201
|
Retamal I, Hernández R, Velarde V, Oyarzún A, Martínez C, Julieta González M, Martínez J, Smith PC. Diabetes alters the involvement of myofibroblasts during periodontal wound healing. Oral Dis 2020; 26:1062-1071. [DOI: 10.1111/odi.13325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ignacio Retamal
- Faculty of Dentistry Universidad de los Andes Santiago Chile
| | - Romina Hernández
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - Victoria Velarde
- Faculty of Biological Sciences Pontificia Universidad Católica de Chile Santiago Chile
| | | | - Constanza Martínez
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - María Julieta González
- Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
| | - Jorge Martínez
- Cell Biology Laboratory Institute of Nutrition and Food Technology Universidad de Chile Santiago Chile
| | - Patricio C. Smith
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
202
|
Wang W, Ma BL, Xu CG, Zhou XJ. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153185. [PMID: 32120244 DOI: 10.1016/j.phymed.2020.153185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dihydroquercetin (DHQ) is an antifibrotic agent. However, whether DHQ can prevent renal fibrosis remains unknown. PURPOSE This study aimed to investigate the effects of DHQ on tubulointerstitial fibrosis and its underlying mechanisms in unilateral ureteral obstruction (UUO) mice in vivo and NRK-49F cells in vitro. METHODS In vivo, UUO mice received vehicle or DHQ treatment. In vitro, NRK-49F cells were pretreated with DHQ and exposed to transforming growth factor-β1 (TGF-β1). Changes in fibroblast activation, collagen synthesis, oxidative stress, and related signaling pathways were assessed by immunohistochemical staining, Western blot analysis, real-time reverse transcription-PCR, and fluorescence microscopy. RESULTS UUO induced tubular atrophy, inflammation, fibroblast differentiation into myofibroblast, and collagen deposition, whereas DHQ ameliorated these effects. UUO also resulted in decreased levels of nuclear factor-erythroid-2-related factor 2 (Nrf2), catalase, and heme oxygenase-1, but increased H2O2 and malondialdehyde levels. DHQ treatment corrected these changes. In vitro, the intracellular Nrf2 level of NRK-49F exposed to TGF-β1 decreased. However, DHQ rescued intracellular Nrf2 level and promoted nuclear translocation of Nrf2. DHQ scavenged TGF-β1-induced accumulation of reactive oxygen species, inhibited TGF-β1-induced Smad3 phosphorylation, and prevented TGF-β1-induced fibroblast activation and collagen synthesis in NRK-49F. Nrf2 knockdown could suppress the DHQ-mediated inhibitory effects on oxidative stress, Smad3 phosphorylation, fibroblast activation, and collagen deposition. Furthermore, DHQ ameliorated established renal fibrosis in UUO mice. CONCLUSIONS DHQ posed remarkable preventive and therapeutic effects on UUO-induced renal fibrosis and suppressed fibroblast activation by reducing oxidative stress and Smad3 phosphorylation via Nrf2 signaling. This study provided a mechanistic basis for the clinical application of DHQ in renal fibrosis treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 23022, China
| | - Bei-Lei Ma
- Department of Clinical Laboratory, Qilu Hospital of Shangdong University, Qingdao 266035, China
| | - Chang-Geng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26th Shengli Street, Wuhan 430014, China.
| | - Xiang-Jun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
203
|
Hietanen KE, Järvinen TAH, Huhtala H, Tolonen TT, Kaartinen IS. Histopathology and immunohistochemical analysis of 5-fluorouracil and triamcinolone treated keloids in double-blinded randomized controlled trial. Wound Repair Regen 2020; 28:385-399. [PMID: 32112591 DOI: 10.1111/wrr.12803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Keloids are a major complication related to surgical wound healing and very challenging condition to treat. Many treatment options are available, but the efficacy of the treatment is poor in most of cases and some keloids do not respond to the treatment at all. We compared the efficacy of intralesional 5-fluorouracil (5-FU) and triamcinolone (TAC) injections in a double-blind randomized controlled trial (RCT). Forty-three patients with 50 keloid scars were treated with either intralesional TAC or 5-FU-injections over 6 months. We wanted to find out whether biological features (cell density, cell proliferation rate, vascular density, myofibroblast numbers, steroid hormone receptor expression) in keloids could be used to predict the response to therapy and define the biological changes that take place in patients receiving a response. As there was no statistically significant difference in the remission rate between TAC and 5-FU treatments, all patients were combined and analyzed as responders and nonresponders. Although responders have slightly more myofibroblasts than the nonresponders in their keloids in the pretreatment biopsy samples, we could not identify a single predictive factor that could identify those patients that respond to drug injections. The good clinical response to therapy is associated with the simultaneous reduction of myofibroblasts in the keloid. This study demonstrates that myofibroblasts are reduced in number in those keloids that were responsive to therapy, and that both 5-FU and TAC injections are useful for keloid treatment.
Collapse
Affiliation(s)
- Kriistiina E Hietanen
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland.,Central Finland Health Care District, Jyväskylä, Finland
| | - Tero A H Järvinen
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Teemu T Tolonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Ilkka S Kaartinen
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
204
|
Saclier M, Lapi M, Bonfanti C, Rossi G, Antonini S, Messina G. The Transcription Factor Nfix Requires RhoA-ROCK1 Dependent Phagocytosis to Mediate Macrophage Skewing during Skeletal Muscle Regeneration. Cells 2020; 9:E708. [PMID: 32183151 PMCID: PMC7140652 DOI: 10.3390/cells9030708] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
Macrophages (MPs) are immune cells which are crucial for tissue repair. In skeletal muscle regeneration, pro-inflammatory cells first infiltrate to promote myogenic cell proliferation, then they switch into an anti-inflammatory phenotype to sustain myogenic cells differentiation and myofiber formation. This phenotypical switch is induced by dead cell phagocytosis. We previously demonstrated that the transcription factor Nfix, a member of the nuclear factor I (Nfi) family, plays a pivotal role during muscle development, regeneration and in the progression of muscular dystrophies. Here, we show that Nfix is mainly expressed by anti-inflammatory macrophages. Upon acute injury, mice deleted for Nfix in myeloid line displayed a significant defect in the process of muscle regeneration. Indeed, Nfix is involved in the macrophage phenotypical switch and macrophages lacking Nfix failed to adopt an anti-inflammatory phenotype and interact with myogenic cells. Moreover, we demonstrated that phagocytosis induced by the inhibition of the RhoA-ROCK1 pathway leads to Nfix expression and, consequently, to acquisition of the anti-inflammatory phenotype. Our study identified Nfix as a link between RhoA-ROCK1-dependent phagocytosis and the MP phenotypical switch, thus establishing a new role for Nfix in macrophage biology for the resolution of inflammation and tissue repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy; (M.S.); (M.L.); (C.B.); (G.R.); (S.A.)
| |
Collapse
|
205
|
Milenkovic U, Duponselle J, Bivalacqua TJ, Albersen M. Evolving therapies for Peyronie's disease: how can we work towards new drugs? Transl Androl Urol 2020; 9:S284-S294. [PMID: 32257869 PMCID: PMC7108979 DOI: 10.21037/tau.2019.08.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
Peyronie's disease (PD) is an idiopathic chronic fibrotic disease that causes a penile curvature (PC), subsequent erectile dysfunction (ED) and impaired sexual intercourse in patients. As of yet, there are no reliable non-surgical treatment options available. Intralesional injection with collagenase Clostridum Histolyticum has been FDA approved since 2013, but post-approval studies have not been unanimously positive. Moreover, it renders a curvature improvement of only 30% on average, usually still requiring surgical intervention to remedy PC. Therefore, there is a need for drugs which could prevent surgery altogether. Development of new drugs can either be through a target-based or phenotypic assay-based approach. The current in vivo model for PD is dependent on treatment of primary PD-derived fibroblasts with transforming growth factor-β1. Moreover, despite the existence of a genetic in vivo PD model, it does not allow for drug screening or testing. While some advances have been made in the past few years, new in vivo and in vivo systems and well-designed studies are urgently needed for the non-surgical treatment of PD.
