201
|
Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018; 43:2179-2198. [PMID: 30387070 PMCID: PMC6267251 DOI: 10.1007/s11064-018-2663-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Developing cellular models of sporadic Alzheimer's disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.
Collapse
Affiliation(s)
- Helen A Rowland
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine A B Kellett
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
202
|
Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla KK, Rebeck GW, Li L. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J Neurochem 2018; 147:647-662. [PMID: 30028014 DOI: 10.1111/jnc.14554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
The apolipoprotein E (apoE) ε4 allele is the primary genetic risk factor for late-onset Alzheimer's disease (AD). ApoE in the brain is produced primarily by astrocytes; once secreted from these cells, apoE binds lipids and forms high-density lipoprotein (HDL)-like particles. Accumulation of amyloid-β protein (Aβ) in the brain is a key hallmark of AD, and is thought to initiate a pathogenic cascade leading to neurodegeneration and dementia. The level and lipidation state of apoE affect Aβ aggregation and clearance pathways. Elevated levels of plasma HDL are associated with lower risk and severity of AD; the underlying mechanisms, however, have not been fully elucidated. This study was designed to investigate the impact of an HDL mimetic peptide, 4F, on the secretion and lipidation of apoE. We found that 4F significantly increases apoE secretion and lipidation in primary human astrocytes as well as in primary mouse astrocytes and microglia. Aggregated Aβ inhibits glial apoE secretion and lipidation, causing accumulation of intracellular apoE, an effect that is counteracted by co-treatment with 4F. Pharmacological and gene editing approaches show that 4F mediates its effects partially through the secretory pathway from the endoplasmic reticulum to the Golgi apparatus and requires the lipid transporter ATP-binding cassette transporter A1. We conclude that the HDL mimetic peptide 4F promotes glial apoE secretion and lipidation and mitigates the detrimental effects of Aβ on proper cellular trafficking and functionality of apoE. These findings suggest that treatment with such an HDL mimetic peptide may provide therapeutic benefit in AD. Read the Editorial Highlight for this article on page 580.
Collapse
Affiliation(s)
- Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suresh K Swaminathan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Ling Li
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
203
|
Gao Y, Li X, Liu XH, Zhao QH, Che XQ, Guo QH, Ren RJ, Wang G. Determining association of rho kinase 1 gene polymorphisms with risk of Alzheimer's disease: a multicenter pilot study. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:434. [PMID: 30596064 DOI: 10.21037/atm.2018.05.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In addition to the increasing evidence for a molecular mechanism of rho kinase 1 (ROCK1) in Alzheimer's disease (AD), there are several published studies regarding the relationship between ROCK1 gene polymorphisms and neurological diseases. However, it is unknown whether there is an association between the polymorphisms of ROCK1 and AD. We sought to identify the potential association between ROCK1 gene polymorphisms and AD in the Chinese Han population. Methods A total of 295 patients with AD and 206 healthy controls from multiple centers were enrolled in this study. Three single-nucleotide polymorphisms (SNPs) (rs35996865, rs11873284, and rs2127958) in ROCK1 gene were analyzed using Sanger sequencing. Results We did not find any significant differences between AD and control groups with regards to the frequency of these three ROCK1 polymorphisms. Further, the three SNP genotype frequencies and allele frequencies did not show significant differences between patients of AD and controls in APOE4-stratified subjects (P>0.01). Additionally, the three SNPs did not show significant differences even when adopting a four-inheritance model by logistic regression. Conclusions This is the first multicenter pilot study to evaluate the contribution of ROCK1 genetic variance to AD risk. Our data demonstrated that the ROCK1 gene may not influence the risk of AD by interacting with APOE among Chinese Han people.
Collapse
Affiliation(s)
- Ying Gao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xia Li
- Alzheimer's Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Hong Liu
- Department of Neurology, Shanghai Putuo District People's Hospital, Shanghai 200060, China
| | - Qian-Hua Zhao
- Department of Neurology & Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiang-Qian Che
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi-Hao Guo
- Department of Neurology & Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ru-Jing Ren
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
204
|
Watanabe T, Ukon S, Kihara T, Ide YH, Matsuo S, Hayashi Y, Kasama S, Yoshikawa H, Okano Y, Uchida C, Yamamoto M, Hao H, Kimura A, Hirota S, Tsukamoto Y. An autopsy case of amyloid β-related angiitis with cognitive impairment, multiple infarcts and subcortical hemorrhage. HUMAN PATHOLOGY: CASE REPORTS 2018. [DOI: 10.1016/j.ehpc.2018.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
205
|
Yuan C, Guo X, Zhou Q, Du F, Jiang W, Zhou X, Liu P, Chi T, Ji X, Gao J, Chen C, Lang H, Xu J, Liu D, Yang Y, Qiu S, Tang X, Chen G, Zou L. OAB-14, a bexarotene derivative, improves Alzheimer's disease-related pathologies and cognitive impairments by increasing β-amyloid clearance in APP/PS1 mice. Biochim Biophys Acta Mol Basis Dis 2018; 1865:161-180. [PMID: 30389579 DOI: 10.1016/j.bbadis.2018.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex, though the clinical failures of anti-AD candidates targeting Aβ production (such as β- and γ-secretase inhibitors) make people suspect the Aβ hypothesis, in which the neurotoxicity of Aβ is undoubtedly involved. According to studies, >95% of AD patients with sporadic AD are primarily associated with abnormal Aβ clearance. Therefore, drugs that increase Aβ clearance are becoming new prospects for the treatment of AD. Here, the novel small molecule OAB-14, designed using bexarotene as the lead compound, significantly alleviated cognitive impairments in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice after administration for 15 days or 3 months. OAB-14 rapidly cleared 71% of Aβ by promoting microglia phagocytosis and increasing IDE and NEP expression. This compound also attenuated the downstream pathological events of Aβ accumulation, such as synaptic degeneration, neuronal loss, tau hyperphosphorylation and neuroinflammation in APP/PS1 mice. Moreover, OAB-14 had no significant effect on body weight or liver toxicity after acute and chronic treatment. OAB-14 was well tolerated and its maximum-tolerated dose in mice was >4.0 g/kg. Based on these findings, OAB-14 represents a promising new candidate for AD treatment.
Collapse
Affiliation(s)
- Chunling Yuan
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Department of Medicinal Chemistry, Pharmacy School, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xiaoli Guo
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qifan Zhou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Fangyu Du
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Wei Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyu Zhou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tianyan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xuefei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jinheng Gao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Chengwen Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hongli Lang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jia Xu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yang Yang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shimeng Qiu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Libo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
206
|
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling Mechanisms of Selective PPAR γ Modulators in Alzheimer's Disease. PPAR Res 2018; 2018:2010675. [PMID: 30420872 PMCID: PMC6215547 DOI: 10.1155/2018/2010675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nila Ghanei
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
207
|
Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. Annu Rev Pharmacol Toxicol 2018; 59:237-261. [PMID: 30208281 DOI: 10.1146/annurev-pharmtox-010818-021807] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons that leads to a broad range of disabilities, including severe cognitive decline and motor impairment, for which there are no effective therapies. Several lines of evidence support a putative therapeutic role of nuclear receptors (NRs) in these types of disorders. NRs are ligand-activated transcription factors that regulate the expression of a wide range of genes linked to metabolism and inflammation. Although the activation of NRs in animal models of neurodegenerative disease exhibits promising results, the translation of this strategy to clinical practice has been unsuccessful. In this review we discuss the role of NRs in neurodegenerative diseases in light of preclinical and clinical studies, as well as new findings derived from the analysis of transcriptomic databases from humans and animal models. We discuss the failure in the translation of NR-based therapeutic approaches and consider alternative and novel research avenues in the development of effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Juan F Codocedo
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Shweta S Puntambekar
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Gary E Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
208
|
Affect of APOE on information processing speed in non-demented elderly population: a preliminary structural MRI study. Brain Imaging Behav 2018; 11:977-985. [PMID: 27444731 DOI: 10.1007/s11682-016-9571-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
APOE is one of the strongest genetic factors associated with information processing speed (IPS). Herein, we explored the neural substrates underlying APOE-related IPS alteration by measuring lobar distribution of white matter hyperintensities (WMH), cortical grey matter volume (GMV) and thickness. Using the ADNI database, we evaluated 178 cognitively normal elderly individuals including 34 APOE ε2 carriers, 54 APOE ε4 carriers and 90 ε3 homozygotes. IPS was determined using Trail Making Tests (TMT). We quantified lobar distribution of WMH, cortical GM lobar volume, cortical thickness among three groups. Finally, we used Pearson's correlation and general linear models to examine structural MRI markers in relation to IPS. There were significant differences of IPS among groups, with ε4 carriers displaying the worst performance. Across groups, significant differences in frontal and parietal WMH load were observed (the highest in ε4 carriers); however, no significant differences in cortical GMV and thickness were found. Pearson's correlation analysis showed parietal WMH volume was significantly related with IPS, especially in ε4 carriers. Subsequently a general linear model demonstrated that parietal WMH volume, age and the interaction between parietal WMH volume and age, was significantly associated with IPS, even after adjusting total intracranial volume (TIV), gender and vascular risk factors. Disruption of WM structure, rather than atrophy of GM, plays a more critical role in APOE ε4 allele-specific IPS. Moreover, specific WMH loci are closely associated with IPS; increased parietal WMH volume, especially in ε4 carriers, was independently contributed to slower IPS.
