201
|
Wang M, Chen Y. Inflammation: A Network in the Pathogenesis of Status Epilepticus. Front Mol Neurosci 2018; 11:341. [PMID: 30344475 PMCID: PMC6182087 DOI: 10.3389/fnmol.2018.00341] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022] Open
Abstract
Status epilepticus (SE) is an abnormally prolonged or recurrent epileptic seizure that is a serious, life-threatening medical emergency. Notably, it requires prompt and aggressive treatment. SE is characterized by high mortality and morbidity. However, its pathogenesis remains unclear. Numerous studies of SE have reported widespread brain inflammation, suggesting that inflammation plays a vital role in the occurrence and development of SE. This mini review article reviews the current knowledge with regard to the role of inflammation in SE.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
202
|
Yon JM, Kim YB, Park D. The Ethanol Fraction of White Rose Petal Extract Abrogates Excitotoxicity-Induced Neuronal Damage In Vivo and In Vitro through Inhibition of Oxidative Stress and Proinflammation. Nutrients 2018; 10:nu10101375. [PMID: 30261613 PMCID: PMC6213719 DOI: 10.3390/nu10101375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 01/10/2023] Open
Abstract
Since oxidative stress and inflammation are involved in seizure-related neurotoxicity, the neuroprotective effect of a white rose (Rosa hybrida) petal extract (WRPE) in mice that are challenged with kainic acid (KA) were examined using behavioral epileptiform seizures as well as biochemical and morphological parameters of oxidative stress and inflammation. WRPE (50–200 mg/kg) was orally administered to male ICR mice for 15 days, and intraperitoneally challenged with KA (30 mg/kg). Seizure activity, lipid peroxidation, inflammatory cytokines, and related enzymes were analyzed in the brain tissue, in addition to the morphological alterations in the hippocampal pyramidal neurons. Separately, antioxidant ingredients in WRPE were analyzed, and antioxidant, anti-inflammatory, and neuroprotective activities of WRPE were investigated in HB1.F3 human neural stem cells (NSCs) to elucidate underlying mechanisms. Total polyphenol and flavonoid contents in WRPE were 303.3 ± 15.3 mg gallic acid equivalent/g extract and 18.5 ± 2.2 mg catechin/g extract, respectively. WRPE exhibited strong radical-scavenging activities and inhibited lipid peroxidation in vitro, and protected glutamate-induced cytotoxicity in NSCs by suppressing inflammatory process. Treatment with WRPE attenuated epileptiform seizure scores to a half level in KA-challenged mice, and decreased hippocampal pyramidal neuronal injury and loss (cresyl violet and DAPI staining) as well as astrocyte activation (GFAP immunostaining). Lipid peroxidation was inhibited, and mRNA expression of antioxidant enzymes (GPx, PHGPx, SOD1, and SOD2) were recovered in the brain tissues. Inflammatory parameters (cytokines and enzymes) including NF-kB, IL-1β, TNF-α, IL-6, HMGB1, TGF-β, iNOS, COX2, and GFAP mRNAs and proteins were also down-regulated by WRPE treatment. Taken together, the results indicate that WRPE could attenuate KA-induced brain injury through antioxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jung-Min Yon
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun-Bae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju, Chungbuk 28173, Korea.
| |
Collapse
|
203
|
Srivastava PK, van Eyll J, Godard P, Mazzuferi M, Delahaye-Duriez A, Van Steenwinckel J, Gressens P, Danis B, Vandenplas C, Foerch P, Leclercq K, Mairet-Coello G, Cardenas A, Vanclef F, Laaniste L, Niespodziany I, Keaney J, Gasser J, Gillet G, Shkura K, Chong SA, Behmoaras J, Kadiu I, Petretto E, Kaminski RM, Johnson MR. A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nat Commun 2018; 9:3561. [PMID: 30177815 PMCID: PMC6120885 DOI: 10.1038/s41467-018-06008-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/03/2018] [Indexed: 01/14/2023] Open
Abstract
The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning ("Causal Reasoning Analytical Framework for Target discovery"-CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy.
Collapse
Affiliation(s)
| | - Jonathan van Eyll
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Patrice Godard
- Clarivate Analytics (formerly the IP & Science Business of Thomson Reuters), 5901 Priestly Drive, #200, Carlsbad, CA, 92008, USA
| | - Manuela Mazzuferi
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Andree Delahaye-Duriez
- Division of Brain Sciences, Imperial College London, London, W12 0NN, UK
- UFR de Santé, Médecine et Biologie Humaine, Sorbonne Paris Cité, Université Paris 13, Bobigny, France
- PROTECT, INSERM, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | | | - Pierre Gressens
- PROTECT, INSERM, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
- School of Biomedical Engineering & Imaging Sciences, Centre for the Developing Brain, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Benedicte Danis
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | | | - Patrik Foerch
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Karine Leclercq
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | | | - Alvaro Cardenas
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Frederic Vanclef
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Liisi Laaniste
- Division of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | | | - James Keaney
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Julien Gasser
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Gaelle Gillet
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Seon-Ah Chong
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK
| | - Irena Kadiu
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium
| | - Enrico Petretto
- Duke-NUS Medical School, Centre for Computational Biology, 8 College Road, Singapore, 169857, Republic of Singapore.
- Faculty of Medicine, MRC Clinical Sciences Centre, Imperial College London, London, W12 0NN, UK.
| | - Rafal M Kaminski
- UCB Pharma, Avenue de l'industrie, Braine-l'Alleud, R9, B-1420, Belgium.
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
204
|
Amengual-Gual M, Sánchez Fernández I, Wainwright MS. Novel drugs and early polypharmacotherapy in status epilepticus. Seizure 2018; 68:79-88. [PMID: 30473267 DOI: 10.1016/j.seizure.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Rescue medications for status epilepticus (SE) have a relatively high rate of failure. The purpose of this review is to summarize the evidence for the efficacy of novel drugs and early polypharmacotherapy for SE. METHOD Literature review. RESULTS New drugs and treatment strategies aim to target the pathophysiology of SE in order to improve seizure control and outcomes. Changes at the synapse level during SE include a progressive decrease in synaptic GABAA receptors and increase in synaptic NMDA receptors. These changes tend to promote self-sustaining seizures. Current SE guidelines recommend a rapid stepwise treatment using benzodiazepines in monotherapy as the first-line treatment, targeting GABAA synaptic receptors. Novel treatment approaches target GABAA synaptic and extrasynaptic receptors with allopregnanolone, and NMDA receptors with ketamine. Novel rescue treatments used for SE include topiramate, brivaracetam, and perampanel, which are already marketed in epilepsy. Some available drugs not marketed for use in epilepsy have been used in the treatment of SE, and other agents are being studied for this purpose. Early polytherapy, most frequently combining a benzodiazepine with a second-line drug or an NMDA receptor antagonist, might potentially increase seizure control with relatively minor increase in side effects. Although many preclinical studies support novel drugs and early polytherapy in SE, human studies are scarce and inconclusive. Currently, evidence is lacking to recommend specific combinations of these new agents. CONCLUSIONS Novel drugs and strategies target the underlying pathophysiology of SE with the intent to improve seizure control and outcomes.
Collapse
Affiliation(s)
- Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Son Espases, Universitat de les Illes Balears, Palma, Spain.
| | - Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Child Neurology, Hospital Sant Joan de Déu, Universidad de Barcelona, Spain
| | - Mark S Wainwright
- Department of Neurology, Division of Pediatric Neurology. University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
205
|
Zhu X, Li X, Zhu M, Xu K, Yang L, Han B, Huang R, Zhang A, Yao H. Metalloprotease Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. J Neuroinflammation 2018; 15:221. [PMID: 30075790 PMCID: PMC6091106 DOI: 10.1186/s12974-018-1260-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Background Mice with pilocarpine-induced temporal lobe epilepsy (TLE) are characterized by intense hippocampal neuroinflammation, a prominent pathological hallmark of TLE that is known to contribute to neuronal hyperexcitability. Recent studies indicate that Adam10, a member of a disintegrin and metalloproteinase domain-containing protein (Adam) family, has been involved in the neuroinflammation response. However, it remains unclear whether and how Adam10 modulates neuroinflammation responses in the context of an epileptic brain or whether Adam10 affects epileptogenesis via the neuroinflammation pathway. Methods Adult male C57BL/6J mice were subjected to intraperitoneal injection of pilocarpine to induce TLE. Adeno-associated viral (AAV) vectors carrying Adam10 (AAV-Adam10) or lentiviral vectors carrying short hairpin RNA, which is specific to the mouse Adam10 mRNA (shRNA-Adam10), were bilaterally injected into the hippocampus to induce overexpression or knockdown of Adam10, respectively. The specific anti-inflammatory agent minocycline was administered following status epilepticus (SE) to block hippocampal neuroinflammation. Continuous video EEG recording was performed to analyze epileptic behavior. Western blot, immunofluorescence staining, and ELISA were performed to determine Adam10 expression as well as hippocampal neuroinflammation. Results In this study, we demonstrate that overexpression of Adam10 in the hippocampus suppresses neuroinflammation and reduces seizure activity in TLE mice, whereas knockdown of Adam10 exacerbates hippocampal neuroinflammation and increases seizure activity. Furthermore, increased seizure activity in Adam10 knockdown TLE mice is dependent on hippocampal neuroinflammation. Conclusion These results suggest that Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. Our findings provide new insights into the Adam10 regulation of development of epilepsy via the neuroinflammation pathway and identify a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China.
| | - Xiaolin Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyi Zhu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Kangni Xu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Li Yang
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| |
Collapse
|
206
|
Sun D, Ma H, Ma J, Wang J, Deng X, Hu C, Deng X. Canonical Transient Receptor Potential Channel 3 Contributes to Febrile Seizure Inducing Neuronal Cell Death and Neuroinflammation. Cell Mol Neurobiol 2018; 38:1215-1226. [PMID: 29748835 PMCID: PMC11481972 DOI: 10.1007/s10571-018-0586-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Febrile seizure (FS) counts as the most common seizures symptom in children undergoing recurrent seizures, posing a high risk to developing subsequent temporal lobe epilepsy. Canonical transient receptor potential channel (TRPC) members are identified as the FS-related genes in hyperthermia prone rats. However, the role of TRPC3 in hyperthermia-induced FS rats remains unclear. In the present study, we investigated whether TRPC3 functionally contributes to the development of FSs. Elevated TRPC3 mRNA and protein levels was detected in hyperthermia-induced FS rats and rat hippocampal neuron cells. The specific inhibitor of TRPC3, Pyr3, remarkably attenuated the susceptibility and severity of seizures, neuronal cell death, and neuroinflammation in FS rats. Conversely, NCX3 activation was apparently suppressed in rats subjected to recurrent FS and rat hippocampal neuron cells. The expression of NCX3 was up-regulated after TRPC3 inhibition in vivo and in vitro. Furthermore, an interaction between TRPC3 and NCX3 was detected by co-immunoprecipitation. Inhibition of TRPC3 suppressed intracellular Ca2+ levels in hyperthermia-treated hippocampal neuronal cells. In conclusion, our findings supported that TRPC3 functions as a critical regulator of seizure susceptibility and targeting TRPC3 may be a new therapeutic strategy for FS.