Collapse
Affiliation(s)
- Uros Milenkovic
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
- Department of Urology, University Hospitals of Leuven, Leuven, Belgium
| | - Jolien Duponselle
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Trinity J. Bivalacqua
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maarten Albersen
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
- Department of Urology, University Hospitals of Leuven, Leuven, Belgium
| |
Collapse
|
206
|
Lu H, Chen R, Barnie PA, Tian Y, Zhang S, Xu H, Chakrabarti S, Su Z. Fibroblast transdifferentiation promotes conversion of M1 macrophages and replenishment of cardiac resident macrophages following cardiac injury in mice. Eur J Immunol 2020; 50:795-808. [PMID: 32068249 DOI: 10.1002/eji.201948414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Resident cardiac macrophages play important roles in homeostasis, maintenance of cardiac function, and tissue repair. After cardiac injury, monocytes infiltrate the tissue, undergo phenotypic and functional changes, and are involved in inflammatory injury and functional remodelling. However, the fate of cardiac infiltrating/polarized macrophages and the relationship between these cells and resident cardiac macrophage replenishment following injury remain unclear. Our results showed that angiotensin II induces cardiac fibroblast transdifferentiation into cardiac myofibroblasts (MFBs). In cocultures with MFBs and murine macrophages, the MFBs promoted macrophage polarization to M1 phenotype, followed by selective apoptosis, which was associated with TNF/TNFR1 axis and independent of NO production. Surprisingly, after 36 h of coculture, the surviving macrophages were converted to M2 phenotype and settled in heart, which was dependent on leptin produced by MFBs or polarized macrophages via the PI3K or Akt pathway. CCR2+ CD45.2+ cells adoptively transferred into CD45.1+ mice with viral myocarditis, differentiated into CD45.2+ CCR2+ CX3CR1+ M2 cells during the resolution of inflammation and settled within the heart. Our data highlight a novel mechanism related to the renewal or replenishment of cardiac resident macrophages following cardiac injury; and suggest that transdifferentiation of cardiac fibroblasts may promote the resolution of inflammation.
Collapse
Affiliation(s)
- Hongxiang Lu
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Rong Chen
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | | | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Subrata Chakrabarti
- Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China.,Laboratory Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
207
|
Adler M, Mayo A, Zhou X, Franklin RA, Meizlish ML, Medzhitov R, Kallenberger SM, Alon U. Principles of Cell Circuits for Tissue Repair and Fibrosis. iScience 2020; 23:100841. [PMID: 32058955 PMCID: PMC7005469 DOI: 10.1016/j.isci.2020.100841] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Tissue repair is a protective response after injury, but repetitive or prolonged injury can lead to fibrosis, a pathological state of excessive scarring. To pinpoint the dynamic mechanisms underlying fibrosis, it is important to understand the principles of the cell circuits that carry out tissue repair. In this study, we establish a cell-circuit framework for the myofibroblast-macrophage circuit in wound healing, including the accumulation of scar-forming extracellular matrix. We find that fibrosis results from multistability between three outcomes, which we term "hot fibrosis" characterized by many macrophages, "cold fibrosis" lacking macrophages, and normal wound healing. This framework clarifies several unexplained phenomena including the paradoxical effect of macrophage depletion, the limited time-window in which removing inflammation leads to healing, and why scar maturation takes months. We define key parameters that control the transition from healing to fibrosis, which may serve as potential targets for therapeutic reduction of fibrosis.
Collapse
Affiliation(s)
- Miri Adler
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Avi Mayo
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xu Zhou
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruth A Franklin
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Matthew L Meizlish
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefan M Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Uri Alon
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
208
|
Zhang Y, Zhu X, Huang X, Wei X, Zhao D, Jiang L, Zhao X, Du Y. Advances in Understanding the Effects of Erythropoietin on Renal Fibrosis. Front Med (Lausanne) 2020; 7:47. [PMID: 32154256 PMCID: PMC7046585 DOI: 10.3389/fmed.2020.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is the common manifestation of the pathogenesis of end-stage renal disease that results from different types of renal insult, and is a hallmark of chronic kidney disease (CKD). The main pathologic characteristics of renal fibrosis are renal interstitial fibroblast hyperplasia and the aberrant and excessive deposition of extracellular matrix, pathologies that lead to the destruction of normal renal tubules and interstitial structures. However, the biological significance of fibrosis during the progression of CKD is not clear, and there are no approved clinical treatments for delaying or reversing renal fibrosis. Studies of the mechanism of renal fibrosis and of potential measures of prevention and treatment have focused on erythropoietin (EPO), a hormone best known as a regulator of red blood cell production. These recent studies have found that EPO may also provide efficient protection against renal fibrosis. Future therapeutic approaches using EPO offer new hope for patients with CKD. The aim of the present review is to briefly discuss the role of EPO in renal fibrosis, to identify its possible mechanisms in preventing renal fibrosis, and to provide novel ideas for the use of EPO in future treatments of renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xiu Huang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Dan Zhao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxia Zhao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
209
|
Abstract
Systemic sclerosis (SSc) has the highest cause-specific mortality of all the connective tissue diseases, and the aetiology of this complex and heterogeneous condition remains an enigma. Current disease-modifying therapies for SSc predominantly target inflammatory and vascular pathways but have variable and unpredictable clinical efficacy, and none is curative. Moreover, many of these therapies possess undesirable safety profiles and have no appreciable effect on long-term mortality. This Review describes the most promising of the existing therapeutic targets for SSc and places them in the context of our evolving understanding of the pathophysiology of this disease. As well as taking an in-depth look at the immune, inflammatory, vascular and fibrotic pathways implicated in the pathogenesis of SSc, this Review discusses emerging treatment targets and therapeutic strategies. The article concludes with an overview of important unanswered questions in SSc research that might inform the design of future studies of treatments aimed at modifying the course of this disease.
Collapse
|
210
|
The Adipocyte Acquires a Fibroblast-Like Transcriptional Signature in Response to a High Fat Diet. Sci Rep 2020; 10:2380. [PMID: 32047213 PMCID: PMC7012923 DOI: 10.1038/s41598-020-59284-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Visceral white adipose tissue (vWAT) expands and undergoes extensive remodeling during diet-induced obesity. Much is known about the contribution of various stromal vascular cells to the remodeling process, but less is known of the changes that occur within the adipocyte as it becomes progressively dysfunctional. Here, we performed a transcriptome analysis of isolated vWAT adipocytes to assess global pathway changes occurring in response to a chronic high fat diet (HFD). The data demonstrate that the adipocyte responds to the HFD by adopting a fibroblast-like phenotype, characterized by enhanced expression of ECM, focal adhesion and cytoskeletal genes and suppression of many adipocyte programs most notably those associated with mitochondria. This study reveals that during obesity the adipocyte progressively becomes metabolically dysfunctional due to its acquisition of fibrogenic functions. We propose that mechano-responsive transcription factors such as MRTFA and SRF contribute to both upregulation of morphological genes as well as suppression of mitochondrial programs.
Collapse
|
211
|
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4105382. [PMID: 32064023 PMCID: PMC6998763 DOI: 10.1155/2020/4105382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis. Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin). Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct, hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the treatment of myocardial fibrosis.
Collapse
|
212
|
Nam H, Kundu A, Brinkley GJ, Chandrashekar DS, Kirkman RL, Chakravarthi BVSK, Orlandella RM, Norian LA, Sonpavde G, Ghatalia P, Fei F, Wei S, Varambally S, Sudarshan S. PGC1α suppresses kidney cancer progression by inhibiting collagen-induced SNAIL expression. Matrix Biol 2020; 89:43-58. [PMID: 31982456 DOI: 10.1016/j.matbio.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
The transcriptional events that promote invasive and metastatic phenotypes in renal cell carcinoma (RCC) remain poorly understood. Here we report that the decreased expression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1α) and the increased expression of several genes encoding collagen family members are associated with RCC tumor progression. PGC1α restoration attenuates invasive phenotypes and suppresses tumor progression in vivo. In contrast, collagens produced by RCC cells promote invasive and migratory phenotypes. PGC1α restoration suppresses the expression of collagens and tumor phenotypes via the induction of miR-29a. Furthermore, decreased collagens via the PGC1α/miR-29a axis suppresses collagen-mediated activation of discoidin domain receptor 1 (DDR1)/ERK signaling. In turn, the suppression of collagen/DDR1 signaling by PGC1α leads to decreased levels of the known EMT regulators SNAIL1 and 2. Collectively, our results demonstrate a novel role for PGC1α in the regulation of proinvasive SNAIL proteins.