Collapse
|
209
|
Kim YS, Jung HM, Yoon BE. Exploring glia to better understand Alzheimer's disease. Anim Cells Syst (Seoul) 2018; 22:213-218. [PMID: 30460100 PMCID: PMC6138241 DOI: 10.1080/19768354.2018.1508498] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The amyloid-β (Aβ) hypothesis has been the leading explanation for the pathogenesis of Alzheimer’s disease (AD). The most common traits of AD are cognitive impairments and memory loss, which are associated with the accumulation of Aβ. Aβ aggregates activate glial cells, which in turn remove Aβ. Because microglia act as immune cells in the brain, most glia-related studies of AD have focused primarily on this cell type. However, astrocytes, another type of glial cell, also participate in the brain immune system, synaptic formation, brain homeostasis, and various other brain functions. Accordingly, many studies on the underlying mechanisms of AD have investigated not only neurons but also glial cells. Although these studies suggest that microglia and astrocytes are effective targets for AD therapeutics, other recent studies have raised questions regarding whether microglial cells and/or astrocytes serve a neuroprotective or neurotoxic function in AD. To gain a better understanding of the mechanisms of AD and identify novel targets for AD treatment, in this review, we consider the role of both microglia and astrocytes in AD.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Hae Myeong Jung
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| |
Collapse
|
210
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
211
|
Koch M, DeKosky ST, Fitzpatrick AL, Furtado JD, Lopez OL, Kuller LH, Mackey RH, Hughes TM, Mukamal KJ, Jensen MK. Apolipoproteins and Alzheimer's pathophysiology. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:545-553. [PMID: 30370330 PMCID: PMC6199693 DOI: 10.1016/j.dadm.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Introduction Apolipoproteins of demonstrated importance to brain cholesterol and ß-amyloid metabolism may serve as novel risk markers for Alzheimer's pathology. Methods We measured apolipoproteins (apoE, apoJ, apoA-I, and apoC-III and their uniquely defined subspecies) by enzyme-linked immunosorbent assay in plasma collected in 2000 and 2008 from 176 dementia-free participants of the Ginkgo Evaluation of Memory Study and related these to ß-amyloid on positron emission tomography scans, hippocampal volume, and white matter lesion volume in 2009. Results Higher apoE was associated with lower ß-amyloid deposition. Despite apoA-I being unrelated to hippocampal volume, subspecies of apoA-I containing or lacking apoJ or apoC-III showed opposite associations with hippocampal volume. Higher apoJ and apoE lacking apoJ were associated with higher hippocampal volume and higher white matter lesion volume, respectively. Associations were similar in participants without cognitive impairment or APOE ε4 noncarrier and when analyzing apolipoproteins in 2000–2002. Discussion Apolipoproteins may be important minimally invasive biomarkers indicative of Alzheimer's pathology.
Collapse
Affiliation(s)
- Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Steven T DeKosky
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lewis H Kuller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel H Mackey
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Timothy M Hughes
- Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kenneth J Mukamal
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Channing Division of Network Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
212
|
Fernández-Pérez EJ, Sepúlveda FJ, Peters C, Bascuñán D, Riffo-Lepe NO, González-Sanmiguel J, Sánchez SA, Peoples RW, Vicente B, Aguayo LG. Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword. Front Aging Neurosci 2018; 10:226. [PMID: 30123122 PMCID: PMC6085471 DOI: 10.3389/fnagi.2018.00226] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background: The beta-amyloid peptide (Aβ) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aβ in cultured hippocampal neurons. Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-β-cyclodextrin (MβCD) and MβCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively. Results: The results showed that cholesterol removal decreased the macroscopic association of Aβ to neuronal membranes (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aβ with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MβCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aβ (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.01), but inhibited membrane disruption. Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aβ in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aβ peptide in the neuronal membrane.
Collapse
Affiliation(s)
- Eduardo J Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Fernando J Sepúlveda
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Denisse Bascuñán
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Nicolás O Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | | | - Susana A Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Robert W Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Benjamín Vicente
- Department of Psychiatry and Mental Health, Universidad de Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
213
|
Zhang M, Qian C, Zheng ZG, Qian F, Wang Y, Thu PM, Zhang X, Zhou Y, Tu L, Liu Q, Li HJ, Yang H, Li P, Xu X. Jujuboside A promotes Aβ clearance and ameliorates cognitive deficiency in Alzheimer's disease through activating Axl/HSP90/PPARγ pathway. Theranostics 2018; 8:4262-4278. [PMID: 30128052 PMCID: PMC6096387 DOI: 10.7150/thno.26164] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 01/20/2023] Open
Abstract
Rationale: It has been reported that peroxisome proliferator activated receptor γ (PPARγ) level decreases significantly in the brains of Alzheimer's disease (AD) patients and mice models, while the mechanism is unclear. This study aims to unravel the mechanism that amyloid β (Aβ) decreases PPARγ and attempted to discover lead compound that preserves PPARγ. Methods: In APP/PS1 transgenic mice and Aβ treated microglia, the interaction between HSP90 and PPARγ were analyzed by western blot. Using a PPRE (PPARγ responsive element) containing reporter cell line, compounds that activate PPARγ activity were identified. After genetic ablation or pharmacological inhibition of potential target pathways, the target of jujuboside A (JuA) was discovered through Axl/HSP90β. After oral administration or intrathecal injection, the anti-AD activity of JuA was evaluated by Morris water maze (MWM) test and object recognition test. Soluble Aβ42 levels and plaque numbers after JuA treatment were detected by thioflavin S staining, and the activation of microglia was assayed by immunofluorescence staining against Iba-1. Results: We found that Aβ stress decreased heat shock protein 90 β (HSP90β), subsequently reduced the abundance of PPARγ, and down-regulated Aβ clearance-related genes in BV2 cells and primary microglia. We identified that JuA stimulated the expression of HSP90β, strengthened the interaction between HSP90β and PPARγ, preserved PPARγ levels, and thus effectively promoted the clearance of Aβ42. We demonstrated that JuA increased HSP90β expression through Axl/ERK pathway. JuA significantly ameliorated cognitive deficiency in APP/PS1 transgenic mice, meanwhile, JuA significantly reduced the soluble Aβ42 levels and plaque numbers in the brain. Notably, the therapeutic effects of JuA were dampened by R428, an Axl inhibitor. Conclusions: This study suggests that the up-regulation of HSP90β by JuA through Axl is a potential therapeutic strategy to facilitate Aβ42 clearance and ameliorate cognitive deficiency in AD.
Collapse
Affiliation(s)
- Mu Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Cheng Qian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Fei Qian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yanyan Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yaping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Lifan Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Qingling Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Metabolic Disease, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| |
Collapse
|
214
|
APOE and Alzheimer's Disease: Evidence Mounts that Targeting APOE4 may Combat Alzheimer's Pathogenesis. Mol Neurobiol 2018; 56:2450-2465. [PMID: 30032423 DOI: 10.1007/s12035-018-1237-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
Alzheimer's disease (AD) is an immutable neurodegenerative disease featured by the two hallmark brain pathologies that are the extracellular amyloid ß (Aß) and intraneuronal tau protein. People carrying the APOE4 allele are at high risk of AD concerning the ones carrying the ε3 allele, while the ε2 allele abates risk. ApoE isoforms exert a central role in controlling the transport of brain lipid, neuronal signaling, mitochondrial function, glucose metabolism, and neuroinflammation. Regardless of widespread indispensable studies, the appropriate function of APOE in AD etiology stays ambiguous. Existing proof recommends that the disparate outcomes of ApoE isoforms on Aβ accretion and clearance have a distinct function in AD pathogenesis. ApoE-lipoproteins combine diverse cell-surface receptors to transport lipids and moreover to lipophilic Aβ peptide, that is believed to begin deadly events that generate neurodegeneration in the AD. ApoE has great influence in tau pathogenesis, tau-mediated neurodegeneration, and neuroinflammation, as well as α-synucleinopathy, lipid metabolism, and synaptic plasticity despite the presence of Aβ pathology. ApoE4 shows the deleterious effect for AD while the lack of ApoE4 is defensive. Therapeutic strategies primarily depend on APOE suggest to lessen the noxious effects of ApoE4 and reestablish the protective aptitudes of ApoE. This appraisal represents the critical interactions of APOE and AD pathology, existing facts on ApoE levels in the central nervous system (CNS), and the credible active stratagems for AD therapy by aiming ApoE. This review also highlighted utmost ApoE targeting therapeutic tactics that are crucial for controlling Alzheimer's pathogenesis.
