201
|
Persistent CaMKII activation mediates learning-induced long-lasting enhancement of synaptic inhibition. J Neurosci 2015; 35:128-39. [PMID: 25568108 DOI: 10.1523/jneurosci.2123-14.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Training rats in a particularly difficult olfactory-discrimination task results in acquisition of high skill to perform the task superbly, termed "rule learning" or "learning set." Such complex learning results in enhanced intrinsic neuronal excitability of piriform cortex pyramidal neurons, and in their excitatory synaptic interconnections. These changes, while subserving memory maintenance, must be counterbalanced by modifications that prevent overspreading of activity and uncontrolled synaptic strengthening. Indeed, we have previously shown that the average amplitude of GABAA-mediated miniature IPSCs (mIPSCs) in these neurons is enhanced for several days after learning, an enhancement mediated via a postsynaptic mechanism. To unravel the molecular mechanism of this long-term inhibition enhancement, we tested the role of key second-messenger systems in maintaining such long-lasting modulation. The calcium/calmodulin-dependent kinase II (CaMKII) blocker, KN93, significantly reduced the average mIPSC amplitude in neurons from trained rats only to the average pretraining level. A similar effect was obtained by the CaMKII peptide inhibitor, tatCN21. Such reduction resulted from decreased single-channel conductance and not in the number of activated channels. The PKC inhibitor, GF109203X, reduced the average mIPSC amplitude in neurons from naive, pseudo-trained, and trained animals, and the difference between the trained and control groups remained. Such reduction resulted from a decrease in the number of activated channels. The PKA inhibitor H89 dihydrochloride did not affect the average mIPSC amplitude in neurons from any of the three groups. We conclude that learning-induced enhancement of GABAA-mediated synaptic inhibition is maintained by persistent CaMKII activation.
Collapse
|
202
|
Mo J, Kim CH, Lee D, Sun W, Lee HW, Kim H. Early growth response 1 (Egr-1) directly regulates GABAA receptor α2, α4, and θ subunits in the hippocampus. J Neurochem 2015; 133:489-500. [PMID: 25708312 DOI: 10.1111/jnc.13077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 11/28/2022]
Abstract
The homeostatic regulation of neuronal activity in glutamatergic and GABAergic synapses is critical for neural circuit development and synaptic plasticity. The induced expression of the transcription factor early growth response 1 (Egr-1) in neurons is tightly associated with many forms of neuronal activity, but the underlying target genes in the brain remained to be elucidated. This study uses a quantitative real-time PCR approach, in combination with in vivo chromatin immunoprecipitation, and reveals that GABAA receptor subunit, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes, are transcriptional targets of Egr-1. Transfection of a construct that over-expresses Egr-1 in neuroblastoma (Neuro2A) cells up-regulates the α2, α4, and θ subunits. Given that Egr-1 knockout mice display less GABRA2, GABRA4, and GRBRQ mRNA in the hippocampus, and that Egr-1 directly binds to their promoters and induces mRNA expression, the present findings support a role for Egr-1 as a major regulator for altered GABAA receptor composition in homeostatic plasticity, in a glutamatergic activity-dependent manner. The early growth response 1 (Egr-1) is an inducible transcription factor to mediate rapid gene expression by neuronal activity. However, its underlying molecular target genes and mechanisms are not fully understood. We suggest that GABAA receptor subunits, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes are transcriptional targets of Egr-1. Neuronal activity-dependent up-regulation of Egr-1 might lead to altered subtypes of GABAA receptors for the maintenance of homeostatic excitatory and inhibitory balance for the regulation of synaptic strength.
Collapse
Affiliation(s)
- Jiwon Mo
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
203
|
González MI, Grabenstatter HL, Cea-Del Rio CA, Cruz Del Angel Y, Carlsen J, Laoprasert RP, White AM, Huntsman MM, Brooks-Kayal A. Seizure-related regulation of GABAA receptors in spontaneously epileptic rats. Neurobiol Dis 2015; 77:246-56. [PMID: 25769812 DOI: 10.1016/j.nbd.2015.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/13/2023] Open
Abstract
In this study, we analyzed the impact that spontaneous seizures might have on the plasma membrane expression, composition and function of GABAA receptors (GABAARs). For this, the tissue of chronically epileptic rats was collected within 3h of seizure occurrence (≤3h group) or at least 24h after seizure occurrence (≥24h group). A retrospective analysis of seizure frequency revealed that selecting animals on the bases of seizure proximity also grouped animals in terms of overall seizure burden with a higher seizure burden observed in the ≤3h group. A biochemical analysis showed that although animals with more frequent/recent seizures (≤3h group) had similar levels of GABAAR at the plasma membrane they showed deficits in inhibitory neurotransmission. By contrast, the tissue obtained from animals experiencing infrequent seizures (≥24h group) had increased plasma membrane levels of GABAAR and showed no deficit in inhibitory function. Together, our findings offer an initial insight into the molecular changes that might help to explain how alterations in GABAAR function can be associated with differential seizure burden. Our findings also suggest that increased plasma membrane levels of GABAAR might act as a compensatory mechanism to more effectively maintain inhibitory function, repress hyperexcitability and reduce seizure burden. This study is an initial step towards a fuller characterization of the molecular events that trigger alterations in GABAergic neurotransmission during chronic epilepsy.
Collapse
Affiliation(s)
- Marco I González
- Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045 USA; Translational Epilepsy Research Program, University of Colorado Aurora CO 80045, USA.
| | - Heidi L Grabenstatter
- Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045 USA; Translational Epilepsy Research Program, University of Colorado Aurora CO 80045, USA
| | - Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Translational Epilepsy Research Program, University of Colorado Aurora CO 80045, USA
| | - Yasmin Cruz Del Angel
- Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045 USA; Translational Epilepsy Research Program, University of Colorado Aurora CO 80045, USA
| | - Jessica Carlsen
- Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045 USA; Translational Epilepsy Research Program, University of Colorado Aurora CO 80045, USA
| | - Rick P Laoprasert
- Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045 USA
| | - Andrew M White
- Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045 USA; Translational Epilepsy Research Program, University of Colorado Aurora CO 80045, USA
| | - Molly M Huntsman
- Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045 USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Translational Epilepsy Research Program, University of Colorado Aurora CO 80045, USA
| | - Amy Brooks-Kayal
- Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045 USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Translational Epilepsy Research Program, University of Colorado Aurora CO 80045, USA; Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
204
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
205
|
Papadopoulos T, Schemm R, Grubmüller H, Brose N. Lipid binding defects and perturbed synaptogenic activity of a Collybistin R290H mutant that causes epilepsy and intellectual disability. J Biol Chem 2015; 290:8256-70. [PMID: 25678704 DOI: 10.1074/jbc.m114.633024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects--or synaptopathies--are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the Cb(R290H) mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- From the Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany, and
| | - Rudolf Schemm
- the Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Helmut Grubmüller
- the Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Nils Brose
- From the Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany, and
| |
Collapse
|
206
|
Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 2015; 146:48-61. [PMID: 25196185 DOI: 10.1016/j.jsbmb.2014.09.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
Progesterone is a well-known steroid hormone, synthesized by ovaries and placenta in females, and by adrenal glands in both males and females. Several tissues are targets of progesterone and the nervous system is a major one. Progesterone is also locally synthesized by the nervous system and qualifies, therefore, as a neurosteroid. In addition, the nervous system has the capacity to bio-convert progesterone into its active metabolite allopregnanolone. The enzymes required for progesterone and allopregnanolone synthesis are widely distributed in brain and spinal cord. Increased local biosynthesis of pregnenolone, progesterone and 5α-dihydroprogesterone may be a part of an endogenous neuroprotective mechanism in response to nervous system injuries. Progesterone and allopregnanolone neuroprotective effects have been widely recognized. Multiple receptors or associated proteins may contribute to the progesterone effects: classical nuclear receptors (PR), membrane progesterone receptor component 1 (PGRMC1), membrane progesterone receptors (mPR), and γ-aminobutyric acid type A (GABAA) receptors after conversion to allopregnanolone. In this review, we will succinctly describe progesterone and allopregnanolone biosynthetic pathways and enzyme distribution in brain and spinal cord. Then, we will summarize our work on progesterone receptor distribution and cellular expression in brain and spinal cord; neurosteroid stimulation after nervous system injuries (spinal cord injury, traumatic brain injury, and stroke); and on progesterone and allopregnanolone neuroprotective effects in different experimental models including stroke and spinal cord injury. We will discuss in detail the neuroprotective effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABAA receptors.
