201
|
Nguyen TP, Priami C, Caberlotto L. Novel drug target identification for the treatment of dementia using multi-relational association mining. Sci Rep 2015; 5:11104. [PMID: 26154857 PMCID: PMC4495601 DOI: 10.1038/srep11104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022] Open
Abstract
Dementia is a neurodegenerative condition of the brain in which there is a progressive and permanent loss of cognitive and mental performance. Despite the fact that the number of people with dementia worldwide is steadily increasing and regardless of the advances in the molecular characterization of the disease, current medical treatments for dementia are purely symptomatic and hardly effective. We present a novel multi-relational association mining method that integrates the huge amount of scientific data accumulated in recent years to predict potential novel targets for innovative therapeutic treatment of dementia. Owing to the ability of processing large volumes of heterogeneous data, our method achieves a high performance and predicts numerous drug targets including several serine threonine kinase and a G-protein coupled receptor. The predicted drug targets are mainly functionally related to metabolism, cell surface receptor signaling pathways, immune response, apoptosis, and long-term memory. Among the highly represented kinase family and among the G-protein coupled receptors, DLG4 (PSD-95), and the bradikynin receptor 2 are highlighted also for their proposed role in memory and cognition, as described in previous studies. These novel putative targets hold promises for the development of novel therapeutic approaches for the treatment of dementia.
Collapse
Affiliation(s)
- Thanh-Phuong Nguyen
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068, Rovereto, Italy
- Life Sciences Research Unit, University of Luxembourg, 162 A, avenue de la Faïencerie, L-1511 Luxembourg
| | - Corrado Priami
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068, Rovereto, Italy
- Department of Mathematics, University of Trento, Via Sommarive, 14-38123 Povo, Italy
| | - Laura Caberlotto
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068, Rovereto, Italy
| |
Collapse
|
202
|
Yang H, Wang S, Yu L, Zhu X, Xu Y. Esculentoside A suppresses Aβ1–42-induced neuroinflammation by down-regulating MAPKs pathwaysin vivo. Neurol Res 2015; 37:859-66. [DOI: 10.1179/1743132815y.0000000066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
203
|
Lloret A, Fuchsberger T, Giraldo E, Viña J. Molecular mechanisms linking amyloid β toxicity and Tau hyperphosphorylation in Alzheimer׳s disease. Free Radic Biol Med 2015; 83:186-91. [PMID: 25746773 DOI: 10.1016/j.freeradbiomed.2015.02.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Neurofibrillary tangles (aggregates of cytoskeletal Tau protein) and senile plaques (aggregates mainly formed by amyloid β peptide) are two landmark lesions in Alzheimer׳s disease. Some researchers have proposed tangles, whereas others have proposed plaques, as primary lesions. For a long time, these were thought of as independent mechanisms. However, experimental evidence suggests that both lesions are intimately related. We review here some molecular pathways linking amyloid β and Tau toxicities involving, among others, glycogen synthase kinase 3β, p38, Pin1, cyclin-dependent kinase 5, and regulator of calcineurin 1. Understanding amyloid β and Tau toxicities as part of a common pathophysiological mechanism may help to find molecular targets to prevent or even treat the disease.
Collapse
Affiliation(s)
- A Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia and Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, 46010 Valencia, Spain
| | - T Fuchsberger
- Department of Physiology, Faculty of Medicine, University of Valencia and Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, 46010 Valencia, Spain
| | - E Giraldo
- Department of Physiology, Faculty of Medicine, University of Valencia and Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, 46010 Valencia, Spain
| | - J Viña
- Department of Physiology, Faculty of Medicine, University of Valencia and Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
204
|
Munoz L, Kavanagh ME, Phoa AF, Heng B, Dzamko N, Chen EJ, Doddareddy MR, Guillemin GJ, Kassiou M. Optimisation of LRRK2 inhibitors and assessment of functional efficacy in cell-based models of neuroinflammation. Eur J Med Chem 2015; 95:29-34. [DOI: 10.1016/j.ejmech.2015.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 01/12/2023]
|
205
|
Roy SM, Grum-Tokars VL, Schavocky JP, Saeed F, Staniszewski A, Teich AF, Arancio O, Bachstetter AD, Webster SJ, Van Eldik LJ, Minasov G, Anderson WF, Pelletier JC, Watterson DM. Targeting human central nervous system protein kinases: An isoform selective p38αMAPK inhibitor that attenuates disease progression in Alzheimer's disease mouse models. ACS Chem Neurosci 2015; 6:666-80. [PMID: 25676389 PMCID: PMC4404319 DOI: 10.1021/acschemneuro.5b00002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
![]()
The
first kinase inhibitor drug approval in 2001 initiated a remarkable
decade of tyrosine kinase inhibitor drugs for oncology indications,
but a void exists for serine/threonine protein kinase inhibitor drugs
and central nervous system indications. Stress kinases are of special
interest in neurological and neuropsychiatric disorders due to their
involvement in synaptic dysfunction and complex disease susceptibility.
Clinical and preclinical evidence implicates the stress related kinase
p38αMAPK as a potential neurotherapeutic target, but isoform
selective p38αMAPK inhibitor candidates are lacking and the
mixed kinase inhibitor drugs that are promising in peripheral tissue
disease indications have limitations for neurologic indications. Therefore,
pursuit of the neurotherapeutic hypothesis requires kinase isoform
selective inhibitors with appropriate neuropharmacology features.
Synaptic dysfunction disorders offer a potential for enhanced pharmacological
efficacy due to stress-induced activation of p38αMAPK in both
neurons and glia, the interacting cellular components of the synaptic
pathophysiological axis, to be modulated. We report a novel isoform
selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that
is efficacious in suppression of hippocampal-dependent associative
and spatial memory deficits in two distinct synaptic dysfunction mouse
models. A synthetic scheme for biocompatible product and positive
outcomes from pharmacological screens are presented. The high-resolution
crystallographic structure of the p38αMAPK/MW150 complex documents
active site binding, reveals a potential low energy conformation of
the bound inhibitor, and suggests a structural explanation for MW150’s
exquisite target selectivity. As far as we are aware, MW150 is without
precedent as an isoform selective p38MAPK inhibitor or as a kinase
inhibitor capable of modulating in vivo stress related behavior.
Collapse
Affiliation(s)
| | | | | | - Faisal Saeed
- Columbia University, New York, New York 10032, United States
| | | | - Andrew F. Teich
- Columbia University, New York, New York 10032, United States
| | - Ottavio Arancio
- Columbia University, New York, New York 10032, United States
| | | | - Scott J. Webster
- University of Kentucky, Lexington, Kentucky 40536, United States
| | | | - George Minasov
- Northwestern University, Chicago, Illinois 60611, United States
| | | | | | | |
Collapse
|
206
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
207
|
Zhou Q, Wang M, Du Y, Zhang W, Bai M, Zhang Z, Li Z, Miao J. Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann Neurol 2015; 77:637-54. [PMID: 25611954 DOI: 10.1002/ana.24361] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Growing evidence indicates that the activation of c-Jun N-terminal kinase (JNK) is implicated in the multiple major pathological features of Alzheimer disease (AD). However, whether specific inhibition of JNK activation could prevent disease progression in adult transgenic AD models at moderate stage remains unknown. Here we first investigated the potential disease-modifying therapeutic effect of systemic administration of SP600125, a small-molecule JNK-specific inhibitor, in middle-aged APPswe/PS1dE9 mice. METHODS Using behavioral, histological, and biochemical methods, outcomes of SP600125 treatment on neuropathology and cognitive deficits were studied in APPswe/PS1dE9 mice. RESULTS Compared with vehicle-treated APPswe/PS1dE9 mice, chronic treatment of SP600125 for 12 weeks potently inhibited JNK activation, which resulted in a marked improvement of behavioral measures of cognitive deficits and a dramatic reduction in amyloid plaque burden, β-amyloid production, tau hyperphosphorylation, inflammatory responses, and synaptic loss in these transgenic animals. In particular, we found that SP600125 treatment strongly promoted nonamyloidogenic amyloid precursor protein (APP) processing and inhibited amyloidogenic APP processing via regulating APP-cleavage secretase expression (ie, ADAM10, BACE1, and PS1) in APPswe/PS1dE9 mice. INTERPRETATION Our findings demonstrate that chronic SP600125 treatment is powerfully effective in slowing down disease progression by markedly reducing multiple pathological features and ameliorating cognitive deficits associated with AD. This study highlights the concept that active JNK actually contributes to the development of the disease, and provides critical preclinical evidence that specific inhibition of JNK activation by SP600125 treatment may be a novel promising disease-modifying therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Zou L, Qin H, He Y, Huang H, Lu Y, Chu X. Inhibiting p38 mitogen-activated protein kinase attenuates cerebral ischemic injury in Swedish mutant amyloid precursor protein transgenic mice. Neural Regen Res 2015; 7:1088-94. [PMID: 25722699 PMCID: PMC4340022 DOI: 10.3969/j.issn.1673-5374.2012.14.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/08/2012] [Indexed: 01/08/2023] Open
Abstract
Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.