Collapse
Affiliation(s)
- Hyeyoung Nam
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Anirban Kundu
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Garrett J Brinkley
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Richard L Kirkman
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Rachael M Orlandella
- Graduate Biomedical Science, Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lyse A Norian
- Department of Nutrition Sciences, Nutrition Obesity Research Center, University of Alabama at Birmingham, AL, 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Guru Sonpavde
- Department of Medical Oncology, Dana Farber Cancer Institute, MA, 02215, USA
| | - Pooja Ghatalia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Fei Fei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
213
|
Quan Y, Park W, Jin J, Kim W, Park SK, Kang KP. Sirtuin 3 Activation by Honokiol Decreases Unilateral Ureteral Obstruction-Induced Renal Inflammation and Fibrosis via Regulation of Mitochondrial Dynamics and the Renal NF-κBTGF-β1/Smad Signaling Pathway. Int J Mol Sci 2020; 21:ijms21020402. [PMID: 31936371 PMCID: PMC7014106 DOI: 10.3390/ijms21020402] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis is a common feature of all progressive chronic kidney diseases. Sirtuin 3 (SIRT3) is one of the mitochondrial sirtuins, and plays a role in the regulation of mitochondrial biogenesis, oxidative stress, fatty acid metabolism, and aging. Recently, honokiol (HKL), as a pharmaceutical SIRT3 activator, has been observed to have a protective effect against pressure overload-induced cardiac hypertrophy by increasing SIRT3 activity. In this study, we investigated whether HKL, as a SIRT3 activator, also has protective effects against unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial fibrosis through SIRT3-dependent regulation of mitochondrial dynamics and the nuclear factor-κB (NF-κB)/transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. We found that HKL decreased the UUO-induced increase in tubular injury and extracellular matrix (ECM) deposition in mice. HKL also decreased myofibroblast activation and proliferation in UUO kidneys and NRK-49F cells. Finally, we showed that HKL treatment decreased UUO-induced mitochondrial fission and promoted mitochondrial fusion through SIRT3-dependent effects. In conclusion, activation of SIRT3 via HKL treatment might have beneficial effects on UUO-induced renal fibrosis through SIRT3-dependent regulation of mitochondrial dynamics and the NF-κB/TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yi Quan
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Woong Park
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Jixiu Jin
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Won Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Sung Kwang Park
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: (S.K.P.); (K.P.K.); Tel.: +82-63-250-1683 (S.K.P.); +82-63-250-2361 (K.P.K.)
| | - Kyung Pyo Kang
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: (S.K.P.); (K.P.K.); Tel.: +82-63-250-1683 (S.K.P.); +82-63-250-2361 (K.P.K.)
| |
Collapse
|
214
|
Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020; 16:11-31. [PMID: 31792399 PMCID: PMC7913072 DOI: 10.1038/s41584-019-0324-5] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis. Myofibroblasts are scar-forming cells that are ultimately responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in fibrosis. Advances have been made in our understanding of the mechanisms that keep myofibroblasts in an activated state and control myofibroblast functions. However, the mechanisms that help myofibroblasts to persist in fibrotic tissues remain poorly understood. Myofibroblasts evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment, which can ultimately lead to the acquisition of a senescent phenotype. Growing evidence suggests that myofibroblasts and senescent myofibroblasts, rather than being resistant to apoptosis, are actually primed for apoptosis owing to concomitant activation of cell death signalling pathways; these cells are poised to apoptose when survival pathways are inhibited. This knowledge of apoptotic priming has paved the way for new therapies that trigger apoptosis in myofibroblasts by blocking pro-survival mechanisms, target senescent myofibroblast for apoptosis or promote the reprogramming of myofibroblasts into scar-resolving cells. These novel strategies are not only poised to prevent progressive tissue scarring, but also have the potential to reverse established fibrosis and to regenerate chronically injured tissues.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
215
|
Asano Y, Varga J. Rationally-based therapeutic disease modification in systemic sclerosis: Novel strategies. Semin Cell Dev Biol 2019; 101:146-160. [PMID: 31859147 DOI: 10.1016/j.semcdb.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a highly challenging chronic condition that is dominated by the pathogenetic triad of vascular damage, immune dysregulation/autoimmunity and fibrosis in multiple organs. A hallmark of SSc is the remarkable degree of molecular and phenotypic disease heterogeneity, which surpasses that of other complex rheumatic diseases. Disease trajectories in SSc are unpredictable and variable from patient to patient. Disease-modifying therapies for SSc are lacking, long-term morbidity is considerable and mortality remains unacceptably high. Currently-used empirical approaches to disease modification have modest and variable clinical efficacy and impact on survival, are expensive and frequently associated with unfavorable side effects, and none can be considered curative. However, research during the past several years is yielding significant advances with therapeutic potential. In particular, the application of unbiased omics-based discovery technologies to large and well-characterized SSc patient cohorts, coupled with hypothesis-testing experimental research using a variety of model systems is revealing new insights into SSc that allow formulation of a more nuanced appreciation of disease heterogeneity, and a deepening understanding of pathogenesis. Indeed, we are now presented with numerous novel and rationally-based strategies for targeted SSc therapy, several of which are currently, or expected to be shortly, undergoing clinical evaluation. In this review, we discuss promising novel therapeutic targets and rationally-based approaches to disease modification that have the potential to improve long-term outcomes in SSc.
Collapse
Affiliation(s)
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| |
Collapse
|
216
|
Ullm F, Riedl P, Machado de Amorim A, Patzschke A, Weiß R, Hauschildt S, Franke K, Anderegg U, Pompe T. 3D Scaffold-Based Macrophage Fibroblast Coculture Model Reveals IL-10 Dependence of Wound Resolution Phase. ACTA ACUST UNITED AC 2019; 4:e1900220. [PMID: 32293120 DOI: 10.1002/adbi.201900220] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Persistent inflammation and impaired repair in dermal wound healing are frequently associated with cell-cell and cell-matrix miscommunication. A direct coculture model of primary human myofibroblasts (MyoFB) and M-CSF-differentiated macrophages (M-Mɸ) in fibrillar three-dimensional Collagen I (Coll I) matrices is developed to study intercellular interactions. The coculture experiments reveal the number of M-Mɸ regulated MyoFB dedifferentiation in a dose-dependent manner. The amount of MyoFB decreases in dependence of the number of cocultured M-Mɸ, even in the presence of MyoFB-inducing transforming growth factor β1 (TGF-β1 ). Gene expression analysis of matrix proteins (collagen I, collagen III, ED-A-fibronectin) confirms the results of an altered MyoFB phenotype. Additionally, M-Mɸ is shown to be the main source of secreted cytokine interleukin-10 (IL-10), which is suggested to affect MyoFB dedifferentiation. These findings indicate a paracrine impact of IL-10 secretion by M-Mɸ on the MyoFB differentiation status counteracting the TGF-β1 -driven MyoFB activation. Hence, the in vitro coculture model simulates physiological situations during wound resolution and underlines the importance of paracrine IL-10 signals by M-Mɸ. In sum, the 3D Coll I-based matrices with a MyoFB-M-Mɸ coculture form a highly relevant biomimetic model of late stages of wound healing.
Collapse
Affiliation(s)
- Franziska Ullm
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103, Leipzig, Germany
| | - Philipp Riedl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103, Leipzig, Germany
| | | | - Aline Patzschke
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103, Leipzig, Germany
| | - Ronald Weiß
- Institute of Clinical Immunology, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Sunna Hauschildt
- Institute of Biology, Faculty of Life Sciences, Leipzig University, 04103, Leipzig, Germany
| | - Katja Franke
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venerology and Allergology, Medical Faculty, Leipzig University Leipzig, 04103, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103, Leipzig, Germany
| |
Collapse
|
217
|
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 2019; 101:78-86. [PMID: 31791693 DOI: 10.1016/j.semcdb.2019.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.
Collapse
Affiliation(s)
- Xuetao Sun
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada
| | - Blessing Nkennor
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Department of Biological Sciences, University of Toronto Scarborough, Canada
| | - Olya Mastikhina
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Kayla Soon
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Sara S Nunes
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
218
|
Medina-Buelvas DM, Estrada-Muñiz E, Rodríguez-Sosa M, Shibayama M, Vega L. Increased heart fibrosis and acute infection in a murine Chagas disease model associated with organophosphorus pesticide metabolite exposure. Sci Rep 2019; 9:17539. [PMID: 31772338 PMCID: PMC6879754 DOI: 10.1038/s41598-019-54218-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/10/2019] [Indexed: 12/16/2022] Open
Abstract
Some reports suggest that exposure to organophosphorus (OP) pesticides increases the incidence of infections. Ethylated dialkylphosphates (EtDAPs) are metabolites of OP pesticides widely distributed with immunomodulatory potential. Chagas disease is produced by Trypanosoma cruzi parasites, and resolution of this infection requires the activation of inflammatory macrophages (MΦ), which results in cardiac fibrosis. Some reports indicate that EtDAPs increase the amount of the anti-inflammatory alternatively activated MΦ (M2; CD206+F4/80+). Therefore, we analyzed the course of T. cruzi infection, MΦ profiles from peritoneal exudate cells (PECs), inflammatory cell infiltration and fibrosis in the heart of BALB/c mice exposed to diethyldithiophosphate (DEDTP), diethylthiophosphate (DETP) or diethylphosphate (DEP, 0.01 g/kg), common DAPs produced by OP pesticides, 24 h before infection with T. cruzi. We found that DEDTP increased the parasite burden in blood by 99% at the peak of the infection and enhanced the myocardial damage due to an increase in infiltrated inflammatory cells (induced by DEDTP or DETP) and fibrosis (induced by EtDAPs). In the PECs, exposure to EtDAPs increased the proportion of the MΦ subpopulations of M2a, M2b and M2d, which are associated with tissue repair. These results indicate that exposure to EtDAPs can exacerbate the acute phase of a parasitic infection and increase the long-term damage to the heart.