Collapse
Affiliation(s)
- Dan Sun
- Department of Pediatric Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Hui Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehui Ma
- Department of Pediatric Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Jing Wang
- Department of Pediatric Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xiaolong Deng
- Department of Pediatric Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Chunhui Hu
- Department of Pediatric Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xianbo Deng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
207
|
Ghasemi M, Mehranfard N. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology 2018; 137:297-308. [DOI: 10.1016/j.neuropharm.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
208
|
Morales-Sosa M, Orozco-Suárez S, Vega-García A, Caballero-Chacón S, Feria-Romero IA. Immunomodulatory effect of Celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats. Pharmacol Biochem Behav 2018; 170:79-86. [DOI: 10.1016/j.pbb.2018.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
|
209
|
Genetic Modulation of HSPA1A Accelerates Kindling Progression and Exerts Pro-convulsant Effects. Neuroscience 2018; 386:108-120. [PMID: 29964156 DOI: 10.1016/j.neuroscience.2018.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Strong evidence exists that Toll-like receptor (TLR)-mediated effects on microglia functional states can promote ictogenesis and epileptogenesis. So far, research has focused on the role of high-mobility group box protein 1 as an activator of TLRs. However, the development of targeting strategies might need to consider a role of additional receptor ligands. Considering the fact that heat shock protein A1 (hsp70) has been confirmed as a TLR 2 and 4 ligand, we have explored the consequences of its overexpression in a mouse kindling paradigm. The genetic modulation enhanced seizure susceptibility with lowered seizure thresholds prior to kindling. In contrast to wildtype (WT) mice, HSPA1A transgenic (TG) mice exhibited generalized seizures very early during the kindling paradigm. Along with an increased seizure severity, seizure duration proved to be prolonged in TG mice during this phase. Toward the end of the stimulation phase seizure parameters of WT mice reached comparable levels. However, a difference between genotypes was still evident when comparing seizure parameters during the post-kindling threshold determination. Surprisingly, HSPA1A overexpression did not affect microglia activation in the hippocampus. In conclusion, the findings demonstrate that hsp70 can exert pro-convulsant effects promoting ictogenesis in naïve animals. The pronounced impact on the response to subsequent stimulations gives first evidence that genetic HSPA1A upregulation may also contribute to epileptogenesis. Thus, strategies inhibiting hsp70 or its expression might be of interest for prevention of seizures and epilepsy. However, conclusions about a putative pro-epileptogenic effect of hsp70 require further investigations in models with development of spontaneous recurrent seizures.
Collapse
|
210
|
Tb II-I, a Fraction Isolated from Tityus bahiensis Scorpion Venom, Alters Cytokines': Level and Induces Seizures When Intrahippocampally Injected in Rats. Toxins (Basel) 2018; 10:toxins10060250. [PMID: 29921762 PMCID: PMC6024361 DOI: 10.3390/toxins10060250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Scorpion venoms are composed of several substances with different pharmacological activities. Neurotoxins exert their effects by targeting ion channels resulting in toxic effects to mammals, insects and crustaceans. Tb II-I, a fraction isolated from Tityus bahiensis scorpion venom, was investigated for its ability to induce neurological and immune-inflammatory effects. Two putative β-sodium channel toxins were identified in this fraction, Tb2 II and Tb 4, the latter having been completely sequenced by mass spectrometry. Male Wistar rats, stereotaxically implanted with intrahippocampal cannulas and electrodes, were injected with Tb II-I (2 µg/2 µL) via the intrahippocampal route. The behavior, electrographic activity and cellular integrity of the animals were analyzed and the intracerebral level of cytokines determined. Tb II-I injection induced seizures and damage in the hippocampus. These alterations were correlated with the changes in the level of the cytokines tumoral necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Therefore, the binding of Tb II-I to its target in the central nervous system may induce inflammation resulting in neuropathological and behavioral alterations.
Collapse
|
211
|
Vieira AS, Dogini DB, Lopes-Cendes I. Role of non-coding RNAs in non-aging-related neurological disorders. ACTA ACUST UNITED AC 2018; 51:e7566. [PMID: 29898036 PMCID: PMC6002137 DOI: 10.1590/1414-431x20187566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
Protein coding sequences represent only 2% of the human genome. Recent advances
have demonstrated that a significant portion of the genome is actively
transcribed as non-coding RNA molecules. These non-coding RNAs are emerging as
key players in the regulation of biological processes, and act as "fine-tuners"
of gene expression. Neurological disorders are caused by a wide range of genetic
mutations, epigenetic and environmental factors, and the exact pathophysiology
of many of these conditions is still unknown. It is currently recognized that
dysregulations in the expression of non-coding RNAs are present in many
neurological disorders and may be relevant in the mechanisms leading to disease.
In addition, circulating non-coding RNAs are emerging as potential biomarkers
with great potential impact in clinical practice. In this review, we discuss
mainly the role of microRNAs and long non-coding RNAs in several neurological
disorders, such as epilepsy, Huntington disease, fragile X-associated ataxia,
spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), and pain. In
addition, we give information about the conditions where microRNAs have
demonstrated to be potential biomarkers such as in epilepsy, pain, and ALS.
Collapse
Affiliation(s)
- A S Vieira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Instituto Brasileiro de Neurociência e Neurotecnologia, Campinas, SP, Brasil
| | - D B Dogini
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Instituto Brasileiro de Neurociência e Neurotecnologia, Campinas, SP, Brasil
| | - I Lopes-Cendes
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Instituto Brasileiro de Neurociência e Neurotecnologia, Campinas, SP, Brasil
| |
Collapse
|
212
|
Lorigados Pedre L, Gallardo JM, Morales Chacón LM, Vega García A, Flores-Mendoza M, Neri-Gómez T, Estupiñán Díaz B, Cruz-Xenes RM, Pavón Fuentes N, Orozco-Suárez S. Oxidative Stress in Patients with Drug Resistant Partial Complex Seizure. Behav Sci (Basel) 2018; 8:E59. [PMID: 29890748 PMCID: PMC6027168 DOI: 10.3390/bs8060059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS) patients compared to a control group (age and sex matched), and the results were related to clinical variables. We examined malondialdehyde (MDA), advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), nitric oxide (NO), uric acid, superoxide dismutase (SOD), glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE) and nitrotyrosine (3-NT). All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001) while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively). Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005) similarly to SOD activity (p = 0.0001), whereas vitamin C was considerably diminished (p = 0.0001). Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.
Collapse
Affiliation(s)
- Lourdes Lorigados Pedre
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805 Havana, Cuba.
| | - Juan M Gallardo
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Lilia M Morales Chacón
- Clinical Neurophysiology Lab., International Center for Neurological Restoration, 11300 Havana, Cuba.
| | - Angélica Vega García
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Monserrat Flores-Mendoza
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Teresa Neri-Gómez
- Nanomaterials Laboratory, Research Center in Health Sciences, Autonomous University of San Luis Potosí, 78300 San Luis Potosi; Mexico.
| | - Bárbara Estupiñán Díaz
- Morphological Laboratory, International Center for Neurological Restoration, 11300 Havana, Cuba.
| | | | - Nancy Pavón Fuentes
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805 Havana, Cuba.
| | - Sandra Orozco-Suárez
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| |
Collapse
|
213
|
Russo E, Citraro R. Pharmacology of epileptogenesis and related comorbidities in the WAG/Rij rat model of genetic absence epilepsy. J Neurosci Methods 2018; 310:54-62. [PMID: 29857008 DOI: 10.1016/j.jneumeth.2018.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/23/2023]
Abstract
Animal studies currently represent the best source of information also in the field of epileptogenesis research. Many animal models have been proposed and studied so far both from the pathophysiological and pharmacological point of view. Furthermore, they are widely used for the identification of potentially clinically valuable biomarkers. The WAG/Rij rat model, similarly to other genetic animal strains, represents a suitable animal model of absence epileptogenesis accompanied by depressive-like and cognitive comorbidities. Generally, animal models of epileptogenesis are characterized by an identifiable initial insult (e.g. traumatic brain injury), a latent phase lasting up to the appearance of the first spontaneous seizure and a chronic phase characterized by recurrent spontaneous seizures. In most of genetic models: the initial insult should be defined as the mutation causing epilepsy, which is not clearly defined in the WAG/Rij rat model; the latent phase ends at the appearance of the first spontaneous seizure, which is about 2-3 months of age in WAG/Rij rats and thereafter the chronic phase. WAG/Rij rats also display depressive-like comorbidity around the age of 4 months, which is apparently linked to the development of absence seizures considering both its ontogeny and the fact that drugs affecting absence seizures development also block the development of depressive-like behavior. Finally, WAG/Rij rats also display cognitive impairment in some memory tasks, however, this has not been yet definitively linked to absence seizures development and may represent an epiphenomenon. This review is focused on the effects of pharmacological treatments against epileptogenesis and their effects on comorbidities.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy.