Collapse
|
215
|
Swartzlander DB, Propson NE, Roy ER, Saito T, Saido T, Wang B, Zheng H. Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease. JCI Insight 2018; 3:121109. [PMID: 29997299 PMCID: PMC6124528 DOI: 10.1172/jci.insight.121109] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Nonneuronal cell types in the CNS are increasingly implicated as critical players in brain health and disease. While gene expression profiling of bulk brain tissue is routinely used to examine alterations in the brain under various conditions, it does not capture changes that occur within single cell types or allow interrogation of crosstalk among cell types. To this end, we have developed a concurrent brain cell type acquisition (CoBrA) methodology, enabling the isolation and profiling of microglia, astrocytes, endothelia, and oligodendrocytes from a single adult mouse forebrain. By identifying and validating anti-ACSA-2 and anti-CD49a antibodies as cell surface markers for astrocytes and vascular endothelial cells, respectively, and using established antibodies to isolate microglia and oligodendrocytes, we document that these 4 major cell types are isolated with high purity and RNA quality. We validated our procedure by performing acute peripheral LPS challenge, while highlighting the underappreciated changes occurring in astrocytes and vascular endothelia in addition to microglia. Furthermore, we assessed cell type-specific gene expression changes in response to amyloid pathology in a mouse model of Alzheimer's disease. Our CoBrA methodology can be readily implemented to interrogate multiple CNS cell types in any mouse model at any age.
Collapse
Affiliation(s)
| | | | - Ethan R. Roy
- Huffington Center on Aging
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Baiping Wang
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Zheng
- Huffington Center on Aging
- Department of Molecular and Cellular Biology, and
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
216
|
Tensaouti Y, Stephanz EP, Yu TS, Kernie SG. ApoE Regulates the Development of Adult Newborn Hippocampal Neurons. eNeuro 2018; 5:ENEURO.0155-18.2018. [PMID: 30079373 PMCID: PMC6072333 DOI: 10.1523/eneuro.0155-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023] Open
Abstract
Adult hippocampal neurogenesis occurs throughout life and is believed to participate in cognitive functions such as learning and memory. A number of genes that regulate adult hippocampal neurogenesis have been identified, although most of these have been implicated in progenitor proliferation and survival, but not in the development into fully differentiated neurons. Among these genes, apolipoprotein E (ApoE) is particularly compelling because the human ApoE isoform E4 is a risk factor for the development of Alzheimer's disease, where hippocampal neurogenesis is reported to be dysfunctional. To investigate the effects of ApoE and its human isoforms on adult hippocampal neurogenesis and neuronal development, retroviruses carrying a GFP-expressing vector were injected into wild-type (WT), ApoE-deficient, and human targeted replacement (ApoE3 and ApoE4) mice to infect progenitors in the dentate gyrus and analyze the morphology of fully developed GFP-expressing neurons. Analysis of these adult-born neurons revealed significant decreases in the complexity of dendritic arborizations and spine density in ApoE-deficient mice compared with WT mice, as well as in ApoE4 mice compared with ApoE3. These findings demonstrate that ApoE deficiency and the ApoE4 human isoform both impair hippocampal neurogenesis and give insight into how ApoE may influence hippocampal-related neurological diseases.
Collapse
Affiliation(s)
- Yacine Tensaouti
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Elizabeth P. Stephanz
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Steven G. Kernie
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
217
|
Ding X, Bucholc M, Wang H, Glass DH, Wang H, Clarke DH, Bjourson AJ, Dowey LRC, O'Kane M, Prasad G, Maguire L, Wong-Lin K. A hybrid computational approach for efficient Alzheimer's disease classification based on heterogeneous data. Sci Rep 2018; 8:9774. [PMID: 29950585 PMCID: PMC6021389 DOI: 10.1038/s41598-018-27997-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
There is currently a lack of an efficient, objective and systemic approach towards the classification of Alzheimer's disease (AD), due to its complex etiology and pathogenesis. As AD is inherently dynamic, it is also not clear how the relationships among AD indicators vary over time. To address these issues, we propose a hybrid computational approach for AD classification and evaluate it on the heterogeneous longitudinal AIBL dataset. Specifically, using clinical dementia rating as an index of AD severity, the most important indicators (mini-mental state examination, logical memory recall, grey matter and cerebrospinal volumes from MRI and active voxels from PiB-PET brain scans, ApoE, and age) can be automatically identified from parallel data mining algorithms. In this work, Bayesian network modelling across different time points is used to identify and visualize time-varying relationships among the significant features, and importantly, in an efficient way using only coarse-grained data. Crucially, our approach suggests key data features and their appropriate combinations that are relevant for AD severity classification with high accuracy. Overall, our study provides insights into AD developments and demonstrates the potential of our approach in supporting efficient AD diagnosis.
Collapse
Affiliation(s)
- Xuemei Ding
- Intelligent Systems Research Centre, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland, UK.
- Faculty of Mathematics and Informatics, Fujian Normal University, Fuzhou, China.
| | - Magda Bucholc
- Intelligent Systems Research Centre, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland, UK
| | - Haiying Wang
- School of Computing and Mathematics, Ulster University, Jordanstown Campus, Northern Ireland, UK
| | - David H Glass
- School of Computing and Mathematics, Ulster University, Jordanstown Campus, Northern Ireland, UK
| | - Hui Wang
- School of Computing and Mathematics, Ulster University, Jordanstown Campus, Northern Ireland, UK
| | - Dave H Clarke
- Clarke Analytics Ltd., 6 Dernville, Annabella Mallow, Cork, Ireland
| | - Anthony John Bjourson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, C-TRIC, Ulster University, Altnagelvin Hospital, Derry~Londonderry, Northern Ireland, UK
| | - Le Roy C Dowey
- C-TRIC, Altnagelvin Hospital campus, Derry~Londonderry, Northern Ireland, UK
- School of Biomedical Sciences, Ulster University, Coleraine Campus, Northern Ireland, UK
| | - Maurice O'Kane
- C-TRIC, Altnagelvin Hospital campus, Derry~Londonderry, Northern Ireland, UK
| | - Girijesh Prasad
- Intelligent Systems Research Centre, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland, UK
| | - Liam Maguire
- Intelligent Systems Research Centre, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland, UK
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland, UK.
| |
Collapse
|
218
|
Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc Natl Acad Sci U S A 2018; 115:E6640-E6649. [PMID: 29946028 DOI: 10.1073/pnas.1801612115] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endosomes have emerged as a central hub and pathogenic driver of Alzheimer's disease (AD). The earliest brain cytopathology in neurodegeneration, occurring decades before amyloid plaques and cognitive decline, is an expansion in the size and number of endosomal compartments. The strongest genetic risk factor for sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4). Previous studies have shown that ApoE4 potentiates presymptomatic endosomal dysfunction and defective endocytic clearance of amyloid beta (Aβ), although how these two pathways are linked at a cellular and mechanistic level has been unclear. Here, we show that aberrant endosomal acidification in ApoE4 astrocytes traps the low-density lipoprotein receptor-related protein (LRP1) within intracellular compartments, leading to loss of surface expression and Aβ clearance. Pathological endosome acidification is caused by ε4 risk allele-selective down-regulation of the Na+/H+ exchanger isoform NHE6, which functions as a critical leak pathway for endosomal protons. In vivo, the NHE6 knockout (NHE6KO) mouse model showed elevated Aβ in the brain, consistent with a causal effect. Increased nuclear translocation of histone deacetylase 4 (HDAC4) in ApoE4 astrocytes, compared with the nonpathogenic ApoE3 allele, suggested a mechanistic basis for transcriptional down-regulation of NHE6. HDAC inhibitors that restored NHE6 expression normalized ApoE4-specific defects in endosomal pH, LRP1 trafficking, and amyloid clearance. Thus, NHE6 is a downstream effector of ApoE4 and emerges as a promising therapeutic target in AD. These observations have prognostic implications for patients who have Christianson syndrome with loss of function mutations in NHE6 and exhibit prominent glial pathology and progressive hallmarks of neurodegeneration.
Collapse
|
219
|
Lee JH, Jahrling JB, Denner L, Dineley KT. Targeting Insulin for Alzheimer’s Disease: Mechanisms, Status and Potential Directions. J Alzheimers Dis 2018; 64:S427-S453. [DOI: 10.3233/jad-179923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jung Hyun Lee
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordan B. Jahrling
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T. Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
220
|
Intrinsic functional connectivity alterations in cognitively intact elderly APOE ε4 carriers measured by eigenvector centrality mapping are related to cognition and CSF biomarkers: a preliminary study. Brain Imaging Behav 2018; 11:1290-1301. [PMID: 27714554 DOI: 10.1007/s11682-016-9600-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apolipoprotein E (APOE) ε4 allele is the best established genetic risk factor for sporadic Alzheimer's disease (AD). However, there is a need to understand the effects of this genotype on the brain by simultaneously assessing intrinsic brain network and cerebral spinal fluid (CSF) biomarkers changes in healthy older ε4 carriers. Thirteen cognitively intact, elderly APOE ε4 carriers and 22 ε3 homozygotes were included in the present study. Eigenvector centrality mapping (ECM) was used to identify brain network hub organization based on resting-state functional MRI (rsfMRI). We evaluated comprehensive cognitive ability and tested levels of Aβ1-42, total-tau (t-tau) and phosphorylated-tau (p-tau181) in CSF. Comparisons of ECM between two groups were conducted, followed by correlations analyses between EC values with significant group differences and cognitive ability/CSF biomarkers. APOE ε4 carriers showed significantly decreased EC values in left medial temporal lobe (MTL), left lingual gyrus (LG) and increased EC values in left middle frontal gyrus (MFG) as compared to non-carriers. Correlation analysis demonstrated that left LG EC value correlated with Rey Auditory Verbal Learning Test total learning (RAVLT, r = 0.57, p < 0.05) and t-tau level (r = -0.57, p < 0.05), while left MFG EC values correlated with log-transformed Trail-Making Test B (TMT-B, r = -0.67, p < 0.05) in APOE ε4 carriers. This study suggests the APOE ε4 allele contributes to disruption of brain connectedness in certain functional nodes, which may result from neuronal death caused by toxicity of neurofibrillary tangles.