Collapse
Affiliation(s)
- Dunia Margarita Medina-Buelvas
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CP 07360, Gustavo A. Madero, Ciudad de México, México
| | - Elizabet Estrada-Muñiz
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CP 07360, Gustavo A. Madero, Ciudad de México, México
| | - Miriam Rodríguez-Sosa
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios 1, Los Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, México
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CP 07360, Gustavo A. Madero, Ciudad de México, México
| | - Libia Vega
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CP 07360, Gustavo A. Madero, Ciudad de México, México.
| |
Collapse
|
219
|
Rocher M, Robert PY, Desmoulière A. The myofibroblast, biological activities and roles in eye repair and fibrosis. A focus on healing mechanisms in avascular cornea. Eye (Lond) 2019; 34:232-240. [PMID: 31767967 DOI: 10.1038/s41433-019-0684-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023] Open
Abstract
Tissue healing is one of the mysteries of modern medicine. Healing involves complex processes and many cellular types, amongst which the myofibroblast plays a major role. In the eye, when needed, myofibroblasts can be found from the cornea to the retina, derived from a wide variety of different cells, and aimed at effectively repairing tissue damage. Myofibroblast differentiation requires transforming growth factor (TGF)-β1, the presence of specific extracellular matrix components such as the ED-A domain of fibronectin, and mechanical tension. Control of this process may, in some cases, be abnormal leading to development of fibrotic tissue, which alters and compromises the integrity of the original tissue. The eye is no exception to this rule with normal visual function, a highly demanding process, only possible in a fully integrated organ. The cornea, a transparent protective tissue and first dioptre of the eye, has the particularity of being entirely avascular and very richly innervated under normal physiological conditions. However, these anatomical features do not prevent it from developing myofibroblasts in the event of a deep corneal lesion. Activated by growth factors such as TGF-β1 and platelet-derived growth factor from the aqueous humour, tears or corneal epithelial cells, myofibroblasts can cause corneal scarring, sometimes with devastating consequences. Understanding the factors involved in healing and its signalling pathways, will potentially enable us to control corneal healing in the future, and thus avoid fibrotic ocular surface disease and the blindness that this may induce. Currently, this issue is the subject of very active research and development with the aim of discovering new antifibrotic therapies.
Collapse
Affiliation(s)
- Maxime Rocher
- Department of Ophthalmology, Limoges University Hospital, F-87000, Limoges, France
| | - Pierre-Yves Robert
- Department of Ophthalmology, Limoges University Hospital, F-87000, Limoges, France
| | - Alexis Desmoulière
- Department of Physiology and EA 6309, Faculties of Medicine and Pharmacy, University of Limoges, F-87000, Limoges, France.
| |
Collapse
|
220
|
Epidermolysis Bullosa-Associated Squamous Cell Carcinoma: From Pathogenesis to Therapeutic Perspectives. Int J Mol Sci 2019; 20:ijms20225707. [PMID: 31739489 PMCID: PMC6888002 DOI: 10.3390/ijms20225707] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.
Collapse
|
221
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|
222
|
Davis MN, Horne-Badovinac S, Naba A. In-silico definition of the Drosophila melanogaster matrisome. Matrix Biol Plus 2019; 4:100015. [PMID: 33543012 PMCID: PMC7852309 DOI: 10.1016/j.mbplus.2019.100015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
The extracellular matrix (ECM) is an assembly of hundreds of proteins that structurally supports the cells it surrounds and biochemically regulates their functions. Drosophila melanogaster has emerged as a powerful model organism to study fundamental mechanisms underlying ECM protein secretion, ECM assembly, and ECM roles in pathophysiological processes. However, as of today, we do not possess a well-defined list of the components forming the ECM of this organism. We previously reported the development of computational pipelines to define the matrisome - the ensemble of genes encoding ECM and ECM-associated proteins - of humans, mice, zebrafish and C. elegans. Using a similar approach, we report here that our pipeline has identified 641 genes constituting the Drosophila matrisome. We further classify these genes into different structural and functional categories, including an expanded way to classify genes encoding proteins forming apical ECMs. We illustrate how having a comprehensive list of Drosophila matrisome proteins can be used to annotate large proteomic datasets and identify unsuspected roles for the ECM in pathophysiological processes. Last, to aid the dissemination and usage of the proposed definition and categorization of the Drosophila matrisome by the scientific community, our list has been made available through three public portals: The Matrisome Project (http://matrisome.org), The FlyBase (https://flybase.org/), and GLAD (https://www.flyrnai.org/tools/glad/web/).
Collapse
Affiliation(s)
- Martin N. Davis
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
223
|
Zhu M, Li W, Dong X, Yuan X, Midgley AC, Chang H, Wang Y, Wang H, Wang K, Ma PX, Wang H, Kong D. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat Commun 2019; 10:4620. [PMID: 31604958 PMCID: PMC6789018 DOI: 10.1038/s41467-019-12545-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/12/2019] [Indexed: 12/22/2022] Open
Abstract
Implanted scaffolds with inductive niches can facilitate the recruitment and differentiation of host cells, thereby enhancing endogenous tissue regeneration. Extracellular matrix (ECM) scaffolds derived from cultured cells or natural tissues exhibit superior biocompatibility and trigger favourable immune responses. However, the lack of hierarchical porous structure fails to provide cells with guidance cues for directional migration and spatial organization, and consequently limit the morpho-functional integration for oriented tissues. Here, we engineer ECM scaffolds with parallel microchannels (ECM-C) by subcutaneous implantation of sacrificial templates, followed by template removal and decellularization. The advantages of such ECM-C scaffolds are evidenced by close regulation of in vitro cell activities, and enhanced cell infiltration and vascularization upon in vivo implantation. We demonstrate the versatility and flexibility of these scaffolds by regenerating vascularized and innervated neo-muscle, vascularized neo-nerve and pulsatile neo-artery with functional integration. This strategy has potential to yield inducible biomaterials with applications across tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Meifeng Zhu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Wen Li
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| | - Xianhao Dong
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| | - Xingyu Yuan
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| | - Adam C Midgley
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| | - Hong Chang
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Haoyu Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Kai Wang
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China.
| | - Peter X Ma
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular Science and Engineering Centre, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Deling Kong
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China.
- Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
224
|
Insights into myofibroblasts and their activation in scleroderma: opportunities for therapy? Curr Opin Rheumatol 2019; 30:581-587. [PMID: 30074511 DOI: 10.1097/bor.0000000000000543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The persistence of myofibroblasts is a key feature of fibrosis and in fibrotic diseases including scleroderma. This review evaluates the emerging concepts of the origins and cell populations that contribute to myofibroblasts and the molecular mechanisms that govern phenotypic conversion and that highlight opportunities for new interventional treatments in scleroderma. RECENT FINDINGS Studies have defined heterogeneity in fibroblast-like cells that can develop into myofibroblast in normal wound healing, scarring and fibrosis. Characterizing these distinct cell populations and their behaviour has been a key focus. In addition, the overarching impact of epigenetic regulation of genes associated with inflammatory responses, cell signalling and cell communication and the extracellular matrix (ECM) has provided important insights into the formation of myofibroblast and their function. Important new studies include investigations into the relationship between inflammation and myofibroblast production and further evidence has been gathered that reveal the importance of ECM microenvironment, biomechanical sensing and mechanotransduction. SUMMARY This review highlights our current understanding and outlines the increasing complexity of the biological processes that leads to the appearance of the myofibroblast in normal functions and in diseased tissues. We also focus on areas of special interest in particular, studies that have therapeutic potential in fibrosis and scleroderma.
Collapse
|
225
|
Milenkovic U, Ilg MM, Cellek S, Albersen M. Pathophysiology and Future Therapeutic Perspectives for Resolving Fibrosis in Peyronie’s Disease. Sex Med Rev 2019; 7:679-689. [DOI: 10.1016/j.sxmr.2019.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
|
226
|
Matei AE, Chen CW, Kiesewetter L, Györfi AH, Li YN, Trinh-Minh T, Xu X, Tran Manh C, van Kuppevelt T, Hansmann J, Jüngel A, Schett G, Groeber-Becker F, Distler JHW. Vascularised human skin equivalents as a novel in vitro model of skin fibrosis and platform for testing of antifibrotic drugs. Ann Rheum Dis 2019; 78:1686-1692. [PMID: 31540936 DOI: 10.1136/annrheumdis-2019-216108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Fibrosis is a complex pathophysiological process involving interplay between multiple cell types. Experimental modelling of fibrosis is essential for the understanding of its pathogenesis and for testing of putative antifibrotic drugs. However, most current models employ either phylogenetically distant species or rely on human cells cultured in an artificial environment. Here we evaluated the potential of vascularised in vitro human skin equivalents as a novel model of skin fibrosis and a platform for the evaluation of antifibrotic drugs. METHODS Skin equivalents were assembled on a three-dimensional extracellular matrix by sequential seeding of endothelial cells, fibroblasts and keratinocytes. Fibrotic transformation on exposure to transforming growth factor-β (TGFβ) and response to treatment with nintedanib as an established antifibrotic agent were evaluated by quantitative polymerase chain reaction (qPCR), capillary Western immunoassay, immunostaining and histology. RESULTS Skin equivalents perfused at a physiological pressure formed a mature, polarised epidermis, a stratified dermis and a functional vessel system. Exposure of these models to TGFβ recapitulated key features of SSc skin with activation of TGFβ pathways, fibroblast to myofibroblast transition, increased release of collagen and excessive deposition of extracellular matrix. Treatment with the antifibrotic agent nintedanib ameliorated this fibrotic transformation. CONCLUSION Our data provide evidence that vascularised skin equivalents can replicate key features of fibrotic skin and may serve as a platform for evaluation of antifibrotic drugs in a pathophysiologically relevant human setting.
