 University St., Montréal, QC, H3A 2B2, Canada
| | - Damien Le Nihouannen
- Faculty of Dentistry, McGill University, 3640 University St., Montréal, QC, H3A 2B2, Canada
| | - S Adam Hacking
- Faculty of Dentistry, McGill University, 3640 University St., Montréal, QC, H3A 2B2, Canada
| | - Simon Tran
- Faculty of Dentistry, McGill University, 3640 University St., Montréal, QC, H3A 2B2, Canada
| | - Jingjing Li
- Faculty of Dentistry, McGill University, 3640 University St., Montréal, QC, H3A 2B2, Canada
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, 3640 University St., Montréal, QC, H3A 2B2, Canada
| | - Charles J Doillon
- CHUL's Research Center (T2-50), CHUQ, 2705, Boul. Laurier, and Department of Surgery, Laval University, Quebec City, QC, G1V 4G2, Canada
| | - Chiara E Ghezzi
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, 3610 University St., Montréal, QC, H3A 2B2, Canada
| | - Yu Ling Zhang
- Faculty of Dentistry, McGill University, 3640 University St., Montréal, QC, H3A 2B2, Canada
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, 3610 University St., Montréal, QC, H3A 2B2, Canada
| | - Jake E Barralet
- Faculty of Dentistry, McGill University, 3640 University St., Montréal, QC, H3A 2B2, Canada; Department of Surgery, Montreal General Hospital, McGill University, 1650 Cedar Ave, Montreal, H3G 1A4, Canada.
| |
Collapse
|
213
|
Pinaka A, Vougioukalakis GC. Using sustainable metals to carry out “green” transformations: Fe- and Cu-catalyzed CO2 monetization. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
214
|
Alterio V, Langella E, De Simone G, Monti SM. Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii. Mar Drugs 2015; 13:1688-97. [PMID: 25815892 PMCID: PMC4413181 DOI: 10.3390/md13041688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 01/03/2023] Open
Abstract
The Carbon Concentration Mechanism (CCM) allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC) necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA) enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of inorganic carbon for photosynthesis. A novel CA, named CDCA1, has been recently discovered in the marine diatom Thalassiosira weissflogii. CDCA1 is a cambialistic enzyme since it naturally uses Cd2+ as catalytic metal ion, but if necessary can spontaneously exchange Cd2+ to Zn2+. Here, the biochemical and structural features of CDCA1 enzyme will be presented together with its putative biotechnological applications for the detection of metal ions in seawaters.
Collapse
Affiliation(s)
- Vincenzo Alterio
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Emma Langella
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| |
Collapse
|
215
|
Bejarano J, Caviedes P, Palza H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. ACTA ACUST UNITED AC 2015; 10:025001. [PMID: 25760730 DOI: 10.1088/1748-6041/10/2/025001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.
Collapse
Affiliation(s)
- Julian Bejarano
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
216
|
Wu X, Gao X, Yang F. Effects of dietary copper on organ indexes, tissular Cu, Zn and Fe deposition and fur quality of growing-furring male mink (Mustela vison). JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:6. [PMID: 26290726 PMCID: PMC4540306 DOI: 10.1186/s40781-015-0040-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/09/2015] [Indexed: 11/10/2022]
Abstract
The objectives of this study were to study the effects of different levels of dietary copper on organ indexes, tissular Cu, Zn and Fe deposition and fur quality of mink in the growing-furring periods. One hundred and five standard dark male mink were randomly assigned to seven groups with the following dietary treatments: basal diet with no supplemental Cu (Control); basal diet supplemented with either 6, 12, 24, 48, 96 and 192 mg/kg Cu from copper sulphate, respectively. The colour intensity scores displayed a linear trend (P = 0.057). The spleen Cu concentrations responded in a linear (P < 0.05) fashion with increasing level of Cu, but copper supplementation did not affect speen concentrations of Fe or Zn. Supplemental dose of Cu linearly increased (P < 0.05) liver Cu and Fe concentrations but did not alter (P > 0.10) liver Zn. Our results indicate that Cu plays an important role in the pigmentation in growing-furring mink, and supplemental dietary Cu in growing-furring mink improve hair colour, and copper has limited effects on liver mineral deposition.
Collapse
Affiliation(s)
- Xuezhuang Wu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuhua Gao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fuhe Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| |
Collapse
|
217
|
Grotto D, Gerenutti M, Souza VCO, Barbosa F. Deficiency of macro- and micronutrients induced by Lentinula edodes. Toxicol Rep 2015; 2:401-404. [PMID: 28962374 PMCID: PMC5598163 DOI: 10.1016/j.toxrep.2015.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/31/2015] [Accepted: 02/01/2015] [Indexed: 12/17/2022] Open
Abstract
Mushroom Lentinula edodes has been widely studied therapeutically. However, there is no data regarding its daily intake level safety. Since L. edodes has many active compounds known to bind to metals, we evaluated macro and micronutrients in liver and kidney of healthy rats after subchronic exposure to L. edodes. Rats were divided into four groups, receiving water and L. edodes at 100, 400 and 800 mg/kg/day. The treatment lasted 30 days. Essential elements (Zn, Cu, Mg, Fe, Mn, Se, Co, Mo, and Li) were analyzed in an inductively coupled plasma mass spectrometer. Our results demonstrated a significant decrease in Cu, Fe, Mn and Co levels in liver of rats receiving L. edodes at the highest doses. In kidney, Mn, Mo and Li concentrations significantly dropped in the groups exposed to the highest doses. In this way, an important point is revealed concerning the food safety from L. edodes, once its chronic and high consumption could contribute to macro and micronutrients deficiency. Additionally, we speculate that the daily use of L. edodes could be unsuccessful for patients in mineral therapy besides being able to be unsafe for individuals with some propensity to mineral deficiency.
