201
|
Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M, Schaefer L. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 2020; 62:31-47. [PMID: 31412297 DOI: 10.1016/j.semcancer.2019.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The tumor matrix together with inflammation and autophagy are crucial regulators of cancer development. Embedded in the tumor stroma are numerous proteoglycans which, in their soluble form, act as danger-associated molecular patterns (DAMPs). By interacting with innate immune receptors, the Toll-like receptors (TLRs), DAMPs autonomously trigger aseptic inflammation and can regulate autophagy. Biglycan, a known danger proteoglycan, can regulate the cross-talk between inflammation and autophagy by evoking a switch between pro-inflammatory CD14 and pro-autophagic CD44 co-receptors for TLRs. Thus, these novel mechanistic insights provide some explanation for the plethora of reports indicating that the same matrix-derived DAMP acts either as a promoter or suppressor of tumor growth. In this review we will summarize and critically discuss the role of the matrix-derived DAMPs biglycan, hyaluronan, and versican in regulating the TLR-, CD14- and CD44-signaling dialogue between inflammation and autophagy with particular emphasis on cancer development.
Collapse
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Roxana Damiescu
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Iva Kutija
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
202
|
Sensitivity of the Fasciae to the Endocannabinoid System: Production of Hyaluronan-Rich Vesicles and Potential Peripheral Effects of Cannabinoids in Fascial Tissue. Int J Mol Sci 2020; 21:ijms21082936. [PMID: 32331297 PMCID: PMC7216169 DOI: 10.3390/ijms21082936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
The demonstrated expression of endocannabinoid receptors in myofascial tissue suggested the role of fascia as a source and modulator of pain. Fibroblasts can modulate the production of the various components of the extracellular matrix, according to type of stimuli: physical, mechanical, hormonal, and pharmacological. In this work, fascial fibroblasts were isolated from small samples of human fascia lata of the thigh, collected from three volunteer patients (two men, one woman) during orthopedic surgery. This text demonstrates for the first time that the agonist of cannabinoid receptor 2, HU-308, can lead to in vitro production of hyaluronan-rich vesicles only 3–4 h after treatment, being rapidly released into the extracellular environment. We demonstrated that these vesicles are rich in hyaluronan after Alcian blue and Toluidine blue stainings, immunocytochemistry, and transmission electron microscopy. In addition, incubation with the antagonist AM630 blocked vesicles production by cells, confirming that release of hyaluronan is a cannabinoid-mediated effect. These results may show how fascial cells respond to the endocannabinoid system by regulating and remodeling the formation of the extracellular matrix. This is a first step in our understanding of how therapeutic applications of cannabinoids to treat pain may also have a peripheral effect, altering the biosynthesis of the extracellular matrix in fasciae and, consequently, remodeling the tissue and its properties.
Collapse
|
203
|
Huang Y, Kyriakides TR. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol Plus 2020; 6-7:100037. [PMID: 33543031 PMCID: PMC7852307 DOI: 10.1016/j.mbplus.2020.100037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Impaired healing leading to the formation of ulcerated wounds is a critical concern in patients with diabetes. Abnormalities in extracellular matrix (ECM) production and remodeling contribute to tissue dysfunction and delayed healing. Specifically, diabetes-induced changes in the expression and/or activity of structural proteins, ECM-modifying enzymes, proteoglycans, and matricellular proteins have been reported. In this review, we provide a summary of the key ECM molecules and associated changes in skin and diabetic wounds. Such information should allow for new insights in the understanding of impaired wound healing and lead to the development of ECM-based therapeutic strategies.