| | - Rita Citraro
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| |
Collapse
|
214
|
Gao B, Wu Y, Yang YJ, Li WZ, Dong K, Zhou J, Yin YY, Huang DK, Wu WN. Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome. J Neuroinflammation 2018; 15:152. [PMID: 29776417 PMCID: PMC5960124 DOI: 10.1186/s12974-018-1199-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background Epilepsy is a common neurological disorder and is not well controlled by available antiepileptic drugs (AEDs). Inflammation is considered to be a critical factor in the pathophysiology of epilepsy. Sinomenine (SN), a bioactive alkaloid with anti-inflammatory effect, exerts neuroprotective activity in many nervous system diseases. However, little is known about the effect of SN on epilepsy. Methods The chronic epilepsy model was established by pentylenetetrazole (PTZ) kindling. Morris water maze (MWM) was used to test spatial learning and memory ability. H.E. staining and Hoechst 33258 staining were used to evaluate hippocampal neuronal damage. The expression of nucleotide oligomerization domain (NOD)-like receptor protein 1 (NLRP1) inflammasome complexes and the level of inflammatory cytokines were determined by western blot, quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA) kits. Results SN (20, 40, and 80 mg/kg) dose-dependently disrupts the kindling acquisition process, which decreases the seizure scores and the incidence of fully kindling. SN also increases the latency of seizure and decreases the duration of seizure in fully kindled rats. In addition, different doses of SN block the hippocampal neuronal damage and minimize the impairment of spatial learning and memory in PTZ kindled rats. Finally, PTZ kindling increases the expression of NLRP1 inflammasome complexes and the levels of inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α, which are all attenuated by SN in a dose- dependent manner. Conclusions SN exerts anticonvulsant and neuroprotective activity in PTZ kindling model of epilepsy. Disrupting the kindling acquisition, which inhibits NLRP1 inflammasome-mediated inflammatory process, might be involved in its effects. Electronic supplementary material The online version of this article (10.1186/s12974-018-1199-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Gao
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yuan-Jian Yang
- Department of Psychiatry and Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, 330029, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Kun Dong
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jun Zhou
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710061, People's Republic of China
| | - Yan-Yan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Da-Ke Huang
- Synthetic Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wen-Ning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
215
|
Jehi L, Yehia L, Peterson C, Niazi F, Busch R, Prayson R, Ying Z, Bingaman W, Najm I, Eng C. Preliminary report: Late seizure recurrence years after epilepsy surgery may be associated with alterations in brain tissue transcriptome. Epilepsia Open 2018; 3:299-304. [PMID: 29881812 PMCID: PMC5983127 DOI: 10.1002/epi4.12119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 11/22/2022] Open
Abstract
We recently proposed that the maturation of a new epileptic focus (epileptogenesis) may explain late seizure recurrences, starting months to years after resective epilepsy surgery. We explore here the hypothesis that inherent transcriptomic changes may distinguish such “late relapsers.” An in‐depth clinical review of 2 patients with recurrent seizures starting years after surgery is contrasted to 4 controls who remained seizure‐free postoperatively. This clinical analysis is combined with RNA sequencing from the resected brain tissue, followed by unsupervised hierarchical clustering, independent pathway analysis, and multidimensional scaling analysis. Late‐recurrence patients clustered apart from seizure‐free patients, with late recurrence patients clustering together in the central space, whereas the seizure‐free patients clustered together in the periphery. We utilized RNA‐seq to identify differentially expressed genes between late‐recurrence and seizure‐free samples. We found 29 annotated genes with statistically significant differential expression (q < 0.05). The top canonical pathways identified as distinctly separating the late‐recurrence patients from the seizure‐free patients included the intrinsic prothrombin activation pathway (p = 1.55E‐06), the complement system (p = 4.57E‐05), and the atherosclerosis signaling pathway (p = 4.57E‐05). Our observations suggest that late recurrences after epilepsy surgery may be influenced partly by differences in gene expression in neuroinflammatory and brain healing/remodeling pathways. Such a hypothesis needs to be validated in the future.
Collapse
Affiliation(s)
- Lara Jehi
- Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - Lamis Yehia
- Genomic Medicine Institute Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - Charissa Peterson
- Genomic Medicine Institute Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - Farshad Niazi
- Genomic Medicine Institute Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - Robyn Busch
- Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - Richard Prayson
- Department of Pathology Tomsich Pathology and Laboratory Medicine Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - Zhong Ying
- Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - William Bingaman
- Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - Imad Najm
- Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A
| | - Charis Eng
- Genomic Medicine Institute Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A.,Taussig Cancer Institute Cleveland Clinic Cleveland Ohio U.S.A.,Stanley Shalom Zielony Institute of Nursing Excellence Cleveland Clinic Cleveland Ohio U.S.A.,Department of Genetics and Genome Sciences Case Western Reserve University School of Medicine Cleveland Ohio U.S.A.,Case Comprehensive Cancer Center Case Western Reserve University School of Medicine Cleveland Ohio U.S.A
| |
Collapse
|
216
|
Yang H, Rajah G, Guo A, Wang Y, Wang Q. Pathogenesis of epileptic seizures and epilepsy after stroke. Neurol Res 2018; 40:426-432. [PMID: 29681214 DOI: 10.1080/01616412.2018.1455014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anchen Guo
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
217
|
Vezzani A, Dingledine R, Rossetti AO. Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application. Expert Rev Neurother 2018; 15:1081-92. [PMID: 26312647 DOI: 10.1586/14737175.2015.1079130] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Status epilepticus (SE) is a life-threatening neurological emergency often refractory to available treatment options. It is a very heterogeneous condition in terms of clinical presentation and causes, which besides genetic, vascular and other structural causes also include CNS or severe systemic infections, sudden withdrawal from benzodiazepines or anticonvulsants and rare autoimmune etiologies. Treatment of SE is essentially based on expert opinions and antiepileptic drug treatment per se seems to have no major impact on prognosis. There is, therefore, urgent need of novel therapies that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Accumulating evidence in animal models highlights that inflammation ensuing in the brain during SE may play a determinant role in ongoing seizures and their long-term detrimental consequences, independent of an infection or auto-immune cause; this evidence encourages reconsideration of the treatment flow in SE patients.
Collapse
Affiliation(s)
- Annamaria Vezzani
- a 1 Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | |
Collapse
|
218
|
Medel-Matus JS, Shin D, Dorfman E, Sankar R, Mazarati A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 2018; 3:290-294. [PMID: 29881810 PMCID: PMC5983141 DOI: 10.1002/epi4.12114] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2018] [Indexed: 12/11/2022] Open
Abstract
There has been growing interest in the role of intestinal microbiome in brain disorders. We examined whether dysbiosis can predispose to epilepsy. The study was performed in female and male Sprague‐Dawley rats. To induce dysbiosis, the rats were subjected to chronic restraint stress (two 2‐h long sessions per day, over 2 weeks). Cecal content from stressed and sham‐stressed donors was transplanted via oral gavage to recipients, in which commensal microbiota had been depleted by the antibiotics. The study included the following groups: (1) Sham stress, no microbiota transplant; (2) Stress, no microbiota transplant; (3) Sham‐stressed recipients transplanted with microbiota from sham‐stressed donors; (4) Stressed recipients transplanted with microbiota from sham‐stressed donors; (5) Sham‐stressed recipients transplanted with microbiota from stressed donors; and (6) Stressed recipients transplanted with microbiota from stressed donors. After microbiota transplant, all animals were subjected to kindling of the basolateral amygdala. Both chronic stress and microbiome transplanted from stressed to sham‐stressed subjects accelerated the progression and prolonged the duration of kindled seizures. Microbiome from sham‐stressed animals transplanted to chronically stressed rats, counteracted proepileptic effects of restraint stress. These findings directly implicate perturbations in the gut microbiome, particularly those associated with chronic stress, in the increased susceptibility to epilepsy.
Collapse
Affiliation(s)
| | - Don Shin
- Department of Pediatrics David Geffen School of Medicine at UCLA Los Angeles California U.S.A
| | - Edward Dorfman
- Department of Pediatrics David Geffen School of Medicine at UCLA Los Angeles California U.S.A
| | - Raman Sankar
- Department of Pediatrics David Geffen School of Medicine at UCLA Los Angeles California U.S.A.,Department of Neurology David Geffen School of Medicine at UCLA Los Angeles California U.S.A.,UCLA Children's Discovery and Innovation Institute Los Angeles California U.S.A
| | - Andrey Mazarati
- Department of Pediatrics David Geffen School of Medicine at UCLA Los Angeles California U.S.A.,UCLA Children's Discovery and Innovation Institute Los Angeles California U.S.A
| |
Collapse
|
219
|
Lin JJ, Wang Y, Lan SY, Chan OW, Hsia SH, Chou ML, Hung PC, Hsieh MY, Chou IJ, Wang HS, Lin KL. Combination of intravenous immunoglobulin and steroid pulse therapy improves outcomes of febrile refractory status epilepticus. Epilepsy Res 2018; 142:100-105. [PMID: 29609074 DOI: 10.1016/j.eplepsyres.2018.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/09/2018] [Accepted: 03/24/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Febrile infections are an important cause of paediatric refractory status epilepticus, and immune-mediated mechanisms and inflammatory processes have been associated with neurological manifestations in such patients. The aim of this study was to investigate the effects of immunotherapy as adjuvant treatment for febrile refractory status epilepticus. METHODS We retrospectively reviewed cases of febrile refractory status epilepticus in a paediatric intensive care unit between January 2000 and December 2013 and analysed their clinical characteristics. Patients positive for antineuronal antibodies against surface antigens were excluded. RESULTS We enrolled 63 patients (38 boys), aged 1-18 years, all of whom received multiple antiepileptic drugs. Twenty-nine (46%) of the patients received intravenous immunoglobulin alone, 16 (25.4%) received a combination of intravenous immunoglobulin and methylprednisolone pulse therapy, and 18 (28.6%) did not receive immunotherapy treatment. Overall, 12 (19%) patients died within 1 month. After 6 months, 12 (20%) patients had good neurological outcomes, including two who returned to baseline and 13 (29.5%) who had favourable seizure outcomes. We compared the outcomes of the different treatments, and found that a combination of intravenous immunoglobulin and methylprednisolone pulse therapy had the best neurological and seizure outcomes at 6 months compared to intravenous immunoglobulin alone and no immunotherapy. CONCLUSIONS Our observational study showed that a combination of intravenous immunoglobulin and methylprednisolone pulse therapy as adjuvant treatment for febrile refractory status epilepticus was associated with better neurological and seizure outcomes. Further prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Jainn-Jim Lin
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yu Wang
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shih-Yun Lan
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan
| | - Oi-Wa Chan
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan
| | - Min-Liang Chou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan
| | - Po-Cheng Hung
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan
| | - I-Jun Chou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Children's Hospital Study Group for Children with Encephalitis/Encephalopathy Related Status Epilepticus and Epilepsy (CHEESE), Taoyuan, Taiwan.