Collapse
Affiliation(s)
- D Grotto
- Toxicological Research Laboratory (Lapetx), University of Sorocaba (Uniso), Rodovia Raposo Tavares km 92.5, CEP 18023-000 Sorocaba, SP, Brazil
| | - M Gerenutti
- Toxicological Research Laboratory (Lapetx), University of Sorocaba (Uniso), Rodovia Raposo Tavares km 92.5, CEP 18023-000 Sorocaba, SP, Brazil
| | - V C O Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - F Barbosa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
218
|
Staicu LC, van Hullebusch ED, Lens PNL, Pilon-Smits EAH, Oturan MA. Electrocoagulation of colloidal biogenic selenium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3127-37. [PMID: 25233921 DOI: 10.1007/s11356-014-3592-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/09/2014] [Indexed: 05/12/2023]
Abstract
Colloidal elemental selenium (Se(0)) adversely affects membrane separation processes and aquatic ecosystems. As a solution to this problem, we investigated for the first time the removal potential of Se(0) by electrocoagulation process. Colloidal Se(0) was produced by a strain of Pseudomonas fluorescens and showed limited gravitational settling. Therefore, iron (Fe) and aluminum (Al) sacrificial electrodes were used in a batch reactor under galvanostatic conditions. The best Se(0) turbidity removal (97 %) was achieved using iron electrodes at 200 mA. Aluminum electrodes removed 96 % of colloidal Se(0) only at a higher current intensity (300 mA). At the best Se(0) removal efficiency, electrocoagulation using Fe electrode removed 93 % of the Se concentration, whereas with Al electrodes the Se removal efficiency reached only 54 %. Due to the less compact nature of the Al flocs, the Se-Al sediment was three times more voluminous than the Se-Fe sediment. The toxicity characteristic leaching procedure (TCLP) test showed that the Fe-Se sediment released Se below the regulatory level (1 mg L(-1)), whereas the Se concentration leached from the Al-Se sediment exceeded the limit by about 20 times. This might be related to the mineralogical nature of the sediments. Electron scanning micrographs showed Fe-Se sediments with a reticular structure, whereas the Al-Se sediments lacked an organized structure. Overall, the results obtained showed that the use of Fe electrodes as soluble anode in electrocoagulation constitutes a better option than Al electrodes for the electrochemical sedimentation of colloidal Se(0).
Collapse
Affiliation(s)
- Lucian C Staicu
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, 2601 DA, Delft, The Netherlands
| | | | | | | | | |
Collapse
|
219
|
Hansson SR, Nääv Å, Erlandsson L. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front Physiol 2015; 5:516. [PMID: 25628568 PMCID: PMC4292435 DOI: 10.3389/fphys.2014.00516] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/16/2014] [Indexed: 02/04/2023] Open
Abstract
Preeclampsia is a leading cause of pregnancy complications and affects 3-7% of pregnant women. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on hemoglobin-induced oxidative stress. Furthermore, we also suggest hemoglobin as a potential target for therapy. Gene and protein profiling studies have shown increased expression and accumulation of free fetal hemoglobin in the preeclamptic placenta. Predominantly due to oxidative damage to the placental barrier, fetal hemoglobin leaks over to the maternal circulation. Free hemoglobin and its metabolites are toxic in several ways; (a) ferrous hemoglobin (Fe(2+)) binds strongly to the vasodilator nitric oxide (NO) and reduces the availability of free NO, which results in vasoconstriction, (b) hemoglobin (Fe(2+)) with bound oxygen spontaneously generates free oxygen radicals, and (c) the heme groups create an inflammatory response by inducing activation of neutrophils and cytokine production. The endogenous protein α1-microglobulin, with radical and heme binding properties, has shown both ex vivo and in vivo to have the ability to counteract free hemoglobin-induced placental and kidney damage. Oxidative stress in general, and more specifically fetal hemoglobin-induced oxidative stress, could play a key role in the pathology of preeclampsia seen both in the placenta and ultimately in the maternal endothelium.
Collapse
Affiliation(s)
- Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute for Clinical Sciences, Lund UniversityLund, Sweden
| | | | | |
Collapse
|
220
|
Kaba M, Pirincci N, Yuksel MB, Gecit I, Gunes M, Ozveren H, Eren H, Demir H. Serum levels of trace elements in patients with prostate cancer. Asian Pac J Cancer Prev 2015; 15:2625-9. [PMID: 24761874 DOI: 10.7314/apjcp.2014.15.6.2625] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trace elements are major components of biological structures; however, excessive levels of these elements can be toxic. MATERIALS AND METHODS In the present study, serum levels of trace elements were measured in 30 patients with newly diagnosed as prostate cancer and 32 healthy volunteer by using furnace atomic absorption spectrophotometry. RESULTS It was found that there was an increase in serum levels of Co, Cu, Mg and Pb (p<0.05), whereas a decrease in serum levels of Fe, Mn, and Zn levels in patients with prostate cancer (p<0.05). CONCLUSIONS These changes may be important in the pathogenesis of prostate cancers; however, further prospective studies are needed to identify relationships between prostate cancer and trace elements.