Collapse
Affiliation(s)
- Alexandru-Emil Matei
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Lisa Kiesewetter
- Translational Center Würzburg, Fraunhofer Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Yi-Nan Li
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Xiaohan Xu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Cuong Tran Manh
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Toin van Kuppevelt
- Radboud Institute for Molecular Life Sciences, Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Hansmann
- Translational Center Würzburg, Fraunhofer Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany.,University for Applied Sciences Würzburg-Schweinfurt, Wurzburg, Germany
| | - Astrid Jüngel
- Center of Experimental Rheumatology, University Hospital Zurich/Zurich Center of Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Florian Groeber-Becker
- Translational Center Würzburg, Fraunhofer Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany.,Department for Tissue Engineering and Regenerative Medicine, Würzburg University Medical Center, Würzburg, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
227
|
Murphy-Ullrich JE. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J Histochem Cytochem 2019; 67:683-699. [PMID: 31116066 PMCID: PMC6713974 DOI: 10.1369/0022155419851103] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Thrombospondin 1 (TSP1) is a matricellular extracellular matrix protein that has diverse roles in regulating cellular processes important for the pathogenesis of fibrotic diseases. We will present evidence for the importance of TSP1 control of latent transforming growth factor beta activation in renal fibrosis with an emphasis on diabetic nephropathy. Other functions of TSP1 that affect renal fibrosis, including regulation of inflammation and capillary density, will be addressed. Emerging roles for TSP1 N-terminal domain regulation of collagen matrix assembly, direct effects of TSP1-collagen binding, and intracellular functions of TSP1 in mediating endoplasmic reticulum stress responses in extracellular matrix remodeling and fibrosis, which could potentially affect renal fibrogenesis, will also be discussed. Finally, we will address possible strategies for targeting TSP1 functions to treat fibrotic renal disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
228
|
Cardiac Fibroblast to Myofibroblast Phenotype Conversion-An Unexploited Therapeutic Target. J Cardiovasc Dev Dis 2019; 6:jcdd6030028. [PMID: 31426390 PMCID: PMC6787657 DOI: 10.3390/jcdd6030028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrosis occurs when the synthesis of extracellular matrix outpaces its degradation, and over time can negatively impact tissue and organ function. In the case of cardiac fibrosis, contraction and relaxation of the heart can be impaired to the point of precipitating heart failure, while at the same time fibrosis can result in arrhythmias due to altered electrical properties of the myocardium. The critical event in the evolution of cardiac fibrosis is the phenotype conversion of cardiac fibroblasts to their overly-active counterparts, myofibroblasts: cells demarked by their expression of novel markers such as periostin, by their gain of contractile activity, and by their pronounced and prolonged increase in the production of extracellular matrix components such as collagens. The phenotype change is dramatic, and can be triggered by many stimuli, including mechanical force, inflammatory cytokines, and growth factors. This review will explore fibroblast to myofibroblast transition mechanisms and will consider the therapeutic potential of targeting this process as a means to arrest or even reverse cardiac fibrosis.
Collapse
|
229
|
Chiarelli N, Ritelli M, Zoppi N, Colombi M. Cellular and Molecular Mechanisms in the Pathogenesis of Classical, Vascular, and Hypermobile Ehlers‒Danlos Syndromes. Genes (Basel) 2019; 10:E609. [PMID: 31409039 PMCID: PMC6723307 DOI: 10.3390/genes10080609] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
The Ehlers‒Danlos syndromes (EDS) constitute a heterogenous group of connective tissue disorders characterized by joint hypermobility, skin abnormalities, and vascular fragility. The latest nosology recognizes 13 types caused by pathogenic variants in genes encoding collagens and other molecules involved in collagen processing and extracellular matrix (ECM) biology. Classical (cEDS), vascular (vEDS), and hypermobile (hEDS) EDS are the most frequent types. cEDS and vEDS are caused respectively by defects in collagen V and collagen III, whereas the molecular basis of hEDS is unknown. For these disorders, the molecular pathology remains poorly studied. Herein, we review, expand, and compare our previous transcriptome and protein studies on dermal fibroblasts from cEDS, vEDS, and hEDS patients, offering insights and perspectives in their molecular mechanisms. These cells, though sharing a pathological ECM remodeling, show differences in the underlying pathomechanisms. In cEDS and vEDS fibroblasts, key processes such as collagen biosynthesis/processing, protein folding quality control, endoplasmic reticulum homeostasis, autophagy, and wound healing are perturbed. In hEDS cells, gene expression changes related to cell-matrix interactions, inflammatory/pain responses, and acquisition of an in vitro pro-inflammatory myofibroblast-like phenotype may contribute to the complex pathogenesis of the disorder. Finally, emerging findings from miRNA profiling of hEDS fibroblasts are discussed to add some novel biological aspects about hEDS etiopathogenesis.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy.
| |
Collapse
|
230
|
Chellini F, Tani A, Vallone L, Nosi D, Pavan P, Bambi F, Zecchi-Orlandini S, Sassoli C. Platelet-Rich Plasma and Bone Marrow-Derived Mesenchymal Stromal Cells Prevent TGF-β1-Induced Myofibroblast Generation but Are Not Synergistic when Combined: Morphological in vitro Analysis. Cells Tissues Organs 2019; 206:283-295. [PMID: 31382258 DOI: 10.1159/000501499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
The persistence of activated myofibroblasts is a hallmark of fibrosis of many organs. Thus, the modulation of the generation/functionality of these cells may represent a strategical anti-fibrotic therapeutic option. Bone marrow-derived mesenchymal stromal cell (MSC)-based therapy has shown promising clues, but some criticisms still limit the clinical use of these cells, including the need to avoid xenogeneic compound contamination for ex vivo cell amplification and the identification of appropriate growth factors acting as a pre-conditioning agent and/or cell delivery vehicle during transplantation, thus enabling the improvement of cell survival in the host tissue microenvironment. Many studies have demonstrated the ability of platelet-rich plasma (PRP), a source of many biologically active molecules, to positively influence MSC proliferation, survival, and functionality, as well as its anti-fibrotic potential. Here we investigated the effects of PRP, murine and human bone marrow-derived MSCs, and of the combined treatment PRP/MSCs on in vitro differentiation of murine NIH/3T3 and human HDFα fibroblasts to myofibroblasts induced by transforming growth factor (TGF)-β1, a well-known pro-fibrotic agent. The myofibroblastic phenotype was evaluated morphologically (cell shape and actin cytoskeleton assembly) and immunocytochemically (vinculin-rich focal adhesion clustering, α-smooth muscle actin and type-1 collagen expression). We found that PRP and MSCs, both as single treatments and in combination, were able to prevent the TGF-β1-induced fibroblast-myofibroblast transition. Unexpectedly, the combination PRP/MSCs had no synergistic effects. In conclusion, within the limitations related to an in vitro experimentation, our study may contribute to providing an experimental background for supporting the anti-fibrotic potential of the combination PRP/MSCs which, once translated "from bench to bedside," could potentially offer advantages over the single treatments.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Larissa Vallone
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Paola Pavan
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy,
| |
Collapse
|
231
|
Best KT, Lee FK, Knapp E, Awad HA, Loiselle AE. Deletion of NFKB1 enhances canonical NF-κB signaling and increases macrophage and myofibroblast content during tendon healing. Sci Rep 2019; 9:10926. [PMID: 31358843 PMCID: PMC6662789 DOI: 10.1038/s41598-019-47461-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/17/2019] [Indexed: 01/03/2023] Open
Abstract
Flexor tendon injuries heal with excessive scar tissue that limits range of motion and increases incidence of re-rupture. The molecular mechanisms that govern tendon healing are not well defined. Both the canonical nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways have been implicated in tendon healing. The gene NFKB1 (proteins p105/p50) is involved in both NF-κB and MAPK signaling cascades. In the present study, we tested the hypothesis that global NFKB1 deletion would increase activation of both NF-κB and MAPK through loss of signaling repressors, resulting in increased matrix deposition and altered biomechanical properties. As hypothesized, NFKB1 deletion increased activation of both NF-κB and MAPK signaling. While gliding function was not affected, NFKB1 deletion resulted in tendons that were significantly stiffer and trending towards increased strength by four weeks post-repair. NFKB1 deletion resulted in increased collagen deposition, increase macrophage recruitment, and increased presence of myofibroblasts. Furthermore, NFKB1 deletion increased expression of matrix-related genes (Col1a1, Col3a1), macrophage-associated genes (Adgre1, Ccl2), myofibroblast markers (Acta2), and general inflammation (Tnf). Taken together, these data suggest that increased activation of NF-κB and MAPK via NFKB1 deletion enhance macrophage and myofibroblast content at the repair, driving increased collagen deposition and biomechanical properties.