Collapse
Affiliation(s)
- R Guennoun
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France.
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | | | - P Liere
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - M Schumacher
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
207
|
Chu HY, Atherton JF, Wokosin D, Surmeier DJ, Bevan MD. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron 2015; 85:364-76. [PMID: 25578364 PMCID: PMC4304914 DOI: 10.1016/j.neuron.2014.12.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease. Here we demonstrate that motor cortical inputs to the STN heterosynaptically regulate, through activation of postsynaptic NMDA receptors, the number of functional GABAA receptor-mediated GPe-STN inputs. Therefore, a homeostatic mechanism, intrinsic to the STN, balances cortical excitation by adjusting the strength of GPe inhibition. However, following the loss of dopamine, excessive cortical activation of STN NMDA receptors triggers GPe-STN inputs to strengthen abnormally, contributing to the emergence of pathological, correlated activity.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
208
|
Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors. J Neurosci 2015; 34:13516-34. [PMID: 25274828 DOI: 10.1523/jneurosci.2069-14.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.
Collapse
|
209
|
Luscher B, Fuchs T. GABAergic control of depression-related brain states. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:97-144. [PMID: 25637439 DOI: 10.1016/bs.apha.2014.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GABAergic deficit hypothesis of major depressive disorders (MDDs) posits that reduced γ-aminobutyric acid (GABA) concentration in brain, impaired function of GABAergic interneurons, altered expression and function of GABA(A) receptors, and changes in GABAergic transmission dictated by altered chloride homeostasis can contribute to the etiology of MDD. Conversely, the hypothesis posits that the efficacy of currently used antidepressants is determined by their ability to enhance GABAergic neurotransmission. We here provide an update for corresponding evidence from studies of patients and preclinical animal models of depression. In addition, we propose an explanation for the continued lack of genetic evidence that explains the considerable heritability of MDD. Lastly, we discuss how alterations in GABAergic transmission are integral to other hypotheses of MDD that emphasize (i) the role of monoaminergic deficits, (ii) stress-based etiologies, (iii) neurotrophic deficits, and (iv) the neurotoxic and neural circuit-impairing consequences of chronic excesses of glutamate. We propose that altered GABAergic transmission serves as a common denominator of MDD that can account for all these other hypotheses and that plays a causal and common role in diverse mechanistic etiologies of depressive brain states and in the mechanism of action of current antidepressant drug therapies.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Thomas Fuchs
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
210
|
Seljeset S, Laverty D, Smart TG. Inhibitory Neurosteroids and the GABAA Receptor. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART A 2015; 72:165-87. [DOI: 10.1016/bs.apha.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
211
|
Gastón MS, Schiöth HB, De Barioglio SR, Salvatierra NA. Gabaergic control of anxiety-like behavior, but not food intake, induced by ghrelin in the intermediate medial mesopallium of the neonatal chick. Horm Behav 2015; 67:66-72. [PMID: 25499794 DOI: 10.1016/j.yhbeh.2014.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Ghrelin (Grh) is an endogenous ligand of the growth hormone secretagogue receptor. In neonatal chicks, central Ghr induces anxiogenic-like behavior but strongly inhibits food intake. The intermediate medial mesopallium (IMM) of the chick forebrain has been identified to be a site of the memory formation, and the modulation of the GABAA receptors that are present here modifies the expression of behavior. Thus, the GABAergic system may constitute a central pathway for Ghr action in regulating the processes of food intake and stress-related behaviors. Therefore, we investigated if the effect of systemic administration of bicuculline (GABAA receptor antagonist) and diazepam (benzodiazepine receptor agonist) on the anxiety in an Open Field test and inhibition in food intake induced by Grh (30pmol) when injected into IMM, were mediated by GABAergic transmission. In Open Field test, bicuculline was able to block the anxiogenic-like behavior induced by Ghr, whereas diazepam did not produce it. However, the co-administration of bicuculline or diazepam plus Ghr did not show any change in food intake at 30, 60 and 120min after injection compared to Ghr alone. Our results indicate for the first time that Ghr, injected into the forebrain IMM area, induces an anxiogenic-like behavior, which was blocked by bicuculline but not diazepam, thus suggesting that Ghr plays an important role in the response pattern to acute stressor, involving the possible participation of the GABAergic system. Nevertheless, as neither drug affected the hypophagia induced by intra-IMM Ghr, this suggests that it may be mediated by different mechanisms.
Collapse
Affiliation(s)
- M S Gastón
- Departamento de Química, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina
| | - H B Schiöth
- Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Institutionen för Neurovetenskap BMC, Box 593, 751 24 Uppsala, Sweden
| | - S R De Barioglio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Haya de la Torre y Medina Allende, Universidad Nacional de Córdoba, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - N A Salvatierra
- Departamento de Química, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina.
| |
Collapse
|
212
|
Salvatico C, Specht CG, Triller A. Synaptic receptor dynamics: From theoretical concepts to deep quantification and chemistry in cellulo. Neuropharmacology 2015; 88:2-9. [DOI: 10.1016/j.neuropharm.2014.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/22/2023]
|
213
|
Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by phosphorylation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 72:97-146. [PMID: 25600368 PMCID: PMC5337123 DOI: 10.1016/bs.apha.2014.11.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. This review will explore the details of this dynamic process, our understanding of which has barely scratched the surface. GABAARs are regulated by a number of kinases and phosphatases, and its phosphorylation plays an important role in governing its trafficking, expression, and interaction partners. Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
Collapse
|
214
|
Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors. Proc Natl Acad Sci U S A 2014; 112:1214-9. [PMID: 25552561 DOI: 10.1073/pnas.1417989112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GABAA-receptor-based interneuron circuitry is essential for higher order function of the human nervous system and is implicated in schizophrenia, depression, anxiety disorders, and autism. Here we demonstrate that giant ankyrin-G (480-kDa ankyrin-G) promotes stability of somatodendritic GABAergic synapses in vitro and in vivo. Moreover, giant ankyrin-G forms developmentally regulated and cell-type-specific micron-scale domains within extrasynaptic somatodendritic plasma membranes of pyramidal neurons. We further find that giant ankyrin-G promotes GABAergic synapse stability through opposing endocytosis of GABAA receptors, and requires a newly described interaction with GABARAP, a GABAA receptor-associated protein. We thus present a new mechanism for stabilization of GABAergic interneuron synapses and micron-scale organization of extrasynaptic membrane that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and abnormal neurodevelopment.
Collapse
|
215
|
Weiler NC, Collman F, Vogelstein JT, Burns R, Smith SJ. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography. Sci Data 2014; 1:140046. [PMID: 25977797 PMCID: PMC4411012 DOI: 10.1038/sdata.2014.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023] Open
Abstract
A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces.