| | | |
Collapse
|
220
|
Liu Y, Wang T, Liu X, Wen Y, Xu T, Yu X, Wei X, Ding X, Mo L, Yin M, Tan X, Chen L. Overexpression of zinc-α2-glycoprotein suppressed seizures and seizure-related neuroflammation in pentylenetetrazol-kindled rats. J Neuroinflammation 2018; 15:92. [PMID: 29566716 PMCID: PMC5863804 DOI: 10.1186/s12974-018-1132-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Zinc-α2-glycoprotein (ZAG) is a 42-kDa protein reported as an anti-inflammatory adipocytokine. Evidences from clinical and experimental studies revealed that brain inflammation plays important roles in epileptogenesis and seizure. Interestingly, closely relationship between ZAG and many important inflammatory mediators has been proven. Our previous study identified ZAG in neurons and found that ZAG is decreased in epilepsy and interacts with TGFβ and ERK. This study aimed to investigate the role of ZAG in seizure and explore its effect on seizure-related neuroinflammation. METHODS We overexpressed AZGP1 in the hippocampus of rats via adeno-associated virus vector injection and observed their seizure behavior and EEG after pentylenetetrazol (PTZ) kindling. The level of typical inflammation mediators including TNFα, IL-6, TGFβ, ERK, and ERK phosphorylation were determined. RESULTS The overexpression of AZGP1 reduced the seizure severity, prolonged the latency of kindling, and alleviated epileptiform discharges in EEG changes induced by PTZ. Overexpression of AZGP1 also suppressed the expression of TNFα, IL-6, TGFβ, and ERK phosphorylaton in PTZ-kindled rats. CONCLUSIONS ZAG may inhibit TGFβ-mediated ERK phosphorylation and inhibit neuroinflammation mediated by TNFα and IL-6, suggesting ZAG may suppress seizure via inhibiting neuroinflammation. ZAG may be a potential and novel therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Teng Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Yuetao Wen
- Department of Neurosurgery, The University-Town Hospital of Chongqing Medical University, Chongqing, 401331 China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xinyuan Yu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xin Wei
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xueying Ding
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Maojia Yin
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xinjie Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| |
Collapse
|
221
|
van Vliet EA, Aronica E, Vezzani A, Ravizza T. Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol 2018; 44:91-111. [DOI: 10.1111/nan.12444] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- E. A. van Vliet
- Department of (Neuro)pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - E. Aronica
- Department of (Neuro)pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN); Cruquius The Netherlands
| | - A. Vezzani
- Department of Neuroscience; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; Milano Italy
| | - T. Ravizza
- Department of Neuroscience; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; Milano Italy
| |
Collapse
|
222
|
Stone TJ, Rowell R, Jayasekera BAP, Cunningham MO, Jacques TS. Review: Molecular characteristics of long-term epilepsy-associated tumours (LEATs) and mechanisms for tumour-related epilepsy (TRE). Neuropathol Appl Neurobiol 2018; 44:56-69. [DOI: 10.1111/nan.12459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. J. Stone
- Developmental Biology and Cancer Programme; UCL Great Ormond Street Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| | - R. Rowell
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - B. A. P. Jayasekera
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - M. O. Cunningham
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - T. S. Jacques
- Developmental Biology and Cancer Programme; UCL Great Ormond Street Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| |
Collapse
|
223
|
Sharma S, Carlson S, Puttachary S, Sarkar S, Showman L, Putra M, Kanthasamy AG, Thippeswamy T. Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiol Dis 2018; 110:102-121. [PMID: 29197620 PMCID: PMC5753797 DOI: 10.1016/j.nbd.2017.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Status epilepticus (SE) induces neuroinflammation and epileptogenesis, but the mechanisms are not yet fully delineated. The Fyn, a non-receptor Src family tyrosine kinase (SFK), and its immediate downstream target, PKCδ are emerging as potential mediators of neuroinflammation. In order to first determine the role of Fyn kinase signaling in SE, we tested the efficacy of a SFK inhibitor, saracatinib (25mg/kg, oral) in C57BL/6J mouse kainate model of acute seizures. Saracatinib pretreatment dampened SE severity and completely prevented mortality. We further utilized fyn-/- and fyn+/+ mice (wildtype control for the fyn-/- mice on same genetic background), and the rat kainate model, treated with saracatinib post-SE, to validate the role of Fyn/SFK in SE and epileptogenesis. We observed significant reduction in SE severity, epileptiform spikes, and electrographic non-convulsive seizures in fyn-/- mice when compared to fyn+/+ mice. Interestingly, significant reductions in phosphorylated pSrc-416 and PKCδ (pPKCδ-507) and naive PKCδ were observed in fyn-/- mice as compared to fyn+/+ mice suggesting that PKCδ signaling is a downstream mediator of Fyn in SE and epileptogenesis. Notably, fyn-/- mice also showed a reduction in key proinflammatory mediators TNF-α, IL-1β, and iNOS mRNA expression; serum IL-6 and IL-12 levels; and nitro-oxidative stress markers such as 4-HNE, gp91phox, and 3-NT in the hippocampus. Immunohistochemistry revealed a significant increase in reactive microgliosis and neurodegeneration in the hippocampus and hilus of dentate gyrus in fyn+/+ mice in contrast to fyn-/- mice. Interestingly, we did not observe upregulation of Fyn in pyramidal neurons of the hippocampus during post-SE in fyn+/+ mice, but it was upregulated in hilar neurons of the dentate gyrus when compared to naïve control. In reactive microglia, both Fyn and PKCδ were persistently upregulated during post-SE suggesting that Fyn-PKCδ may drive neuroinflammation during epileptogenesis. Since disabling the Fyn kinase prior to SE, either by treating with saracatinib or fyn gene knockout, suppressed seizures and the subsequent epileptogenic events, we further tested whether Fyn/SFK inhibition during post-SE modifies epileptogenesis. Telemetry-implanted, SE-induced, rats were treated with saracatinib and continuously monitored for a month. At 2h post-diazepam, the saracatinib (25mg/kg) or the vehicle was administered orally and repeated twice daily for first three days followed by a single dose/day for the next four days. The saracatinib post-treatment prevented epileptogenesis in >50% of the rats and significantly reduced spontaneous seizures and epileptiform spikes in the rest (one animal did not respond) when compared to the vehicle treated group, which had >24 seizures in a month. Collectively, the findings suggest that Fyn/SFK is a potential mediator of epileptogenesis and a therapeutic target to prevent/treat seizures and epileptogenesis.
Collapse
Affiliation(s)
- Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Steven Carlson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Souvarish Sarkar
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames 50011, USA
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA.
| |
Collapse
|
224
|
Zhang Z, Liu Q, Liu M, Wang H, Dong Y, Ji T, Liu X, Jiang Y, Cai L, Wu Y. Upregulation of HMGB1-TLR4 inflammatory pathway in focal cortical dysplasia type II. J Neuroinflammation 2018; 15:27. [PMID: 29382328 PMCID: PMC5791174 DOI: 10.1186/s12974-018-1078-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background We attempted to determine whether the inflammatory pathway HMGB1-TLR4 and the downstream pro-inflammatory cytokines is upregulated in focal cortical dysplasia (FCD) type II and whether there is a correlation between the TLR4 upregulation and disease duration or frequency of epileptic seizures. Methods FCD type II and peri-FCD paired tissues resected from eight children with refractory epilepsy were collected. Through real-time qPCR, Western blot, and co-immunoprecipitation, we examined the differences between FCD lesions and peri-FCD tissues with respect to mRNA expression, protein expression, and protein interaction in HMGB1-TLR4 pathway biomarker and downstream pro-inflammatory factors in whole brain tissue. Then, we used immunofluorescence to examine the difference between FCD lesions and peri-FCD tissues with respect to protein expression and intracellular distribution of HMGB1-TLR4 pathway biomarker in neurons, astrocytes, and oligodendrocytes. Correlation between level of TLR4 expression and disease duration or frequency of epileptic seizures in patients was also analyzed. Results The protein expression levels of TLR4, cytoplasm HMGB1, TLR4/MyD88 complex, ubiquitination of TRAF6, p-IKK, p-IκB-α, p-NF-κB p65, and IL-1β and TNF-α in lesion tissues were significantly higher than those in peri-FCD controls. Total mRNA expression levels of TLR4, IL-1β, and TNF-α in lesion tissues were significantly higher than those in peri-FCD controls, but HMGB1 had no significant change. In neurons and astrocytes inside the lesions, the expression of TLR4 protein was significantly higher than that in peri-FCD tissues, and HMGB1 was mainly expressed in the cytoplasm, while expressed in the nuclei in peri-FCD tissues. But in oligodendrocytes, there was no upregulation of HMGB1-TLR4 pathway in both lesions and peri-FCD tissues. We did not identify the correlation between the level of TLR4 activation and disease duration or frequency of epileptic seizures. Conclusion The HMGB1-TLR4 pathway was upregulated in the neurons and astrocytes inside FCD type II lesions, which led to an increase in the release of downstream pro-inflammatory cytokines. Correlation between the level of TLR4 activation and duration or frequency of epileptic seizures was not identified.
Collapse
Affiliation(s)
- Zhongbin Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Qingzhu Liu
- Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Ming Liu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Hui Wang
- Department of Pathology, Peking University First Hospital, No.8 Xishiku Street, West District, Beijing, 100034, China
| | - Ying Dong
- Department of Pathology, Peking University First Hospital, No.8 Xishiku Street, West District, Beijing, 100034, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.,Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.,Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.,Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Lixin Cai
- Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China. .,Children Epilepsy Center, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.
| |
Collapse
|
225
|
Prospects of Cannabidiol for Easing Status Epilepticus-Induced Epileptogenesis and Related Comorbidities. Mol Neurobiol 2018; 55:6956-6964. [PMID: 29372545 DOI: 10.1007/s12035-018-0898-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
The hippocampus is one of the most susceptible regions in the brain to be distraught with status epilepticus (SE) induced injury. SE can occur from numerous causes and is more frequent in children and the elderly population. Administration of a combination of antiepileptic drugs can abolish acute seizures in most instances of SE but cannot prevent the morbidity typically seen in survivors of SE such as cognitive and mood impairments and spontaneous recurrent seizures. This is primarily due to the inefficiency of antiepileptic drugs to modify the evolution of SE-induced initial precipitating injury into a series of epileptogenic changes followed by a state of chronic epilepsy. Chronic epilepsy is typified by spontaneous recurrent seizures, cognitive dysfunction, and depression, which are associated with persistent inflammation, significantly waned neurogenesis, and abnormal synaptic reorganization. Thus, alternative approaches that are efficient not only for curtailing SE-induced initial brain injury, neuroinflammation, aberrant neurogenesis, and abnormal synaptic reorganization but also for thwarting or restraining the progression of SE into a chronic epileptic state are needed. In this review, we confer the promise of cannabidiol, an active ingredient of Cannabis sativa, for preventing or easing SE-induced neurodegeneration, neuroinflammation, cognitive and mood impairments, and the spontaneous recurrent seizures.