Collapse
Affiliation(s)
- Liangyu Zou
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Haiyan Qin
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Yitao He
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Heming Huang
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Yi Lu
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Xiaofan Chu
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
209
|
Sabatini S, Manfroni G, Barreca ML, Bauer SM, Gargaro M, Cannalire R, Astolfi A, Brea J, Vacca C, Pirro M, Massari S, Tabarrini O, Loza MI, Fallarino F, Laufer SA, Cecchetti V. The Pyrazolobenzothiazine Core as a New Chemotype of p38 Alpha Mitogen-Activated Protein Kinase Inhibitors. Chem Biol Drug Des 2015; 86:531-45. [DOI: 10.1111/cbdd.12516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Stefano Sabatini
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Silke M. Bauer
- Department of Pharmaceutical & Medicinal Chemistry; Institute of Pharmacy; Eberhard-Karls University Tuebingen; Auf der Morgenstelle 8 72076 Tuebingen Germany
| | - Marco Gargaro
- Department of Experimental Medicine; University of Perugia; Piazzale Gambuli 06100 Perugia Italy
| | - Rolando Cannalire
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Jose Brea
- CIMUS Research Center; University of Santiago de Compostela; Avda de Barcelona s/n, Planta 3. Despacho 1 15782 Santiago de Compostela Spain
| | - Carmine Vacca
- Department of Experimental Medicine; University of Perugia; Piazzale Gambuli 06100 Perugia Italy
| | - Matteo Pirro
- Department of Medicine; University of Perugia; Piazzale Gambuli 06100 Perugia Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Maria Isabel Loza
- CIMUS Research Center; University of Santiago de Compostela; Avda de Barcelona s/n, Planta 3. Despacho 1 15782 Santiago de Compostela Spain
| | - Francesca Fallarino
- Department of Experimental Medicine; University of Perugia; Piazzale Gambuli 06100 Perugia Italy
| | - Stefan A. Laufer
- Department of Pharmaceutical & Medicinal Chemistry; Institute of Pharmacy; Eberhard-Karls University Tuebingen; Auf der Morgenstelle 8 72076 Tuebingen Germany
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| |
Collapse
|
210
|
Deoxysappanone B, a homoisoflavone from the Chinese medicinal plant Caesalpinia sappan L., protects neurons from microglia-mediated inflammatory injuries via inhibition of IκB kinase (IKK)-NF-κB and p38/ERK MAPK pathways. Eur J Pharmacol 2015; 748:18-29. [DOI: 10.1016/j.ejphar.2014.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 01/27/2023]
|
211
|
Aparicio-Soto M, Sánchez-Fidalgo S, González-Benjumea A, Maya I, Fernández-Bolaños JG, Alarcón-de-la-Lastra C. Naturally occurring hydroxytyrosol derivatives: hydroxytyrosyl acetate and 3,4-dihydroxyphenylglycol modulate inflammatory response in murine peritoneal macrophages. Potential utility as new dietary supplements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:836-846. [PMID: 25526103 DOI: 10.1021/jf503357s] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work evaluated the effects of extra virgin olive oil (EVOO) phenols, hydroxytyrosyl acetate (2) and 3,4-dihydroxyphenylglycol (3), as well as two new acyl derivatives of 3, 4-(1,2-di(butanoyloxy)ethyl)benzene-1,2-diol (7) and 4-(1,2-di(lauroyloxy)ethyl)benzene-1,2-diol (8), on LPS-stimulated murine peritoneal macrophages in comparison with hydroxytyrosol (HTy, 1). Compounds 2, 3, 7, and 8 showed a strong reactive oxygen species (ROS)-scavenging activity, reducing significantly nitrite levels with a significant decrease on iNOS expression [2 (50 μM, 0.44 ± 0.03; 100 μM, 0.44 ± 0.01; p < 0.01); 3 (50 μM, 0.37 ± 0.03; 100 μM, 0.37 ± 0.01; p < 0.001); 7 (50 μM, 0.45 ± 0.06; p < 0.01)] . However, only 2 and 3 down-regulated COX-2 expression [2 (50 μM, 0.72 ± 0.04, p < 0.05; 100 μM, 0.54 ± 0.06, p < 0.01); 3 (50 μM, 0.56 ± 0.05, p < 0.05; 100 μM, 0.37 ± 0.04; p < 0.001)] and prevented IKBα degradation [2 (100 μM, 1.63 ± 0.14, p < 0.01); 3 (100 μM, 1.82 ± 0.09; p < 0.01)] ; the diacylated compounds 7 and 8 showed worse anti-inflammatory activity than the parent 3. In conclusion, 2 and 3 phenolic derivatives could play an important role in the anti-inflammatory effect of EVOO. The implication of this study for the nutrition and general health of the population rests in the possible use of natural HTy derivatives with better hydrophilic/lipophilic balance, thus improving its pharmacodynamic and pharmacokinetic profiles, as new dietary supplements in foods.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Pharmacology, Faculty of Pharmacy, University of Seville , Profesor García González Street 2, 41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
212
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
213
|
Abstract
Amyloid-β plaques and neurofibrillary tangles are the main neuropathological hallmarks in Alzheimer's disease (AD), the most common cause of dementia in the elderly. However, it has become increasingly apparent that neuroinflammation plays a significant role in the pathophysiology of AD. This review summarizes the current status of neuroinflammation research related to AD, focusing on the connections between neuroinflammation and some inflammation factors in AD. Among these connections, we discuss the dysfunctional blood-brain barrier and alterations in the functional responses of microglia and astrocytes in this process. In addition, we summarize and discuss the role of intracellular signaling pathways involved in inflammatory responses in astrocytes and microglia, including the mitogen-activated protein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator-activated receptor-gamma transcription factors. Finally, the dysregulation of the control and release of pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neurofibrillary tangles) in AD is also reviewed.
Collapse
Affiliation(s)
- Fengjin Zhang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China ; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou City, People's Republic of China
| | - Linlan Jiang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China
| |
Collapse
|
214
|
El-Gokha A, Laufer SA, Koch P. An optimized and versatile synthesis to pyridinylimidazole-type p38α mitogen activated protein kinase inhibitors. Org Biomol Chem 2015; 13:10699-704. [DOI: 10.1039/c5ob01505g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An optimized and diverse synthetic approach for the preparation of potent pyridinylimidazole-based p38α MAP kinase inhibitors is reported.