Collapse
Affiliation(s)
- Nicholas C Weiler
- Graduate Program in Neurosciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Forrest Collman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Joshua T Vogelstein
- Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Randal Burns
- Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Stephen J Smith
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| |
Collapse
|
216
|
Gardiner KJ. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des Devel Ther 2014; 9:103-25. [PMID: 25552901 PMCID: PMC4277121 DOI: 10.2147/dddt.s51476] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability (ID). Although ID can be mild, the average intelligence quotient is in the range of 40-50. All individuals with DS will also develop the neuropathology of Alzheimer's disease (AD) by the age of 30-40 years, and approximately half will display an AD-like dementia by the age of 60 years. DS is caused by an extra copy of the long arm of human chromosome 21 (Hsa21) and the consequent elevated levels of expression, due to dosage, of trisomic genes. Despite a worldwide incidence of one in 700-1,000 live births, there are currently no pharmacological treatments available for ID or AD in DS. However, over the last several years, very promising results have been obtained with a mouse model of DS, the Ts65Dn. A diverse array of drugs has been shown to rescue, or partially rescue, DS-relevant deficits in learning and memory and abnormalities in cellular and electrophysiological features seen in the Ts65Dn. These results suggest that some level of amelioration or prevention of cognitive deficits in people with DS may be possible. Here, we review information from the preclinical evaluations in the Ts65Dn, how drugs were selected, how efficacy was judged, and how outcomes differ, or not, among studies. We also summarize the current state of human clinical trials for ID and AD in DS. Lastly, we describe the genetic limitations of the Ts65Dn as a model of DS, and in the preclinical testing of pharmacotherapeutics, and suggest additional targets to be considered for potential pharmacotherapies.
Collapse
Affiliation(s)
- Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program, Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
217
|
Zhang X, Miller KW. Dodecyl maltopyranoside enabled purification of active human GABA type A receptors for deep and direct proteomic sequencing. Mol Cell Proteomics 2014; 14:724-38. [PMID: 25473089 DOI: 10.1074/mcp.m114.042556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The challenge in high-quality membrane proteomics is all about sample preparation prior to HPLC, and the cell-to-protein step poses a long-standing bottleneck. Traditional protein extraction methods apply ionic or poly-disperse detergents, harsh denaturation, and repeated protein/peptide precipitation/resolubilization afterward, but suffer low yield, low reproducibility, and low sequence coverage. Contrary to attempts to subdue, we resolved this challenge by providing proteins nature-and-activity-promoting conditions throughout preparation. Using 285-kDa hetero-pentameric human GABA type A receptor overexpressed in HEK293 as a model, we describe a n-dodecyl-β-d-maltopyranoside/cholesteryl hemisuccinate (DDM/CHS)-based affinity purification method, that produced active receptors, supported protease activity, and allowed high performance with both in-gel and direct gel-free proteomic analyses-without detergent removal. Unlike conventional belief that detergents must be removed before HPLC MS, the high-purity low-dose nonionic detergent DDM did not interfere with peptides, and obviated removal or desalting. Sonication or dropwise addition of detergent robustly solubilized over 90% of membrane pellets. The purification conditions were comparable to those applied in successful crystallizations of most membrane proteins. These results enabled streamlined proteomics of human synaptic membrane proteins, and more importantly, allowed directly coupling proteomics with crystallography to characterize both static and dynamic structures of membrane proteins in crystallization pipelines.
Collapse
Affiliation(s)
- Xi Zhang
- From the ‡Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, §Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Keith W Miller
- From the ‡Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, §Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
218
|
Synaptic upregulation and superadditive interaction of dopamine D2- and μ-opioid receptors after peripheral nerve injury. Pain 2014; 155:2526-2533. [DOI: 10.1016/j.pain.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022]
|
219
|
V’yunova TV, Andreeva LA, Shevchenko KV, Shevchenko VP, Myasoedov NF. Peptide regulation of specific ligand-receptor interactions of GABA with the plasma membranes of nerve cells. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
220
|
Lubbers BR, van Mourik Y, Schetters D, Smit AB, De Vries TJ, Spijker S. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking. Biol Psychiatry 2014; 76:750-8. [PMID: 24631130 DOI: 10.1016/j.biopsych.2014.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 01/16/2014] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. METHODS Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. RESULTS Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. CONCLUSIONS These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence.
Collapse
Affiliation(s)
- Bart R Lubbers
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Dustin Schetters
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Taco J De Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam.
| |
Collapse
|
221
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ligand-gated ion channels. Br J Pharmacol 2014; 170:1582-606. [PMID: 24528238 PMCID: PMC3892288 DOI: 10.1111/bph.12446] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ligand-gated ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Smith KR, Davenport EC, Wei J, Li X, Pathania M, Vaccaro V, Yan Z, Kittler JT. GIT1 and βPIX are essential for GABA(A) receptor synaptic stability and inhibitory neurotransmission. Cell Rep 2014; 9:298-310. [PMID: 25284783 PMCID: PMC4536293 DOI: 10.1016/j.celrep.2014.08.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/28/2014] [Accepted: 08/23/2014] [Indexed: 12/18/2022] Open
Abstract
Effective inhibitory synaptic transmission requires efficient stabilization of GABAA receptors (GABAARs) at synapses, which is essential for maintaining the correct excitatory-inhibitory balance in the brain. However, the signaling mechanisms that locally regulate synaptic GABAAR membrane dynamics remain poorly understood. Using a combination of molecular, imaging, and electrophysiological approaches, we delineate a GIT1/βPIX/Rac1/PAK signaling pathway that modulates F-actin and is important for maintaining surface GABAAR levels, inhibitory synapse integrity, and synapse strength. We show that GIT1 and βPIX are required for synaptic GABAAR surface stability through the activity of the GTPase Rac1 and downstream effector PAK. Manipulating this pathway using RNAi, dominant-negative and pharmacological approaches leads to a disruption of GABAAR clustering and decrease in the strength of synaptic inhibition. Thus, the GIT1/βPIX/Rac1/PAK pathway plays a crucial role in regulating GABAAR synaptic stability and hence inhibitory synaptic transmission with important implications for inhibitory plasticity and information processing in the brain. GIT1 and βPIX are present at inhibitory synapses and complex with GABAARs GIT1 and βPIX are important for GABAAR clustering and inhibitory transmission Rac1 and PAK activity is required for stabilization of GABAARs at synapses A GIT1/βPIX/Rac1/PAK pathway is required for inhibitory synaptic transmission
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elizabeth C Davenport
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jing Wei
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Xiangning Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Manavendra Pathania
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Victoria Vaccaro
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
223
|
Petrini EM, Barberis A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 2014; 8:300. [PMID: 25294987 PMCID: PMC4171989 DOI: 10.3389/fncel.2014.00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
224
|
Eckel R, Szulc B, Walker MC, Kittler JT. Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity. Neuropharmacology 2014; 88:82-90. [PMID: 25245802 PMCID: PMC4239296 DOI: 10.1016/j.neuropharm.2014.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
Abstract
Fast inhibitory signalling in the mammalian brain is mediated by gamma-aminobutyric acid type A receptors (GABAARs), which are targets for anti-epileptic therapy such as benzodiazepines. GABAARs undergo tightly regulated trafficking processes that are essential for maintenance and physiological modulation of inhibitory strength. The trafficking of GABAARs to and from the membrane is altered during prolonged seizures such as in Status Epilepticus (SE) and has been suggested to contribute to benzodiazepine pharmacoresistance in patients with SE. However, the intracellular signalling mechanisms that cause this modification in GABAAR trafficking remain poorly understood. In this study, we investigate the surface stability of GABAARs during SE utilising the low Mg(2+) model in hippocampal rat neurons. Live-cell imaging of super ecliptic pHluorin (SEP)-tagged α2 subunit containing GABAARs during low Mg(2+) conditions reveals that the somatic surface receptor pool undergoes down-regulation dependent on N-methyl-d-aspartate receptor (NMDAR) activity. Analysis of the intracellular Ca(2+) signal during low Mg(2+) using the Ca(2+)-indicator Fluo4 shows that this reduction of surface GABAARs correlates well with the timeline of intracellular Ca(2+) changes. Furthermore, we show that the activation of the phosphatase calcineurin was required for the decrease in surface GABAARs in neurons undergoing epileptiform activity. These results indicate that somatic modulation of GABAAR trafficking during epileptiform activity in vitro is mediated by calcineurin activation which is linked to changes in intracellular Ca(2+) concentrations. These mechanisms could account for benzodiazepine pharmacoresistance and the maintenance of recurrent seizure activity, and reveal potential novel targets for the treatment of SE.