Collapse
|
221
|
Dresselhaus E, Duerr JM, Vincent F, Sylvain EK, Beyna M, Lanyon LF, LaChapelle E, Pettersson M, Bales KR, Ramaswamy G. Class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion. PLoS One 2018; 13:e0194661. [PMID: 29579087 PMCID: PMC5868809 DOI: 10.1371/journal.pone.0194661] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/07/2018] [Indexed: 11/19/2022] Open
Abstract
Despite the important role of apolipoprotein E (apoE) secretion from astrocytes in brain lipid metabolism and the strong association of apoE4, one of the human apoE isoforms, with sporadic and late onset forms of Alzheimer's disease (AD) little is known about the regulation of astrocytic apoE. Utilizing annotated chemical libraries and a phenotypic screening strategy that measured apoE secretion from a human astrocytoma cell line, inhibition of pan class I histone deacetylases (HDACs) was identified as a mechanism to increase apoE secretion. Knocking down select HDAC family members alone or in combination revealed that inhibition of the class I HDAC family was responsible for enhancing apoE secretion. Knocking down LXRα and LXRβ genes revealed that the increase in astrocytic apoE in response to HDAC inhibition occurred via an LXR-independent pathway. Collectively, these data suggest that pan class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion.
Collapse
Affiliation(s)
- Erica Dresselhaus
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts, United States of America
| | - James M. Duerr
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts, United States of America
| | - Fabien Vincent
- Hit Discovery and Lead Profiling, Pfizer, Groton, Connecticut, United States of America
| | - Emily K. Sylvain
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts, United States of America
| | - Mercedes Beyna
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts, United States of America
| | - Lorraine F. Lanyon
- Hit Discovery and Lead Profiling, Pfizer, Groton, Connecticut, United States of America
| | - Erik LaChapelle
- Medicinal Chemistry, Pfizer, Groton, Connecticut, United States of America
| | - Martin Pettersson
- Medicinal Chemistry, Pfizer, Cambridge, Massachusetts, United States of America
| | - Kelly R. Bales
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts, United States of America
- * E-mail: (GR); (KRB)
| | - Gayathri Ramaswamy
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts, United States of America
- * E-mail: (GR); (KRB)
| |
Collapse
|
222
|
Fan J, Zhao RQ, Parro C, Zhao W, Chou HY, Robert J, Deeb TZ, Raynoschek C, Barichievy S, Engkvist O, Maresca M, Hicks R, Meuller J, Moss SJ, Brandon NJ, Wood MW, Kulic I, Wellington CL. Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. J Lipid Res 2018; 59:830-842. [PMID: 29563219 DOI: 10.1194/jlr.m081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
apoE is the primary lipid carrier within the CNS and the strongest genetic risk factor for late onset Alzheimer's disease (AD). apoE is primarily lipidated via ABCA1, and both are under transcriptional regulation by the nuclear liver X receptor (LXR). Considerable evidence from genetic (using ABCA1 overexpression) and pharmacological (using synthetic LXR agonists) studies in AD mouse models suggests that increased levels of lipidated apoE can improve cognitive performance and, in some strains, can reduce amyloid burden. However, direct synthetic LXR ligands have hepatotoxic side effects that limit their clinical use. Here, we describe a set of small molecules, previously annotated as antagonists of the purinergic receptor, P2X7, which enhance ABCA1 expression and activity as well as apoE secretion, and are not direct LXR ligands. Furthermore, P2X7 is not required for these molecules to induce ABCA1 upregulation and apoE secretion, demonstrating that the ABCA1 and apoE effects are mechanistically independent of P2X7 inhibition. Hence, we have identified novel dual activity compounds that upregulate ABCA1 across multiple CNS cell types, including human astrocytes, pericytes, and microglia, through an indirect LXR mechanism and that also independently inhibit P2X7 receptor activity.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Qi Zhao
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cameron Parro
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsien-Ya Chou
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tarek Z Deeb
- Tufts-AstraZeneca Laboratory for Basic and Translational Neuroscience, Boston, MA
| | - Carina Raynoschek
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Samantha Barichievy
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ola Engkvist
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Johan Meuller
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stephen J Moss
- Tufts-AstraZeneca Laboratory for Basic and Translational Neuroscience, Boston, MA.,Department of Neuroscience, Tufts University School of Medicine, Boston, MA and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Nicholas J Brandon
- Neuroscience, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Boston, MA
| | - Michael W Wood
- Neuroscience, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Boston, MA
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
223
|
Luo X, Li K, Jia YL, Zeng Q, Jiaerken Y, Qiu T, Huang P, Xu X, Shen Z, Guan X, Zhou J, Wang C, Xu JJ, Zhang M. Altered effective connectivity anchored in the posterior cingulate cortex and the medial prefrontal cortex in cognitively intact elderly APOE ε4 carriers: a preliminary study. Brain Imaging Behav 2018; 13:270-282. [DOI: 10.1007/s11682-018-9857-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
224
|
Muñoz SS, Li H, Ruberu K, Chu Q, Saghatelian A, Ooi L, Garner B. The serine protease HtrA1 contributes to the formation of an extracellular 25-kDa apolipoprotein E fragment that stimulates neuritogenesis. J Biol Chem 2018; 293:4071-4084. [PMID: 29414786 PMCID: PMC5857987 DOI: 10.1074/jbc.ra117.001278] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Apolipoprotein-E (apoE) is a glycoprotein highly expressed in the brain, where it appears to play a role in lipid transport, β-amyloid clearance, and neuronal signaling. ApoE proteolytic fragments are also present in the brain, but the enzymes responsible for apoE fragmentation are unknown, and the biological activity of specific apoE fragments remains to be determined. Here we utilized SK-N-SH neuroblastoma cells differentiated into neurons with all-trans-retinoic acid (ATRA) to study extracellular apoE proteolysis. ApoE fragments were detectable in culture supernatants after 3 days, and their levels were increased for up to 9 days in the presence of ATRA. The concentration of apoE fragments was positively correlated with levels of the neuronal maturation markers (PSD95 and SMI32). The most abundant apoE fragments were 25- and 28-kDa N-terminal fragments that both contained sialylated glycosylation and bound to heparin. We detected apoE fragments only in the extracellular milieu and not in cell lysates, suggesting that an extracellular protease contributes to apoE fragmentation. Of note, siRNA-mediated knockdown of high-temperature requirement serine peptidase A1 (HtrA1) and a specific HtrA1 inhibitor reduced apoE 25-kDa fragment formation by 41 and 86%, respectively. Recombinant 25-kDa fragment apoE and full-length apoE both stimulated neuritogenesis in vitro, increasing neuroblastoma neurite growth by more than 2-fold over a 6-day period. This study provides a cellular model for assessing apoE proteolysis, indicates that HtrA1 regulates apoE 25-kDa fragment formation under physiological conditions, and reveals a new neurotrophic function for the apoE 25-kDa fragment.
Collapse
Affiliation(s)
- Sonia Sanz Muñoz
- From the Illawarra Health and Medical Research Institute and
- the School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia and
| | - Hongyun Li
- From the Illawarra Health and Medical Research Institute and
- the School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia and
| | - Kalani Ruberu
- From the Illawarra Health and Medical Research Institute and
- the School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia and
| | - Qian Chu
- the Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Alan Saghatelian
- the Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Lezanne Ooi
- From the Illawarra Health and Medical Research Institute and
- the School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia and
| | - Brett Garner
- From the Illawarra Health and Medical Research Institute and
- the School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia and
| |
Collapse
|
225
|
Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner. Immunity 2018; 48:514-529.e6. [PMID: 29548672 DOI: 10.1016/j.immuni.2018.02.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 11/20/2022]
Abstract
Microglia as tissue macrophages contribute to the defense and maintenance of central nervous system (CNS) homeostasis. Little is known about the epigenetic signals controlling microglia function in vivo. We employed constitutive and inducible mutagenesis in microglia to delete two class I histone deacetylases, Hdac1 and Hdac2. Prenatal ablation of Hdac1 and Hdac2 impaired microglial development. Mechanistically, the promoters of pro-apoptotic and cell cycle genes were hyperacetylated in absence of Hdac1 and Hdac2, leading to increased apoptosis and reduced survival. In contrast, Hdac1 and Hdac2 were not required for adult microglia survival during homeostasis. In a mouse model of Alzheimer's disease, deletion of Hdac1 and Hdac2 in microglia, but not in neuroectodermal cells, resulted in a decrease in amyloid load and improved cognitive impairment by enhancing microglial amyloid phagocytosis. Collectively, we report a role for epigenetic factors that differentially affect microglia development, homeostasis, and disease that could potentially be utilized therapeutically.