Collapse
Affiliation(s)
- Ahmed El-Gokha
- Institute of Pharmaceutical Sciences
- Department of Medicinal and Pharmaceutical Chemistry
- Eberhard Karls Universität Tübingen
- 72076 Tübingen
- Germany
| | - Stefan A. Laufer
- Institute of Pharmaceutical Sciences
- Chair for Medicinal and Pharmaceutical Chemistry
- Eberhard Karls Universität Tübingen
- 72076 Tübingen
- Germany
| | - Pierre Koch
- Institute of Pharmaceutical Sciences
- Department of Medicinal and Pharmaceutical Chemistry
- Eberhard Karls Universität Tübingen
- 72076 Tübingen
- Germany
| |
Collapse
|
215
|
Teich AF, Nicholls RE, Puzzo D, Fiorito J, Purgatorio R, Fa’ M, Arancio O. Synaptic therapy in Alzheimer's disease: a CREB-centric approach. Neurotherapeutics 2015; 12:29-41. [PMID: 25575647 PMCID: PMC4322064 DOI: 10.1007/s13311-014-0327-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Therapeutic attempts to cure Alzheimer's disease (AD) have failed, and new strategies are desperately needed. Motivated by this reality, many laboratories (including our own) have focused on synaptic dysfunction in AD because synaptic changes are highly correlated with the severity of clinical dementia. In particular, memory formation is accompanied by altered synaptic strength, and this phenomenon (and its dysfunction in AD) has been a recent focus for many laboratories. The molecule cyclic adenosine monophosphate response element-binding protein (CREB) is at a central converging point of pathways and mechanisms activated during the processes of synaptic strengthening and memory formation, as CREB phosphorylation leads to transcription of memory-associated genes. Disruption of these mechanisms in AD results in a reduction of CREB activation with accompanying memory impairment. Thus, it is likely that strategies aimed at these mechanisms will lead to future therapies for AD. In this review, we will summarize literature that investigates 5 possible therapeutic pathways for rescuing synaptic dysfunction in AD: 4 enzymatic pathways that lead to CREB phosphorylation (the cyclic adenosine monophosphate cascade, the serine/threonine kinases extracellular regulated kinases 1 and 2, the nitric oxide cascade, and the calpains), as well as histone acetyltransferases and histone deacetylases (2 enzymes that regulate the histone acetylation necessary for gene transcription).
Collapse
Affiliation(s)
- Andrew F. Teich
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Russell E. Nicholls
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Daniela Puzzo
- />Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Catania, 95125 Italy
| | - Jole Fiorito
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Rosa Purgatorio
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Mauro Fa’
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Ottavio Arancio
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| |
Collapse
|
216
|
BDNF prevents amyloid-dependent impairment of LTP in the entorhinal cortex by attenuating p38 MAPK phosphorylation. Neurobiol Aging 2014; 36:1303-9. [PMID: 25554494 DOI: 10.1016/j.neurobiolaging.2014.11.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 10/24/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022]
Abstract
The oligomeric form of the amyloid peptide Aβ(1-42) is capable of perturbing synaptic plasticity in different brain areas. Here, we evaluated the protective role of brain-derived neurotrophic factor (BDNF) in beta amyloid (Aβ)-dependent impairment of long-term potentiation in entorhinal cortex (EC) slices. We found that BDNF (1 ng/mL) supplied by perfusion was able to rescue long-term potentiation in Aβ(1-42)-treated slices; BDNF protection was mediated by TrkB receptor as assessed by using the tyrosine kinase inhibitor K252a (200 nM). We also investigated the function of endogenous BDNF using a soluble form of TrkB receptor (TrkB IgG). Incubation of slices with TrkB IgG (1 μg/mL) increased the EC vulnerability to Aβ. Finally, we investigated the effect of BDNF on the cell stress-kinase p38 mitogen-activated protein kinase (MAPK) in primary cortical cell cultures exposed to Aβ(1-42). We found that Aβ induces p38 MAPK phosphorylation, although pretreatment with BDNF prevented Aβ-dependent p38 MAPK phosphorylation. This result was confirmed by an immunoassay in tissue extracts from EC slices collected after electrophysiology.
Collapse
|
217
|
Rao YK, Shih HN, Lee YC, Cheng WT, Hung HC, Wang HC, Chen CJ, Tzeng YM, Lee MJ. Purification of kavalactones from Alpinia zerumbet and their protective actions against hydrogen peroxide-induced cytotoxicity in PC12 cells. J Biosci Bioeng 2014; 118:679-88. [DOI: 10.1016/j.jbiosc.2014.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
|
218
|
Velagapudi R, Aderogba M, Olajide OA. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta Gen Subj 2014; 1840:3311-9. [DOI: 10.1016/j.bbagen.2014.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022]
|
219
|
Bachstetter AD, Xing B, Van Eldik LJ. The p38alpha mitogen-activated protein kinase limits the CNS proinflammatory cytokine response to systemic lipopolysaccharide, potentially through an IL-10 dependent mechanism. J Neuroinflammation 2014; 11:175. [PMID: 25297465 PMCID: PMC4193976 DOI: 10.1186/s12974-014-0175-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The p38α mitogen-activated protein kinase (MAPK) is a well-characterized intracellular kinase involved in the overproduction of proinflammatory cytokines from glia. As such, p38α appears to be a promising therapeutic target for neurodegenerative diseases associated with neuroinflammation. However, the in vivo role of p38α in cytokine production in the CNS is poorly defined, and prior work suggests that p38α may be affecting a yet to be identified negative feedback mechanism that limits the acute, injury-induced proinflammatory cytokine surge in the CNS. METHODS To attempt to define this negative feedback mechanism, we used two in vitro and two in vivo models of neuroinflammation in a mouse where p38α is deficient in cells of the myeloid lineage. RESULTS We found that p38α in myeloid cells has an important role in limiting amplitude of the acute proinflammatory cytokine response to a systemic inflammatory challenge. Moreover, we identified IL-10 as a potential negative feedback mechanism regulated by p38α. CONCLUSIONS Our data suggest that p38α regulates a proper balance between the pro- and anti-inflammatory cytokine responses to systemic inflammation, and that if circulating IL-10 levels are not elevated to counter-balance the increased systemic proinflammatory responses, the spread of the inflammatory response from the periphery to the CNS is exaggerated.
Collapse
Affiliation(s)
| | | | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 800 S, Limestone Street, Lexington 40536, KY, USA.
| |
Collapse
|
220
|
Semba K, Namekata K, Kimura A, Harada C, Katome T, Yoshida H, Mitamura Y, Harada T. Dock3 overexpression and p38 MAPK inhibition synergistically stimulate neuroprotection and axon regeneration after optic nerve injury. Neurosci Lett 2014; 581:89-93. [PMID: 25172145 DOI: 10.1016/j.neulet.2014.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
The dedicator of cytokinesis 3 (Dock3) is an atypical guanine nucleotide exchange factor that is predominantly expressed in the CNS. Dock3 exerts neuroprotective effects and stimulates optic nerve regeneration. The p38 mitogen-activated protein kinase acts downstream of apoptosis signal-regulating kinase 1 (ASK1) signaling and plays an important role in neural cell death. We assessed a therapeutic efficacy of Dock3 stimulation and p38 inhibition in retinal degeneration induced by optic nerve injury (ONI). In vivo retinal imaging using optical coherence tomography revealed that ONI-induced retinal degeneration was ameliorated in SB203580 (a p38 inhibitor)-treated WT mice and PBS-treated Dock3 overexpressing (Dock3 Tg) mice, and SB203580 further stimulated retinal protection in Dock3 Tg mice. In addition, SB203580 increased the number of regenerating axons after ONI in both WT and Dock3 Tg mice. ONI-induced phosphorylation of ASK1, p38 and the N-methyl-d-aspartate receptor 2B subunit were suppressed in the retina of Dock3 Tg mice. Inhibition of the ASK1 pathway in Dock3 Tg mice suggests that Dock3 may have an antioxidant-like property. These results indicate that overexpression of Dock3 and pharmacological interruption of p38 have synergistic effects for both neuroprotection and axon regeneration, thus combined application may be beneficial for the treatment of ONI.
Collapse
Affiliation(s)
- Kentaro Semba
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Katome
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hiroshi Yoshida
- Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan; Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan.
| |
Collapse
|
221
|
Rajasekar N, Dwivedi S, Nath C, Hanif K, Shukla R. Protection of streptozotocin induced insulin receptor dysfunction, neuroinflammation and amyloidogenesis in astrocytes by insulin. Neuropharmacology 2014; 86:337-52. [PMID: 25158313 DOI: 10.1016/j.neuropharm.2014.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/04/2023]
Abstract
Impaired insulin signaling, amyloid pathology and neuroinflammation are closely associated with neurodegenerative disorder like Alzheimer's disease (AD). Our earlier studies showed that intracerebroventricular streptozotocin (STZ) induces insulin receptor (IR) signaling defect in the hippocampus, which is associated with memory impairment in rats. Astrocytes are the most abundant cells in the brain and play a major role in neuroinflammation. However, involvement of astrocytes in STZ induced IR dysfunction has not received much attention. Therefore, the present study was planned to explore the effect of STZ on IR signaling, proinflammatory markers and amyloidogenesis in rat astrocytoma cell line, (C6). STZ (100 μM) treatment in astrocytes (n = 3) for 24 h, resulted significant decrease in IR mRNA and protein expression, phosphorylation of IRS-1, Akt, GSK-3α and GSK-3β (p < 0.01). Further STZ induced amyloidogenic protein expression as evidenced by the increase in APP, BACE-1 and Aβ1-42 expression (p < 0.05) in astrocytes. STZ also significantly induced astrocytes activation as evidenced by increased expression of GFAP and p-P38 MAPK (p < 0.05). STZ treatment caused enhanced translocation of p65 NF-kB, triggered over expression of TNF-α, IL-1β, COX-2, oxidative/nitrosative stress and caspase activation (p < 0.05) in astrocytes. Insulin (25-100 nM) pretreatment (n = 3) significantly prevented changes in IR signaling, amyloidogenic protein expression and levels of proinflammatory markers (p < 0.05) in STZ treated astroglial cells. In the present study, the protective effect of insulin suggests that, IR dysfunction along with amyloidogenesis and neuroinflammation may have played a major role in STZ induced toxicity in astrocytes which are relevant to AD pathology.