Collapse
|
226
|
Brackhan M, Bascuñana P, Ross TL, Bengel FM, Bankstahl JP, Bankstahl M. [18
F]GE180 positron emission tomographic imaging indicates a potential double-hit insult in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Epilepsia 2018; 59:617-626. [DOI: 10.1111/epi.14009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Mirjam Brackhan
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine; Hannover Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
| | - Tobias L. Ross
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
| | - Jens P. Bankstahl
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine; Hannover Germany
| |
Collapse
|
227
|
Zhang H, Qu Y, Wang A. Antagonist targeting microRNA-146a protects against lithium-pilocarpine-induced status epilepticus in rats by nuclear factor-κB pathway. Mol Med Rep 2018; 17:5356-5361. [PMID: 29363732 DOI: 10.3892/mmr.2018.8465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 12/05/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have indicated that nuclear factor-κB (NF-κB) has an important role in the pathogenesis of epilepsy. The aim of the present study was to evaluate the expression of microRNA (miRNA)‑146a, phosphorylated (p)‑P65/P65, B‑cell lymphoma‑2(Bcl‑2)/Bcl‑2‑associated X protein (Bax) and pro‑inflammatory cytokines, such as interleukin (IL)‑6, IL‑1β and tumor necrosis factor (TNF‑α) in the brain tissue of rats with epilepsy. Sprague‑Dawley rats were used to establish the epilepsy model using the lithium‑pilocarpine method. The expression of miR‑146a, pro‑inflammatory cytokines, P‑glycoprotein (P‑gp), Bcl‑2/Bax and p‑P65/P65 were assessed by reverse transcription‑semi‑quantitative polymerase chain reaction, enzyme‑linked immunosorbent assay and western blotting, respectively. Hematoxylin and eosin staining was used to determine the pathology of epilepsy. The current findings revealed that the expression of miR‑146a was greater in the model group compared with the control group, and that the expression of miR‑146a reached a maximum at 7 days post‑treatment. The expression levels of IL‑1β, IL‑6 and TNF‑α were significantly reduced in the miR‑146a antagonist group when compared with the model group. Additionally, the expression levels of P‑gp and p‑P65/P65 were significantly reduced following the addition of the miR‑146a antagonist, whereas the expression levels of Bcl‑2/Bax significantly increased under the same conditions. Therefore, the NF‑κB pathway and miR‑146a may be potential therapeutic targets in the treatment of epilepsy.
Collapse
Affiliation(s)
- Huilong Zhang
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yun Qu
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Aihua Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
228
|
Navidhamidi M, Ghasemi M, Mehranfard N. Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 2018; 28:307-334. [PMID: 28099137 DOI: 10.1515/revneuro-2016-0059] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022]
Abstract
The hippocampus exhibits a wide range of epilepsy-related abnormalities and is situated in the mesial temporal lobe, where limbic seizures begin. These abnormalities could affect membrane excitability and lead to overstimulation of neurons. Multiple overlapping processes refer to neural homeostatic responses develop in neurons that work together to restore neuronal firing rates to control levels. Nevertheless, homeostatic mechanisms are unable to restore normal neuronal excitability, and the epileptic hippocampus becomes hyperexcitable or hypoexcitable. Studies show that there is hyperexcitability even before starting recurrent spontaneous seizures, suggesting although hippocampal hyperexcitability may contribute to epileptogenesis, it alone is insufficient to produce epileptic seizures. This supports the concept that the hippocampus is not the only substrate for limbic seizure onset, and a broader hyperexcitable limbic structure may contribute to temporal lobe epilepsy (TLE) seizures. Nevertheless, seizures also occur in conditions where the hippocampus shows a hypoexcitable phenotype. Since TLE seizures most often originate in the hippocampus, it could therefore be assumed that both hippocampal hypoexcitability and hyperexcitability are undesirable states that make the epileptic hippocampal network less stable and may, under certain conditions, trigger seizures.
Collapse
|
229
|
Klein P, Dingledine R, Aronica E, Bernard C, Blümcke I, Boison D, Brodie MJ, Brooks-Kayal AR, Engel J, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkänen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpää M, Sloviter RS, Steinhäuser C, Vezzani A, Walker MC, Löscher W. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia 2018; 59:37-66. [PMID: 29247482 PMCID: PMC5993212 DOI: 10.1111/epi.13965] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | | | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Christophe Bernard
- Aix Marseille Univ, Inserm, INS, Instit Neurosci Syst, Marseille, 13005, France
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Martin J Brodie
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, UK
| | - Amy R Brooks-Kayal
- Division of Neurology, Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Children's Hospital Colorado, Aurora, CO, USA
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jerome Engel
- Departments of Neurology, Neurobiology, and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | | | | | | | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michael A Rogawski
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Matti Sillanpää
- Departments of Child Neurology and General Practice, University of Turku and Turku University Hospital, Turku, Finland
| | - Robert S Sloviter
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Institute for Pharmacological Research, Milan,, Italy
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
230
|
Oliveira CVD, Grigoletto J, Canzian JM, Duarte MMMF, Duarte T, Furian AF, Oliveira MS. Effect of atorvastatin on behavioral alterations and neuroinflammation during epileptogenesis. Epilepsy Behav 2018; 78:109-117. [PMID: 29186698 DOI: 10.1016/j.yebeh.2017.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/06/2017] [Accepted: 10/13/2017] [Indexed: 01/16/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most frequent and medically refractory type of epilepsy in humans. In addition to seizures, patients with TLE suffer from behavioral alterations and cognitive deficits. Poststatus epilepticus model of TLE induced by pilocarpine in rodents has enhanced the understanding of the processes leading to epilepsy and thus, of potential targets for antiepileptogenic therapies. Clinical and experimental evidence suggests that inflammatory processes in the brain may critically contribute to epileptogenesis. Statins are inhibitors of cholesterol synthesis, and present pleiotropic effects that include antiinflammatory properties. We aimed the present study to test the hypothesis that atorvastatin prevents behavioral alterations and proinflammatory state in the early period after pilocarpine-induced status epilepticus. Male and female C57BL/6 mice were subjected to status epilepticus induced by pilocarpine and treated with atorvastatin (10 or 100mg/kg) for 14days. Atorvastatin slightly improved the performance of mice in the open-field and object recognition tests. In addition, atorvastatin dose-dependently decreased basal and status epilepticus-induced levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ) and increased interleukin-10 (IL-10) levels in the hippocampus and cerebral cortex. The antiinflammatory effects of atorvastatin were qualitatively identical in both sexes. Altogether, these findings extend the range of beneficial actions of atorvastatin and indicate that its antiinflammatory effects may be useful after an epileptogenic insult.
Collapse
Affiliation(s)
| | - Jéssica Grigoletto
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Julia Marion Canzian
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Thiago Duarte
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Food and Science Technology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
231
|
Hosford BE, Rowley S, Liska JP, Danzer SC. Ablation of peri-insult generated granule cells after epilepsy onset halts disease progression. Sci Rep 2017; 7:18015. [PMID: 29269775 PMCID: PMC5740143 DOI: 10.1038/s41598-017-18237-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/08/2017] [Indexed: 11/15/2022] Open
Abstract
Aberrant integration of newborn hippocampal granule cells is hypothesized to contribute to the development of temporal lobe epilepsy. To test this hypothesis, we used a diphtheria toxin receptor expression system to selectively ablate these cells from the epileptic mouse brain. Epileptogenesis was initiated using the pilocarpine status epilepticus model in male and female mice. Continuous EEG monitoring was begun 2–3 months after pilocarpine treatment. Four weeks into the EEG recording period, at a time when spontaneous seizures were frequent, mice were treated with diphtheria toxin to ablate peri-insult generated newborn granule cells, which were born in the weeks just before and after pilocarpine treatment. EEG monitoring continued for another month after cell ablation. Ablation halted epilepsy progression relative to untreated epileptic mice; the latter showing a significant and dramatic 300% increase in seizure frequency. This increase was prevented in treated mice. Ablation did not, however, cause an immediate reduction in seizures, suggesting that peri-insult generated cells mediate epileptogenesis, but that seizures per se are initiated elsewhere in the circuit. These findings demonstrate that targeted ablation of newborn granule cells can produce a striking improvement in disease course, and that the treatment can be effective when applied months after disease onset.
Collapse
Affiliation(s)
- Bethany E Hosford
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Shane Rowley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - John P Liska
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA. .,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
232
|
Stover KR, Lim S, Zhou TL, Stafford PM, Chow J, Li H, Sivanenthiran N, Mylvaganam S, Wu C, Weaver DF, Eubanks J, Zhang L. Susceptibility to hippocampal kindling seizures is increased in aging C57 black mice. IBRO Rep 2017; 3:33-44. [PMID: 30135940 PMCID: PMC6084868 DOI: 10.1016/j.ibror.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 08/20/2017] [Indexed: 11/23/2022] Open
Abstract
The incidence of seizures increases with old age. Stroke, dementia and brain tumors are recognized risk factors for new-onset seizures in the aging populations and the incidence of these conditions also increased with age. Whether aging is associated with higher seizure susceptibility in the absence of the above pathologies remains unclear. We used classic kindling to explore this issue as the kindling model is highly reproducible and allows close monitoring of electrographic and motor seizure activities in individual animals. We kindled male young and aging mice (C57BL/6 strain, 2-3 and 18-22 months of age) via daily hippocampal CA3 stimulation and monitored seizure activity via video and electroencephalographic recordings. The aging mice needed fewer stimuli to evoke stage-5 motor seizures and exhibited longer hippocampal afterdischarges and more frequent hippocampal spikes relative to the young mice, but afterdischarge thresholds and cumulative afterdischarge durations to stage 5 motor seizures were not different between the two age groups. While hippocampal injury and structural alterations at cellular and micro-circuitry levels remain to be examined in the kindled mice, our present observations suggest that susceptibility to hippocampal CA3 kindling seizures is increased with aging in male C57 black mice.