Collapse
Affiliation(s)
- Ramona Eckel
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Blanka Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
225
|
Kang Y, Ge Y, Cassidy RM, Lam V, Luo L, Moon KM, Lewis R, Molday RS, Wong ROL, Foster LJ, Craig AM. A combined transgenic proteomic analysis and regulated trafficking of neuroligin-2. J Biol Chem 2014; 289:29350-64. [PMID: 25190809 DOI: 10.1074/jbc.m114.549279] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synapses, the basic units of communication in the brain, require complex molecular machinery for neurotransmitter release and reception. Whereas numerous components of excitatory postsynaptic sites have been identified, relatively few proteins are known that function at inhibitory postsynaptic sites. One such component is neuroligin-2 (NL2), an inhibitory synapse-specific cell surface protein that functions in cell adhesion and synaptic organization via binding to neurexins. In this study, we used a transgenic tandem affinity purification and mass spectrometry strategy to isolate and characterize NL2-associated complexes. Complexes purified from brains of transgenic His6-FLAG-YFP-NL2 mice showed enrichment in the Gene Ontology terms cell-cell signaling and synaptic transmission relative to complexes purified from wild type mice as a negative control. In addition to expected components including GABA receptor subunits and gephyrin, several novel proteins were isolated in association with NL2. Based on the presence of multiple components involved in trafficking and endocytosis, we showed that NL2 undergoes dynamin-dependent endocytosis in response to soluble ligand and colocalizes with VPS35 retromer in endosomes. Inhibitory synapses in brain also present a particular challenge for imaging. Whereas excitatory synapses on spines can be imaged with a fluorescent cell fill, inhibitory synapses require a molecular tag. We find the His6-FLAG-YFP-NL2 to be a suitable tag, with the unamplified YFP signal localizing appropriately to inhibitory synapses in multiple brain regions including cortex, hippocampus, thalamus, and basal ganglia. Altogether, we characterize NL2-associated complexes, demonstrate regulated trafficking of NL2, and provide tools for further proteomic and imaging studies of inhibitory synapses.
Collapse
Affiliation(s)
- Yunhee Kang
- From the Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Yuan Ge
- From the Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Robert M Cassidy
- From the Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Vivian Lam
- From the Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Lin Luo
- From the Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Kyung-Mee Moon
- the Department of Biochemistry and Molecular Biology and Centre for High-throughput Biology and
| | - Renate Lewis
- the Department of Anatomy and Neurobiology, Washington University, St. Louis, Missouri 63110, and
| | - Robert S Molday
- the Department of Biochemistry and Molecular Biology and Centre for Macular Research, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Rachel O L Wong
- the Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Leonard J Foster
- the Department of Biochemistry and Molecular Biology and Centre for High-throughput Biology and
| | - Ann Marie Craig
- From the Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver V6T 2B5, Canada,
| |
Collapse
|
226
|
Comenencia-Ortiz E, Moss SJ, Davies PA. Phosphorylation of GABAA receptors influences receptor trafficking and neurosteroid actions. Psychopharmacology (Berl) 2014; 231:3453-65. [PMID: 24847959 PMCID: PMC4135009 DOI: 10.1007/s00213-014-3617-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
RATIONALE Gamma-aminobutyric acid type A receptors (GABAARs) are the principal mediators of inhibitory transmission in the mammalian central nervous system. GABAARs can be localized at post-synaptic inhibitory specializations or at extrasynaptic sites. While synaptic GABAARs are activated transiently following the release of GABA from presynaptic vesicles, extrasynaptic GABAARs are typically activated continuously by ambient GABA concentrations and thus mediate tonic inhibition. The tonic inhibitory currents mediated by extrasynaptic GABAARs control neuronal excitability and the strength of synaptic transmission. However, the mechanisms by which neurons control the functional properties of extrasynaptic GABAARs had not yet been explored. OBJECTIVES We review GABAARs, how they are assembled and trafficked, and the role phosphorylation has on receptor insertion and membrane stabilization. Finally, we review the modulation of GABAARs by neurosteroids and how GABAAR phosphorylation can influence the actions of neurosteroids. CONCLUSIONS Trafficking and stability of functional channels to the membrane surface are critical for inhibitory efficacy. Phosphorylation of residues within GABAAR subunits plays an essential role in the assembly, trafficking, and cell surface stability of GABAARs. Neurosteroids are produced in the brain and are highly efficacious allosteric modulators of GABAAR-mediated current. This allosteric modulation by neurosteroids is influenced by the phosphorylated state of the GABAAR which is subunit dependent, adding temporal and regional variability to the neurosteroid response. Possible links between neurosteroid actions, phosphorylation, and GABAAR trafficking remain to be explored, but potential novel therapeutic targets may exist for numerous neurological and psychological disorders which are linked to fluctuations in neurosteroid levels and GABAA subunit expression.
Collapse
|
227
|
Guimond D, Diabira D, Porcher C, Bader F, Ferrand N, Zhu M, Appleyard SM, Wayman GA, Gaiarsa JL. Leptin potentiates GABAergic synaptic transmission in the developing rodent hippocampus. Front Cell Neurosci 2014; 8:235. [PMID: 25177272 PMCID: PMC4133691 DOI: 10.3389/fncel.2014.00235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/26/2014] [Indexed: 12/17/2022] Open
Abstract
It is becoming increasingly clear that leptin is not only a hormone regulating energy homeostasis but also a neurotrophic factor impacting a number of brain regions, including the hippocampus. Although leptin promotes the development of GABAergic transmission in the hypothalamus, little is known about its action on the GABAergic system in the hippocampus. Here we show that leptin modulates GABAergic transmission onto developing CA3 pyramidal cells of newborn rats. Specifically, leptin induces a long-lasting potentiation (LLP-GABAA) of miniature GABAA receptor-mediated postsynaptic current (GABAA-PSC) frequency. Leptin also increases the amplitude of evoked GABAA-PSCs in a subset of neurons along with a decrease in the coefficient of variation and no change in the paired-pulse ratio, pointing to an increased recruitment of functional synapses. Adding pharmacological blockers to the recording pipette showed that the leptin-induced LLP-GABAA requires postsynaptic calcium released from internal stores, as well as postsynaptic MAPK/ERK kinases 1 and/or 2 (MEK1/2), phosphoinositide 3 kinase (PI3K) and calcium-calmodulin kinase kinase (CaMKK). Finally, study of CA3 pyramidal cells in leptin-deficient ob/ob mice revealed a reduction in the basal frequency of miniature GABAA-PSCs compared to wild type littermates. In addition, presynaptic GAD65 immunostaining was reduced in the CA3 stratum pyramidale of mutant animals, both results converging to suggest a decreased number of functional GABAergic synapses in ob/ob mice. Overall, these results show that leptin potentiates and promotes the development of GABAergic synaptic transmission in the developing hippocampus likely via an increase in the number of functional synapses, and provide insights into the intracellular pathways mediating this effect. This study further extends the scope of leptin's neurotrophic action to a key regulator of hippocampal development and function, namely GABAergic transmission.