Collapse
Affiliation(s)
- N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Subhash Dwivedi
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
222
|
Aparicio-Soto M, Alarcón-de-la-Lastra C, Cárdeno A, Sánchez-Fidalgo S, Sanchez-Hidalgo M. Melatonin modulates microsomal PGE synthase 1 and NF-E2-related factor-2-regulated antioxidant enzyme expression in LPS-induced murine peritoneal macrophages. Br J Pharmacol 2014; 171:134-44. [PMID: 24116971 DOI: 10.1111/bph.12428] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/05/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence demonstrates that melatonin regulates inflammatory and immune processes acting as both an activator and inhibitor of these responses. Nevertheless, the molecular mechanisms of its anti-inflammatory action remain unclear. Here we have characterized the cellular mechanisms underlying the redox modulation of LPS-stimulated inflammatory responses in murine peritoneal macrophages by melatonin to provide insight into its anti-inflammatory effects. EXPERIMENTAL APPROACH Murine peritoneal macrophages were isolated and treated with melatonin in the presence or absence of LPS (5 μg·mL(-1) ) for 18 h. Cell viability was determined using sulforhodamine B assay and NO production was measured using the Griess reaction. Pro-inflammatory enzymes and transcription factors were detected by Western blotting. KEY RESULTS Without affecting cell viability, melatonin (12.5, 25, 50 and 100 μM) reduced the level of nitrites, inducible NOS (iNOS), COX-2 and microsomal PGE synthase-1 (mPGES1) protein, and p38 MAPK phosphorylation, and prevented NF-κB translocation. Furthermore, melatonin treatment significantly increased NF-E2-related factor 2 (Nrf2) and haem oxygenase 1 (HO1) protein levels in murine macrophages exposed to LPS. CONCLUSIONS AND IMPLICATIONS Melatonin reduced pro-inflammatory mediators and enhanced the expression of HO1 via NF-κB, p38 MAPK and Nrf2 cascade signalling pathways in murine macrophages. Thus, melatonin might be a promising target for diseases associated with overactivation of macrophages.
Collapse
Affiliation(s)
- M Aparicio-Soto
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
223
|
Olajide OA, Kumar A, Velagapudi R, Okorji UP, Fiebich BL. Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol Nutr Food Res 2014; 58:1843-51. [DOI: 10.1002/mnfr.201400163] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Olumayokun A. Olajide
- Department of Pharmacy, School of Applied Sciences; University of Huddersfield; Huddersfield UK
| | - Asit Kumar
- Neurochemistry Research Laboratory; University of Freiburg Medical School; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences; University of Huddersfield; Huddersfield UK
| | - Uchechukwu P. Okorji
- Department of Pharmacy, School of Applied Sciences; University of Huddersfield; Huddersfield UK
| | - Bernd L. Fiebich
- Neurochemistry Research Laboratory; University of Freiburg Medical School; Freiburg Germany
- VivaCell Biotechnology GmbH; Denzlingen Germany
| |
Collapse
|
224
|
Zaręba-Kozioł M, Szwajda A, Dadlez M, Wysłouch-Cieszyńska A, Lalowski M. Global analysis of S-nitrosylation sites in the wild type (APP) transgenic mouse brain-clues for synaptic pathology. Mol Cell Proteomics 2014; 13:2288-305. [PMID: 24895380 DOI: 10.1074/mcp.m113.036079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by an early synaptic loss, which strongly correlates with the severity of dementia. The pathogenesis and causes of characteristic AD symptoms are not fully understood. Defects in various cellular cascades were suggested, including the imbalance in production of reactive oxygen and nitrogen species. Alterations in S-nitrosylation of several proteins were previously demonstrated in various AD animal models and patients. In this work, using combined biotin-switch affinity/nano-LC-MS/MS and bioinformatic approaches we profiled endogenous S-nitrosylation of brain synaptosomal proteins from wild type and transgenic mice overexpressing mutated human Amyloid Precursor Protein (hAPP). Our data suggest involvement of S-nitrosylation in the regulation of 138 synaptic proteins, including MAGUK, CamkII, or synaptotagmins. Thirty-eight proteins were differentially S-nitrosylated in hAPP mice only. Ninety-five S-nitrosylated peptides were identified for the first time (40% of total, including 33 peptides exclusively in hAPP synaptosomes). We verified differential S-nitrosylation of 10 (26% of all identified) synaptosomal proteins from hAPP mice, by Western blotting with specific antibodies. Functional enrichment analysis linked S-nitrosylated proteins to various cellular pathways, including: glycolysis, gluconeogenesis, calcium homeostasis, ion, and vesicle transport, suggesting a basic role of this post-translational modification in the regulation of synapses. The linkage of SNO-proteins to axonal guidance and other processes related to APP metabolism exclusively in the hAPP brain, implicates S-nitrosylation in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michał Dadlez
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Lalowski
- ¶Biomedicum Helsinki, Institute of Biomedicine, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Unit, University of Helsinki, Finland; ‖Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
225
|
Yuan T, Li Z, Li X, Yu G, Wang N, Yang X. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. J Surg Res 2014; 192:150-62. [PMID: 24952412 DOI: 10.1016/j.jss.2014.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/23/2014] [Accepted: 05/08/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lidocaine has been used as a local anesthetic with anti-inflammatory properties, but its effects on neuroinflammation have not been well defined. In the present study, we investigated the prophylactic effects of lidocaine on lipopolysaccharide (LPS)-activated microglia and explored the underlying mechanisms. MATERIALS AND METHODS Microglial cells were incubated with or without 1 μg/mL LPS in the presence or absence of lidocaine, a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580), a nuclear factor-kappa B (NF-κB) inhibitor (pyrrolidine dithiocarbamate), or small interfering RNA. The protein and expression levels of inflammatory mediators, such as monocyte chemotactic protein 1, nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α were measured using enzyme-linked immunosorbent assays and real-time polymerase chain reaction. The effect of lidocaine on NF-κB and p38 MAPK activation was evaluated using enzyme-linked immunosorbent assays, Western blot analysis, and electrophoretic mobility shift assay. RESULTS Lidocaine (≥2 μg/mL) significantly inhibited the release and expression of nitric oxide, monocyte chemotactic protein 1, prostaglandin E2, interleukin 1β, and tumor necrosis factor α in LPS-activated microglia. Treatment with lidocaine also significantly inhibited the phosphorylation of p38 MAPK and the nuclear translocation of NF-κB p50/p65, increased the protein levels of inhibitor kappa B-α. Furthermore, our study shows that the LPS-induced release of inflammatory mediators was suppressed by SB203580, pyrrolidine dithiocarbamate, and small interfering RNA. CONCLUSIONS Prophylactic treatment with lidocaine inhibits LPS-induced release of inflammatory mediators from microglia, and these effects may be mediated by blockade of p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Tong Yuan
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiwen Li
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinbai Li
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Gaoqi Yu
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Na Wang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xige Yang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
226
|
Penehyclidine hydrochloride inhibits the LPS-induced inflammatory response in microglia. J Surg Res 2014; 188:260-7. [DOI: 10.1016/j.jss.2013.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023]
|
227
|
Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids. PLoS One 2014; 9:e92466. [PMID: 24647471 PMCID: PMC3960248 DOI: 10.1371/journal.pone.0092466] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/21/2014] [Indexed: 12/30/2022] Open
Abstract
The bioactive sphingolipid sphingosine 1-phosphate (S1P) is found in increased amounts in the airways of asthmatics. S1P can regulate airway smooth muscle functions associated with asthmatic inflammation and remodeling, including cytokine secretion. To date however, whether S1P induces secretion of an important chemokine responsible for neutrophilia in airway inflammation – IL-8 – was unexplored. The aim of this study was to investigate whether S1P induces IL-8 gene expression and secretion to enhance neutrophil chemotaxis in vitro, as well as examine the molecular mechanisms responsible for repression by the corticosteroid dexamethasone. We show that S1P upregulates IL-8 secretion from ASM cells and enhance neutrophil chemotaxis in vitro. The corticosteroid dexamethasone significantly represses IL-8 mRNA expression and protein secretion in a concentration- and time-dependent manner. Additionally, we reveal that S1P-induced IL-8 secretion is p38 MAPK and ERK-dependent and that these key phosphoproteins act on the downstream effector mitogen- and stress-activated kinase 1 (MSK1) to control secretion of the neutrophil chemoattractant cytokine IL-8. The functional relevance of this in vitro data was demonstrated by neutrophil chemotaxis assays where S1P-induced effects can be significantly attenuated by pretreatment with dexamethasone, pharmacological inhibition of p38 MAPK- or ERK-mediated pathways, or by knocking down MSK-1 with siRNA. Taken together, our study reveals the molecular pathways responsible for IL-8 secretion from ASM cells in response to S1P and indicates ways in which the impact on IL-8-driven neutrophilia may be lessened.