Collapse
Affiliation(s)
- Mehmet Kaba
- Department of Urology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Tvrda E, Peer R, Sikka SC, Agarwal A. Iron and copper in male reproduction: a double-edged sword. J Assist Reprod Genet 2015; 32:3-16. [PMID: 25245929 PMCID: PMC4294866 DOI: 10.1007/s10815-014-0344-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/09/2014] [Indexed: 01/12/2023] Open
Abstract
Iron and copper are essential trace nutrients playing important roles in general health and fertility. However, both elements are highly toxic when accumulating in large quantities. Their direct or indirect impact on the structure and function of male gonads and gametes is not completely understood yet. Excess or deficiency of either element may lead to defective spermatogenesis, reduced libido, and oxidative damage to the testicular tissue and spermatozoa, ultimately leading to fertility impairment. This review will detail the complex information currently available on the dual roles iron and copper play in male reproduction.
Collapse
Affiliation(s)
- Eva Tvrda
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
- />Department of Animal Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Rohan Peer
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| | - Suresh C. Sikka
- />Department of Urology, Tulane University School of Medicine, New Orleans, LA USA
| | - Ashok Agarwal
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
222
|
Forte G, Deiana M, Pasella S, Baralla A, Occhineri P, Mura I, Madeddu R, Muresu E, Sotgia S, Zinellu A, Carru C, Bocca B, Deiana L. Metals in plasma of nonagenarians and centenarians living in a key area of longevity. Exp Gerontol 2014; 60:197-206. [DOI: 10.1016/j.exger.2014.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/26/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
223
|
Structure-activity relationships of novel salicylaldehyde isonicotinoyl hydrazone (SIH) analogs: iron chelation, anti-oxidant and cytotoxic properties. PLoS One 2014; 9:e112059. [PMID: 25393531 PMCID: PMC4231169 DOI: 10.1371/journal.pone.0112059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/11/2014] [Indexed: 01/08/2023] Open
Abstract
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.
Collapse
|
224
|
Copper Deficiency with 20q Deletion and a Paroxysmal Nocturnal Haemoglobinuria Clone Presenting with Bicytopenia. Indian J Hematol Blood Transfus 2014; 30:372-5. [DOI: 10.1007/s12288-014-0419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/29/2014] [Indexed: 11/25/2022] Open
|
225
|
Jia B, Xie L, Zheng Q, Yang PF, Zhang WJ, Ding C, Qian AR, Shang P. A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs. PLoS One 2014; 9:e105604. [PMID: 25157571 PMCID: PMC4144882 DOI: 10.1371/journal.pone.0105604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 07/25/2014] [Indexed: 12/27/2022] Open
Abstract
A hypomagnetic field is an extremely weak magnetic field--it is considerably weaker than the geomagnetic field. In deep-space exploration missions, such as those involving extended stays on the moon and interplanetary travel, astronauts will experience abnormal space environments involving hypomagnetic fields and microgravity. It is known that microgravity in space causes bone loss, which results in decreased bone mineral density. However, it is unclear whether hypomagnetic fields affect the skeletal system. In the present study, we aimed to investigate the complex effects of a hypomagnetic field and microgravity on bone loss. To study the effects of hypomagnetic fields on the femoral characteristics of rats in simulated weightlessness, we established a rat model of hindlimb unloading that was exposed to a hypomagnetic field. We used a geomagnetic field-shielding chamber to generate a hypomagnetic field of <300 nT. The results show that hypomagnetic fields can exacerbate bone mineral density loss and alter femoral biomechanical characteristics in hindlimb-unloaded rats. The underlying mechanism might involve changes in biological rhythms and the concentrations of trace elements due to the hypomagnetic field, which would result in the generation of oxidative stress responses in the rat. Excessive levels of reactive oxygen species would stimulate osteoblasts to secrete receptor activator of nuclear factor-κB ligand and promote the maturation and activation of osteoclasts and thus eventually cause bone resorption.