Collapse
Affiliation(s)
- Yaqing Huang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
204
|
Azbukina NV, Astakhova AA, Goriainov SV, Chistyakov VV, Sergeeva MG. Effects of High and Low Molecular Weight Hyaluronic Acids on the Omega-3 and Omega-6 Fatty Acid Release upon Activation of the Toll-Like Receptors in Astrocytes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2020; 14:126-133. [DOI: 10.1134/s1990747819060035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 01/04/2025]
|
205
|
Karamanou K, Franchi M, Onisto M, Passi A, Vynios DH, Brézillon S. Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling. FEBS J 2020; 287:4862-4880. [PMID: 32160387 DOI: 10.1111/febs.15289] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The small leucine-rich proteoglycan lumican regulates estrogen receptors (ERs)-associated functional properties of breast cancer cells, expression of matrix macromolecules, and epithelial-to-mesenchymal transition. However, it is not known whether the ER-dependent lumican effects on breast cancer cells are related to the expression of integrins and their intracellular signaling pathways. Here, we analyzed the effects of lumican in three breast cancer cell lines: the highly metastatic ERβ-positive MDA-MB-231, cells with the respective ERβ-suppressed (shERβMDA-MB-231), and lowly invasive ERα-positive MCF-7/c breast cancer cells. Scanning electron microscopy, confocal microscopy, real-time PCR, western blot, and cell adhesion assays were performed. Lumican effects on breast cancer cell morphology were also investigated in 3-dimensional collagen cultures. Lumican treatment induced cell-cell contacts and cell grouping and inhibited microvesicles and microvilli formation. The expression of the cell surface adhesion receptor CD44, its isoform and variants, hyaluronan (HA), and HA synthases was also investigated. Lumican inhibited the expression of CD44 and HA synthases, and its effect on cell adhesion revealed a major role of α1, α2, α3, αVβ3, and αVβ5 integrins in MDA-MB-231 cells, but not in MCF-7/c cells. Lumican upregulated the expression of α2 and β1 integrin subunits both in MDA-MB-231 and in shERβMDA-MB-231 as compared to MCF-7/c cells. Downstream signaling pathways for integrins, such as FAK, ERK 1/2 MAPK 42/44, and Akt, were found to be downregulated by lumican. Our data shed light to the molecular mechanisms responsible for the anticancer activity of lumican in invasive breast cancer.
Collapse
Affiliation(s)
- Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France.,Matrice Extracellulaire et Dynamique Cellulaire, CNRS UMR 7369, Reims, France
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alberto Passi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stéphane Brézillon
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France.,Matrice Extracellulaire et Dynamique Cellulaire, CNRS UMR 7369, Reims, France
| |
Collapse
|
206
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
207
|
Neill T, Chen CG, Buraschi S, Iozzo RV. Catabolic degradation of endothelial VEGFA via autophagy. J Biol Chem 2020; 295:6064-6079. [PMID: 32209654 DOI: 10.1074/jbc.ra120.012593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion of autophagy-related 5 (ATG5), results in accumulation of intracellular VEGFA, indicating that VEGFA is a basal autophagic substrate. Mechanistically, decorin increased the VEGFA clearance rate by augmenting autophagic flux, a process that required RAB24 member RAS oncogene family (RAB24), a small GTPase that facilitates the disposal of autophagic compartments. We validated these findings by demonstrating the physiological relevance of this process in vivo Mice starved for 48 h exhibited a sharp decrease in overall cardiac and aortic VEGFA that could be blocked by systemic chloroquine treatment. Thus, our findings reveal a unified mechanism for the metabolic control of endothelial VEGFA for autophagic clearance in response to decorin and canonical pro-autophagic stimuli. We posit that the VEGFR2/AMPK/PEG3 axis integrates the anti-angiogenic and pro-autophagic bioactivities of decorin as the molecular basis for tumorigenic suppression. These results support future therapeutic use of decorin as a next-generation protein therapy to combat cancer.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| | - Carolyn G Chen