Collapse
|
228
|
Ponzoni I, Nueda M, Tarazona S, Götz S, Montaner D, Dussaut J, Dopazo J, Conesa A. Pathway network inference from gene expression data. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 2:S7. [PMID: 25032889 PMCID: PMC4101702 DOI: 10.1186/1752-0509-8-s2-s7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
229
|
Leirós M, Alonso E, Sanchez JA, Rateb ME, Ebel R, Houssen WE, Jaspars M, Alfonso A, Botana LM. Mitigation of ROS insults by Streptomyces secondary metabolites in primary cortical neurons. ACS Chem Neurosci 2014; 5:71-80. [PMID: 24219236 DOI: 10.1021/cn4001878] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress is a common point in neurodegenerative diseases, widely connected with mitochondrial dysfunction. In this study, we screened seven natural products from Streptomyces sources against hydrogen peroxide insult in primary cortical neurons, an oxidative stress in vitro model. We showed the ability of these compounds to inhibit neuronal cytotoxicity and to reduce ROS release after 12 h treatment. Among the tested compounds, the quinone anhydroexfoliamycin and the red pyrrole-type pigment undecylprodigiosin stand out. These two compounds displayed the most complete protection against oxidative stress with mitochondrial function improvement, ROS production inhibition, and increase of antioxidant enzyme levels, glutathione and catalase. Further investigations confirmed that anhydroexfoliamycin acts over the Nrf2-ARE pathway, as a Nrf2 nuclear translocation inductor, and is able to strongly inhibit the effect of the mitochondrial uncoupler FCCP over cytosolic Ca(2+), pointing to mitochondria as a cellular target for this molecule. In addition, both compounds were able to reduce caspase-3 activity induced by the apoptotic enhancer staurosporine, but undecylprodigiosin failed to inhibit FCCP effects and it did not act over the Nrf2 pathway as was the case for anhydroexfoliamycin. These results show that Streptomyces metabolites could be useful for the development of new drugs for prevention of neurodegenerative disorders such as Parkinson's and Alzheimer's diseases and cerebral ischemia.
Collapse
Affiliation(s)
- Marta Leirós
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Jon A. Sanchez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Mostafa E. Rateb
- Marine Biodiscovery Centre, Department
of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, U.K
- Pharmacognosy
Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 32514, Egypt
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department
of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, U.K
| | - Wael E. Houssen
- Marine Biodiscovery Centre, Department
of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, U.K
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department
of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, U.K
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| |
Collapse
|
230
|
Chen JF. Adenosine receptor control of cognition in normal and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:257-307. [PMID: 25175970 DOI: 10.1016/b978-0-12-801022-8.00012-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA; The Molecular Medicine Institute, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
231
|
Cárdeno A, Sánchez-Hidalgo M, Aparicio-Soto M, Sánchez-Fidalgo S, Alarcón-de-la-Lastra C. Extra virgin olive oil polyphenolic extracts downregulate inflammatory responses in LPS-activated murine peritoneal macrophages suppressing NFκB and MAPK signalling pathways. Food Funct 2014; 5:1270-7. [DOI: 10.1039/c4fo00014e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extra virgin olive oil (EVOO) is obtained from the fruit of the olive treeOlea europaeaL. Phenolic compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- A. Cárdeno
- Department of Pharmacology
- Faculty of Pharmacy
- University of Seville
- 41012 Seville, Spain
| | - M. Sánchez-Hidalgo
- Department of Pharmacology
- Faculty of Pharmacy
- University of Seville
- 41012 Seville, Spain
| | - M. Aparicio-Soto
- Department of Pharmacology
- Faculty of Pharmacy
- University of Seville
- 41012 Seville, Spain
| | - S. Sánchez-Fidalgo
- Department of Pharmacology
- Faculty of Pharmacy
- University of Seville
- 41012 Seville, Spain
| | | |
Collapse
|
232
|
de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol 2013; 88:548-59. [PMID: 24380887 DOI: 10.1016/j.bcp.2013.12.012] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
Growing evidence supports the concept that Alzheimer's disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Pathology (Neuropathology), Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Ming Tong
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
233
|
Deng FY, Tan LJ, Shen H, Liu YJ, Liu YZ, Li J, Zhu XZ, Chen XD, Tian Q, Zhao M, Deng HW. SNP rs6265 regulates protein phosphorylation and osteoblast differentiation and influences BMD in humans. J Bone Miner Res 2013; 28:2498-507. [PMID: 23712400 PMCID: PMC4127979 DOI: 10.1002/jbmr.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/17/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022]
Abstract
Bone mineral density (BMD) is a major index for diagnosing osteoporosis. PhosSNPs are nonsynonymous SNPs that affect protein phosphorylation. The relevance and significance of phosSNPs to BMD and osteoporosis is unknown. This study aimed to identify and characterize phosSNPs significant for BMD in humans. We conducted a pilot genomewide phosSNP association study for BMD in three independent population samples, involving ∼5000 unrelated individuals. We identified and replicated three phosSNPs associated with both spine BMD and hip BMD in Caucasians. Association with hip BMD for one of these phosSNPs, ie, rs6265 (major/minor allele: G/A) in BDNF gene, was also suggested in Chinese. Consistently in both ethnicities, individuals carrying the AA genotype have significantly lower hip BMD than carriers of the GA and GG genotypes. Through in vitro molecular and cellular studies, we found that compared to osteoblastic cells transfected with wild-type BDNF-Val66 (encoded with allele G at rs6265), transfection of variant BDNF-Met66 (encoded with allele A at rs6265) significantly decreased BDNF protein phosphorylation (at amino acid residue T62), expression of osteoblastic genes (OPN, BMP2, and ALP), and osteoblastic activity. The findings are consistent with and explain our prior observations in general human populations. We conclude that phosSNP rs6265, by regulating BDNF protein phosphorylation and osteoblast differentiation, influences hip BMD in humans. This study represents our first endeavor to dissect the functions of phosSNPs in bone, which might stimulate extended large-scale studies on bone or similar studies on other human complex traits and diseases.