Collapse
|
226
|
Abstract
Apolipoprotein E (apoE) is a 34-kDa glycoprotein that is secreted from many cells throughout the body. ApoE is best known for its role in lipoprotein metabolism. Recent studies underline the association of circulating lipoprotein-associated apoE levels and the development for cardiovascular disease (CVD). Besides its well-established role in pathology of CVD, it is also implicated in neurodegenerative diseases and recent new data on adipose-produced apoE point to a novel metabolic role for apoE in obesity. The regulation of apoE production and secretion is remarkably cell and tissue specific. Here, we summarize recent insights into the differential regulation apoE production and secretion by hepatocytes, monocytes/macrophages, adipocytes, and the central nervous system and relevant variations in apoE biochemistry and function.
Collapse
Affiliation(s)
- Maaike Kockx
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Mathew Traini
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Leonard Kritharides
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia.
- Sydney Medical School, University of Sydney, Sydney, Australia.
- Department of Cardiology, Concord Repatriation General Hospital, Concord, NSW, 2139, Australia.
| |
Collapse
|
227
|
Forero DA, López-León S, González-Giraldo Y, Dries DR, Pereira-Morales AJ, Jiménez KM, Franco-Restrepo JE. APOE gene and neuropsychiatric disorders and endophenotypes: A comprehensive review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:126-142. [PMID: 27943569 DOI: 10.1002/ajmg.b.32516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
The Apolipoprotein E (APOE) gene is one of the main candidates in neuropsychiatric genetics, with hundreds of studies carried out in order to explore the possible role of polymorphisms in the APOE gene in a large number of neurological diseases, psychiatric disorders, and related endophenotypes. In the current article, we provide a comprehensive review of the structural and functional aspects of the APOE gene and its relationship with brain disorders. Evidence from genome-wide association studies and meta-analyses shows that the APOE gene has been significantly associated with several neurodegenerative disorders. Cellular and animal models show growing evidence of the key role of APOE in mechanisms of brain plasticity and behavior. Future analyses of the APOE gene might find a possible role in other neurological diseases and psychiatric disorders and related endophenotypes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Daniel R Dries
- Chemistry Department, Juniata College, Huntingdon, Pennsylvania
| | - Angela J Pereira-Morales
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Karen M Jiménez
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Juan E Franco-Restrepo
- PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
228
|
Guo X, Lv J, Lu J, Fan L, Huang X, Hu L, Wang J, Shen X. Protopanaxadiol derivative DDPU improves behavior and cognitive deficit in AD mice involving regulation of both ER stress and autophagy. Neuropharmacology 2018; 130:77-91. [DOI: 10.1016/j.neuropharm.2017.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/03/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022]
|
229
|
Dorey E, Bamji-Mirza M, Najem D, Li Y, Liu H, Callaghan D, Walker D, Lue LF, Stanimirovic D, Zhang W. Apolipoprotein E Isoforms Differentially Regulate Alzheimer's Disease and Amyloid-β-Induced Inflammatory Response in vivo and in vitro. J Alzheimers Dis 2018; 57:1265-1279. [PMID: 28372324 DOI: 10.3233/jad-160133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation plays a critical role in neuronal dysfunction and death of Alzheimer's disease (AD). ApoE4 is a major risk factor of AD, while ApoE2 is neuroprotective. Little is known about the roles of ApoE isoforms in the neuroinflammation seen in AD. Their roles and mechanisms in Aβ-induced/neuroinflammation were investigated in this study using in vivo and in vitro models. Rat astrocytes were treated with lipid-poor recombinant hApoE and/or Aβ42. Mouse astrocyte lines-expressing lipidated hApoE were treated with Aβ42 and/or vitamin D receptor (VDR) agonist, 1α,25-dihydroxyvitamin D3. Cells and media were harvested for cytokine ELISA, RNA isolated for qRT-PCR, and nuclear protein for transcription factor (TF) arrays and EMSA. hApoE-transgenic and AD mice were mated to generate hApoE2/AD and hApoE4/AD mice. Mice were euthanized at 6 months of age. Brain tissues were collected for cytokine ELISA array, Aβ ELISA, immunoblotting, and immunohistochemistry. hApoE4/AD mice had significantly higher levels of inflammatory cytokines than hApoE2/AD mice. Lipidated hApoE4 significantly promoted inflammatory gene expression induced by Aβ42 but not recombinant hApoE4 in astrocytes as compared to controls. Lipidated hApoE3 provided a certain degree of protection against Aβ42-induced inflammatory response but not recombinant hApoE3 as compared to controls. Both lipidated and recombinant hApoE2 provided protection against Aβ42-induced inflammatory response compared to controls. TF array revealed that ApoE2 strongly activated VDR in Aβ42-treated astrocytes. Application of 1α,25-dihydroxyvitamin D3 completely inhibited Aβ-induced inflammatory gene expression in hApoE4-expressing astrocytes. The results suggest that ApoE4 promotes, but ApoE2 inhibits, AD/Aβ-induced neuroinflammation via VDR signaling. Targeting VDR signaling or active form of VD3 may relieve AD neuroinflammation or/and neurodegeneration.
Collapse
Affiliation(s)
- Evan Dorey
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Michelle Bamji-Mirza
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Dema Najem
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Yan Li
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Hong Liu
- Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Debbie Callaghan
- Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | | | - Lih-Fen Lue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Danica Stanimirovic
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Wandong Zhang
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| |
Collapse
|
230
|
Khan W, Giampietro V, Banaschewski T, Barker GJ, Bokde ALW, Büchel C, Conrod P, Flor H, Frouin V, Garavan H, Gowland P, Heinz A, Ittermann B, Lemaître H, Nees F, Paus T, Pausova Z, Rietschel M, Smolka MN, Ströhle A, Gallinat J, Vellas B, Soininen H, Kloszewska I, Tsolaki M, Mecocci P, Spenger C, Villemagne VL, Masters CL, Muehlboeck JS, Bäckman L, Fratiglioni L, Kalpouzos G, Wahlund LO, Schumann G, Lovestone S, Williams SCR, Westman E, Simmons A. A Multi-Cohort Study of ApoE ɛ4 and Amyloid-β Effects on the Hippocampus in Alzheimer's Disease. J Alzheimers Dis 2018; 56:1159-1174. [PMID: 28157104 PMCID: PMC5302035 DOI: 10.3233/jad-161097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The apolipoprotein E (APOE) gene has been consistently shown to modulate the risk of Alzheimer’s disease (AD). Here, using an AD and normal aging dataset primarily consisting of three AD multi-center studies (n = 1,781), we compared the effect of APOE and amyloid-β (Aβ) on baseline hippocampal volumes in AD patients, mild cognitive impairment (MCI) subjects, and healthy controls. A large sample of healthy adolescents (n = 1,387) was also used to compare hippocampal volumes between APOE groups. Subjects had undergone a magnetic resonance imaging (MRI) scan and APOE genotyping. Hippocampal volumes were processed using FreeSurfer. In the AD and normal aging dataset, hippocampal comparisons were performed in each APOE group and in ɛ4 carriers with positron emission tomography (PET) Aβ who were dichotomized (Aβ+/Aβ–) using previous cut-offs. We found a linear reduction in hippocampal volumes with ɛ4 carriers possessing the smallest volumes, ɛ3 carriers possessing intermediate volumes, and ɛ2 carriers possessing the largest volumes. Moreover, AD and MCI ɛ4 carriers possessed the smallest hippocampal volumes and control ɛ2 carriers possessed the largest hippocampal volumes. Subjects with both APOE ɛ4 and Aβ positivity had the lowest hippocampal volumes when compared to Aβ- ɛ4 carriers, suggesting a synergistic relationship between APOE ɛ4 and Aβ. However, we found no hippocampal volume differences between APOE groups in healthy 14-year-old adolescents. Our findings suggest that the strongest neuroanatomic effect of APOE ɛ4 on the hippocampus is observed in AD and groups most at risk of developing the disease, whereas hippocampi of old and young healthy individuals remain unaffected.