Collapse
Affiliation(s)
- Kurt R. Stover
- Krembil Research Institute, University Health Network, Canada
| | - Stellar Lim
- Krembil Research Institute, University Health Network, Canada
| | - Terri-Lin Zhou
- Krembil Research Institute, University Health Network, Canada
| | | | - Jonathan Chow
- Krembil Research Institute, University Health Network, Canada
| | - Haoyuan Li
- Krembil Research Institute, University Health Network, Canada
| | | | | | - Chiping Wu
- Krembil Research Institute, University Health Network, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Canada
- Departments of Chemistry, University of Toronto, Canada
- Departments of Medicine, University of Toronto, Canada
| | - James Eubanks
- Krembil Research Institute, University Health Network, Canada
- Departments of Surgery, University of Toronto, Canada
- University of Toronto Epilepsy Program, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Canada
- Departments of Medicine, University of Toronto, Canada
- University of Toronto Epilepsy Program, Canada
| |
Collapse
|
233
|
Copmans D, Orellana-Paucar AM, Steurs G, Zhang Y, Ny A, Foubert K, Exarchou V, Siekierska A, Kim Y, De Borggraeve W, Dehaen W, Pieters L, de Witte PAM. Methylated flavonoids as anti-seizure agents: Naringenin 4',7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem Int 2017; 112:124-133. [PMID: 29174382 DOI: 10.1016/j.neuint.2017.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023]
Abstract
Epilepsy is a neurological disease that affects more than 70 million people worldwide and is characterized by the presence of spontaneous unprovoked recurrent seizures. Existing anti-seizure drugs (ASDs) have side effects and fail to control seizures in 30% of patients due to drug resistance. Hence, safer and more efficacious drugs are sorely needed. Flavonoids are polyphenolic structures naturally present in most plants and consumed daily with no adverse effects reported. These structures have shown activity in several seizure and epilepsy animal models through allosteric modulation of GABAA receptors, but also via potent anti-inflammatory action in the brain. As such, dietary flavonoids offer an interesting source for ASD and anti-epileptogenic drug (AED) discovery, but their pharmaceutical potential is often hampered by metabolic instability and low oral bioavailability. It has been argued that their drug-likeness can be improved via methylation of the free hydroxyl groups, thereby dramatically enhancing metabolic stability and membrane transport, facilitating absorption and highly increasing bioavailability. Since no scientific data is available regarding the use of methylated flavonoids in the fight against epilepsy, we studied naringenin (NRG), kaempferol (KFL), and three methylated derivatives, i.e., naringenin 7-O-methyl ether (NRG-M), naringenin 4',7-dimethyl ether (NRG-DM), and kaempferide (4'-O-methyl kaempferol) (KFD) in the zebrafish pentylenetetrazole (PTZ) seizure model. We demonstrate that the methylated flavanones NRG-DM and NRG-M are highly effective against PTZ-induced seizures in larval zebrafish, whereas NRG and the flavonols KFL and KFD possess only a limited activity. Moreover, we show that NRG-DM is active in two standard acute mouse seizure models, i.e., the timed i.v. PTZ seizure model and the 6-Hz psychomotor seizure model. Based on these results, NRG-DM is proposed as a lead compound that is worth further investigation for the treatment of generalized seizures and drug-resistant focal seizures. Our data therefore highlights the potential of methylated flavonoids in the search for new and improved ASDs.
Collapse
Affiliation(s)
- Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adriana M Orellana-Paucar
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium; Carrera de Bioquímica y Farmacia, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador
| | - Gert Steurs
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Yifan Zhang
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Annelii Ny
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vasiliki Exarchou
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Youngju Kim
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wim De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
234
|
Abstract
INTRODUCTION Epilepsy is one of the most common neurological diseases affecting approximately 50 million people worldwide. Despite many advances in epilepsy research, nearly a third of patients with epilepsy have refractory or pharmacoresistant epilepsy. Despite the approval of a dozen antiepileptic drugs (AEDs) over the past decade, there are no agents that halt the development of epilepsy. Thus, newer and better AEDs that can prevent refractory seizures and modify the disease are needed for curing epilepsy. Areas covered: In this article, we highlight the recent advances and emerging trends in new and innovative drugs for epilepsy and seizure disorders. We review in detail top new drugs that are currently in clinical trials or agents that are under development and have novel mechanisms of action. Expert commentary: Among the new agents under clinical investigation, the majority were originally developed for treating other neurological diseases (everolimus, fenfluramine, nalutozan, bumetanide, and valnoctamide); several have mechanisms of action similar to those of conventional AEDs (AP, ganaxolone, and YKP3089); and some new agents represent novel mechanisms of actions (huperzine-A, cannabidiol, tonabersat, and VX-765).
Collapse
Affiliation(s)
- Iyan Younus
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M Health Science Center , Bryan , TX , USA
| | - Doodipala Samba Reddy
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M Health Science Center , Bryan , TX , USA
| |
Collapse
|
235
|
Schidlitzki A, Twele F, Klee R, Waltl I, Römermann K, Bröer S, Meller S, Gerhauser I, Rankovic V, Li D, Brandt C, Bankstahl M, Töllner K, Löscher W. A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy. Sci Rep 2017; 7:12191. [PMID: 28939854 PMCID: PMC5610327 DOI: 10.1038/s41598-017-12368-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
Epilepsy may arise following acute brain insults, but no treatments exist that prevent epilepsy in patients at risk. Here we examined whether a combination of two glutamate receptor antagonists, NBQX and ifenprodil, acting at different receptor subtypes, exerts antiepileptogenic effects in the intrahippocampal kainate mouse model of epilepsy. These drugs were administered over 5 days following kainate. Spontaneous seizures were recorded by video/EEG at different intervals up to 3 months. Initial trials showed that drug treatment during the latent period led to higher mortality than treatment after onset of epilepsy, and further, that combined therapy with both drugs caused higher mortality at doses that appear safe when used singly. We therefore refined the combined-drug protocol, using lower doses. Two weeks after kainate, significantly less mice of the NBQX/ifenprodil group exhibited electroclinical seizures compared to vehicle controls, but this effect was lost at subsequent weeks. The disease modifying effect of the treatment was associated with a transient prevention of granule cell dispersion and less neuronal degeneration in the dentate hilus. These data substantiate the involvement of altered glutamatergic transmission in the early phase of epileptogenesis. Longer treatment with NBQX and ifenprodil may shed further light on the apparent temporal relationship between dentate gyrus reorganization and development of spontaneous seizures.
Collapse
Affiliation(s)
- Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Sebastian Meller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vladan Rankovic
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Institute for Auditory Neuroscience at University Medical Center Göttingen & German Primate Center, Göttingen, Germany
| | - Dandan Li
- Center for Systems Neuroscience, 30559, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
- Center for Systems Neuroscience, 30559, Hannover, Germany.
| |
Collapse
|
236
|
Clarkson BDS, Kahoud RJ, McCarthy CB, Howe CL. Inflammatory cytokine-induced changes in neural network activity measured by waveform analysis of high-content calcium imaging in murine cortical neurons. Sci Rep 2017; 7:9037. [PMID: 28831096 PMCID: PMC5567248 DOI: 10.1038/s41598-017-09182-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023] Open
Abstract
During acute neuroinflammation, increased levels of cytokines within the brain may contribute to synaptic reorganization that results in long-term changes in network hyperexcitability. Indeed, inflammatory cytokines are implicated in synaptic dysfunction in epilepsy and in an array of degenerative and autoimmune diseases of the central nervous system. Current tools for studying the impact of inflammatory factors on neural networks are either insufficiently fast and sensitive or require complicated and costly experimental rigs. Calcium imaging offers a reasonable surrogate for direct measurement of neuronal network activity, but traditional imaging paradigms are confounded by cellular heterogeneity and cannot readily distinguish between glial and neuronal calcium transients. While the establishment of pure neuron cultures is possible, the removal of glial cells ignores physiologically relevant cell-cell interactions that may be critical for circuit level disruptions induced by inflammatory factors. To overcome these issues, we provide techniques and algorithms for image processing and waveform feature extraction using automated analysis of spontaneous and evoked calcium transients in primary murine cortical neuron cultures transduced with an adeno-associated viral vector driving the GCaMP6f reporter behind a synapsin promoter. Using this system, we provide evidence of network perturbations induced by the inflammatory cytokines TNFα, IL1β, and IFNγ.
Collapse
Affiliation(s)
| | - Robert J Kahoud
- Department of Neurology, Mayo Clinic, Rochester, MN, USA 55905, USA
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA 55905, USA
| | | | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA 55905, USA.
- Department of Neuroscience, Mayo Clinic, Rochester, MN, USA 55905, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA 55905, USA.
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA 55905, USA.
| |
Collapse
|
237
|
Auvin S, Walker L, Gallentine W, Jozwiak S, Tombini M, Sills GJ. Prospective clinical trials to investigate clinical and molecular biomarkers. Epilepsia 2017; 58 Suppl 3:20-26. [PMID: 28675556 DOI: 10.1111/epi.13782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 01/11/2023]
Abstract
Among clinical studies, randomized studies as well as well-designed observational studies are providing the highest quality data. In addition, these studies represent a good opportunity to examine biomarkers of ictogenesis and epileptogenesis. To date, no validated molecular or cellular biomarker exists for any aspect of epilepsy. We provide an overview of the inflammatory biomarkers under investigation in prospective clinical studies in epilepsy: proinflammatory cytokines in prolonged febrile seizure; High Mobility Group Box 1 (HMGB1) as a prognosis biomarker in epilepsy and the interaction between inflammation and metabolism, in particular, iron metabolism, in epilepsy. The designs of the European Union EPISTOP project following prospectively patients with tuberous sclerosis from birth to the start of the epilepsy and of the Standard and New Antiepileptic Drugs-II study illustrate how such studies can be used to find new inflammatory biomarkers of ictogenesis and epileptogenesis. If we want to bridge the current gap between having numerous biomarker candidates from preclinical studies and their selective use in clinical practice, we need to explore multiple biologic systems, not just including inflammation. In addition, it is crucial that those involved in the design and support of relevant clinical studies recognize this gap and act accordingly, and in the interests of improving the diagnosis and prognosis for epilepsy.