Collapse
Affiliation(s)
- Bin Jia
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qi Zheng
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peng-fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wei-ju Zhang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chong Ding
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ai-rong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
226
|
Suliburska J, Bogdanski P, Jakubowski H. The influence of selected antihypertensive drugs on zinc, copper, and iron status in spontaneously hypertensive rats. Eur J Pharmacol 2014; 738:326-31. [PMID: 24927993 DOI: 10.1016/j.ejphar.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/25/2014] [Accepted: 06/02/2014] [Indexed: 11/17/2022]
Abstract
Mineral homeostasis in hypertensive patients may be affected by hypotensive drugs. The aim of this study was to assess the influence of selected antihypertensive drugs on mineral homeostasis in a rat model of hypertension. Eight-week-old male spontaneously hypertensive rats (SHRs) were treated with perindopril, metoprolol, indapamide, amlodipine, or no drug for 45 days. In another experiment, the SHRs were treated with indapamide or amlodipine in the presence of zinc and copper gluconate supplement. Lipids, glucose, and insulin levels along with superoxide dismutase and catalase activities were assayed in serum. Iron, zinc, and copper concentrations in serum, erythrocytes, and tissues were determined using the flame atomic absorption spectrometry. Blood pressure was measured using a tail-cuff plethysmograph. Treatment with indapamide and amlodipine was found to significantly lower zinc levels in serum, erythrocytes, livers, and spleens of the SHRs, as well as copper levels in the kidneys, compared with the control no-drug group. A markedly higher concentration of glucose was found in the indapamide-treated rats. Supplementing the indapamide-treated SHRs with zinc and copper gluconate resulted in a significant decrease in both systolic and diastolic blood pressure, and also lowered serum glucose and triglyceride concentrations and HOMA (homeostasis model assessment-insulin resistance) values. The results show that indapamide and amlodipine disturb zinc and copper homeostasis in SHRs. Supplementation with zinc and copper restores mineral homeostasis in SHRs treated with indapamide and amlodipine, and also corrects metabolic imbalances while improving the antihypertensive efficiency of indapamide.
Collapse
Affiliation(s)
- Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Poznan, Poland.
| | - Paweł Bogdanski
- Department of Internal Medicine, Metabolic Disorders and Hypertension, University of Medical Sciences, Poznan, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland; Institute of Bioorganic Chemistry, Poznan, Poland; Department of Microbiology & Molecular Genetics, Rutgers University-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA
| |
Collapse
|
227
|
Chege PM, McColl G. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson's disease. Front Aging Neurosci 2014; 6:89. [PMID: 24904406 PMCID: PMC4032941 DOI: 10.3389/fnagi.2014.00089] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/27/2014] [Indexed: 12/04/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. Additional clinical manifestations include non-motor symptoms such as insomnia, depression, psychosis, and cognitive impairment. PD patients with mild cognitive impairment have an increased risk of developing dementia. The affected brain regions also show perturbed metal ion levels, primarily iron. These observations have led to speculation that metal ion dyshomeostasis plays a key role in the neuronal death of this disease. However, the mechanisms underlying this metal-associated neurodegeneration have yet to be completely elucidated. Mammalian models have traditionally been used to investigate PD pathogenesis. However, alternate animal models are also being adopted, bringing to bear their respective experimental advantage. The nematode, Caenorhabditis elegans, is one such system that has well-developed genetics, is amenable to transgenesis and has relatively low associated experimental costs. C. elegans has a well characterized neuronal network that includes a simple DAergic system. In this review we will discuss mechanisms thought to underlie PD and the use of C. elegans to investigate these processes.
Collapse
Affiliation(s)
| | - Gawain McColl
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
| |
Collapse
|
228
|
Krajčiová D, Melník M, Havránek E, Forgácsová A, Mikuš P. Copper compounds in nuclear medicine and oncology. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.915966] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dominika Krajčiová
- Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Milan Melník
- Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Emil Havránek
- Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Andrea Forgácsová
- Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Peter Mikuš
- Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Faculty of Pharmacy, Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
229
|
Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 2014; 56:343-70. [PMID: 24628077 DOI: 10.1111/jpi.12132] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022]
Abstract
Metal exposure is associated with several toxic effects; herein, we review the toxicity mechanisms of cadmium, mercury, arsenic, lead, aluminum, chromium, iron, copper, nickel, cobalt, vanadium, and molybdenum as these processes relate to free radical generation. Free radicals can be generated in cells due to a wide variety of exogenous and endogenous processes, causing modifications in DNA bases, enhancing lipid peroxidation, and altering calcium and sulfhydryl homeostasis. Melatonin, an ubiquitous and pleiotropic molecule, exerts efficient protection against oxidative stress and ameliorates oxidative/nitrosative damage by a variety of mechanisms. Also, melatonin has a chelating property which may contribute in reducing metal-induced toxicity as we postulate here. The aim of this review was to highlight the protective role of melatonin in counteracting metal-induced free radical generation. Understanding the physicochemical insights of melatonin related to the free radical scavenging activity and the stimulation of antioxidative enzymes is of critical importance for the development of novel therapeutic strategies against the toxic action of these metals.