Collapse
Affiliation(s)
- Damien Guimond
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France ; Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Diabe Diabira
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Christophe Porcher
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Francesca Bader
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Nadine Ferrand
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Gary A Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Jean-Luc Gaiarsa
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| |
Collapse
|
228
|
Phosphorylation mediated structural and functional changes in pentameric ligand-gated ion channels: Implications for drug discovery. Int J Biochem Cell Biol 2014; 53:218-23. [DOI: 10.1016/j.biocel.2014.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/18/2022]
|
229
|
Neuronal nitric oxide synthase-dependent S-nitrosylation of gephyrin regulates gephyrin clustering at GABAergic synapses. J Neurosci 2014; 34:7763-8. [PMID: 24899700 DOI: 10.1523/jneurosci.0531-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gephyrin, the principal scaffolding protein at inhibitory synapses, is essential for postsynaptic clustering of glycine and GABA type A receptors (GABA(A)Rs). Gephyrin cluster formation, which determines the strength of GABAergic transmission, is modulated by interaction with signaling proteins and post-translational modifications. Here, we show that gephyrin was found to be associated with neuronal nitric oxide synthase (nNOS), the major source of the ubiquitous and important signaling molecule NO in brain. Furthermore, we identified that gephyrin is S-nitrosylated in vivo. Overexpression of nNOS decreased the size of postsynaptic gephyrin clusters in primary hippocampal neurons. Conversely, inhibition of nNOS resulted in a loss of S-nitrosylation of gephyrin and the formation of larger gephyrin clusters at synaptic sites, ultimately increasing the number of cell surface expressed synaptic GABA(A)Rs. In conclusion, S-nitrosylation of gephyrin is important for homeostatic assembly and plasticity of GABAergic synapses.
Collapse
|
230
|
Dejanovic B, Semtner M, Ebert S, Lamkemeyer T, Neuser F, Lüscher B, Meier JC, Schwarz G. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol 2014; 12:e1001908. [PMID: 25025157 PMCID: PMC4099074 DOI: 10.1371/journal.pbio.1001908] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/05/2014] [Indexed: 12/03/2022] Open
Abstract
Gephyrin, the principal scaffolding protein at inhibitory synapses, needs to be palmitoylated in order to cluster and to assemble functional synapses. Postsynaptic scaffolding proteins regulate coordinated neurotransmission by anchoring and clustering receptors and adhesion molecules. Gephyrin is the major instructive molecule at inhibitory synapses, where it clusters glycine as well as major subsets of GABA type A receptors (GABAARs). Here, we identified palmitoylation of gephyrin as an important mechanism of strengthening GABAergic synaptic transmission, which is regulated by GABAAR activity. We mapped palmitoylation to Cys212 and Cys284, which are critical for both association of gephyrin with the postsynaptic membrane and gephyrin clustering. We identified DHHC-12 as the principal palmitoyl acyltransferase that palmitoylates gephyrin. Furthermore, gephyrin pamitoylation potentiated GABAergic synaptic transmission, as evidenced by an increased amplitude of miniature inhibitory postsynaptic currents. Consistently, inhibiting gephyrin palmitoylation either pharmacologically or by expression of palmitoylation-deficient gephyrin reduced the gephyrin cluster size. In aggregate, our study reveals that palmitoylation of gephyrin by DHHC-12 contributes to dynamic and functional modulation of GABAergic synapses. Efficient signal transmission at synapses is essential for higher brain functions. Inhibitory signaling in the brain takes place primarily at GABA (γ-aminobutyric acid)-ergic synapses. GABA type A receptors (GABAARs) are clustered at the postsynaptic side by a scaffold composed of the peripheral membrane protein gephyrin. We demonstrate that gephyrin is modulated by palmitoylation, a reversible posttranslational fatty acid modification. Palmitoylation facilitates the membrane association of gephyrin and is therefore essential for normal clustering of gephyrin at GABAergic synapses. Reciprocally, palmitoylation of gephyrin is regulated by GABAAR activity. Of the 23 known palmitoyl transferases that catalyze the palmitoylation of proteins in human cells, we identified one enzyme, DHHC-12, to specifically modify gephyrin. Our results provide a new aspect to the posttranslational control of synaptic plasticity.
Collapse
Affiliation(s)
- Borislav Dejanovic
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Marcus Semtner
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvia Ebert
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Tobias Lamkemeyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Neuser
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Bernhard Lüscher
- Department of Biology and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jochen C. Meier
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
231
|
Corteen NL, Carter JA, Rudolph U, Belelli D, Lambert JJ, Swinny JD. Localisation and stress-induced plasticity of GABAA receptor subunits within the cellular networks of the mouse dorsal raphe nucleus. Brain Struct Funct 2014; 220:2739-63. [PMID: 24973971 DOI: 10.1007/s00429-014-0824-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/11/2014] [Indexed: 01/28/2023]
Abstract
The dorsal raphe nucleus (DRN) provides the major source of serotonin to the central nervous system (CNS) and modulates diverse neural functions including mood. Furthermore, DRN cellular networks are engaged in the stress-response at the CNS level allowing for adaptive behavioural responses, whilst stress-induced dysregulation of DRN and serotonin release is implicated in psychiatric disorders. Therefore, identifying the molecules regulating DRN activity is fundamental to understand DRN function in health and disease. GABAA receptors (GABAARs) allow for brain region, cell type and subcellular domain-specific GABA-mediated inhibitory currents and are thus key regulators of neuronal activity. Yet, the GABAAR subtypes expressed within the neurochemically diverse cell types of the mouse DRN are poorly described. In this study, immunohistochemistry and confocal microscopy revealed that all serotonergic neurons expressed immunoreactivity for the GABAAR alpha2 and 3 subunits, although the respective signals were co-localised to varying degrees with inhibitory synaptic marker proteins. Only a topographically located sub-population of serotonergic neurons exhibited GABAAR alpha1 subunit immunoreactivity. However, all GABAergic as well as non-GABAergic, non-serotonergic neurons within the DRN expressed GABAAR alpha1 subunit immunoreactivity. Intriguingly, immunoreactivity for the GABAAR gamma2 subunit was enriched on GABAergic rather than serotonergic neurons. Finally, repeated restraint stress increased the expression of the GABAAR alpha3 subunit at the mRNA and protein level. The study demonstrates the identity and location of distinct GABAAR subunits within the cellular networks of the mouse DRN and that stress impacts on the expression levels of particular subunits at the gene and protein level.