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
208
|
Salicylate suppresses the oncogenic hyaluronan network in metastatic breast cancer cells. Matrix Biol Plus 2020; 6-7:100031. [PMID: 33543028 PMCID: PMC7852211 DOI: 10.1016/j.mbplus.2020.100031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/05/2023] Open
Abstract
The oncogenic role of hyaluronan in several aspects of tumor biology has been well established. Recent studies by us and others suggest that inhibition of hyaluronan synthesis could represent an emerging therapeutic approach with significant clinical relevance in controlling different breast cancer subtypes, including triple-negative breast cancer. Epidemiological and preclinical studies have revealed the therapeutic potential of aspirin (acetyl salicylate), a classical anti-inflammatory drug, in patients with cancer. However, the underlying molecular mechanisms remain unknown. The present study demonstrates that salicylate, a break down product of aspirin in vivo, alters the organization of hyaluronan matrices by affecting the expression levels of hyaluronan synthesizing (HAS1, 2, 3) and degrading (HYAL-1, -2) enzymes, and that of hyaluronan receptor CD44. In particular, salicylate was found to potently activate AMPK, a kinase known to inhibit HAS2 activity, and caused a dose-dependent decrease of cell associated (intracellular and membrane-bound) as well as secreted hyaluronan, followed by the down-regulation of HAS2 and the induction of HYAL-2 and CD44 in metastatic breast cancer cells. These salicylate-mediated effects were associated with the redistribution of CD44 and actin cytoskeleton that resulted in a less motile cell phenotype. Interestingly, salicylate inhibited metastatic breast cancer cell proliferation and growth by inducing cell growth arrest without signs of apoptosis as evidenced by the substantial decrease of cyclin D1 protein and the absence of cleaved caspase-3, respectively. Collectively, our study offers a possible direction for the development of new matrix-based targeted treatments of metastatic breast cancer subtypes via inhibition of hyaluronan, a pro-angiogenic, pro-inflammatory and tumor promoting glycosaminoglycan.
Collapse
|
209
|
Wolk A, Hatipoglu D, Cutler A, Ali M, Bell L, Hua Qi J, Singh R, Batoki J, Karle L, Bonilha VL, Wessely O, Stoehr H, Hascall V, Anand-Apte B. Role of FGF and Hyaluronan in Choroidal Neovascularization in Sorsby Fundus Dystrophy. Cells 2020; 9:E608. [PMID: 32143276 PMCID: PMC7140456 DOI: 10.3390/cells9030608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Sorsby's fundus dystrophy (SFD) is an inherited blinding disorder caused by mutations in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene. The SFD pathology of macular degeneration with subretinal deposits and choroidal neovascularization (CNV) closely resembles that of the more common age-related macular degeneration (AMD). The objective of this study was to gain further insight into the molecular mechanism(s) by which mutant TIMP3 induces CNV. In this study we demonstrate that hyaluronan (HA), a large glycosaminoglycan, is elevated in the plasma and retinal pigment epithelium (RPE)/choroid of patients with AMD. Mice carrying the S179C-TIMP3 mutation also showed increased plasma levels of HA as well as accumulation of HA around the RPE in the retina. Human RPE cells expressing the S179C-TIMP3 mutation accumulated HA apically, intracellularly and basally when cultured long-term compared with cells expressing wildtype TIMP3. We recently reported that RPE cells carrying the S179C-TIMP3 mutation have the propensity to induce angiogenesis via basic fibroblast growth factor (FGF-2). We now demonstrate that FGF-2 induces accumulation of HA in RPE cells. These results suggest that the TIMP3-MMP-FGF-2-HA axis may have an important role in the pathogenesis of CNV in SFD and possibly AMD.