Collapse
Affiliation(s)
- Alejandro Romero
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
230
|
Nakagawa M, Nagai K, Minami I, Wakabayashi M, Torigoe J, Kawano T. Copper-deficiency anemia after esophagectomy: A pitfall of postoperative enteral nutrition through jejunostomy. Int J Surg Case Rep 2014; 5:311-4. [PMID: 24794023 PMCID: PMC4066572 DOI: 10.1016/j.ijscr.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Copper deficiency leads to functional disorders of hematopoiesis and neurological system. There have been some reports of copper deficiency occurring to the patients on enteral nutrition through a jejunostomy in long-term-care hospitals. However, it is extremely rare to find patients with copper deficiency several months after esophagectomy, regardless of enteral nutrition through the jejunostomy. To the best of our knowledge, this is the first case report of a patient who experienced copper-deficiency anemia after esophagectomy and subsequent enteral nutrition through the jejunostomy. PRESENTATION OF CASE A 73-year-old man presented with pulmonary failure after esophagectomy for esophageal cancer with video-assisted thoracoscopic surgery, and needed long-term artificial ventilator support. Nutritional management included enteral nutrition through a jejunostomy from the early postoperative period. Copper-deficiency anemia was detected 3 months postoperatively; therefore, copper supplementation with cocoa powder was performed, and both serum copper and hemoglobin levels subsequently recovered. DISCUSSION Copper-deficiency anemia has already been reported to occur in patients receiving enteral nutrition in long-term care hospitals. However, this is the first case report of copper deficiency after esophagectomy despite administration of standard enteral nutrition through the jejunostomy for several months. CONCLUSION It is extremely rare to find copper-deficiency anemia several months after esophagectomy followed by enteral nutrition through the jejunostomy. However, if anemia of unknown origin occurs in such patients, copper-deficiency anemia must be considered among the differential diagnoses.
Collapse
Affiliation(s)
- Masatoshi Nakagawa
- Department of Esophagogastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kagami Nagai
- Department of Esophagogastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isao Minami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Wakabayashi
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Torigoe
- Department of Clinical Nutrition, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Esophagogastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
231
|
Schlecht U, Suresh S, Xu W, Aparicio AM, Chu A, Proctor MJ, Davis RW, Scharfe C, St Onge RP. A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system. BMC Genomics 2014; 15:263. [PMID: 24708151 PMCID: PMC4023593 DOI: 10.1186/1471-2164-15-263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 03/10/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. RESULTS We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu's positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson's disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. CONCLUSIONS A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 855 S California Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
232
|
Chakraborty S, Tewari S, Sharma RK, Narula SC, Ghalaut PS, Ghalaut V. Impact of iron deficiency anemia on chronic periodontitis and superoxide dismutase activity: a cross-sectional study. J Periodontal Implant Sci 2014; 44:57-64. [PMID: 24778899 PMCID: PMC3999353 DOI: 10.5051/jpis.2014.44.2.57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/28/2014] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Both chronic periodontitis (CP) and iron deficiency anemia (IDA) induce oxidative stress in the body and cause an imbalance between reactive oxygen species and antioxidants, such as superoxide dismutase (SOD). This study explored the SOD enzyme activity of saliva and serum in CP patients with and without IDA and analyzed the impact of IDA on CP. METHODS A total of 82 patients were divided into four groups: control group (CG, 22), periodontally healthy IDA patients (IDA-PH, 20), CP patients (CP, 20), and IDA patients with CP (IDA-CP, 20). After clinical measurements and samplings, serum and salivary SOD levels were determined using an SOD assay kit. RESULTS IDA-CP patients exhibited a higher gingival index, bleeding on probing, probing pocket depth, and percentage (%) of sites with a clinical attachment loss (CAL) of ≥6 mm (P<0.008) than CP patients. The mean salivary and serum SOD levels were significantly lower in the IDA-PH, CP, and IDA-CP patients than in the CG group (P<0.008). A significant positive correlation between salivary and serum SOD activity was observed in IDA (P<0.05). Furthermore, serum and salivary SOD levels were significantly and negatively correlated with all periodontal parameters including the percentage of sites with CAL of 4-5 and ≥6 mm (P<0.05) except the significant correlation between salivary SOD activity and mean CAL and the percentage of sites with CAL of 4-5 mm (P>0.05) in these patients. CONCLUSIONS Within the limits of this study, it may be suggested that IDA patients with chronic periodontitis have more periodontal breakdowns than patients with chronic periodontitis. Serum and salivary SOD activity levels were lower in the IDA-PH, CP and IDA-CP groups than in the CG. Iron deficiency anemia influenced the serum SOD activity but did not seem to affect the salivary SOD activity in these patients.
Collapse
Affiliation(s)
- Souvik Chakraborty
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Shikha Tewari
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Rajinder Kumar Sharma
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Satish Chander Narula
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Pratap Singh Ghalaut
- Department of Medicine, Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Veena Ghalaut
- Department of Biochemistry, Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| |
Collapse
|
233
|
|
234
|
Bilandžić N, Gačić M, Đokić M, Sedak M, Šipušić ĐI, Končurat A, Gajger IT. Major and trace elements levels in multifloral and unifloral honeys in Croatia. J Food Compost Anal 2014. [DOI: 10.1016/j.jfca.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
235
|
Changes in antioxidant activity and phenolic acid composition of tarhana with steel-cut oats. Food Chem 2014; 145:777-83. [DOI: 10.1016/j.foodchem.2013.08.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 11/20/2022]
|
236
|
Oliveira F, Rocha S, Fernandes R. Iron metabolism: from health to disease. J Clin Lab Anal 2014; 28:210-8. [PMID: 24478115 DOI: 10.1002/jcla.21668] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Iron is vital for almost all living organisms by participating in a wide range of metabolic processes. However, iron concentration in body tissues must be tightly regulated since excessive iron may lead to microbial infections or cause tissue damage. Disorders of iron metabolism are among the most common human diseases and cover several conditions with varied clinical manifestations. METHODS An extensive literature review on the basic aspects of iron metabolism was performed, and the most recent findings on this field were highlighted as well. RESULTS New insights on iron metabolism have shed light into its real complexity, and its role in both healthy and pathological states has been recognized. Important discoveries about the iron regulatory machine and imbalances in its regulation have been made, which may lead in a near future to the development of new therapeutic strategies against iron disorders. Besides, the toxicity of free iron and its association with several pathologies has been addressed, although it requires further investigations. CONCLUSION This review will provide students in the fields of biochemistry and health sciences a brief and clear overview of iron physiology and toxicity, as well as imbalances in the iron homeostasis and associated pathological conditions.