Collapse
Affiliation(s)
- Nicole L Corteen
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK,
| | | | | | | | | | | |
Collapse
|
232
|
Postsynaptic activity reverses the sign of the acetylcholine-induced long-term plasticity of GABAA inhibition. Proc Natl Acad Sci U S A 2014; 111:E2741-50. [PMID: 24938789 DOI: 10.1073/pnas.1321777111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acetylcholine (ACh) regulates forms of plasticity that control cognitive functions but the underlying mechanisms remain largely unknown. ACh controls the intrinsic excitability, as well as the synaptic excitation and inhibition of CA1 hippocampal pyramidal cells (PCs), cells known to participate in circuits involved in cognition and spatial navigation. However, how ACh regulates inhibition in function of postsynaptic activity has not been well studied. Here we show that in rat PCs, a brief pulse of ACh or a brief stimulation of cholinergic septal fibers combined with repeated depolarization induces strong long-term enhancement of GABAA inhibition (GABAA-LTP). Indeed, this enhanced inhibition is due to the increased activation of α5βγ2 subunit-containing GABAA receptors by the GABA released. GABAA-LTP requires the activation of M1-muscarinic receptors and an increase in cytosolic Ca(2+). In the absence of PC depolarization ACh triggered a presynaptic depolarization-induced suppression of inhibition (DSI), revealing that postsynaptic activity gates the effects of ACh from presynaptic DSI to postsynaptic LTP. These results provide key insights into mechanisms potentially linked with cognitive functions, spatial navigation, and the homeostatic control of abnormal hyperexcitable states.
Collapse
|
233
|
Rui Y, Myers KR, Yu K, Wise A, De Blas AL, Hartzell HC, Zheng JQ. Activity-dependent regulation of dendritic growth and maintenance by glycogen synthase kinase 3β. Nat Commun 2014; 4:2628. [PMID: 24165455 PMCID: PMC3821971 DOI: 10.1038/ncomms3628] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/16/2013] [Indexed: 01/31/2023] Open
Abstract
Activity-dependent dendritic development represents a crucial step in brain development, but its underlying mechanisms remain to be fully elucidated. Here we report that glycogen synthase kinase 3β (GSK3β) regulates dendritic development in an activity-dependent manner. We find that GSK3β in somatodendritic compartments of hippocampal neurons becomes highly phosphorylated at serine-9 upon synaptogenesis. This phosphorylation-dependent GSK3β inhibition is mediated by neurotrophin signalling and is required for dendritic growth and arbourization. Elevation of GSK3β activity leads to marked shrinkage of dendrites, whereas its inhibition enhances dendritic growth. We further show that these effects are mediated by GSK3β regulation of surface GABAA receptor levels via the scaffold protein gephyrin. GSK3β activation leads to gephyrin phosphorylation to reduce surface GABAA receptor clusters, resulting in neuronal hyperexcitability that causes dendrite shrinkage. These findings thus identify GSK3β as a key player in activity-dependent regulation of dendritic development by targeting the excitatory-inhibitory balance of the neuron.
Collapse
Affiliation(s)
- Yanfang Rui
- 1] Department of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA [2] Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Muir J, Kittler JT. Plasticity of GABAA receptor diffusion dynamics at the axon initial segment. Front Cell Neurosci 2014; 8:151. [PMID: 24959118 PMCID: PMC4051194 DOI: 10.3389/fncel.2014.00151] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/11/2014] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS), a site of action potential initiation, undergoes activity-dependent homeostatic repositioning to fine-tune neuronal activity. However, little is known about the behavior of GABAA receptors (GABAARs) at synapses made onto the axon and especially the AIS. Here, we study the clustering and lateral diffusion of GABAARs in the AIS under baseline conditions, and find that GABAAR lateral mobility is lower in the AIS than dendrites. We find differences in axonal clustering and lateral mobility between GABAARs containing the α1 or α2 subunits, which are known to localize differentially to the AIS. Interestingly, we find that chronic activity driving AIS repositioning does not alter GABAergic synapse location along the axon, but decreases GABAAR cluster size at the AIS. Moreover, in response to chronic depolarization, GABAAR diffusion is strikingly increased in the AIS, and not in dendrites, and this is coupled with a decrease in synaptic residency time of GABAARs at the AIS. We also demonstrate that activation of L-type voltage-gated calcium channels is important for regulating GABAAR lateral mobility at the AIS during chronic depolarization. Modulation of GABAAR diffusion dynamics at the AIS in response to prolonged activity may be a novel mechanism for regulating GABAergic control of information processing.
Collapse
Affiliation(s)
- James Muir
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
235
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
236
|
Bates RC, Stith BJ, Stevens KE, Adams CE. Reduced CHRNA7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABA(A) receptor subunits. Neuroscience 2014; 273:52-64. [PMID: 24836856 DOI: 10.1016/j.neuroscience.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 12/14/2022]
Abstract
Decreased expression of CHRNA7, the gene encoding the α7(∗) subtype of nicotinic receptor, may contribute to the cognitive dysfunction observed in schizophrenia by disrupting the inhibitory/excitatory balance in the hippocampus. C3H mice with reduced Chrna7 expression have significant reductions in hippocampal α7(∗) receptor density, deficits in hippocampal auditory gating, increased hippocampal activity as well as significant decreases in hippocampal glutamate decarboxylase-65 (GAD65) and γ-aminobutyric acid-A (GABAA) receptor levels. The current study investigated whether altered Chrna7 expression is associated with changes in the levels of parvalbumin, GAD67 and/or GABAA receptor subunits in the hippocampus from male and female C3H Chrna7 wildtype, C3H Chrna7 heterozygous and C3H Chrna7 knockout (KO) mice using quantitative Western immunoblotting. Reduced Chrna7 expression was associated with significant increases in hippocampal parvalbumin and GAD67 and with complex alterations in GABAA receptor subunits. A decrease in α3 subunit protein was seen in both female C3H Chrna7 Het and KO mice while a decrease in α4 subunit protein was also detected in C3H Chrna7 KO mice with no sex difference. In contrast, an increase in δ subunit protein was observed in C3H Chrna7 Het mice while a decrease in this subunit was observed in C3H Chrna7 KO mice, with δ subunit protein levels being greater in males than in females. Finally, an increase in γ2 subunit protein was found in C3H Chrna7 KO mice with the levels of this subunit again being greater in males than in females. The increases in hippocampal parvalbumin and GAD67 observed in C3H Chrna7 mice are contrary to reports of reductions in these proteins in the postmortem hippocampus from schizophrenic individuals. We hypothesize that the disparate results may occur because of the influence of factors other than CHRNA7 that have been found to be abnormal in schizophrenia.
Collapse
Affiliation(s)
- R C Bates
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Integrative Biology, University of Colorado Denver Downtown Denver Campus, Denver, CO 80217, United States
| | - B J Stith
- Department of Integrative Biology, University of Colorado Denver Downtown Denver Campus, Denver, CO 80217, United States
| | - K E Stevens
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States
| | - C E Adams
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
237
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
238
|
Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors. Proc Natl Acad Sci U S A 2014; 111:7132-7. [PMID: 24778259 DOI: 10.1073/pnas.1403285111] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurosteroids are synthesized within the brain and act as endogenous anxiolytic, anticonvulsant, hypnotic, and sedative agents, actions that are principally mediated via their ability to potentiate phasic and tonic inhibitory neurotransmission mediated by γ-aminobutyric acid type A receptors (GABAARs). Although neurosteroids are accepted allosteric modulators of GABAARs, here we reveal they exert sustained effects on GABAergic inhibition by selectively enhancing the trafficking of GABAARs that mediate tonic inhibition. We demonstrate that neurosteroids potentiate the protein kinase C-dependent phosphorylation of S443 within α4 subunits, a component of GABAAR subtypes that mediate tonic inhibition in many brain regions. This process enhances insertion of α4 subunit-containing GABAAR subtypes into the membrane, resulting in a selective and sustained elevation in the efficacy of tonic inhibition. Therefore, the ability of neurosteroids to modulate the phosphorylation and membrane insertion of α4 subunit-containing GABAARs may underlie the profound effects these endogenous signaling molecules have on neuronal excitability and behavior.