Collapse
Affiliation(s)
- Wasim Khan
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK.,NIHR Biomedical Research Unit for Dementia, King's College London, London, UK
| | | | - Tobias Banaschewski
- Central Institute of Mental Health, Mannheim, Germany.,Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - Arun L W Bokde
- Institute of Neuroscience and Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Patricia Conrod
- King's College London, Institute of Psychiatry, London, UK.,Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Canada
| | - Herta Flor
- Central Institute of Mental Health, Mannheim, Germany.,Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Paris, France
| | - Hugh Garavan
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Departments of Psychiatry and Psychology, University of Vermont, USA
| | - Penny Gowland
- School of Physics and Astronomy, University of Nottingham, UK
| | - Anreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Berlin, Germany
| | - Hervé Lemaître
- Institute National de la Santé et de la Recherche Médicale, INSERM CEA Unit 1000 "Imaging & Psychiatry", University Paris Sud, Orsay, and AP-HP Department of Adolescent Psychopathology and Medicine, Maison de Solenn, University Paris Descartes, Paris, France
| | - Frauke Nees
- Central Institute of Mental Health, Mannheim, Germany.,Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Tomas Paus
- otman Research Institute, University of Toronto, Toronto, Canada.,School of Psychology, University of Nottingham, UK.,Montreal Neurological Institute, McGill University, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Marcella Rietschel
- Central Institute of Mental Health, Mannheim, Germany.,Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Michael N Smolka
- Neuroimaging Center, Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jeurgen Gallinat
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Magda Tsolaki
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Christian Spenger
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Victor L Villemagne
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,University of Melbourne, Parkville, Vic., Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,University of Melbourne, Parkville, Vic., Australia
| | - J-Sebastian Muehlboeck
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Gunther Schumann
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK
| | - Simon Lovestone
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK.,NIHR Biomedical Research Unit for Dementia, King's College London, London, UK
| | - Steven C R Williams
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK.,NIHR Biomedical Research Unit for Dementia, King's College London, London, UK
| | - Eric Westman
- King's College London, Institute of Psychiatry, London, UK.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Andrew Simmons
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK.,NIHR Biomedical Research Unit for Dementia, King's College London, London, UK.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
231
|
Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 2018; 83:347-357. [PMID: 28434655 PMCID: PMC5599322 DOI: 10.1016/j.biopsych.2017.03.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Apolipoprotein E (apoE) is a lipid carrier in both the peripheral and the central nervous systems. Lipid-loaded apoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and injury repair in the brain. Considering prevalence and relative risk magnitude, the ε4 allele of the APOE gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE4 contributes to AD pathogenesis by modulating multiple pathways, including but not limited to the metabolism, aggregation, and toxicity of amyloid-β peptide, tauopathy, synaptic plasticity, lipid transport, glucose metabolism, mitochondrial function, vascular integrity, and neuroinflammation. Emerging knowledge on apoE-related pathways in the pathophysiology of AD presents new opportunities for AD therapy. We describe the biochemical and biological features of apoE and apoE receptors in the central nervous system. We also discuss the evidence and mechanisms addressing differential effects of apoE isoforms and the role of apoE receptors in AD pathogenesis, with a particular emphasis on the clinical and preclinical studies related to amyloid-β pathology. Finally, we summarize the current strategies of AD therapy targeting apoE, and postulate that effective strategies require an apoE isoform-specific approach.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
232
|
Casali BT, Reed-Geaghan EG, Landreth GE. Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease. J Neuroinflammation 2018; 15:43. [PMID: 29448961 PMCID: PMC5815248 DOI: 10.1186/s12974-018-1091-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by pathological hallmarks of beta-amyloid plaque deposits, tau pathology, inflammation, and cognitive decline. Treatment remains a clinical obstacle due to lack of effective therapeutics. Agonists targeting nuclear receptors, such as bexarotene, reversed cognitive deficits regardless of treatment duration and age in murine models of AD. While bexarotene demonstrated marked efficacy in decreasing plaque levels following short-term treatment, prolonged treatment did not modulate plaque burden. This suggested that plaques might reform in mice treated chronically with bexarotene and that cessation of bexarotene treatment before plaques reform might alter amyloid pathology, inflammation, and cognition in AD mice. METHODS We utilized one-year-old APP/PS1 mice that were divided into two groups. We treated one group of mice for 2 weeks with bexarotene. The other group of mice was treated for 2 weeks with bexarotene followed by withdrawal of drug treatment for an additional 2 weeks. Cognition was evaluated using the novel-object recognition test either at the end of bexarotene treatment or the end of the withdrawal period. We then analyzed amyloid pathology and microgliosis at the conclusion of the study in both groups. RESULTS Bexarotene treatment enhanced cognition in APP/PS1 mice similar to previous findings. Strikingly, we observed sustained cognitive improvements in mice in which bexarotene treatment was discontinued for 2 weeks. We observed a sustained reduction in microgliosis and plaque burden following drug withdrawal exclusively in the hippocampus. CONCLUSIONS Our findings demonstrate that bexarotene selectively modifies aspects of neuroinflammation in a region-specific manner to reverse hippocampal-dependent cognitive deficits in AD mice and may provide insight to inform future studies with nuclear receptor agonists.
Collapse
Affiliation(s)
- Brad T. Casali
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Erin G. Reed-Geaghan
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
233
|
Wang D, Zhang DF, Li GD, Bi R, Fan Y, Wu Y, Yu XF, Long H, Li YY, Yao YG. A pleiotropic effect of the APOE gene: association of APOE polymorphisms with multibacillary leprosy in Han Chinese from Southwest China. Br J Dermatol 2018; 178:931-939. [PMID: 28977675 DOI: 10.1111/bjd.16020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Patients with leprosy have a very low risk of Alzheimer disease (AD) and β-amyloid (Aβ) deposition is significantly lower in the brain tissue of elderly patients with leprosy compared with age-matched controls. Apolipoprotein E (ApoE) plays a critical role in lipid metabolic pathways and in the brain, facilitating the proteolytic clearance of Aβ. We hypothesized that APOE confers risk of leprosy as lipid metabolism is involved in Mycobacterium leprae infection. OBJECTIVES To investigate the potential genetic associations between APOE and leprosy in two independent Chinese case-control cohorts from the Yuxi and Wenshan prefectures, Yunnan Province of Southwest China. METHODS Five APOE single-nucleotide polymorphisms (SNPs) were analysed in 1110 individuals (527 patients and 583 controls) from the Yuxi prefecture using a SNaPshot assay. Genetic variations in the entire APOE exons were screened in 1788 individuals (798 patients and 990 controls) from the Wenshan prefecture using next-generation sequencing technology. RESULTS The AD-associated SNPs rs405509 and rs439401 increased the risk of leprosy per se and multibacillary leprosy (P < 0·005), but the APOE-ε4 allele did not. The SNPs rs405509 and rs439401 were cis expression quantitative trait loci (eQTL) for APOE expression in human skin. Differential APOE mRNA expression was observed in skin lesions of patients with type I reaction leprosy and those with multibacillary leprosy. APOE and related lipid genes are involved in an interaction network with leprosy susceptibility genes. CONCLUSIONS The APOE gene is associated with leprosy, most likely by regulating lipid-metabolism-related genes.
Collapse
Affiliation(s)
- D Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - D-F Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - G-D Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - R Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Y Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Y Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - X-F Yu
- Wenshan Institute of Dermatology, Wenshan, Yunnan, 663000, China
| | - H Long
- Wenshan Institute of Dermatology, Wenshan, Yunnan, 663000, China
| | - Y-Y Li
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Y-G Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
234
|
Virgili J, Lebbadi M, Tremblay C, St-Amour I, Pierrisnard C, Faucher-Genest A, Emond V, Julien C, Calon F. Characterization of a 3xTg-AD mouse model of Alzheimer's disease with the senescence accelerated mouse prone 8 (SAMP8) background. Synapse 2018; 72. [DOI: 10.1002/syn.22025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jessica Virgili
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Meryem Lebbadi
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Caroline Pierrisnard
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Audrey Faucher-Genest
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Carl Julien
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Frédéric Calon
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| |
Collapse
|
235
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
236
|
Andersson CH, Hansson O, Minthon L, Andreasen N, Blennow K, Zetterberg H, Skoog I, Wallin A, Nilsson S, Kettunen P. A Genetic Variant of the Sortilin 1 Gene is Associated with Reduced Risk of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1353-63. [PMID: 27392867 PMCID: PMC5147507 DOI: 10.3233/jad-160319] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder represented by the accumulation of intracellular tau protein and extracellular deposits of amyloid-β (Aβ) in the brain. The gene sortilin 1 (SORT1) has previously been associated with cardiovascular disease in gene association studies. It has also been proposed to be involved in AD pathogenesis through facilitating Aβ clearance by binding apoE/Aβ complexes prior to cellular uptake. However, the neuropathological role of SORT1 in AD is not fully understood. To evaluate the associations between gene variants of SORT1 and risk of AD, we performed genetic analyses in a Swedish case-control cohort. Ten single nucleotide polymorphisms (SNPs), covering the whole SORT1 gene, were selected and genotyped in 620 AD patients and 1107 controls. The SNP rs17646665, located in a non-coding region of the SORT1 gene, remained significantly associated with decreased risk of AD after multiple testing (pc = 0.0061). In addition, other SNPs were found to be nominally associated with risk of AD, as well as altered cognitive function and the CSF biomarker Aβ42, but these associations did not survive correction for multiple testing. The fact that SORT1 has been strongly associated with risk of cardiovascular disease is intriguing as cardiovascular disease is also regarded as a risk factor for AD. Finally, increased knowledge about SORT1 function has a potential to increase our understanding of APOE, the strongest risk factor for AD.