Collapse
Affiliation(s)
- Fei-Yan Deng
- Center of Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Li-Jun Tan
- Center for Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Yong-Jun Liu
- Center for Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Yao-Zhong Liu
- Center for Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Jian Li
- Center for Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Xue-Zhen Zhu
- Center for Systematic Biomedical Research, Shanghai University of Science and Technology, Shanghai 200093, P. R. China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Qing Tian
- Center for Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Ming Zhao
- Center for Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
- Center for Systematic Biomedical Research, Shanghai University of Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
234
|
Tong X, Yin L. Circadian rhythms in liver physiology and liver diseases. Compr Physiol 2013; 3:917-40. [PMID: 23720334 DOI: 10.1002/cphy.c120017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In mammals, circadian rhythms function to coordinate a diverse panel of physiological processes with environmental conditions such as food and light. As the driving force for circadian rhythmicity, the molecular clock is a self-sustained transcription-translational feedback loop system consisting of transcription factors, epigenetic modulators, kinases/phosphatases, and ubiquitin E3 ligases. The molecular clock exists not only in the suprachiasmatic nuclei of the hypothalamus but also in the peripheral tissues to regulate cellular and physiological function in a tissue-specific manner. The circadian clock system in the liver plays important roles in regulating metabolism and energy homeostasis. Clock gene mutant animals display impaired glucose and lipid metabolism and are susceptible to diet-induced obesity and metabolic dysfunction, providing strong evidence for the connection between the circadian clock and metabolic homeostasis. Circadian-controlled hepatic metabolism is partially achieved by controlling the expression and/or activity of key metabolic enzymes, transcription factors, signaling molecules, and transporters. Reciprocally, intracellular metabolites modulate the molecular clock activity in response to the energy status. Although still at the early stage, circadian clock dysfunction has been implicated in common chronic liver diseases. Circadian dysregulation of lipid metabolism, detoxification, reactive oxygen species (ROS) production, and cell-cycle control might contribute to the onset and progression of liver steatosis, fibrosis, and even carcinogenesis. In summary, these findings call for a comprehensive study of the function and mechanisms of hepatic circadian clock to gain better understanding of liver physiology and diseases.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
235
|
Giuliani D, Bitto A, Galantucci M, Zaffe D, Ottani A, Irrera N, Neri L, Cavallini GM, Altavilla D, Botticelli AR, Squadrito F, Guarini S. Melanocortins protect against progression of Alzheimer's disease in triple-transgenic mice by targeting multiple pathophysiological pathways. Neurobiol Aging 2013; 35:537-47. [PMID: 24094579 DOI: 10.1016/j.neurobiolaging.2013.08.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 01/02/2023]
Abstract
Besides specific triggering causes, Alzheimer's disease (AD) involves pathophysiological pathways that are common to acute and chronic neurodegenerative disorders. Melanocortins induce neuroprotection in experimental acute neurodegenerative conditions, and low melanocortin levels have been found in occasional studies performed in AD-type dementia patients. Here we investigated the possible neuroprotective role of melanocortins in a chronic neurodegenerative disorder, AD, by using 12-week-old (at the start of the study) triple-transgenic (3xTg-AD) mice harboring human transgenes APPSwe, PS1M146V, and tauP301L. Treatment of 3xTg-AD mice, once daily until the end of the study (30 weeks of age), with the melanocortin analog [Nle(4),D-Phe(7)]-α-melanocyte-stimulating hormone (NDP-α-MSH) reduced cerebral cortex/hippocampus phosphorylation/level of all AD-related biomarkers investigated (mediators of amyloid/tau cascade, oxidative/nitrosative stress, inflammation, apoptosis), decreased neuronal loss, induced over-expression of the synaptic activity-dependent gene Zif268, and improved cognitive functions, relative to saline-treated 3xTg-AD mice. Pharmacological blockade of melanocortin MC4 receptors prevented all neuroprotective effects of NDP-α-MSH. Our study identifies, for the first time, a class of drugs, MC4 receptor-stimulating melanocortins, that are able to counteract the progression of experimental AD by targeting pathophysiological mechanisms up- and down-stream of β-amyloid and tau. These data could have important clinical implications.
Collapse
Affiliation(s)
- Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Kumar GS, Zettl H, Page R, Peti W. Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. J Biol Chem 2013; 288:28347-56. [PMID: 23926106 PMCID: PMC3784751 DOI: 10.1074/jbc.m113.499178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) fulfill essential biological functions and are key pharmaceutical targets. Regulation of MAPKs is achieved via a plethora of regulatory proteins including activating MAPKKs and an abundance of deactivating phosphatases. Although all regulatory proteins use an identical interaction site on MAPKs, the common docking and hydrophobic pocket, they use distinct kinase interaction motif (KIM or D-motif) sequences that are present in linear, peptide-like, or well folded protein domains. It has been recently shown that a KIM-containing MAPK-specific dual specificity phosphatase DUSP10 uses a unique binding mode to interact with p38α. Here we describe the interaction of the MAPK binding domain of DUSP16 with p38α and show that despite belonging to the same dual specificity phosphatase (DUSP) family, its interaction mode differs from that of DUSP10. Indeed, the DUSP16 MAPK binding domain uses an additional helix, α-helix 4, to further engage p38α. This leads to an additional interaction surface on p38α. Together, these structural and energetic differences in p38α engagement highlight the fine-tuning necessary to achieve MAPK specificity and regulation among multiple regulatory proteins.
Collapse
Affiliation(s)
| | - Heiko Zettl
- From the Departments of Molecular Pharmacology, Physiology and Biotechnology
| | - Rebecca Page
- Molecular Biology, Cell Biology, and Biochemistry, and
| | - Wolfgang Peti
- From the Departments of Molecular Pharmacology, Physiology and Biotechnology
- Chemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
237
|
Li Y, Chen G, Zhao J, Nie X, Wan C, Liu J, Duan Z, Xu G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces microglial nitric oxide production and subsequent rat primary cortical neuron apoptosis through p38/JNK MAPK pathway. Toxicology 2013; 312:132-41. [PMID: 23969120 DOI: 10.1016/j.tox.2013.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 12/22/2022]
Abstract
It has been widely accepted that microglia, which are the innate immune cells in the brain, upon activation can cause neuronal damage. In the present study, we investigated the role of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in regulating microglial nitric oxide production and its role in causing neuronal damage. The study revealed that TCDD stimulates the expression of inducible nitric oxide synthase (iNOS) as well as the production of nitric oxide (NO) in a dose- and time-dependent manner. Further, a rapid activation of p38 and JNK MAPKs was found in HAPI microglia following TCDD treatment. Blockage of p38 and JNK kinases with their specific inhibitors, SB202190 and SP600125, significantly reduced TCDD-induced iNOS expression and NO production. In addition, it was demonstrated through treating rat primary cortical neurons with media conditioned with TCDD treated microglia that microglial iNOS activation mediates neuronal apoptosis. Lastly, it was also found that p38 and JNK MAPK inhibitors could attenuate the apoptosis of rat cortical neurons upon exposure to medium conditioned by TCDD-treated HAPI microglial cells. Based on these observations, we highlight that the p38/JNK MAPK pathways play an important role in TCDD-induced iNOS activation in rat HAPI microglia and in the subsequent induction of apoptosis in primary cortical neurons.
Collapse
Affiliation(s)
- Yuanye Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China; Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Dapper JD, Crish SD, Pang IH, Calkins DJ. Proximal inhibition of p38 MAPK stress signaling prevents distal axonopathy. Neurobiol Dis 2013; 59:26-37. [PMID: 23859799 DOI: 10.1016/j.nbd.2013.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) isoforms are phosphorylated by a variety of stress stimuli in neurodegenerative disease and act as upstream activators of myriad pathogenic processes. Thus, p38 MAPK inhibitors are of growing interest as possible therapeutic interventions. Axonal dysfunction is an early component of most neurodegenerative disorders, including the most prevalent optic neuropathy, glaucoma. Sensitivity to intraocular pressure at an early stage disrupts anterograde transport along retinal ganglion cell (RGC) axons to projection targets in the brain with subsequent degeneration of the axons themselves; RGC body loss is much later. Here we show that elevated ocular pressure in rats increases p38 MAPK activation in retina, especially in RGC bodies. Topical eye-drop application of a potent and selective inhibitor of the p38 MAPK catalytic domain (Ro3206145) prevented both the degradation of anterograde transport to the brain and degeneration of axons in the optic nerve. Ro3206145 reduced in the retina phosphorylation of tau and heat-shock protein 27, both down-stream targets of p38 MAPK activation implicated in glaucoma, as well as expression of two inflammatory responses. We also observed increased p38 MAPK activation in mouse models. Thus, inhibition of p38 MAPK signaling in the retina may represent a therapeutic target for preventing early pathogenesis in optic neuropathies.