Collapse
Affiliation(s)
- Alyson Wolk
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
| | - Dilara Hatipoglu
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Alecia Cutler
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Mariya Ali
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Lestella Bell
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| | - Jian Hua Qi
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Rupesh Singh
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Julia Batoki
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Laura Karle
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Vera L. Bonilha
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany;
| | - Vincent Hascall
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Bela Anand-Apte
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| |
Collapse
|
210
|
Reeves SR, Barrow KA, Rich LM, White MP, Shubin NJ, Chan CK, Kang I, Ziegler SF, Piliponsky AM, Wight TN, Debley JS. Respiratory Syncytial Virus Infection of Human Lung Fibroblasts Induces a Hyaluronan-Enriched Extracellular Matrix That Binds Mast Cells and Enhances Expression of Mast Cell Proteases. Front Immunol 2020; 10:3159. [PMID: 32047499 PMCID: PMC6997473 DOI: 10.3389/fimmu.2019.03159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Human lung fibroblasts (HLFs) treated with the viral mimetic polyinosine-polycytidylic acid (poly I:C) form an extracellular matrix (ECM) enriched in hyaluronan (HA) that avidly binds monocytes and lymphocytes. Mast cells are important innate immune cells in both asthma and acute respiratory infections including respiratory syncytial virus (RSV); however, the effect of RSV on HA dependent mast cell adhesion and/or function is unknown. To determine if RSV infection of HLFs leads to the formation of a HA-enriched ECM that binds and enhances mast cell activity primary HLFs were infected with RSV for 48 h prior to leukocyte binding studies using a fluorescently labeled human mast cell line (LUVA). Parallel HLFs were harvested for characterization of HA production by ELISA and size exclusion chromatography. In separate experiments, HLFs were infected as above for 48 h prior to adding LUVA cells to HLF wells. Co-cultures were incubated for 48 h at which point media and cell pellets were collected for analysis. The role of the hyaladherin tumor necrosis factor-stimulated gene 6 (TSG-6) was also assessed using siRNA knockdown. RSV infection of primary HLFs for 48 h enhanced HA-dependent LUVA binding assessed by quantitative fluorescent microscopy. This coincided with increased HLF HA synthase (HAS) 2 and HAS3 expression and decreased hyaluronidase (HYAL) 2 expression leading to increased HA accumulation in the HLF cell layer and the presence of larger HA fragments. Separately, LUVAs co-cultured with RSV-infected HLFs for 48 h displayed enhanced production of the mast cell proteases, chymase, and tryptase. Pre-treatment with the HA inhibitor 4-methylumbelliferone (4-MU) and neutralizing antibodies to CD44 (HA receptor) decreased mast cell protease expression in co-cultured LUVAs implicating a direct role for HA. TSG-6 expression was increased over the 48-h infection. Inhibition of HLF TSG-6 expression by siRNA knockdown led to decreased LUVA binding suggesting an important role for this hyaladherin for LUVA adhesion in the setting of RSV infection. In summary, RSV infection of HLFs contributes to inflammation via HA-dependent mechanisms that enhance mast cell binding as well as mast cell protease expression via direct interactions with the ECM.
Collapse
Affiliation(s)
- Stephen R Reeves
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, United States.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kaitlyn A Barrow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Maria P White
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas J Shubin
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Jason S Debley
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, United States.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
211
|
Avenoso A, Bruschetta G, D Ascola A, Scuruchi M, Mandraffino G, Saitta A, Campo S, Campo GM. Hyaluronan Fragmentation During Inflammatory Pathologies: A Signal that Empowers Tissue Damage. Mini Rev Med Chem 2020; 20:54-65. [PMID: 31490750 DOI: 10.2174/1389557519666190906115619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
The mechanisms that modulate the response to tissue injury are not fully understood. Abnormalities in the repair response are associated with a variety of chronic disease states characterized by inflammation, followed subsequently by excessive ECM deposition. As cell-matrix interactions are able to regulate cellular homeostasis, modification of ECM integrity appears to be an unspecific factor in promoting the onset and progression of inflammatory diseases. Evidence is emerging to show that endogenous ECM molecules supply signals to damage tissues and cells in order to promote further ECM degradation and inflammation progression. Several investigations have been confirmed that HA fragments of different molecular sizes exhibit different biological effects and responses. In fact, the increased deposition of HA into the ECM is a strong hallmark of inflammation processes. In the context of inflammatory pathologies, highly polymerized HA is broken down into small components, which are able to exacerbate the inflammatory response by inducing the release of various detrimental mediators such as reactive oxygen species, cytokines, chemokines and destructive enzymes and by facilitating the recruitment of leukocytes. However, strategies involving the modulation of the HA fragment with specific receptors on cell surface could represent different promising effects for therapeutic scope. This review will focus on the inflammation action of small HA fragments in recent years obtained by in vivo reports.