Collapse
Affiliation(s)
- Katherine T Best
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
| | - Fredella K Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
| | - Emma Knapp
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, United States of America.,Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, United States of America.
| |
Collapse
|
232
|
Distinct Patterns of Hair Graft Survival After Transplantation Into 2 Nonhealing Ulcers: Is Location Everything? Dermatol Surg 2019; 45:557-565. [PMID: 30608290 DOI: 10.1097/dss.0000000000001748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studies highlighting the role of hair follicles (HFs) in wound healing have raised the challenge of bringing this knowledge to clinical applications. A successful translation is the transplantation of scalp HFs into chronic wounds to promote healing. OBJECTIVE To characterize scar formation and hair growth in nonhealing ulcers after transplantation. PATIENTS AND METHODS Nonhealing ulcers were treated with hair transplantation to promote wound healing. Hair follicles were harvested from the patient's scalp and inserted into the wound bed. Wound repair and hair growth were assessed clinically. Further analyses were performed in situ, using biopsies from the central and peripheral scar. RESULTS Rapid wound closure and differences of scar quality and hair growth between the central and peripheral wound areas were observed: the periphery healed with no hair shaft survival and an almost scarless appearance, the center healed with a fibrotic scar, with some hair shaft growth. In situ analyses revealed differences in dermal remodeling and collagen formation between central and peripheral scar areas. CONCLUSION Besides confirming the effectiveness of this therapy to promote wound healing in human skin, location-dependent disparities in scar quality and hair growth raise the intriguing question whether they are due to clinically important differences in mechanical forces and/or wound microenvironments between ulcer center and periphery.
Collapse
|
233
|
Bagnasco SM, Rosenberg AZ. Biomarkers of Chronic Renal Tubulointerstitial Injury. J Histochem Cytochem 2019; 67:633-641. [PMID: 31242044 DOI: 10.1369/0022155419861092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Progression of renal parenchyma injury is characterized by increasing interstitial fibrosis and tubular atrophy, irrespective of the cause. Histopathologic assessment of renal tissue obtained by biopsy remains the gold standard for determining the presence and extent of tubulointerstitial scarring. Discovery of robust non-invasive means for capturing a snapshot and for longitudinal monitoring of parenchymal deterioration has been the focus of intense multimodal effort by investigators within the renal community and beyond. Research in this field has included the use of in vitro and in vivo experimental models and has fostered the development and evaluation of tissue and biofluid assays for novel analytes with potential translation to the diagnosis and prognosis of kidney disease. Here, we examine recent advances in the search of "biomarkers" for detection of renal tubulointerstitial scarring and prediction of renal outcome in human renal disease.
Collapse
Affiliation(s)
- Serena M Bagnasco
- Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Avi Z Rosenberg
- Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
234
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
235
|
Karppinen SM, Heljasvaara R, Gullberg D, Tasanen K, Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000Res 2019; 8. [PMID: 31231509 PMCID: PMC6556993 DOI: 10.12688/f1000research.18293.1] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
The efficient healing of skin wounds is crucial for securing the vital barrier function of the skin, but pathological wound healing and scar formation are major medical problems causing both physiological and psychological challenges for patients. A number of tightly coordinated regenerative responses, including haemostasis, the migration of various cell types into the wound, inflammation, angiogenesis, and the formation of the extracellular matrix, are involved in the healing process. In this article, we summarise the central mechanisms and processes in excessive scarring and acute wound healing, which can lead to the formation of keloids or hypertrophic scars, the two types of fibrotic scars caused by burns or other traumas resulting in significant functional or aesthetic disadvantages. In addition, we discuss recent developments related to the functions of activated fibroblasts, the extracellular matrix and mechanical forces in the wound environment as well as the mechanisms of scarless wound healing. Understanding the different mechanisms of wound healing is pivotal for developing new therapies to prevent the fibrotic scarring of large skin wounds.
Collapse
Affiliation(s)
- Sanna-Maria Karppinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Biomedicine, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Kaisa Tasanen
- Oulu Center for Cell-Matrix Research, PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center and Department of Dermatology, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
236
|
Weigle S, Martin E, Voegtle A, Wahl B, Schuler M. Primary cell-based phenotypic assays to pharmacologically and genetically study fibrotic diseases in vitro. J Biol Methods 2019; 6:e115. [PMID: 31453262 PMCID: PMC6706098 DOI: 10.14440/jbm.2019.285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022] Open
Abstract
Ongoing tissue repair and formation and deposition of collagen-rich extracellular matrix in tissues and organs finally lead to fibrotic lesions and destruction of normal tissue/organ architecture and function. In the lung, scarring is observed in asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis to various degrees. At the cellular level immune cells, fibroblasts and epithelial cells are all involved in fibrotic processes. Mechanistically, fibroblast to myofibroblast transformation and epithelial to mesenchymal transition are major drivers of fibrosis. Amongst others, both processes are controlled by transforming growth factor beta-1 (TGFβ-1), a growth factor upregulated in idiopathic pulmonary fibrosis lungs. Phenotypic assays with primary human cells and complex disease-relevant readouts become increasingly important in modern drug discovery processes. We describe high-content screening based phenotypic assays with primary normal human lung fibroblasts and primary human airway epithelial cells. For both cell types, TGFβ-1 stimulation is used to induce fibrotic phenotypes in vitro, with alpha smooth muscle actin and collagen-I as readouts for FMT and E-cadherin as a readout for EMT. For each assay, a detailed image analysis protocols is described. Treatment of both cell types with TGFβ-1 and a transforming growth factor beta receptor inhibitor verifies the suitability of the assays for pharmacological interventions. In addition, the assays are compatible for siRNA and Cas9-ribonucleoprotein transfections, and thus are useful for genetic target identification/validation by modulating gene expression.
Collapse
Affiliation(s)
| | | | | | | | - Michael Schuler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department of Drug Discovery Sciences, 88397 Biberach an der Riss, Germany
| |
Collapse
|
237
|
Cañedo-Dorantes L, Cañedo-Ayala M. Skin Acute Wound Healing: A Comprehensive Review. Int J Inflam 2019; 2019:3706315. [PMID: 31275545 PMCID: PMC6582859 DOI: 10.1155/2019/3706315] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Experimental work of the last two decades has revealed the general steps of the wound healing process. This complex network has been organized in three sequential and overlapping steps. The first step of the inflammatory phase is an immediate response to injury; primary sensory neurons sense injury and send danger signals to the brain, to stop bleeding and start inflammation. The following target of the inflammatory phase, led by the peripheral blood mononuclear cells, is to eliminate the pathogens and clean the wound. Once this is completed, the inflammatory phase is resolved and homeostasis is restored. The aim of the proliferative phase, the second phase, is to repair wound damage and begin tissue remodeling. Fibroplasia, reepithelialization, angiogenesis, and peripheral nerve repair are the central actions of this phase. Lastly, the objective of the final phase is to complete tissue remodeling and restore skin integrity. This review provides present day information regarding the status of the participant cells, extracellular matrix, cytokines, chemokines, and growth factors, as well as their interactions with the microenvironment during the wound healing process.
Collapse
Affiliation(s)
- Luis Cañedo-Dorantes
- Research Division, Faculty of Medicine, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
238
|
Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun 2019; 10:1850. [PMID: 31015429 PMCID: PMC6478854 DOI: 10.1038/s41467-019-09709-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Macrophage (Mϕ)-fibroblast interactions coordinate tissue repair after injury whereas miscommunications can result in pathological healing and fibrosis. We show that contracting fibroblasts generate deformation fields in fibrillar collagen matrix that provide far-reaching physical cues for Mϕ. Within collagen deformation fields created by fibroblasts or actuated microneedles, Mϕ migrate towards the force source from several hundreds of micrometers away. The presence of a dynamic force source in the matrix is critical to initiate and direct Mϕ migration. In contrast, collagen condensation and fiber alignment resulting from fibroblast remodelling activities or chemotactic signals are neither required nor sufficient to guide Mϕ migration. Binding of α2β1 integrin and stretch-activated channels mediate Mϕ migration and mechanosensing in fibrillar collagen ECM. We propose that Mϕ mechanosense the velocity of local displacements of their substrate, allowing contractile fibroblasts to attract Mϕ over distances that exceed the range of chemotactic gradients. Macrophages play an important role in wound healing but the guidance cues driving macrophages to sites of repair are still not clear. Here the authors discover that macrophages are attracted to contracting fibroblasts by responding to locally sensed displacements of collagen fibres.