Collapse
Affiliation(s)
- Jason D Dapper
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
239
|
Hydrogen sulfide slows down progression of experimental Alzheimer's disease by targeting multiple pathophysiological mechanisms. Neurobiol Learn Mem 2013; 104:82-91. [PMID: 23726868 DOI: 10.1016/j.nlm.2013.05.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/08/2013] [Accepted: 05/22/2013] [Indexed: 01/09/2023]
Abstract
It has been previously reported that brain hydrogen sulfide (H2S) synthesis is severely decreased in Alzheimer's disease (AD) patients, and plasma H2S levels are negatively correlated with the severity of AD. Here we extensively investigated whether treatment with a H2S donor and spa-waters rich in H2S induces neuroprotection and slows down progression of AD. Studies with sodium hydrosulfide (a H2S donor) and Tabiano's spa-water were carried out in three experimental models of AD. Short-term and long-term treatments with sodium hydrosulfide and/or Tabiano's spa-water significantly protected against impairment in learning and memory in rat models of AD induced by brain injection of β-amyloid1-40 (Aβ) or streptozotocin, and in an AD mouse model harboring human transgenes APPSwe, PS1M146V and tauP301L (3xTg-AD mice). The improvement in behavioral performance was associated with hippocampus was size of Aβ plaques and preservation of the morphological picture, as found in AD rats. Further, lowered concentration/phosphorylation levels of proteins thought to be the central events in AD pathophysiology, namely amyloid precursor protein, presenilin-1, Aβ1-42 and tau phosphorylated at Thr181, Ser396 and Ser202, were detected in 3xTg-AD mice treated with spa-water. The excitotoxicity-triggered oxidative and nitrosative stress was counteracted in 3xTg-AD mice, as indicated by the decreased levels of malondialdehyde and nitrites in the cerebral cortex. Hippocampus reduced activity of c-jun N-terminal kinases, extracellular signal-regulated kinases and p38, which have an established role not only in phosphorylation of tau protein but also in inflammation and apoptosis, was also found. Consistently, decrease in tumor necrosis factor-α level, up-regulation of Bcl-2, and down-regulation of BAX and the downstream executioner caspase-3, also occurred in the hippocampus of 3xTg-AD mice after treatment with Tabiano's spa-water, thus suggesting that it is also able to modulate inflammation and apoptosis. Our findings indicate that appropriate treatments with H2S donors and Tabiano's spa-waters, and may be other spa-waters rich in H2S content, might represent an innovative approach to slow down AD progression in humans by targeting multiple pathophysiological mechanisms.
Collapse
|
240
|
Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int J Mol Sci 2013; 14:9820-33. [PMID: 23698769 PMCID: PMC3676815 DOI: 10.3390/ijms14059820] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/08/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system. They play a role in normal brain development and neuronal recovery. However, overactivation of microglia causes neuronal death, which is associated with neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Therefore, controlling microglial activation has been suggested as an important target for treatment of neurodegenerative diseases. In the present study, we investigated the anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and rat primary microglia. The data showed that Rg5 suppressed LPS-induced nitric oxide (NO) production and proinflammatory TNF-α secretion. In addition, Rg5 inhibited the mRNA expressions of iNOS, TNF-α, IL-1β, COX-2 and MMP-9 induced by LPS. Further mechanistic studies revealed that Rg5 inhibited the phophorylations of PI3K/Akt and MAPKs and the DNA binding activities of NF-κB and AP-1, which are upstream molecules controlling inflammatory reactions. Moreover, Rg5 suppressed ROS production with upregulation of hemeoxygenase-1 (HO-1) expression in LPS-stimulated BV2 cells. Overall, microglial inactivation by ginsenoside Rg5 may provide a therapeutic potential for various neuroinflammatory disorders.
Collapse
|
241
|
MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci 2013; 33:2313-25. [PMID: 23392662 DOI: 10.1523/jneurosci.4965-11.2013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that sodium butyrate is neuroprotective in Huntington's disease (HD) mice and that this therapeutic effect is associated with increased expression of mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1/DUSP1). Here we show that enhancing MKP-1 expression is sufficient to achieve neuroprotection in lentiviral models of HD. Wild-type MKP-1 overexpression inhibited apoptosis in primary striatal neurons exposed to an N-terminal fragment of polyglutamine-expanded huntingtin (Htt171-82Q), blocking caspase-3 activation and significantly reducing neuronal cell death. This neuroprotective effect of MKP-1 was demonstrated to be dependent on its enzymatic activity, being ablated by mutation of its phosphatase domain and being attributed to inhibition of specific MAP kinases (MAPKs). Overexpression of MKP-1 prevented the polyglutamine-expanded huntingtin-induced activation of c-Jun N-terminal kinases (JNKs) and p38 MAPKs, whereas extracellular signal-regulated kinase (ERK) 1/2 activation was not altered by either polyglutamine-expanded Htt or MKP-1. Moreover, mutants of MKP-1 that selectively prevented p38 or JNK binding confirmed the important dual contributions of p38 and JNK regulation to MKP-1-mediated neuroprotection. These results demonstrate additive effects of p38 and JNK MAPK inhibition by MKP-1 without consequence to ERK activation in this striatal neuron-based paradigm. MKP-1 also provided neuroprotection in vivo in a lentiviral model of HD neuropathology in rat striatum. Together, these data extend previous evidence that JNK- and p38-mediated pathways contribute to HD pathogenesis and, importantly, show that therapies simultaneously inhibiting both JNK and p38 signaling pathways may lead to improved neuroprotective outcomes.
Collapse
|
242
|
Bellei B, Pitisci A, Ottaviani M, Ludovici M, Cota C, Luzi F, Dell'Anna ML, Picardo M. Vitiligo: a possible model of degenerative diseases. PLoS One 2013; 8:e59782. [PMID: 23555779 PMCID: PMC3608562 DOI: 10.1371/journal.pone.0059782] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/18/2013] [Indexed: 12/21/2022] Open
Abstract
Vitiligo is characterized by the progressive disappearance of pigment cells from skin and hair follicle. Several in vitro and in vivo studies show evidence of an altered redox status, suggesting that loss of cellular redox equilibrium might be the pathogenic mechanism in vitiligo. However, despite the numerous data supporting a pathogenic role of oxidative stress, there is still no consensus explanation underlying the oxidative stress-driven disappear of melanocytes from the epidermis. In this study, in vitro characterization of melanocytes cultures from non-lesional vitiligo skin revealed at the cellular level aberrant function of signal transduction pathways common with neurodegenerative diseases including modification of lipid metabolism, hyperactivation of mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB), constitutive p53-dependent stress signal transduction cascades, and enhanced sensibility to pro-apoptotic stimuli. Notably, these long-term effects of subcytotoxic oxidative stress are also biomarkers of pre-senescent cellular phenotype. Consistent with this, vitiligo cells showed a significant increase in p16 that did not correlate with the chronological age of the donor. Moreover, vitiligo melanocytes produced many biologically active proteins among the senescence-associated secretory phenotype (SAPS), such as interleukin-6 (IL-6), matrix metallo proteinase-3 (MMP3), cyclooxygenase-2 (Cox-2), insulin-like growth factor-binding protein-3 and 7 (IGFBP3, IGFBP7). Together, these data argue for a complicated pathophysiologic puzzle underlying melanocytes degeneration resembling, from the biological point of view, neurodegenerative diseases. Our results suggest new possible targets for intervention that in combination with current therapies could correct melanocytes intrinsic defects.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Olajide OA, Bhatia HS, de Oliveira ACP, Wright CW, Fiebich BL. Anti-neuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: possible involvement of NF-κB and p38 MAPK inhibition. Eur J Med Chem 2013; 63:333-9. [PMID: 23507189 DOI: 10.1016/j.ejmech.2013.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/07/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Cryptolepis sanguinolenta and its bioactive alkaloid, cryptolepine have shown anti-inflammatory activity. However, the underlying mechanism of anti-inflammatory action in neuronal cells has not been investigated. In the present study we evaluated an extract of C. sanguinolenta (CSE) and cryptolepine (CAS) on neuroinflammation induced with IL-1β in SK-N-SH neuroblastoma cells. We then attempted to elucidate the mechanisms underlying the anti-neuroinflammatory effects of CAS in SK-N-SH cells. Cells were stimulated with 10 U/ml of IL-1β in the presence or absence of different concentrations of CSE (25-200 μg/ml) and CAS (2.5-20 μM). After 24 h incubation, culture media were collected to measure the production of PGE2 and the pro-inflammatory cytokines (TNFα and IL-6). Protein and gene expressions of cyclooxygenase (COX-2) and microsomal prostaglandin synthase-1 (mPGES-1) were studied by immunoblotting and qPCR, respectively. CSE produced significant (p < 0.05) inhibition of TNFα, IL-6 and PGE2 production in SK-N-SH cells. Studies on CAS showed significant and dose-dependent inhibition of TNFα, IL-6 and PGE2 production in IL-1β-stimulated cells without affecting viability. Pre-treatment with CAS (10 and 20 μM) was also found to inhibit IL-1β-induced protein and gene expressions of COX-2 and mPGES-1. Further studies to determine the mechanism of action of CAS showed inhibition of NF-κBp65 nuclear translocation, but not IκB phosphorylation. At 10 and 20 μM, CAS inhibited IL-1β-induced phosphorylation of p38 MAPK. Studies on the downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK2) showed that CAS produced significant (p < 0.05) and dose dependent inhibition of MAPKAPK2 phosphorylation in IL-1β-stimulated SK-N-SH cells. This study clearly shows that cryptolepine (CAS) inhibits neuroinflammation through mechanisms involving inhibition of COX-2 and mPGES-1. It is suggested that these actions are probably mediated through NF-κB and p38 signalling.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Pharmacy and Pharmaceutical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire HD1 3DH, United Kingdom.