Collapse
Affiliation(s)
- Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 - Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Angela D Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 - Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| |
Collapse
|
212
|
de Vega S, Yoshida H, Okada Y. Expression and Characterization of Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization: HYBID, Alias KIAA1199 and CEMIP. Methods Mol Biol 2020; 2132:129-138. [PMID: 32306321 DOI: 10.1007/978-1-0716-0430-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyaluronan (HA), a major component of the extracellular matrix in vertebrate tissues, provides structural and functional integrity to cells and organs. Biological functions of HA are dependent on the molecular size of HA and the interaction with a wide range of HA-binding proteins, i.e., hyaladherins. In this book chapter, we introduce hyaladherins and focus on HYBID (Hyaluronan-binding protein involved in hyaluronan depolymerization, alias KIAA1199 and CEMIP), which is one of the hyaladherins and plays a central role in HA degradation in human dermal and arthritic synovial fibroblasts. The protocols describe the preparation of the stable transfectants expressing HYBID, the assays of HYBID-mediated HA depolymerization, and the binding assay of HYBID to HA. These methods will be helpful to further study the HYBID-mediated biological activities and its relevance on HA degradation and turnover under various physiological and pathological conditions such as wound healing, ageing, arthritis, and cancer.
Collapse
Affiliation(s)
- Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Yoshida
- Department of Biological Science Research, Kao Corporation, Chūō, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
213
|
Valcarcel J, García MR, Varela UR, Vázquez JA. Hyaluronic acid of tailored molecular weight by enzymatic and acid depolymerization. Int J Biol Macromol 2019; 145:788-794. [PMID: 31887382 DOI: 10.1016/j.ijbiomac.2019.12.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan crucial for the homeostasis of tissues, and its role on cell signalling and regulation of tissue injury and repair largely depends on HA molecular weight. Therefore, HA application in a variety of fields requires HA of defined size. While a number of enzymatic, chemical and physical methods exist for HA depolymerization, limited information is currently available for accurate planning of experiments. In the present work, we propose a pseudo-mechanistic model to describe depolymerization kinetics of HA with hyaluronidase, chondroitinase ABC and phosphoric acid. Data to feed the model was provided by monitoring molecular weight reduction by gel permeation chromatography with light scattering detection over 24 h. Five enzyme to substrate ratios and three temperatures were used for enzymatic and chemical reactions respectively, allowing for selection of operational parameters in a range of conditions. The model adequately reproduces the resulting data providing flexibility in the planning of the reactions to obtain HA of the desired molecular weight.
Collapse
Affiliation(s)
- Jesus Valcarcel
- Group of Recycling and Valorization of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Míriam R García
- Bioprocess Engineering Group, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Uxía R Varela
- Group of Recycling and Valorization of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
214
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
215
|
Tessier S, Tran VA, Ottone OK, Novais EJ, Doolittle A, DiMuzio MJ, Shapiro IM, Risbud MV. TonEBP-deficiency accelerates intervertebral disc degeneration underscored by matrix remodeling, cytoskeletal rearrangements, and changes in proinflammatory gene expression. Matrix Biol 2019; 87:94-111. [PMID: 31707045 DOI: 10.1016/j.matbio.2019.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023]
Abstract
The tonicity-responsive enhancer binding protein (TonEBP) plays an important role in intervertebral disc and axial skeleton embryogenesis. However, the contribution of this osmoregulatory transcription factor in postnatal intervertebral disc homeostasis is not known in vivo. Here, we show for the first time that TonEBP-deficient mice have pronounced age-related degeneration of the intervertebral disc with annular and endplate herniations. Using FTIR-imaging spectroscopy, quantitative immunohistochemistry, and tissue-specific transcriptomic analysis, we provide morphological and molecular evidence that the overall phenotype is driven by a replacement of water-binding proteoglycans with fibrocartilaginous matrix. Whereas TonEBP deficiency in the AF compartment caused tissue fibrosis associated with alterations in actin cytoskeleton and adhesion molecules, predominant changes in pro-inflammatory pathways were seen in the NP compartment of mutants, underscoring disc compartment-specific effects. Additionally, TonEBP-deficient mice presented with compromised trabecular bone properties of vertebrae. These results provide the first in vivo support to the long-held hypothesis that TonEBP is crucial for postnatal homeostasis of the spine and controls a multitude of functions in addition to cellular osmoadaptation.