Collapse
Affiliation(s)
- Stéphane Auvin
- Pediatric Neurology Department & INSERM U1141, Robert-Debré University Hospital, APHP, Paris, France
| | - Lauren Walker
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - William Gallentine
- Department of Pediatrics (Neurology), Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Mario Tombini
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University, Rome, Italy
| | - Graeme J Sills
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
238
|
Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D, Koh S, Löscher W, Louboutin JP, Mishto M, Norwood BA, Palma E, Poulter MO, Terrone G, Vezzani A, Kaminski RM. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 2017; 58 Suppl 3:27-38. [PMID: 28675563 DOI: 10.1111/epi.13783] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience University of Amsterdam, Amsterdam, The Netherlands.,SEIN-Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Sebastian Bauer
- Department of Neurology, Philipps University, Marburg, Germany.,Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University, Frankfurt am Main, Germany
| | - Yuri Bozzi
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Raymond Dingledine
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience University of Amsterdam, Amsterdam, The Netherlands
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, U.S.A
| | - Sookyong Koh
- Department of Pediatrics, Emory University, Atlanta, Georgia, U.S.A
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Jean-Pierre Louboutin
- Department of Basic Medical Sciences, University of the West Indies, Kingston, Jamaica.,Gene Therapy Program, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Michele Mishto
- Charite University Medicine Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Braxton A Norwood
- Department of Neurology, Philipps University, Marburg, Germany.,Neuroscience Division, Expesicor LLC, Kalispell, Montana, U.S.A
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | - Michael O Poulter
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Gaetano Terrone
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | |
Collapse
|
239
|
Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep 2017; 7:8089. [PMID: 28808237 PMCID: PMC5556011 DOI: 10.1038/s41598-017-06145-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that results from a mutation in the TSC1 or TSC2 genes leading to constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1). TSC is associated with autism, intellectual disability and severe epilepsy. Cortical tubers are believed to represent the neuropathological substrates of these disabling manifestations in TSC. In the presented study we used high-throughput RNA sequencing in combination with systems-based computational approaches to investigate the complexity of the TSC molecular network. Overall we detected 438 differentially expressed genes and 991 differentially expressed small non-coding RNAs in cortical tubers compared to autopsy control brain tissue. We observed increased expression of genes associated with inflammatory, innate and adaptive immune responses. In contrast, we observed a down-regulation of genes associated with neurogenesis and glutamate receptor signaling. MicroRNAs represented the largest class of over-expressed small non-coding RNA species in tubers. In particular, our analysis revealed that the miR-34 family (including miR-34a, miR-34b and miR-34c) was significantly over-expressed. Functional studies demonstrated the ability of miR-34b to modulate neurite outgrowth in mouse primary hippocampal neuronal cultures. This study provides new insights into the TSC transcriptomic network along with the identification of potential new treatment targets.
Collapse
|
240
|
Medel-Matus JS, Reynolds A, Shin D, Sankar R, Mazarati A. Regulation of kindling epileptogenesis by hippocampal Toll-like receptors 2. Epilepsia 2017; 58:e122-e126. [PMID: 28632301 PMCID: PMC5554076 DOI: 10.1111/epi.13826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 11/29/2022]
Abstract
This study examined whether Toll-like receptors 2 (TLR2) contribute to rapid kindling epileptogenesis. A TLR2 agonist, lipoteichoic acid (LTA), LTA antibody (LTA-A), or normal saline (control) was administered daily over 3 consecutive days, unilaterally into ventral hippocampus of adult male Wistar rats. Thirty minutes after the last injection, the animals were subjected to a rapid kindling procedure. The ictogenesis was gauged by comparing afterdischarge threshold (ADT) and afterdischarge duration (ADD) before the treatments, after the treatments prior to kindling, and 24 h after kindling. Kindling progression and retention were analyzed using video recording. The results showed that before kindling, LTA produced an ADT reduction. Neither LTA nor LTA-A affected baseline ADD. On kindling progression, LTA accelerated occurrence of generalized seizures, whereas LTA-A delayed this effect. Treatment with LTA-A reduced the number of secondary generalized complex partial seizures. Twenty-four hours after kindling, the rats of both the saline and LTA groups showed increased hippocampal excitability as compared with prekindling parameters. Administration of LTA-A prevented kindling-induced increase of hippocampal excitability. Immunostaining revealed that LTA-A attenuated the inflammatory response produced by seizures. These findings suggest that the activation of TLR2 in the hippocampus may facilitate limbic epileptogenesis.
Collapse
Affiliation(s)
| | - Ashley Reynolds
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Don Shin
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Raman Sankar
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- UCLA Children’s Discovery and Innovation Institute, Los Angeles, California, U.S.A
| | - Andrey Mazarati
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- UCLA Children’s Discovery and Innovation Institute, Los Angeles, California, U.S.A
| |
Collapse
|
241
|
Sun Q, Zhang Y, Huang J, Yu F, Xu J, Peng B, Liu W, Han S, Yin J, He X. DPP4 regulates the inflammatory response in a rat model of febrile seizures. Biomed Mater Eng 2017; 28:S139-S152. [PMID: 28372289 DOI: 10.3233/bme-171635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Febrile seizures (FS) are the most common seizure disorders in children aged 6 months to 5 years. Children suffering from complex FS have a high risk of developing subsequent temporal lobe epilepsy (TLE). Neuroinflammation is involved in the pathogenesis of FS although the mechanism remains unknown. Our previous study using the Whole Rat Genome Oligo Microarray determined that Dipeptidyl peptidase IV (DPP4) is potentially a related gene in FS rats. In this study, we demonstrated that DPP4 expression was significantly increased at both the protein and mRNA levels after hyperthermia induction. Sitagliptin, a specific enzyme inhibitor of DPP4, remarkably attenuated the severity of seizures in FS rats, and hyperthermia-induced astrocytosis was suppressed after DPP4 inhibition. Furthermore, sitagliptin significantly decreased the levels of the inflammatory cytokines IL-1β, TNF-α, and IL-6 but not IL-10. In addition, sitagliptin prevented NF-κB activation by decreasing phosphorylation of the p65 subunit. Taken together, our findings demonstrate that DPP4 functions as a critical regulator of neuroinflammation in hyperthermia-induced seizures and the DPP4 inhibitor may be a viable option for FS therapeutics.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yusong Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jian Xu
- Weifang Maternity and Child Hospital, Weifang, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
242
|
Anticonvulsant Effect of Swertiamarin Against Pilocarpine-Induced Seizures in Adult Male Mice. Neurochem Res 2017; 42:3103-3113. [PMID: 28681096 DOI: 10.1007/s11064-017-2347-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022]
Abstract
Epilepsy is one of the common and major neurological disorders, approximately a third of the individuals with epilepsy suffer from seizures and not able to successfully respond to available medications. Current study was designed to investigate whether Swertiamarin (Swe) had anticonvulsant activity in the pilocarpine (PILO)-treated mice. Thirty minutes prior to the PILO (280 mg/kg) injection, the mice were administrated with Swe (50, 150, and 450 mg/kg) and valproate sodium (VPA, 200 mg/kg) once. Seizures and electroencephalography (EEG) were observed, and then the mice were killed for Nissl, Fluoro-jade B (FJB) staining. Astrocytic activation was examined in the hippocampus. Western blot analysis was used to examine the expressions of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). The results indicated that pretreatment with Swe (150, 450 mg/kg) and VPA (200 mg/kg) significantly delayed the onset of the first convulsion and reduced the incidence of status epilepticus and mortality. Analysis of EEG recordings demonstrated that Swe (150, 450 mg/kg) and VPA (200 mg/kg) sharply decreased epileptiform discharges. Furthermore, Nissl and FJB staining revealed that Swe (150, 450 mg/kg) and VPA (200 mg/kg) relieved the neuronal damage. Additionally, Swe (450 mg/kg) dramatically inhibited astrocytic activation. Western blot analysis showed that Swe (450 mg/kg) significantly decreased the expressions of IL-1β, IL-6, TNF-α and elevated the expression of IL-10. Taken together, these findings revealed that Swe exerted anticonvulsant effects on PILO-treated mice. Further studies are encouraged to investigate these beneficial effects of Swe as an adjuvant in epilepsy.
Collapse
|
243
|
Leal B, Chaves J, Carvalho C, Bettencourt A, Brito C, Boleixa D, Freitas J, Brás S, Lopes J, Ramalheira J, Costa PP, da Silva BM, da Silva AM. Immunogenetic predisposing factors for mesial temporal lobe epilepsy with hippocampal sclerosis. Int J Neurosci 2017; 128:305-310. [PMID: 28675059 DOI: 10.1080/00207454.2017.1349122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Neuroinflammation appears as an important epileptogenic mechanism. Experimental and clinical studies have demonstrated an upregulation of pro-inflammatory cytokines such as IL-1β and TNF-α, in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). Expression of these cytokines can be modulated by polymorphisms such as rs16944 and rs1800629, respectively, both of which have been associated with febrile seizures (FS) and MTLE-HS development. The human leukocyte antigen (HLA) system has also been implicated in diverse epileptic entities, suggesting a variable role of this system in epilepsy. Our aim was to analyse the association between immunogenetic factors and MTLE-HS development. For that rs16944 (-511 T>C, IL-1β), rs1800629 (-308 G>A, TNF-α) polymorphisms and HLA-DRB1 locus were genotyped in a Portuguese Population. METHODS We studied 196 MTLE-HS patients (108 females, 88 males, 44.7 ± 12.0 years, age of onset = 13.6 ± 10.3 years, 104 with FS antecedents) and 282 healthy controls in a case-control study. RESULTS The frequency of rs16944 TT genotype was higher in MTLE-HS patients compared to controls (14.9% in MTLE-HS vs. 7.7% in controls, p = 0.021, OR [95% CI] = 2.20 [1.13-4.30]). This association was independent of FS antecedents. No association was observed between rs1800629 genotypes or HLA-DRB1 alleles and MTLE-HS susceptibility. Also, no correlation was observed between the studied polymorphisms and disease age of onset. CONCLUSION The rs16944 TT genotype is associated with MTLE-HS development what may be explained by the higher IL-1β levels produced by this genotype. High IL-1β levels may have neurotoxic effects or imbalance neurotransmission leading to seizures.