| | | | | | | | | |
Collapse
|
244
|
Cathepsin D deficiency induces cytoskeletal changes and affects cell migration pathways in the brain. Neurobiol Dis 2013; 50:107-19. [DOI: 10.1016/j.nbd.2012.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/21/2012] [Accepted: 10/03/2012] [Indexed: 01/04/2023] Open
|
245
|
Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease. J Neurosci 2013; 32:16129-40. [PMID: 23152597 DOI: 10.1523/jneurosci.2323-12.2012] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer's disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically "activated" phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific Gfa2 promoter to target hippocampal astrocytes in APP/PS1 mice. AAV-Gfa2 vectors drove the expression of VIVIT, a peptide that interferes with the immune/inflammatory calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway, shown by our laboratory and others to orchestrate biochemical cascades leading to astrocyte activation. After several months of treatment with Gfa2-VIVIT, APP/PS1 mice exhibited improved cognitive and synaptic function, reduced glial activation, and lower amyloid levels. The results confirm a deleterious role for activated astrocytes in AD and lay the groundwork for exploration of other novel astrocyte-based therapies.
Collapse
|
246
|
Lancemaside A inhibits microglial activation via modulation of JNK signaling pathway. Biochem Biophys Res Commun 2013; 431:369-75. [PMID: 23348227 DOI: 10.1016/j.bbrc.2013.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 01/29/2023]
Abstract
Microglial activation plays an important role in neurodegenerative diseases. Thus, controlling microglial activation is considered to be a promising therapeutic target for neurodegenerative diseases. In the present study, we found that lancemaside A, a triterpenoid saponin isolated from Codonopsislanceolata, inhibited iNOS and proinflammatory cytokines in LPS-stimulated BV2 microglial cells. By analyzing molecular mechanisms underlying the anti-inflammatory effects of lancemaside A, we found that lancemaside A selectively inhibited LPS-induced JNK phosphorylation among the three types of MAP kinases. A JNK-specific inhibitor, SP600125, like lancemaside A, significantly inhibited not only NO, TNF-α, and IL-6 productions, but also NF-κB and AP-1 activities, suggesting that JNK inhibition is largely involved in the anti-inflammatory mechanism of lancemaside A. Interestingly, both the lancemaside A and SP600125 inhibited ROS production by suppressing the expression and/or phosphorylation of NADPH oxidase subunit proteins, such as p47(phox), p67(phox), and gp91(phox). The antioxidant effects of lancemaside A and SP600125 appear to be related with an increase of hemeoxygenase-1 expression by both agents. Finally, we demonstrated the neuroprotective effects of lancemaside A and SP600125 in microglia-neuron coculture systems. Collectively, our data suggest that JNK pathway plays a key role mediating anti-inflammatory effects of lancemaside A in LPS-stimulated microglia.
Collapse
|
247
|
Olajide OA, Aderogba MA, Fiebich BL. Mechanisms of anti-inflammatory property of Anacardium occidentale stem bark: inhibition of NF-κB and MAPK signalling in the microglia. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:42-49. [PMID: 23142196 DOI: 10.1016/j.jep.2012.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anacardium occidentale is used in traditional African medicine for the treatment of arthritis, fever, aches, pains, and inflammation of the extremities. AIM OF THE STUDY In this study, we investigated the molecular mechanisms responsible for anti-inflammatory effects of a stem bark extract of A. occidentale (ANE) in LPS-stimulated microglia. MATERIALS AND METHODS Nitric oxide (NO), prostaglandin E(2) and cytokine (TNFα and IL-6) production were evaluated in supernatants from LPS-stimulated BV-2 cells. Cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and microsomal prostaglandin E2 synthase (mPGES-1) protein expressions in rat primary microglia were measured using western blot. The effects of ANE on NF-κB activation and nuclear translocation were evaluated in the luciferase reporter gene assay and ELISA, while ability of ANE to influence IκB phosphorylation was determined using ELISA specific for phospho-IκB. The involvement of MAPK phosphorylation in the anti-inflammatory actions of ANE was evaluated using specific ELISA for phospho-p38, phospho-p42/44 and phospho-JNK. The MTT assay was used to determine the effect of ANE on BV-2 microglia viability. RESULTS ANE (25-100 μg/ml) produced significant (p<0.05) reduction in the production of NO, PGE(2), TNFα and IL-6 in BV-2 microglia stimulated with LPS for 24h. Pre-treatment with ANE caused a significant (p<0.05) inhibition of COX-2, iNOS and mPGES-1 protein expressions in the rat primary microglia. Further experiments showed that ANE inhibited COX-2 and iNOS protein expression via IκB-mediated nuclear translocation and transactivation of NF-κB. Our studies also revealed that ANE produced significant (p<0.05) and dose-dependent inhibition of p38, p42/44 and JNK MAPK phosphorylation in LPS-activated BV-2 microglia. CONCLUSIONS We conclude that ANE has an anti-inflammatory property related to inhibition of inflammation-associated cytokine production as well as iNOS and COX-2 gene expression by blocking NF-κB and MAPK pathways in the microglia. It is also suggested that mPGES-1 inhibition contributes to the effect of ANE on PGE(2) production in the microglia.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Division of Pharmacy and Pharmaceutical Science, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom.
| | | | | |
Collapse
|
248
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
249
|
Bridelia ferruginea Produces Antineuroinflammatory Activity through Inhibition of Nuclear Factor-kappa B and p38 MAPK Signalling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:546873. [PMID: 23320030 PMCID: PMC3536297 DOI: 10.1155/2012/546873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 11/18/2022]
Abstract
Bridelia ferruginea is commonly used in traditional African medicine (TAM) for treating various inflammatory conditions. Extracts from the plant have been shown to exhibit anti-inflammatory property in a number of in vivo models. In this study the influence of B. ferruginea (BFE) on the production of PGE2, nitrite, and proinflammatory cytokines from LPS-stimulated BV-2 microglia was investigated. The effects of BFE on cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expressions were evaluated in LPS-activated rat primary microglia. The roles of NF-κB and MAPK signalling in the actions of BFE were also investigated. BFE (25–200 μg) inhibited the production of PGE2, nitrite, tumour necrosis factor-α (TNFα), and interleukin-6 (IL-6) as well as COX-2 and iNOS protein expressions in LPS-activated microglial cells. Further studies to elucidate the mechanism of anti-inflammatory action of BFE revealed interference with nuclear translocation of NF-κBp65 through mechanisms involving inhibition of IκB degradation. BFE prevented phosphorylation of p38, but not p42/44 or JNK MAPK. It is suggested that Bridelia ferruginea produces anti-inflammatory action through mechanisms involving p38 MAPK and NF-κB signalling.
Collapse
|
250
|
Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 2012; 63:1227-37. [DOI: 10.1016/j.neuropharm.2012.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 01/02/2023]
|