Collapse
Affiliation(s)
- Steven Tessier
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Victoria A Tran
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olivia K Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Alexandra Doolittle
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael J DiMuzio
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
216
|
Sammarco G, Shalaby M, Elangovan S, Petti L, Roda G, Restelli S, Arena V, Ungaro F, Fiorino G, Day AJ, D'Alessio S, Vetrano S. Hyaluronan Accelerates Intestinal Mucosal Healing through Interaction with TSG-6. Cells 2019; 8:cells8091074. [PMID: 31547322 PMCID: PMC6769700 DOI: 10.3390/cells8091074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/26/2023] Open
Abstract
Hyaluronan (HA) has proven to be beneficial in the treatment of several diseases. Recently, it has been shown that the local application of HA (IBD98E) improves endoscopic and clinical outcomes in subjects with active distal ulcerative colitis (UC). However, the mechanisms by which this polysaccharide exerts its beneficial effects are unclear. Here, we demonstrated that HA treatment in vitro and in vivo improved mucosal healing by accelerating intestinal epithelial regeneration. Indeed, mice treated with HA showed a faster recovery from colitis and reduced endoscopic signs of mucosal inflammation compared to those receiving saline. Furthermore, histological analysis revealed less ulcerated mucosa in mice treated with HA, characterized by re-epithelialized areas. TSG-6, the secreted product of TNF-stimulated gene-6, is an HA-binding protein shown previously to have tissue-protective properties and promote wound healing. Mucosal levels of TSG-6 increased in UC patients compared to the healthy controls and also after wounding in mice. TSG-6 deletion prevented the beneficial properties of HA in mucosal wound repair, suggesting that the interaction of HA with TSG-6 is crucial for intestinal epithelial regeneration. Overall these results are consistent with HA having a therapeutic effect via the promotion of mucosal healing in patients with ulcerative colitis.
Collapse
Affiliation(s)
- Giusy Sammarco
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy.
| | - Mohammad Shalaby
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy.
| | - Sudharshan Elangovan
- Genomics Division, Wipro Life Sciences laboratory, WIPRO Limited, Bengaluru 560035, Karnataka, India.
| | - Luciana Petti
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy.
| | - Giulia Roda
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy.
| | - Silvia Restelli
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy.
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00147 Rome, Italy.
| | - Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy.
| | - Gionata Fiorino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine, & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Silvia D'Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy.
| | - Stefania Vetrano
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy.
| |
Collapse
|
217
|
Reed MJ, Damodarasamy M, Banks WA. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers 2019; 7:1651157. [PMID: 31505997 DOI: 10.1080/21688370.2019.1651157] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing interest in defining the location, content, and role of extracellular matrix (ECM) components in brain structure and function during development, aging, injury, and neurodegeneration. Studies in vivo confirm brain ECM has a dynamic composition with constitutive and induced alterations that impact subsequent cell-cell and cell-matrix interactions. Moreover, it is clear that for any given ECM component, the brain region, and cell type within that location, determines the direction, magnitude, and composition of those changes. This review will examine the ECM at the neurovascular unit (NVU) and the blood-brain barrier (BBB) within the NVU. The discussion will begin at the glycocalyx ECM on the luminal surface of the vasculature, and progress to the abluminal side with a focus on changes in basement membrane ECM during aging and neurodegeneration.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| |
Collapse
|
218
|
Chistyakov DV, Astakhova AA, Azbukina NV, Goriainov SV, Chistyakov VV, Sergeeva MG. High and Low Molecular Weight Hyaluronic Acid Differentially Influences Oxylipins Synthesis in Course of Neuroinflammation. Int J Mol Sci 2019; 20:ijms20163894. [PMID: 31405034 PMCID: PMC6719050 DOI: 10.3390/ijms20163894] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 01/05/2023] Open
Abstract
Hyaluronic acid (HA), a major glycosaminoglycan of the extracellular matrix, has cell signaling functions that are dependent on its molecular weight. Anti-inflammatory effects for high-molecular-weight (HMW) HA and pro-inflammatory effects for low-molecular-weight (LMW) HA effects were found for various myeloid cells, including microglia. Astrocytes are cells of ectodermal origin that play a pivotal role in brain inflammation, but the link between HA with different molecular weights and an inflammatory response in these cells is not clear. We tested the effects of LMW and HMW HA in rat primary astrocytes, stimulated with Poly:IC (PIC, TLR3 agonist) and lipopolysaccharide (LPS, TLR4 agonist). Oxylipin profiles were measured by the UPLC-MS/MS analysis and metabolites HDoHEs (from docosahexaenoic acid), -HETEs, prostaglandins (from arachidonic acid), DiHOMEs and HODEs (from linoleic acid) were detected. Both, HMW and LMW HA downregulated the cyclooxygenase-mediated polyunsaturated fatty acids metabolism, LMW also reduced lipoxygenase-mediated fatty acid metabolism. Taken together, the data show that both LMW and HMW (i) influence themselves on cytokines (TNFα, IL-6, IL-10), enzymes iNOS, COX-2, and oxylipin levels in extracellular medium of cultured astrocytes, (ii) induced cellular adaptations in long-term applications, (iii) modulate TLR4- and TLR3-signaling pathways. The effects of HMW and LMW HA are predominantly revealed in TLR4– and TLR3- mediated responses, respectively.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
- SREC PFUR Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia.
| | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Nadezda V Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow 119234 Russia
| | - Sergei V Goriainov
- SREC PFUR Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Viktor V Chistyakov
- SREC PFUR Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
219
|
Wilson N, Steadman R, Muller I, Draman M, Rees DA, Taylor P, Dayan CM, Ludgate M, Zhang L. Role of Hyaluronan in Human Adipogenesis: Evidence from in-Vitro and in-Vivo Studies. Int J Mol Sci 2019; 20:ijms20112675. [PMID: 31151314 PMCID: PMC6600677 DOI: 10.3390/ijms20112675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Hyaluronan (HA), an extra-cellular matrix glycosaminoglycan, may play a role in mesenchymal stem cell differentiation to fat but results using murine models and cell lines are conflicting. Our previous data, illustrating decreased HA production during human adipogenesis, suggested an inhibitory role. We have investigated the role of HA in adipogenesis and fat accumulation using human primary subcutaneous preadipocyte/fibroblasts (PFs, n = 12) and subjects of varying body mass index (BMI). The impact of HA on peroxisome proliferator-activated receptor gamma (PPARγ) expression was analysed following siRNA knockdown or HA synthase (HAS)1 and HAS2 overexpression. PFs were cultured in complete or adipogenic medium (ADM) with/without 4-methylumbelliferone (4-MU = HA synthesis inhibitor). Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, and measurement of a terminal differentiation marker. Modulating HA production by HAS2 knockdown or overexpression increased (16%, p < 0.04) or decreased (30%, p = 0.01) PPARγ transcripts respectively. The inhibition of HA by 4-MU significantly enhanced ADM-induced adipogenesis with 1.52 ± 0.18- (ORO), 4.09 ± 0.63- (foci) and 2.6 ± 0.21-(marker)-fold increases compared with the controls, also increased PPARγ protein expression (40%, (p < 0.04)). In human subjects, circulating HA correlated negatively with BMI and triglycerides (r = −0.396 (p = 0.002), r = −0.269 (p = 0.038), respectively), confirming an inhibitory role of HA in human adipogenesis. Thus, enhancing HA action may provide a therapeutic target in obesity.
Collapse
Affiliation(s)
- Nicholas Wilson
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Robert Steadman
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Ilaria Muller
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Mohd Draman
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, Kuala Terengganu 20400, Malaysia.
| | - D Aled Rees
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Peter Taylor
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Colin M Dayan
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Marian Ludgate
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Lei Zhang
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
220
|
Gordts PLSM, Saltiel AR. Hyaluronan as a potential thermogenic rheostat. Nat Metab 2019; 1:503-504. [PMID: 32694849 DOI: 10.1038/s42255-019-0058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philip L S M Gordts
- Department of Medicine, Division of Metabolism and Endocrinology, University of California, San Diego, La Jolla, CA, USA.
| | - Alan R Saltiel
- Department of Medicine, Division of Metabolism and Endocrinology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|