Collapse
Affiliation(s)
- Carl-Henrik Andersson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Lennart Minthon
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niels Andreasen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Sweden
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
237
|
Fu Y, Hsiao JHT, Paxinos G, Halliday GM, Kim WS. ABCA7 Mediates Phagocytic Clearance of Amyloid-β in the Brain. J Alzheimers Dis 2018; 54:569-84. [PMID: 27472885 DOI: 10.3233/jad-160456] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia and abnormal deposits of aggregated amyloid-β in the brain. Recent genome-wide association studies have revealed that ABCA7 is strongly associated with AD. In vitro evidence suggests that the role of ABCA7 is related to phagocytic activity. Deletion of ABCA7 in a mouse model of AD exacerbates cerebral amyloid-β plaque load. However, the biological role of ABCA7 in AD brain pathogenesis is unknown. We show that ABCA7 is highly expressed in microglia and when monocytes are differentiated into macrophages. We hypothesized that ABCA7 plays a protective role in the brain that is related to phagocytic clearance of amyloid-β. We isolated microglia and macrophages from Abca7-/- and wild type mice and tested them for their capacity to phagocytose amyloid-β oligomers. We found that the phagocytic clearance of amyloid-β was substantially reduced in both microglia and macrophages from Abca7-/- mice compared to wild type mice. Consistent with these results, in vivo phagocytic clearance of amyloid-β oligomers in the hippocampus was reduced in Abca7-/- mice. Furthermore, ABCA7 transcription was upregulated in AD brains and in amyloidogenic mouse brains specifically in the hippocampus as a response to the amyloid-β pathogenic state. Together these results indicate that ABCA7 mediates phagocytic clearance of amyloid-β in the brain, and reveal a mechanism by which loss of function of ABCA7 increases the susceptibility to AD.
Collapse
Affiliation(s)
- YuHong Fu
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jen-Hsiang T Hsiao
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - George Paxinos
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
238
|
Boehm-Cagan A, Bar R, Liraz O, Bielicki JK, Johansson JO, Michaelson DM. ABCA1 Agonist Reverses the ApoE4-Driven Cognitive and Brain Pathologies. J Alzheimers Dis 2018; 54:1219-1233. [PMID: 27567858 DOI: 10.3233/jad-160467] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The allele ɛ4 of apolipoprotein E (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD) and is therefore a promising therapeutic target. Human and animal model studies suggest that apoE4 is hypolipidated; accordingly, we have previously shown that the retinoid X receptor (RXR) agonist bexarotene upregulates ABCA1, the main apoE-lipidating protein, resulting in increased lipidation of apoE4, and the subsequent reversal of the pathological effects of apoE4, namely: accumulation of Aβ42 and hyperphosphorylated tau, as well as reduction in the levels of synaptic markers and cognitive deficits. Since the RXR system has numerous other targets, it is important to devise the means of activating ABCA1 selectively. We presently utilized CS-6253, a peptide shown to directly activate ABCA1 in vitro, and examined the extent to which it can affect the degree of lipidation of apoE4 in vivo and counteract the associated brain and behavioral pathologies. This revealed that treatment of young apoE4-targeted replacement mice with CS-6253 increases the lipidation of apoE4. This was associated with a reversal of the apoE4-driven Aβ42 accumulation and tau hyperphosphorylation in hippocampal neurons, as well as of the synaptic impairments and cognitive deficits. These findings suggest that the pathological effects of apoE4 in vivo are associated with decreased activation of ABCA1 and impaired lipidation of apoE4 and that the downstream brain-related pathology and cognitive deficits can be counteracted by treatment with the ABCA1 agonist CS-6253. These findings have important clinical ramifications and put forward ABCA1 as a promising target for apoE4-related treatment of AD.
Collapse
Affiliation(s)
- Anat Boehm-Cagan
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Bar
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ori Liraz
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - John K Bielicki
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | | | - Daniel M Michaelson
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
239
|
Bojar I, Stasiak M, Cyniak-Magierska A, Raczkiewicz D, Lewiński A. Cognitive Function, APOE Gene Polymorphisms, and Thyroid Status Associations in Postmenopausal Women in Poland. Dement Geriatr Cogn Disord 2018; 42:169-185. [PMID: 27649316 DOI: 10.1159/000449373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective of the study was to analyze a potential association between cognitive functions and thyroid status in postmenopausal women with different polymorphisms of the apolipoprotein E gene (APOE). METHODS The examined population included 402 postmenopausal women from south-eastern Poland. The evaluation of cognitive functions was made with the use of the diagnostic Central Nervous System-Vital Signs equipment (Polish version). Multiplex polymerase chain reactions were performed to assess APOE polymorphisms. The thyroid hormone tests were assessed by an accredited laboratory. RESULTS AND CONCLUSION Lower results of cognitive functions were associated with the presence of the ε4 APOE allele in postmenopausal women. The ε4 APOE polymorphism was associated with a higher concentration of thyroid-stimulating hormone and lower concentrations of free triiodothyronine and total triiodothyronine.
Collapse
Affiliation(s)
- Iwona Bojar
- Department for Health Problems of Ageing, Institute of Rural Health, Lublin, Poland
| | | | | | | | | |
Collapse
|
240
|
The Interplay Between Apolipoprotein E4 and the Autophagic–Endocytic–Lysosomal Axis. Mol Neurobiol 2018; 55:6863-6880. [DOI: 10.1007/s12035-018-0892-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
241
|
Rawle MJ, Davis D, Bendayan R, Wong A, Kuh D, Richards M. Apolipoprotein-E (Apoe) ε4 and cognitive decline over the adult life course. Transl Psychiatry 2018; 8:18. [PMID: 29317609 PMCID: PMC5802532 DOI: 10.1038/s41398-017-0064-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 11/08/2022] Open
Abstract
We tested the association between APOE-ε4 and processing speed and memory between ages 43 and 69 in a population-based birth cohort. Analyses of processing speed (using a timed letter search task) and episodic memory (a 15-item word learning test) were conducted at ages 43, 53, 60-64 and 69 years using linear and multivariable regression, adjusting for gender and childhood cognition. Linear mixed models, with random intercepts and slopes, were conducted to test the association between APOE and the rate of decline in these cognitive scores from age 43 to 69. Model fit was assessed with the Bayesian Information Criterion. A cross-sectional association between APOE-ε4 and memory scores was detected at age 69 for both heterozygotes and homozygotes (β = -0.68 and β = -1.38, respectively, p = 0.03) with stronger associations in homozygotes; no associations were observed before this age. Homozygous carriers of APOE-ε4 had a faster rate of decline in memory between ages 43 and 69, when compared to non-carriers, after adjusting for gender and childhood cognition (β = -0.05, p = 0.04). There were no cross-sectional or longitudinal associations between APOE-ε4 and processing speed. We conclude that APOE-ε4 is associated with a subtly faster rate of memory decline from midlife to early old age; this may be due to effects of APOE-ε4 becoming manifest around the latter stage of life. Continuing follow-up will determine what proportion of this increase will become clinically significant.
Collapse
Affiliation(s)
- Mark James Rawle
- Medical Research Council Unit for Lifelong Health and Ageing at University College London, 33 Bedford Place, London, WC1B 5JU, UK.
| | - Daniel Davis
- Medical Research Council Unit for Lifelong Health and Ageing at University College London, 33 Bedford Place, London, WC1B 5JU, UK
| | - Rebecca Bendayan
- Medical Research Council Unit for Lifelong Health and Ageing at University College London, 33 Bedford Place, London, WC1B 5JU, UK
| | - Andrew Wong
- Medical Research Council Unit for Lifelong Health and Ageing at University College London, 33 Bedford Place, London, WC1B 5JU, UK
| | - Diana Kuh
- Medical Research Council Unit for Lifelong Health and Ageing at University College London, 33 Bedford Place, London, WC1B 5JU, UK
| | - Marcus Richards
- Medical Research Council Unit for Lifelong Health and Ageing at University College London, 33 Bedford Place, London, WC1B 5JU, UK
| |
Collapse
|
242
|
Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotox Res 2018; 33:569-579. [PMID: 29297151 DOI: 10.1007/s12640-017-9845-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by beta-amyloid (Aβ) accumulation and neurofibrillary tangles formation in the brain which are associated to synaptic deficits and dementia. Liver X receptor (LXR) agonists have been demonstrated to revert of pathologic and cognitive defects in murine models of AD through the regulation of Apolipoprotein E, ATP-Binding Cassette A1 (ABCA1), by dampening neuroinflammation and also by reducing the levels of amyloid-β (Aβ) accumulation in the brain. However, the role of LXR with regard to the regulation of synaptic function remains relatively understudied. In the present paper, we analyzed the in-vitro effect of the LXR agonist GW3965 on synaptic function upon exposure of primary hippocampal cultures to oligomeric amyloid-β (oAβ(1-42)). We showed that oAβ(1-42) exposure significantly decreased the density of mature (mushroom shaped) dendritic spines density and synaptic contacts number. oAβ(1-42) also modulates the expression of pre- (VGlut1, SYT1, SV2A) and post-synaptic (SHANK2, NMDA) proteins, it decreases the expression of PINK1, and increases ROCKII, and activates of caspase-3; these changes were prevented by the pre-treating neuronal cultures with GW3965. These results show further support the role of the LXR agonist GW3965 in synaptic physiology and highlight its potential as an alternative pharmacological strategy for AD.