Collapse
|
239
|
Brain-derived neurotrophic factor promotes gephyrin protein expression and GABAA receptor clustering in immature cultured hippocampal cells. Neurochem Int 2014; 72:14-21. [PMID: 24747341 DOI: 10.1016/j.neuint.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
Fast synaptic inhibition in the adult brain is largely mediated by GABAA receptors (GABAAR). GABAAR are anchored to synaptic sites by gephyrin, a scaffolding protein that appears to be assembled as a hexagonal lattice beneath the plasma membrane. Brain derived neurotrophic factor (BDNF) alters the clustering and synaptic distribution of GABAAR but mechanisms behind this regulation are just starting to emerge. The current study was aimed to examine if BDNF alters the protein levels and/or clustering of gephyrin and to investigate whether the modulation of gephyrin is accompanied by changes in the distribution and/or clustering of GABAAR. Exogenous application of BDNF to immature neuronal cultures from rat hippocampus increased the protein levels and clustering of gephyrin. BDNF also augmented the association of gephyrin with GABAAR and promoted the formation of GABAAR clusters. Together, these observations indicate that BDNF might regulate the assembly of GABAergic synapses by promoting the association of GABAAR with gephyrin.
Collapse
|
240
|
Gerrow K, Triller A. GABAA receptor subunit composition and competition at synapses are tuned by GABAB receptor activity. Mol Cell Neurosci 2014; 60:97-107. [PMID: 24747870 DOI: 10.1016/j.mcn.2014.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/20/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022] Open
Abstract
GABABRs have a well-established role in controlling neuronal excitability and presynaptic neurotransmitter release. We examined the role of GABABR activity in modulating the number and lateral diffusion of GABAARs at inhibitory synapses. Changes in diffusion of GABAARs at synapses were observed when subunit heterogeneity was taken into account. While α1-GABAARs were unaffected, α2- and α5-GABAARs showed inverse changes in enrichment and diffusion. The intracellular TM3-4 loop of α2 was sufficient to observe the changes in diffusion by GABABR activity, whereas the loop of α5 was not. The opposing effect on α2- and α5-GABAARs was caused by a competition between GABAARs for binding slots at synapses. Receptor immobilization by cross-linking revealed that α5-GABAAR trapping at synapses is regulated by modulation of α2-GABAAR mobility. Finally, PKC activity was determined to be part of the signaling pathway through which GABABR activity modulates α2-GABAAR diffusion at synapses. These results outline a novel mechanism for tuning inhibitory transmission in a subunit-specific manner, and for the first time describe competition between GABAARs with different subunit compositions for binding slots at synapses.
Collapse
Affiliation(s)
- K Gerrow
- Institut de Biologie de l'ENS (IBENS), 46 rue d'Ulm, 75005 Paris, France
| | - A Triller
- Institut de Biologie de l'ENS (IBENS), 46 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
241
|
Liu S, Lamaze A, Liu Q, Tabuchi M, Yang Y, Fowler M, Bharadwaj R, Zhang J, Bedont J, Blackshaw S, Lloyd TE, Montell C, Sehgal A, Koh K, Wu MN. WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 2014; 82:151-66. [PMID: 24631345 PMCID: PMC3982794 DOI: 10.1016/j.neuron.2014.01.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
How the circadian clock regulates the timing of sleep is poorly understood. Here, we identify a Drosophila mutant, wide awake (wake), that exhibits a marked delay in sleep onset at dusk. Loss of WAKE in a set of arousal-promoting clock neurons, the large ventrolateral neurons (l-LNvs), impairs sleep onset. WAKE levels cycle, peaking near dusk, and the expression of WAKE in l-LNvs is Clock dependent. Strikingly, Clock and cycle mutants also exhibit a profound delay in sleep onset, which can be rescued by restoring WAKE expression in LNvs. WAKE interacts with the GABAA receptor Resistant to Dieldrin (RDL), upregulating its levels and promoting its localization to the plasma membrane. In wake mutant l-LNvs, GABA sensitivity is decreased and excitability is increased at dusk. We propose that WAKE acts as a clock output molecule specifically for sleep, inhibiting LNvs at dusk to promote the transition from wake to sleep.
Collapse
Affiliation(s)
- Sha Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Angelique Lamaze
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qili Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Masashi Tabuchi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yong Yang
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Melissa Fowler
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rajnish Bharadwaj
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Julia Zhang
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Joseph Bedont
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
242
|
Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in layer 4 of visual cortex during the critical period. J Neurosci 2014; 34:2571-82. [PMID: 24523547 DOI: 10.1523/jneurosci.4600-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition from fast-spiking (FS) interneurons plays a crucial role in shaping cortical response properties and gating developmental periods of activity-dependent plasticity, yet the expression mechanisms underlying FS inhibitory plasticity remain largely unexplored. In layer 4 of visual cortex (V1), monocular deprivation (MD) induces either depression or potentiation of FS to star pyramidal neuron (FS→SP) synapses, depending on the age of onset (Maffei et al., 2004, 2006). This reversal in the sign (- to +) of plasticity occurs on the cusp of the canonical critical period (CP). To investigate the expression locus behind this switch in sign of inhibitory plasticity, mice underwent MD during the pre-CP [eye-opening to postnatal day (p)17] or CP (p22-p25), and FS→SP synaptic strength within layer 4 was assessed using confocal and immunoelectron microscopy, as well as optogenetic activation of FS cells to probe quantal amplitude at FS→SP synapses. Brief MD before p17 or p25 did not alter the density of FS→SP contacts. However, at the ultrastructural level, FS→SP synapses in deprived hemispheres during the CP, but not the pre-CP or in GAD65 knock-out mice, had larger synapses and increased docked vesicle density compared with synapses from the nondeprived control hemispheres. Moreover, FS→SP evoked miniature IPSCs increased in deprived hemispheres when MD was initiated during the CP, accompanied by an increase in the density of postsynaptic GABAA receptors at FS→SP synapses. These coordinated changes in FS→SP synaptic strength define an expression pathway modulating excitatory output during CP plasticity in visual cortex.
Collapse
|
243
|
Fritschy JM, Panzanelli P. GABAAreceptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 2014; 39:1845-65. [DOI: 10.1111/ejn.12534] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH; Zurich Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini; University of Turin; Turin Italy
| |
Collapse
|
244
|
Abstract
The broad connectivity of inhibitory interneurons and the capacity of inhibitory synapses to be plastic make them ideal regulators of the level of excitability of many neurons simultaneously. Whether inhibitory synaptic plasticity may also contribute to the selective regulation of single neurons and local microcircuits activity has not been investigated. Here we demonstrate that in rat primary visual cortex inhibitory synaptic plasticity is connection specific and depends on the activation of postsynaptic GABAB-Gi/o protein signaling. Through the activation of this intracellular signaling pathway, inhibitory plasticity can alter the state of a single postsynaptic neuron and directly affect the induction of plasticity at its glutamatergic inputs. This interaction is modulated by sensory experience. Our data demonstrate that in recurrent circuits, excitatory and inhibitory forms of synaptic plasticity are not integrated as independent events, but interact to cooperatively drive the activity-dependent rewiring of local microcircuits.