Collapse
Affiliation(s)
- Fernando Oliveira
- Ciências Químicas e das Biomoléculas e Unidade de Mecanismos Moleculares da Doença do Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | | | | |
Collapse
|
237
|
Subhan MA, Saifur Rahman M, Alam K, Mahmud Hasan M. Spectroscopic analysis, DNA binding and antimicrobial activities of metal complexes with phendione and its derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:944-950. [PMID: 24184579 DOI: 10.1016/j.saa.2013.09.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/10/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
A novel ligand (E)-2-styryl-1H-imidazo [4, 5-f] [1, 10] phenanthroline(L) has been synthesized from 1,10-phenanthroline-5,6-dione. Its transition metal complexes, [FeLCl4][L-H] and [CuL2](NO3)2 have also been synthesized. Besides, three mixed ligand lanthanide metal complexes of Phendione and β-diketones have been synthesized, namely [Eu(TFN)3(Phendione)] (TFN = 4,4,4-trifluoro-1(2-napthyl)-1,3-butanedione), [Eu(HFT)3(Phendione)] (HFT = 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione), [Yb(HFA)3(Phendione)] (hfa = hexafluoroacetylacetonate). The synthesized ligands and metal complexes have been characterized by FTIR, UV-Visible spectroscopy and PL spectra. DNA binding activities of the complexes and the ligands have been studied by DNA gel electrophoresis. DNA binding studies showed that Fe complex of the synthesized ligand is more potent DNA binding and damaging agent compare to others under study. The synthesized compounds were also screened for their antimicrobial activities by disc diffusion method against three microbes, namely Escherichia coli, Staphylococcus aureus, Proteus penneri. The lanthanide complexes of phendione showed great antibacterial activities.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet, Bangladesh.
| | | | | | | |
Collapse
|
238
|
Copper and copper proteins in Parkinson's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:147251. [PMID: 24672633 PMCID: PMC3941957 DOI: 10.1155/2014/147251] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/09/2013] [Indexed: 02/07/2023]
Abstract
Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.
Collapse
|
239
|
Suliburska J, Bogdanski P, Krejpcio Z, Pupek-Musialik D, Jablecka A. The effects of L-arginine, alone and combined with vitamin C, on mineral status in relation to its antidiabetic, anti-inflammatory, and antioxidant properties in male rats on a high-fat diet. Biol Trace Elem Res 2014; 157:67-74. [PMID: 24293384 PMCID: PMC3895179 DOI: 10.1007/s12011-013-9867-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/19/2013] [Indexed: 01/04/2023]
Abstract
The aim of this study was to evaluate the influence of the intake of L-arginine alone and of L-arginine with vitamin C on mineral concentration in rats fed with a high-fat diet, and to assess the lipid glucose, insulin, and total antioxidant status (TAS) and tumor necrosis factor (TNF) alpha serum levels that result. Wistar rats were assigned to groups fed with either a standard control diet (C), a diet high in fat (FD), a diet high in fat with L-arginine, or a diet high in fat with L-arginine and vitamin C. After 6 weeks, the length and weight of the rats were measured, and the animals were euthanized. The liver, spleen, kidneys, pancreas, heart, and gonads were collected, as were blood samples. The total serum cholesterol, triglyceride, fasting glucose, insulin, TAS, and TNF alpha levels were measured. The tissue calcium, magnesium, iron, zinc, and copper concentrations were determined. It was found that L-arginine supplementation diminished the effect of the modified diet on the concentration of iron in the liver and spleen and of copper in heart. At the same time, it was observed that L-arginine supplementation reduced the effect of the high-fat diet on insulin, TNF alpha, and TAS. The combination of L-arginine and vitamin C produced a similar effect on the mineral levels in the tissues as did L-arginine used alone. Moreover, positive correlations between serum insulin and iron in the liver, between TNF alpha and iron in the liver, and between TNF alpha and copper in the heart were observed. The level of TAS in serum was inversely correlated with the copper level in the heart and the iron level in the liver. We concluded that the beneficial influence of L-arginine on insulin, TAS, and TNF alpha serum level is associated with changes in the iron and copper status in rats fed with a high-fat diet. No synergistic effect of L-arginine and vitamin C in the biochemical parameters or in the mineral status in rats fed with the modified diet was observed.