Collapse
|
239
|
Best KT, Loiselle AE. Scleraxis lineage cells contribute to organized bridging tissue during tendon healing and identify a subpopulation of resident tendon cells. FASEB J 2019; 33:8578-8587. [PMID: 30951381 DOI: 10.1096/fj.201900130rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During tendon healing, it is postulated that tendon cells drive tissue regeneration, whereas extrinsic cells drive pathologic scar formation. Tendon cells are frequently described as a homogenous, fibroblast population that is positive for the marker Scleraxis (Scx). It is controversial whether tendon cells localize within the forming scar tissue during adult tendon healing. We have previously demonstrated that S100 calcium-binding protein A4 (S100a4) is a driver of tendon scar formation and marks a subset of tendon cells. The relationship between Scx and S100a4 has not been explored. In this study, we assessed the localization of Scx lineage cells (ScxLin) following adult murine flexor tendon repair and established the relationship between Scx and S100a4 throughout both homeostasis and healing. We showed that adult ScxLin localize within the scar tissue and organize into a cellular bridge during tendon healing. Additionally, we demonstrate that markers Scx and S100a4 label distinct populations in tendon during homeostasis and healing, with Scx found in the organized bridging tissue and S100a4 localized throughout the entire scar region. These studies define a heterogeneous tendon cell environment and demonstrate discrete contributions of subpopulations during healing. These data enhance our understanding and ability to target the cellular environment of the tendon.-Best, K. T., Loiselle, A. E. Scleraxis lineage cells contribute to organized bridging tissue during tendon healing and identify a subpopulation of resident tendon cells.
Collapse
Affiliation(s)
- Katherine T Best
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
240
|
Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 2019; 379:119-128. [PMID: 30910400 DOI: 10.1016/j.yexcr.2019.03.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Activated fibroblasts promote physiological wound repair following tissue injury. However, dysregulation of fibroblast activation contributes to the development of fibrosis by enhanced production and contraction of collagen-rich extracellular matrix. At the peak of their activities, fibroblasts undergo phenotypic conversion into highly contractile myofibroblasts by developing muscle-like features, including formation of contractile actin-myosin bundles. The phenotype and function of fibroblasts and myofibroblasts are mechanically regulated by matrix stiffness using a feedback control system that is integrated with the progress of tissue remodelling. The actomyosin contraction machinery and cell-matrix adhesion receptors are critical elements that are needed for mechanosensing by fibroblasts and the translation of mechanical signals into biological responses. Here, we focus on mechanical and chemical regulation of collagen contraction by fibroblasts and the involvement of these factors in their phenotypic conversion to myofibroblasts.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | | | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
241
|
Milenkovic U, Ilg M, Cellek S, Albersen M. What role do pharmaceuticals play in the treatment of Peyronie's disease and is there a need for new emerging drugs? Expert Opin Emerg Drugs 2019; 24:1-4. [PMID: 30845848 DOI: 10.1080/14728214.2019.1591370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Finding novel medical treatment for Peyronie's disease (PD) has suffered from similar limitations and difficulties as other fibrotic diseases.Areas covered: Underlying fibrosis, there is a vastly complex intertwining of several pathways. Focusing on a single target during antifibrotic drug development has not led to the development of many efficacious drugs, especially in PD. Inhibiting one cog in this large machinery usually leads to activation of compensatory mechanisms.Expert opinion: Novel strategies in drug discovery such as phenotypical drug screening and gene expression profiling technologies could provide a solution for this impasse.
Collapse
Affiliation(s)
- U Milenkovic
- a Department of Urology , University Hospitals Leuven , Leuven , Belgium
| | - Mm Ilg
- b Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre , Anglia Ruskin University , Chelmsford , UK
| | - S Cellek
- b Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre , Anglia Ruskin University , Chelmsford , UK
| | - M Albersen
- a Department of Urology , University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
242
|
Hsieh JY, Keating MT, Smith TD, Meli VS, Botvinick EL, Liu WF. Matrix crosslinking enhances macrophage adhesion, migration, and inflammatory activation. APL Bioeng 2019; 3:016103. [PMID: 31069336 PMCID: PMC6481736 DOI: 10.1063/1.5067301] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are versatile cells of the innate immune system that can adopt a variety of functional phenotypes depending on signals in their environment. In previous work, we found that culture of macrophages on fibrin, the provisional extracellular matrix protein, inhibits their inflammatory activation when compared to cells cultured on polystyrene surfaces. Here, we sought to investigate the role of matrix stiffness in the regulation of macrophage activity by manipulating the mechanical properties of fibrin. We utilize a photo-initiated crosslinking method to introduce dityrosine crosslinks to a fibrin gel and confirm an increase in gel stiffness through active microrheology. We observe that matrix crosslinking elicits distinct changes in macrophage morphology, integrin expression, migration, and inflammatory activation. Macrophages cultured on a stiffer substrate exhibit greater cell spreading and expression of αM integrin. Furthermore, macrophages cultured on crosslinked fibrin exhibit increased motility. Finally, culture of macrophages on photo-crosslinked fibrin enhances their inflammatory activation compared to unmodified fibrin, suggesting that matrix crosslinking regulates the functional activation of macrophages. These findings provide insight into how the physical properties of the extracellular matrix might control macrophage behavior during inflammation and wound healing.
Collapse
Affiliation(s)
- Jessica Y Hsieh
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California 92697, USA
| | - Mark T Keating
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California 92697, USA
| | - Tim D Smith
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California 92697, USA
| | - Vijaykumar S Meli
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California 92697, USA
| | - Elliot L Botvinick
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California 92697, USA
| | - Wendy F Liu
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
243
|
Influence of Platelet-Rich and Platelet-Poor Plasma on Endogenous Mechanisms of Skeletal Muscle Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20030683. [PMID: 30764506 PMCID: PMC6387315 DOI: 10.3390/ijms20030683] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
The morpho-functional recovery of injured skeletal muscle still represents an unmet need. None of the therapeutic options so far adopted have proved to be resolutive. A current scientific challenge remains the identification of effective strategies improving the endogenous skeletal muscle regenerative program. Indeed, skeletal muscle tissue possesses an intrinsic remarkable regenerative capacity in response to injury, mainly thanks to the activity of a population of resident muscle progenitors called satellite cells, largely influenced by the dynamic interplay established with different molecular and cellular components of the surrounding niche/microenvironment. Other myogenic non-satellite cells, residing within muscle or recruited via circulation may contribute to post-natal muscle regeneration. Unfortunately, in the case of extended damage the tissue repair may become aberrant, giving rise to a maladaptive fibrotic scar or adipose tissue infiltration, mainly due to dysregulated activity of different muscle interstitial cells. In this context, plasma preparations, including Platelet-Rich Plasma (PRP) and more recently Platelet-Poor Plasma (PPP), have shown advantages and promising therapeutic perspectives. This review focuses on the contribution of these blood-derived products on repair/regeneration of damaged skeletal muscle, paying particular attention to the potential cellular targets and molecular mechanisms through which these products may exert their beneficial effects.