Collapse
|
243
|
Fernández-Pérez EJ, Sepúlveda FJ, Peters C, Bascuñán D, Riffo-Lepe NO, González-Sanmiguel J, Sánchez SA, Peoples RW, Vicente B, Aguayo LG. Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword. Front Aging Neurosci 2018. [PMID: 30123122 DOI: 10.3389/fnagi.2018.002.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Background: The beta-amyloid peptide (Aβ) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aβ in cultured hippocampal neurons. Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-β-cyclodextrin (MβCD) and MβCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively. Results: The results showed that cholesterol removal decreased the macroscopic association of Aβ to neuronal membranes (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aβ with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MβCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aβ (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.01), but inhibited membrane disruption. Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aβ in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aβ peptide in the neuronal membrane.
Collapse
Affiliation(s)
- Eduardo J Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Fernando J Sepúlveda
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Denisse Bascuñán
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Nicolás O Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | | | - Susana A Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Robert W Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Benjamín Vicente
- Department of Psychiatry and Mental Health, Universidad de Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
244
|
[Genetic factors associated with human extremely longevity; Focusing on centenarian study]. Nihon Ronen Igakkai Zasshi 2018; 55:554-561. [PMID: 30542020 DOI: 10.3143/geriatrics.55.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
245
|
Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. Neurosteroids and oxysterols as potential therapeutic agents for glaucoma and Alzheimer's disease. ACTA ACUST UNITED AC 2018; 8:344-359. [PMID: 30774720 DOI: 10.4172/neuropsychiatry.1000356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glaucoma is one of the most frequent causes of visual impairment worldwide and involves selective damage to retinal ganglion cells (RGCs) resulting in degeneration of neural pathways connecting retina to visual cortex. It is of interest that similarities in pathological changes have been described in Alzheimer's disease (AD), the most common cause of progressive memory loss and dementia in older people. Accumulation of amyloid-beta (Abeta) and hyperphosphorylated tau is thought to contribute to apoptotic neuronal death in Alzheimer's disease, and similar changes have been linked to apoptotic RGC death in glaucoma. Both glaucoma and Alzheimer's disease also suffer from a lack of effective treatments prompting a search for novel therapeutic interventions. Neurosteroids (NSs) (including oxysterols) are endogenous molecules synthesized in the nervous system from cholesterol that can modulate glutamate and GABA receptors, the primary mediators of fast excitatory and inhibitory neurotransmission in the brain, respectively. Because changes in the glutamate and GABA neurotransmitter systems contribute to the pathogenesis of AD and glaucoma, NSs are possible therapeutic targets for these disorders. In this review, we present recent evidence supporting pathological links between Alzheimer's disease and glaucoma, and focus on the possible role of NSs in these diseases and how NSs might be developed for therapeutic purposes.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Douglas F Covey
- Department of Developmental Biology, Akita University Graduate School of Medicine, Akita, Japan.,Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan
| | - Charles F Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| |
Collapse
|
246
|
Burke SL, Maramaldi P, Cadet T, Kukull W. Decreasing hazards of Alzheimer's disease with the use of antidepressants: mitigating the risk of depression and apolipoprotein E. Int J Geriatr Psychiatry 2018; 33:200-211. [PMID: 28560728 PMCID: PMC5711617 DOI: 10.1002/gps.4709] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/02/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurodegenerative disease, manifesting in clinically observable deficits in memory, thinking, and behavior that disproportionately affects older adults. Susceptibility genes, such as apolipoprotein ε4, have long been associated with an increased risk of AD diagnosis. Studies have shown associations between depression and increased risk of AD development. Furthermore, findings from previous investigations suggest mixed effects in the use of psychotropic medication in older adults. The hypothesis for this study is that antidepressant use modifies the increased hazard of depression or such that a non-significant hazard will result with respect to eventual AD development. METHODS Utilizing data from the National Alzheimer's Coordinating Center, we examined evaluations of 11,443 cognitively intact participants. Survival analysis was used to explore relationships between depression, apolipoprotein E, AD diagnosis, and antidepressant use. RESULTS An analytical sample of 8732 participants with normal cognition was examined. Among users of antidepressant medication, the hazard, in most cases, was no longer statistically significant. One generic medication showed protective benefits for users (p < 0.001). In addition, there was a statistically significant relationship between recent depression (n = 2083; p < 0.001), lifetime depression (n = 2068; p < 0.05), and ε4 carrier status (n = 2470; p < 0.001) and AD development. CONCLUSIONS The findings suggest that a mechanism related to antidepressant use may reduce the hazard of eventual AD. Furthermore, the findings reinforce the association between depression, apolipoprotein E (APOE) ε4, and AD diagnosis. This study contributes to the emerging literature exploring interventions aimed at decreasing the risk of AD by targeting potentially modifiable psychosocial risk factors such as depression. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shanna L Burke
- Robert Stempel College of Public Health and Social Work, School of Social Work, Florida International University, Miami, FL, USA
| | - Peter Maramaldi
- Simmons College School of Social Work, Boston, MA, USA
- Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tamara Cadet
- Simmons College School of Social Work, Boston, MA, USA
- Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Walter Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- National Alzheimer's Coordinating Center, University of Washington, Seattle, WA
| |
Collapse
|
247
|
Pereira CD, Martins F, Wiltfang J, da Cruz e Silva OA, Rebelo S. ABC Transporters Are Key Players in Alzheimer’s Disease. J Alzheimers Dis 2017; 61:463-485. [DOI: 10.3233/jad-170639] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cátia D. Pereira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Jens Wiltfang
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
248
|
Montoliu-Gaya L, Mulder SD, Veerhuis R, Villegas S. Effects of an Aβ-antibody fragment on Aβ aggregation and astrocytic uptake are modulated by apolipoprotein E and J mimetic peptides. PLoS One 2017; 12:e0188191. [PMID: 29155887 PMCID: PMC5695774 DOI: 10.1371/journal.pone.0188191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/02/2017] [Indexed: 01/23/2023] Open
Abstract
Aβ-Immunotherapy has long been studied in the treatment of Alzheimer’s disease (AD), but not how other molecules involved in the disease can affect antibody performance. We previously designed an antibody fragment, scFv-h3D6, and showed that it precludes Aβ-induced cytotoxicity by withdrawing Aβ oligomers from the amyloid pathway towards a non-toxic, worm-like pathway. ScFv-h3D6 was effective at the behavioral, cellular, and molecular levels in the 3xTg-AD mouse model. Because scFv-h3D6 treatment restored apolipoprotein E (apoE) and J (apoJ) concentrations to non-pathological values, and Aβ internalization by glial cells was found to be decreased in the presence of these apolipoproteins, we now aimed to test the influence of scFv-h3D6 on Aβ aggregation and cellular uptake by primary human astrocytes in the presence of therapeutic apoE and apoJ mimetic peptides (MPs). Firstly, we demonstrated by CD and FTIR that the molecules used in this work were well folded. Next, interactions between apoE or apoJ-MP, scFv-h3D6 and Aβ were studied by CD. The conformational change induced by the interaction of Aβ with apoE-MP was much bigger than the induced with apoJ-MP, in line with the observed formation of protective worm-like fibrils by the scFv-h3D6/Aβ complex in the presence of apoJ-MP, but not of apoE-MP. ScFv-h3D6, apoJ-MP, and apoE-MP to a different extent reduced Aβ uptake by astrocytes, and apoE-MP partially interfered with the dramatic reduction by scFv-h3D6 while apoJ-MP had no effect on scFv-h3D6 action. As sustained Aβ uptake by astrocytes may impair their normal functions, and ultimately neuronal viability, this work shows another beneficence of scFv-h3D6 treatment, which is not further improved by the use of apoE or apoJ mimetic peptides.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra D. Mulder
- Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert Veerhuis
- Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
- Psychiatry Department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail: (RV); (SV)
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (RV); (SV)
| |
Collapse
|
249
|
Ma KG, Lv J, Yang WN, Chang KW, Hu XD, Shi LL, Zhai WY, Zong HF, Qian YH. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain. Brain Res Bull 2017; 137:41-52. [PMID: 29128415 DOI: 10.1016/j.brainresbull.2017.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor (α7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD.
Collapse
Affiliation(s)
- Kai-Ge Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Jia Lv
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Wei-Na Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Ke-Wei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Xiao-Dan Hu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Li-Li Shi
- Department of Human Anatomy, Xi'an Medical University, 1 Xinwang road, Xi'an, 710021, China
| | - Wan-Ying Zhai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Hang-Fan Zong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Yi-Hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
250
|
The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res Rev 2017; 40:84-94. [PMID: 28941639 DOI: 10.1016/j.arr.2017.08.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022]
Abstract
The immune system is now considered a major factor in Alzheimer Disease (AD). This review seeks to demonstrate how various aspects of the immune system, both in the brain and peripherally, interact to contribute to AD. We highlight classical nervous system immune components, such as complement and microglia, as well as novel aspects of the peripheral immune system that can influence disease, such as monocytes and lymphocytes. By detailing the roles of various immune cells in AD, we summarize an emerging perspective for disease etiology and future therapeutic targets.
Collapse
|