Collapse
Affiliation(s)
- Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland,
| | | | | | | | | |
Collapse
|
240
|
Argüello G, Martinez P, Peña J, Chen O, Platt F, Zanlungo S, González M. Hepatic metabolic response to restricted copper intake in a Niemann–Pick C murine model. Metallomics 2014; 6:1527-39. [DOI: 10.1039/c4mt00056k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Niemann–Pick C disease (NPC) is a vesicular trafficking disorder primarily caused by mutations in theNpc1gene and characterized by liver dysfunction and neuropathology.
Collapse
Affiliation(s)
- Graciela Argüello
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| | - Pablo Martinez
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
- Santiago, Chile
| | - Juan Peña
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
| | - Oscar Chen
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Silvana Zanlungo
- FONDAP-Center of Genome Regulation (CGR)
- Santiago, Chile
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
| | - Mauricio González
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| |
Collapse
|
241
|
Kilci A, Gocmen D. Phenolic acid composition, antioxidant activity and phenolic content of tarhana supplemented with oat flour. Food Chem 2013; 151:547-53. [PMID: 24423569 DOI: 10.1016/j.foodchem.2013.11.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 11/20/2022]
Abstract
In this study, oat flour (OF) was used to replace wheat flour in tarhana formulation at the levels of 10, 20, 30 and 40% (w/w). Control sample did not contain OF. The results showed that addition of OF caused increases in levels of phenolic acids within tarhana samples. The most abundant phenolic acids were vanillic and ferulic acids, and they were followed by gallic acid. Tarhana samples with OF also showed higher antioxidant activities than control sample did. Compared with the control sample, the total phenolic content level increased with the increase in the amount of OF. The results of sensory analysis showed that OF addition neither caused any undesirable taste nor an odor and panelists emphasised a sweet taste as the OF amounts were increased. Therefore, tarhana supplemented with OF can be claimed to be a good source of minerals, phenolics and antioxidants as compared to tarhana without OF.
Collapse
Affiliation(s)
- A Kilci
- Uludag University, Faculty of Agric., Dep. of Food Eng., 16059 Gorukle, Bursa, Turkey
| | - D Gocmen
- Uludag University, Faculty of Agric., Dep. of Food Eng., 16059 Gorukle, Bursa, Turkey.
| |
Collapse
|
242
|
Guo L, Panderi I, Yan DD, Szulak K, Li Y, Chen YT, Ma H, Niesen DB, Seeram N, Ahmed A, Yan B, Pantazatos D, Lu W. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS NANO 2013; 7:8780-93. [PMID: 24053214 PMCID: PMC3870179 DOI: 10.1021/nn403202w] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gold and copper nanoparticles have been widely investigated for photothermal therapy of cancer. However, degradability and toxicity of these nanoparticles remain concerns. Here, we compare hollow CuS nanoparticles (HCuSNPs) with hollow gold nanospheres (HAuNS) in similar particle sizes and morphology following intravenous administration to mice. The injected pegylated HCuSNPs (PEG-HCuSNPs) are eliminated through both hepatobiliary (67 percentage of injected dose, %ID) and renal (23 %ID) excretion within one month postinjection. By contrast, 3.98 %ID of Au is excreted from liver and kidney within one month after iv injection of pegylated HAuNS (PEG-HAuNS). Comparatively, PEG-HAuNS are almost nonmetabolizable, while PEG-HCuSNPs are considered biodegradable nanoparticles. PEG-HCuSNPs do not show significant toxicity by histological or blood chemistry analysis. Principal component analysis and 2-D peak distribution plots of data from matrix-assisted laser desorption ionization-time-of-flight imaging mass spectrometry (MALDI-TOF IMS) of liver tissues demonstrated a reversible change in the proteomic profile in mice receiving PEG-HCuSNPs. This is attributed to slow dissociation of Cu ion from CuS nanoparticles along with effective Cu elimination for maintaining homeostasis. Nonetheless, an irreversible change in the proteomic profile is observed in the liver from mice receiving PEG-HAuNS by analysis of MALDI-TOF IMS data, probably due to the nonmetabolizability of Au. This finding correlates with the elevated serum lactate dehydrogenase at 3 months after PEG-HAuNS injection, indicating potential long-term toxicity. The comparative results between the two types of nanoparticles will advance the development of HCuSNPs as a new class of biodegradable inorganic nanomaterials for photothermal therapy.
Collapse
Affiliation(s)
- Liangran Guo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Irene Panderi
- COBRE Center for Cancer Research and Development, Rhode Island Hospital, Rhode Island 02903, United States
- Department of Pharmacy, Division of Pharmaceutical Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Daisy D. Yan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Kevin Szulak
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yajuan Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yi-Tzai Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel B. Niesen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Navindra Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aftab Ahmed
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Dionysios Pantazatos
- COBRE Center for Cancer Research and Development, Rhode Island Hospital, Rhode Island 02903, United States
- Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, United States
| | - Wei Lu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding author: Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, USA. Phone: +1-401-874-5517. Fax: +1-401-874-5787.