Collapse
|
245
|
Datta D, Arion D, Lewis DA. Developmental Expression Patterns of GABAA Receptor Subunits in Layer 3 and 5 Pyramidal Cells of Monkey Prefrontal Cortex. Cereb Cortex 2014; 25:2295-305. [PMID: 24610118 DOI: 10.1093/cercor/bhu040] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cortical pyramidal neuron activity is regulated in part through inhibitory inputs mediated by GABAA receptors. The subunit composition of these receptors confers distinct functional properties. Thus, developmental shifts in subunit expression will likely influence the characteristics of pyramidal cell firing and the functional maturation of processes that depend on these neurons. We used laser microdissection and PCR to quantify postnatal developmental changes in the expression of GABAA receptor subunits (α1, α2, α5, β2, γ2, and δ) in layer 3 pyramidal cells of monkey prefrontal cortex, which are critical for working memory. To determine the specificity of these changes, we examined glutamate receptor subunits (AMPA Glur1 and NMDA Grin1) and conducted the same analyses in layer 5 pyramidal cells. Expression of GABAA receptor subunit mRNAs changed substantially, whereas glutamate receptor subunit changes were modest over postnatal development. Some transcripts (e.g., GABAA α1) progressively increased from birth until adulthood, whereas others (e.g., GABAA α2) declined with age. Changes in some transcripts were present in only one layer (e.g., GABAA δ). The development of GABAA receptor subunit expression in primate prefrontal pyramidal neurons is protracted and subunit- and layer-specific. These trajectories might contribute to the molecular basis for the maturation of working memory.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dominique Arion
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Neuroscience Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
246
|
Central α- and β-thujone: Similar anxiogenic-like effects and differential modulation on GABAA receptors in neonatal chicks. Brain Res 2014; 1555:28-35. [DOI: 10.1016/j.brainres.2014.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/30/2013] [Accepted: 01/23/2014] [Indexed: 01/22/2023]
|
247
|
Mapelli L, Solinas S, D'Angelo E. Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit. Front Cell Neurosci 2014; 8:55. [PMID: 24616663 PMCID: PMC3933946 DOI: 10.3389/fncel.2014.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/06/2014] [Indexed: 11/26/2022] Open
Abstract
Inhibitory synapses can be organized in different ways and be regulated by a multitude of mechanisms. One of the best known examples is provided by the inhibitory synapses formed by Golgi cells onto granule cells in the cerebellar glomeruli. These synapses are GABAergic and inhibit granule cells through two main mechanisms, phasic and tonic. The former is based on vesicular neurotransmitter release, the latter on the establishment of tonic γ-aminobutyric acid (GABA) levels determined by spillover and regulation of GABA uptake. The mechanisms of post-synaptic integration have been clarified to a considerable extent and have been shown to differentially involve α1 and α6 subunit-containing GABA-A receptors. Here, after reviewing the basic mechanisms of GABAergic transmission in the cerebellar glomeruli, we examine how inhibition controls signal transfer at the mossy fiber-granule cell relay. First of all, we consider how vesicular release impacts on signal timing and how tonic GABA levels control neurotransmission gain. Then, we analyze the integration of these inhibitory mechanisms within the granular layer network. Interestingly, it turns out that glomerular inhibition is just one element in a large integrated signaling system controlled at various levels by metabotropic receptors. GABA-B receptor activation by ambient GABA regulates glutamate release from mossy fibers through a pre-synaptic cross-talk mechanisms, GABA release through pre-synaptic auto-receptors, and granule cell input resistance through post-synaptic receptor activation and inhibition of a K inward-rectifier current. Metabotropic glutamate receptors (mGluRs) control GABA release from Golgi cell terminals and Golgi cell input resistance and autorhythmic firing. This complex set of mechanisms implements both homeostatic and winner-take-all processes, providing the basis for fine-tuning inhibitory neurotransmission and for optimizing signal transfer through the cerebellar cortex.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Sergio Solinas
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|
248
|
Xu C, Zhang W, Rondard P, Pin JP, Liu J. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Front Pharmacol 2014; 5:12. [PMID: 24575041 PMCID: PMC3920572 DOI: 10.3389/fphar.2014.00012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, cell-surface expression and localization, crosstalk with other receptors, or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
249
|
Garret M, Boué-Grabot E, Taly A. Long distance effect on ligand-gated ion channels extracellular domain may affect interactions with the intracellular machinery. Commun Integr Biol 2014; 7:e27984. [PMID: 25254078 PMCID: PMC4167410 DOI: 10.4161/cib.27984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
Modulation of receptor trafficking is critical for controlling neurotransmission. A γ2(R43Q) point mutation on GABAA receptor subunit is linked to epilepsy in human. We recently analyzed the effect of this amino-acid substitution on GABAA receptor trafficking and showed that this mutation as well as agonist application, both affecting GABAA receptor extracellular domain, have an effect on receptor endocytosis. By comparing homology models based on ligand gated ion channels in their active and resting states, we reveal that the γ2R43 domain is located in a loop that is affected by motion resulting from receptor activation. Taken together, these results suggest that endocytosis of GABAA receptors is linked to agonist induced conformational changes. We propose that ligand or modulator binding is followed by a whole chain of interconnections, including the intracellular domain, that may influence ligand-gated channel trafficking.
Collapse
Affiliation(s)
- Maurice Garret
- Univ. Bordeaux; INCIA; UMR 5287; Bordeaux, France ; CNRS; INCIA; UMR 5287; Bordeaux, France
| | - Eric Boué-Grabot
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France ; CNRS; Institut des Maladies Neurodégénératives; UMR 5293; Bordeaux, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique (CNRS-Université Paris Diderot); Paris, France
| |
Collapse
|
250
|
Weston MC, Chen H, Swann JW. Loss of mTOR repressors Tsc1 or Pten has divergent effects on excitatory and inhibitory synaptic transmission in single hippocampal neuron cultures. Front Mol Neurosci 2014; 7:1. [PMID: 24574959 DOI: 10.3389/fnmol.2014.00001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/09/2014] [Indexed: 01/23/2023] Open
Abstract
The Pten and Tsc1 genes both encode proteins that repress mechanistic target of rapamycin (mTOR) signaling. Disruption of either gene in the brain results in epilepsy and autism-like symptoms in humans and mouse models, therefore it is important to understand the molecular and physiological events that lead from gene disruption to disease phenotypes. Given the similar roles these two molecules play in the regulation of cellular growth and the overlap in the phenotypes that result from their loss, we predicted that the deletion of either the Pten or Tsc1 gene from autaptic hippocampal neurons would have similar effects on neuronal morphology and synaptic transmission. Accordingly, we found that loss of either Pten or Tsc1 caused comparable increases in soma size, dendrite length and action potential properties. However, the effects of Pten and Tsc1 loss on synaptic transmission were different. Loss of Pten lead to an increase in both excitatory and inhibitory neurotransmission, while loss of Tsc1 did not affect excitatory neurotransmission and reduced inhibitory transmission by decreasing mIPSC amplitude. Although the loss of Pten or Tsc1 both increased downstream mTORC1 signaling, phosphorylation of Akt was increased in Pten-ko and decreased in Tsc1-ko neurons, potentially accounting for the different effects on synaptic transmission. Despite the different effects at the synaptic level, our data suggest that loss of Pten or Tsc1 may both lead to an increase in the ratio of excitation to inhibition at the network level, an effect that has been proposed to underlie both epilepsy and autism.
Collapse
Affiliation(s)
- Matthew C Weston
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute Houston, TX, USA ; Departments of Neuroscience and Pediatrics, Baylor College of Medicine Houston, TX, USA
| | - Hongmei Chen
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute Houston, TX, USA ; Departments of Neuroscience and Pediatrics, Baylor College of Medicine Houston, TX, USA
| | - John W Swann
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute Houston, TX, USA ; Departments of Neuroscience and Pediatrics, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|