Collapse
|
244
|
Lodyga M, Cambridge E, Karvonen HM, Pakshir P, Wu B, Boo S, Kiebalo M, Kaarteenaho R, Glogauer M, Kapoor M, Ask K, Hinz B. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β. Sci Signal 2019; 12:12/564/eaao3469. [PMID: 30647145 DOI: 10.1126/scisignal.aao3469] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages contribute to the activation of fibroblastic cells into myofibroblasts, which secrete collagen and contract the collagen matrix to acutely repair injured tissue. Persistent myofibroblast activation leads to the accumulation of fibrotic scar tissue that impairs organ function. We investigated the key processes that turn acute beneficial repair into destructive progressive fibrosis. We showed that homotypic cadherin-11 interactions promoted the specific binding of macrophages to and persistent activation of profibrotic myofibroblasts. Cadherin-11 was highly abundant at contacts between macrophages and myofibroblasts in mouse and human fibrotic lung tissues. In attachment assays, cadherin-11 junctions mediated specific recognition and strong adhesion between macrophages and myofibroblasts. One functional outcome of cadherin-11-mediated adhesion was locally restricted activation of latent transforming growth factor-β (TGF-β) between macrophage-myofibroblast pairs that was not observed in cocultures of macrophages and myofibroblasts that were not in contact with one another. Our data suggest that cadherin-11 junctions maintain latent TGF-β-producing macrophages and TGF-β-activating myofibroblasts in close proximity to one another. Inhibition of homotypic cadherin-11 interactions could be used to cause macrophage-myofibroblast separation, thereby destabilizing the profibrotic niche.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Elizabeth Cambridge
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Henna M Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland
| | - Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Brian Wu
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 2S8, Canada.,Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Melanie Kiebalo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Riitta Kaarteenaho
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Mohit Kapoor
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 2S8, Canada.,Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kjetil Ask
- Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, Ontario L8N 4A6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada. .,Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland.,Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
245
|
Xu Q, Liu Y, Pan H, Xu T, Li Y, Yuan J, Li P, Yao W, Yan W, Ni C. Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis. Toxicology 2019; 414:57-67. [PMID: 30658076 DOI: 10.1016/j.tox.2019.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
Various miRNAs are dysregulated during initiation and progression of pulmonary fibrosis. However, their function remains limited in silicosis. Here, we observed that miR-125a-3p was downregulated in silica-induced fibrotic murine lung tissues. Ectopic miR-125a-3p expression with chemotherapy attenuated silica-induced pulmonary fibrosis. Further in vitro experiments revealed that TGF-β1 effectively decreased miR-125a-3p expression in fibroblast lines (NIH/3T3 and MRC-5). Overexpression of miR-125a-3p blocked fibroblast activation stimulated by TGF-β1. Mechanistically, miR-125a-3p could bind to the 3'-untranslated region of Fyn and inhibit its expression in both mRNA and protein levels, thus causing inactivation of Fyn downstream effector STAT3. Fyn and p-STAT3, as opposed to miR-125a-3p expression, were elevated in silica-induced fibrotic murine lung tissues and TGF-β1-treated fibroblast lines. Furthermore, Fyn knockdown or p-STAT3 suppression effectively attenuated fibroblast activation and ECM production. Taken together, miR-125a-3p is involved in fibrosis pathogenesis by fibroblast activation, suggesting that targeting miR-125a-3p/Fyn/STAT3 signaling pathway could be a potential therapeutic approach for pulmonary fibrosis.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Honghong Pan
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiantian Xu
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Li
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jiali Yuan
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Ping Li
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Wenxi Yao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Weiwen Yan
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
246
|
Fix C, Carver-Molina A, Chakrabarti M, Azhar M, Carver W. Effects of the isothiocyanate sulforaphane on TGF-β1-induced rat cardiac fibroblast activation and extracellular matrix interactions. J Cell Physiol 2019; 234:13931-13941. [PMID: 30609032 DOI: 10.1002/jcp.28075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022]
Abstract
An important step in many pathological conditions, particularly tissue and organ fibrosis, is the conversion of relatively quiescent cells into active myofibroblasts. These are highly specialized cells that participate in normal wound healing but also contribute to pathogenesis. These cells possess characteristics of smooth muscle cells and fibroblasts, have enhanced synthetic activity secreting abundant extracellular matrix components, cytokines, and growth factors, and are capable of generating contractile force. As such, these cells have become potential therapeutic targets in a number of disease settings. Transforming growth factor β (TGF-β) is a potent stimulus of fibrosis and myofibroblast formation and likewise is an important therapeutic target in several disease conditions. The plant-derived isothiocyanate sulforaphane has been shown to have protective effects in several pathological models including diabetic cardiomyopathy, carcinogenesis, and fibrosis. These studies suggest that sulforaphane may be an attractive preventive agent against disease progression, particularly in conditions involving alterations of the extracellular matrix and activation of myofibroblasts. However, few studies have evaluated the effects of sulforaphane on cardiac fibroblast activation and their interactions with the extracellular matrix. The present studies were carried out to determine the potential effects of sulforaphane on the conversion of quiescent cardiac fibroblasts to an activated myofibroblast phenotype and associated alterations in signaling, expression of extracellular matrix receptors, and cellular physiology following stimulation with TGF-β1. These studies demonstrate that sulforaphane attenuates TGF-β1-induced myofibroblast formation and contractile activity. Sulforaphane also reduces expression of collagen-binding integrins and inhibits canonical and noncanonical TGF-β signaling pathways.
Collapse
Affiliation(s)
- Charity Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Amanda Carver-Molina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
247
|
Abstract
The skin provides the primary protection for the body against external injuries and is essential in the maintenance of general homeostasis. During ageing, resident cells become senescent and the extracellular matrix, mainly in the dermis, is progressively damaged affecting the normal organization of the skin and its capacity for repair. In parallel, extrinsic factors such as ultraviolet irradiation, pollution, and intrinsic factors such as diabetes or vascular disease can further accelerate this phenomenon. Indeed, numerous mechanisms are involved in age-induced degradation of the skin and these also relate to non-healing or chronic wounds in the elderly. In particular, the generation of reactive oxygen species seems to play a major role in age-related skin modifications. Certainly, targeting both the hormonal status of the skin or its surface nutrition can slow down age-induced degradation of the skin and improve healing of skin damage in the elderly. Skin care regimens that prevent radiation and pollution damage, and reinforce the skin surface and its microbiota are among the different approaches able to minimize the effects of ageing on the skin.
Collapse
|
248
|
Riedel L, Fischer B, Ly TD, Hendig D, Kuhn J, Knabbe C, Faust I. microRNA-29b mediates fibrotic induction of human xylosyltransferase-I in human dermal fibroblasts via the Sp1 pathway. Sci Rep 2018; 8:17779. [PMID: 30542210 PMCID: PMC6290791 DOI: 10.1038/s41598-018-36217-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Diminished microRNA-29b levels have recently been revealed to provoke increased expression and accumulation of extracellular matrix molecules, such as collagens in fibrotic remodeling. Subsequently, the aim of this study was to find out whether microRNA-29b might also regulate human xylosyltransferase (XT)-I expression. XT-I has been characterized previously as a fibrosis biomarker catalyzing the key step of proteoglycan biosynthesis. While we demonstrate that XYLT1 is neither a target of microRNA-29b identified in silico nor a direct 3' untranslated region binding partner of microRNA-29b, transfection of normal human dermal fibroblasts with microRNA-29b inhibitor strongly increased XYLT1 mRNA expression and XT activity. Combined results of the target prediction analysis and additional transfection experiments pointed out that microRNA-29b exerts indirect influence on XT-I by targeting the transcription factor specificity protein 1 (Sp1). We could confirm our hypothesis due to the decrease in XYLT1 promoter activity after Sp1 binding site mutation and the approval of occupancy of these binding sites by Sp1 in vitro. Taken together, a hitherto unidentified pathway of XT-I regulation via microRNA-29b/Sp1 was determined in this study. Our observations will facilitate the understanding of complex molecular fibrotic pathways and provide new opportunities to investigate microRNA-based antifibrotic tools.
Collapse
Affiliation(s)
- Lara Riedel
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Thanh-Diep Ly
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
249
|
Affiliation(s)
- Sebastian Willenborg
- Department of Dermatology, University of Cologne, Kerpenerstraße 62, 50937 Köln, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Kerpenerstraße 62, 50937 Köln, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
250
|
Cui H, He Y, Chen S, Zhang D, Yu Y, Fan C. Macrophage-Derived miRNA-Containing Exosomes Induce Peritendinous Fibrosis after Tendon Injury through the miR-21-5p/Smad7 Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:114-130. [PMID: 30594070 PMCID: PMC6307349 DOI: 10.1016/j.omtn.2018.11.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023]
Abstract
Following tendon injury, the development of fibrotic healing response impairs tendon function and restricts tendon motion. Peritendinous tissue fibrosis poses a major clinical problem in hand surgery. Communication between macrophages and tendon cells has a critical role in regulating the tendon-healing process. Yet, the mechanisms employed by macrophages to control peritendinous fibrosis are not fully understood. Here we analyze the role of macrophages in tendon adhesion in mice by pharmacologically depleting them. Such macrophage-depleted mice have less peritendinous fibrosis formation around the injured tendon compared with wild-type littermates. Macrophage-depleted mice restart fibrotic tendon healing by treatment with bone marrow macrophage-derived exosomes. We show that bone marrow macrophages secrete exosomal miR-21-5p that directly targets Smad7, leading to the activation of fibrogenesis in tendon cells. These results demonstrate that intercellular crosstalk between bone marrow macrophages and tendon cells is mediated by macrophage-derived miR-21-5p-containing exosomes that control the fibrotic healing response, providing potential targets for the prevention and treatment of tendon adhesion.
Collapse
Affiliation(s)
- Haomin Cui
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Orthopaedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, China
| | - Yu He
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100010, China
| | - Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Deming Zhang
- Zhejiang Province's Key Laboratory of 3D Printing and Equipment, College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaling Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Orthopaedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, China.
| |
Collapse
|