| |
Collapse
|
243
|
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem Rev 2013; 114:815-62. [DOI: 10.1021/cr400135x] [Citation(s) in RCA: 1128] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlo Santini
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Maura Pellei
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Valentina Gandin
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| | | | | | - Cristina Marzano
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| |
Collapse
|
244
|
Effect of Nerium oleander (N.O.) leaves extract on serum hepcidin, total iron, and infiltration of ED1 positive cells in albino rat. BIOMED RESEARCH INTERNATIONAL 2013; 2013:125671. [PMID: 24069586 PMCID: PMC3773409 DOI: 10.1155/2013/125671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
Abstract
To gain insight into the hepatohistological alterations in noninjured rat liver, Nerium oleander (N.O.) leaves extract was injected intramuscularly to induce an acute phase reaction (APR). Histopathological changes were studied after 3, 12, and 24 h time course of sterile muscle abscess. Tissue integrity and any infiltration of inflammatory cells in the liver were investigated by Hematoxylin and Eosin and ED1 peroxidase stainings. The administration of N.O. leaves extract (10 mL/kg) in H & E stained sections showed a general vacuolization of cytoplasm resulting loss of polarity with prominent nucleoli after 3 h of induction. At 12 h, eccentric nuclei were also observed in the sections. Marked infiltration of leucocytes with predominate macrophages was also found after 24 h as seen by ED1 positive staining. In the present study, a possible relationship between serum hepcidin and total iron level was also investigated in vivo. An early increase of hepcidin and total iron level (3 h) with a maximum at 12 h (P < 0.01; P < 0.001) was observed. These changes indicate that sterile muscle abscess may induce APR resulting in hepatic damage which is evident with the recruitment of inflammatory cells into the organ.
Collapse
|
245
|
Liddell JR, Obando D, Liu J, Ganio G, Volitakis I, Mok SS, Crouch PJ, White AR, Codd R. Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease. Free Radic Biol Med 2013; 60:147-56. [PMID: 23391576 DOI: 10.1016/j.freeradbiomed.2013.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 02/03/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra region of the brain. Iron content is also elevated in this region in PD and is implicated in the pathobiology of the disease. Desferrioxamine B (DFOB) is a high-affinity iron chelator and has shown efficacy in animal models of Parkinson disease. The high water solubility of DFOB, however, attenuates its ability to enter the brain. In this study, we have conjugated DFOB to derivatives of adamantane or the clinical iron chelator deferasirox to produce lipophilic compounds designed to increase the bioavailability of DFOB to brain cells. We found that the novel compounds are highly effective in preventing iron-mediated paraquat and hydrogen peroxide toxicity in neuronal-like BE2-M17 dopaminergic cells, primary neurons, and iron-loaded or glutathione-depleted primary astrocytes. The compounds also alleviated paraquat toxicity in BE2-M17 cells that express the PD-causing A30P mutation of α-synuclein. This protection was ∼66-fold more potent than DFOB alone and also more effective than other cell-permeative metal chelators, clioquinol and phenanthroline. These results demonstrate that increasing the bioavailability of DFOB through the conjugation of lipophilic fragments greatly enhances its protective capacity. These novel compounds have potential as therapeutics for the treatment of PD and other conditions of Fe dyshomeostasis.
Collapse
Affiliation(s)
- Jeffrey R Liddell
- Department of Pathology, University of Melbourne, and Mental Health Research Institute, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect Immun 2013; 81:3395-405. [PMID: 23817615 DOI: 10.1128/iai.00420-13] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed "nutritional immunity." The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection.
Collapse
|
247
|
Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci U S A 2013; 110:10848-53. [PMID: 23754401 DOI: 10.1073/pnas.1308936110] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ∼40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.
Collapse
|
248
|
Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 2013; 5:18. [PMID: 23730287 PMCID: PMC3657624 DOI: 10.3389/fnagi.2013.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
The model species, Caenorhabditis elegans, has been used as a tool to probe for mechanisms underlying numerous neurodegenerative diseases. This use has been exploited to study neurodegeneration induced by metals. The allure of the nematode comes from the ease of genetic manipulation, the ability to fluorescently label neuronal subtypes, and the relative simplicity of the nervous system. Notably, C. elegans have approximately 60-80% of human genes and contain genes involved in metal homeostasis and transport, allowing for the study of metal-induced degeneration in the nematode. This review discusses methods to assess degeneration as well as outlines techniques for genetic manipulation and presents a comprehensive survey of the existing literature on metal-induced degeneration studies in the worm.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | | | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Sudipta Chakraborty
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pharmacology, the Kennedy Center for Research on Human Development, and the Center for Molecular Toxicology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
249
|
Copper and anesthesia: clinical relevance and management of copper related disorders. Anesthesiol Res Pract 2013; 2013:750901. [PMID: 23762044 PMCID: PMC3666360 DOI: 10.1155/2013/750901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/16/2013] [Indexed: 01/10/2023] Open
Abstract
Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.
Collapse
|
250
|
Li R, Fan H, Lu R, Gu Y, Si D, Liu C. DETERMINATION OF SCICINIB, A PROMISING THIOSEMICARBAZONE ANTICANCER CANDIDATE IN RAT PLASMA BY LC-MS/MS AND ITS APPLICATION TO A PRECLINICAL PHARMACOKINETICS STUDY. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.657734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rongshan Li
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) , School of Pharmacy, Tianjin Medical University , Tianjin , China
| | - Huirong Fan
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| | - Rong Lu
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| | - Yuan Gu
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| | - Duanyun Si
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| | - Changxiao Liu
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| |
Collapse
|