Collapse
Affiliation(s)
- Bárbara Leal
- a UMIB - Instituto de Ciências Biomédicas Abel Salazar [ICBAS] - Universidade do Porto - Rua Jorge Viterbo Ferreira , Porto , Portugal.,b Lab. Imunogenética - DPIM, ICBAS-UPorto - Rua Jorge Viterbo Ferreira , Porto , Portugal
| | - João Chaves
- c Serviço de Neurologia, Hospital de Santo António - Centro Hospitalar do Porto - Largo Prof. Abel Salazar , Porto , Portugal
| | - Cláudia Carvalho
- a UMIB - Instituto de Ciências Biomédicas Abel Salazar [ICBAS] - Universidade do Porto - Rua Jorge Viterbo Ferreira , Porto , Portugal.,b Lab. Imunogenética - DPIM, ICBAS-UPorto - Rua Jorge Viterbo Ferreira , Porto , Portugal
| | - Andreia Bettencourt
- a UMIB - Instituto de Ciências Biomédicas Abel Salazar [ICBAS] - Universidade do Porto - Rua Jorge Viterbo Ferreira , Porto , Portugal.,b Lab. Imunogenética - DPIM, ICBAS-UPorto - Rua Jorge Viterbo Ferreira , Porto , Portugal
| | - Cláudia Brito
- b Lab. Imunogenética - DPIM, ICBAS-UPorto - Rua Jorge Viterbo Ferreira , Porto , Portugal
| | - Daniela Boleixa
- b Lab. Imunogenética - DPIM, ICBAS-UPorto - Rua Jorge Viterbo Ferreira , Porto , Portugal
| | - Joel Freitas
- c Serviço de Neurologia, Hospital de Santo António - Centro Hospitalar do Porto - Largo Prof. Abel Salazar , Porto , Portugal
| | - Sandra Brás
- b Lab. Imunogenética - DPIM, ICBAS-UPorto - Rua Jorge Viterbo Ferreira , Porto , Portugal
| | - João Lopes
- d Serviço de Neurofisiologia, Hospital de Santo António - Centro Hospitalar do Porto - Largo Prof. Abel Salazar , Porto , Portugal
| | - João Ramalheira
- d Serviço de Neurofisiologia, Hospital de Santo António - Centro Hospitalar do Porto - Largo Prof. Abel Salazar , Porto , Portugal
| | - Paulo P Costa
- a UMIB - Instituto de Ciências Biomédicas Abel Salazar [ICBAS] - Universidade do Porto - Rua Jorge Viterbo Ferreira , Porto , Portugal.,e Departamento de Genética , Instituto Nacional de Saúde Dr. Ricardo Jorge - Porto , Porto , Portugal
| | - Berta Martins da Silva
- a UMIB - Instituto de Ciências Biomédicas Abel Salazar [ICBAS] - Universidade do Porto - Rua Jorge Viterbo Ferreira , Porto , Portugal.,b Lab. Imunogenética - DPIM, ICBAS-UPorto - Rua Jorge Viterbo Ferreira , Porto , Portugal
| | - António Martins da Silva
- a UMIB - Instituto de Ciências Biomédicas Abel Salazar [ICBAS] - Universidade do Porto - Rua Jorge Viterbo Ferreira , Porto , Portugal.,d Serviço de Neurofisiologia, Hospital de Santo António - Centro Hospitalar do Porto - Largo Prof. Abel Salazar , Porto , Portugal
| |
Collapse
|
244
|
Ahmedov ML, Kemerdere R, Baran O, Inal BB, Gumus A, Coskun C, Yeni SN, Eren B, Uzan M, Tanriverdi T. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy. World Neurosurg 2017; 106:46-50. [PMID: 28669871 DOI: 10.1016/j.wneu.2017.06.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. METHODS A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. RESULTS The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r2 = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r2 = 0.7, P = 0.00001 and r2 = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r2 = 0.06, P = 0.00001). CONCLUSIONS Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature.
Collapse
Affiliation(s)
- Merdin Lyutviev Ahmedov
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Rahsan Kemerdere
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Oguz Baran
- Department of Neurosurgery, Ministry of Health Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Berrin Bercik Inal
- Clinical Biochemistry Laboratory, Ministry of Health Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Alper Gumus
- Clinical Biochemistry Laboratory, Ministry of Health Haseki Research and Training Hospital, Istanbul, Turkey
| | - Cihan Coskun
- Clinical Biochemistry Laboratory, Ministry of Health Haseki Research and Training Hospital, Istanbul, Turkey
| | - Seher Naz Yeni
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Bulent Eren
- Bursa Morgue Department, Counsil of Forensic Medicine, Bursa, Turkey
| | - Mustafa Uzan
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
245
|
Ge T, Yang W, Fan J, Li B. Preclinical evidence of ghrelin as a therapeutic target in epilepsy. Oncotarget 2017; 8:59929-59939. [PMID: 28938694 PMCID: PMC5601790 DOI: 10.18632/oncotarget.18349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, plays a major role in inhibiting seizures. However, the underlying mechanism of ghrelin's anticonvulsant action is still unclear. Nowadays, there are considerable evidences showing that ghrelin is implicated in various neurophysiological processes, including learning and memory, neuroprotection, neurogenesis, and inflammatory effects. In this review, we will summarize the effects of ghrelin on epilepsy. It may provide a comprehensive picture of the role of ghrelin in epilepsy.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
246
|
Morris SA, Rollo M, Rollo P, Johnson J, Grant GA, Friedman E, Kalamangalam G, Tandon N. Prolonged Blood-Brain Barrier Disruption Following Laser Interstitial Ablation in Epilepsy: A Case Series with a Case Report of Postablation Optic Neuritis. World Neurosurg 2017; 104:467-475. [PMID: 28502693 DOI: 10.1016/j.wneu.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Laser interstitial thermal therapy has become increasingly popular for targeting epileptic foci in a minimally invasive fashion. Despite its use in >1000 patients, the long-term effects of photothermal injury on brain physiology remain poorly understood. METHODS We prospectively followed clinical and radiographic courses of 13 patients undergoing laser ablation for focal epilepsy by the senior author (N.T.). Only patients with nonenhancing lesions and patients who had a delayed postoperative magnetic resonance imaging (MRI) scan with gadolinium administration approximately 6 months after ablation were considered. Volumetric estimates of the amount of enhancement immediately after ablation and on the delayed MRI scan were made. RESULTS Median interval between surgery and delayed postoperative MRI scan was 6 months (range, 5-8 months). In 12 of 13 cases, persistent enhancement was seen, consistent with prolonged blood-brain barrier dysfunction. Enhancement, when present, was 9%-67% (mean 30%). There was no correlation between the time from surgery and the relative percentage of postoperative enhancement on MRI. The blood-brain barrier remained compromised to gadolinium contrast for up to 8 months after thermal therapy. There were no adverse events from surgical intervention; however, 1 patient developed delayed optic neuritis. CONCLUSIONS Prolonged incompetence of the blood-brain barrier produced by thermal ablation may provide a path for delivery of macromolecules into perilesional tissue, which could be exploited for therapeutic benefit, but rarely it may result in autoimmune central nervous system inflammatory conditions.
Collapse
Affiliation(s)
- Saint-Aaron Morris
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Matthew Rollo
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Patrick Rollo
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Jessica Johnson
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | - Elliott Friedman
- Department of Radiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Giridhar Kalamangalam
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
247
|
García-García L, Shiha AA, Fernández de la Rosa R, Delgado M, Silván Á, Bascuñana P, Bankstahl JP, Gomez F, Pozo MA. Metyrapone prevents brain damage induced by status epilepticus in the rat lithium-pilocarpine model. Neuropharmacology 2017; 123:261-273. [PMID: 28495374 DOI: 10.1016/j.neuropharm.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 02/03/2023]
Abstract
The status epilepticus (SE) induced by lithium-pilocarpine is a well characterized rodent model of the human temporal lobe epilepsy (TLE) which is accompanied by severe brain damage. Stress and glucocorticoids markedly contribute to exacerbate neuronal damage induced by seizures but the underlying mechanisms are poorly understood. Herein we sought to investigate whether a single administration of metyrapone (150 mg/kg, i.p.), an 11β-hydroxylase inhibitor, enzyme involved in the peripheral and central synthesis of corticosteroids, had neuroprotective properties in this model. Two experiments were carried out. In exp. 1, metyrapone was administered 3 h before pilocarpine injection whereas in exp. 2, metyrapone administration took place at the onset of the SE. In both experiments, 3 days after the insult, brain metabolism was assessed by in vivo 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography (PET). Brains were processed for analyses of markers of hippocampal integrity (Nissl staining), neurodegeneration (Fluoro-Jade C), astrogliosis (glial fibrillary acidic protein (GFAP) immunohistochemistry) and, for a marker of activated microglia by in vitro autoradiography with the TSPO (18 kDa translocator protein) radioligand [18F]GE180. The SE resulted in a consistent hypometabolism in hippocampus, cortex and striatum and neuronal damage, hippocampal neurodegeneration, neuronal death and gliosis. Interestingly, metyrapone had neuroprotective effects when administered before, but not after the insult. In summary, we conclude that metyrapone administration prior but not after the SE protected from brain damage induced by SE in the lithium-pilocarpine model. Therefore, it seems that the effect of metyrapone is preventive in nature and likely related to its antiseizure properties.
Collapse
Affiliation(s)
- Luis García-García
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII nº 1, 28040 Madrid, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Ahmed A Shiha
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII nº 1, 28040 Madrid, Spain
| | - Rubén Fernández de la Rosa
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII nº 1, 28040 Madrid, Spain
| | - Mercedes Delgado
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII nº 1, 28040 Madrid, Spain
| | - Ágata Silván
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII nº 1, 28040 Madrid, Spain
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Francisca Gomez
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII nº 1, 28040 Madrid, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII nº 1, 28040 Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Tecnológico PET, C/ Manuel Bartolomé Cossío nº 10, 28040 Madrid, Spain
| |
Collapse
|
248
|
Zhu K, Hu M, Yuan B, Liu JX, Liu Y. Aspirin attenuates spontaneous recurrent seizures in the chronically epileptic mice. Neurol Res 2017; 39:744-757. [PMID: 28481152 DOI: 10.1080/01616412.2017.1326657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Neuroinflammatory processes are pathologic hallmarks of both experimental and human epilepsy, and could be implicated in the neuronal hyperexcitability. Aspirin represents one of the non-selective nonsteroidal anti-inflammatory drugs with fewer side effects in long-term application. This study was carried out to assess the anti-epileptic effects of aspirin when administered during the chronic stage of temporal lobe epilepsy [TLE] in mice. The alteration of hippocampal neurogenesis was also examined for raising a possible mechanism underlying the protective effect of anti-inflammatory treatment in the TLE. METHODS Two months after pilocarpine-induced status epilepticus, the chronically epileptic mice were treated with aspirin (20 mg, 60 mg or 80 mg/kg) once a day for 10 weeks. Spontaneous recurrent seizures were monitored by video camera for 2 weeks. To evaluate the profile of hippocampal neurogenesis, the newly generated cells in the dentate gyrus were labeled by the proliferation marker BrdU. The newborn neurons that extended axons to CA3 area were visualized by cholera toxin B subunit retrograde tracing. RESULTS Administration of aspirin with a dosage of 60 mg or 80 mg/kg initiated at 2 months after pilocarpine-induced status epilepticus significantly reduced the frequency and duration of spontaneous recurrent seizures. Aspirin treatment also increased the number of newborn neurons with anatomic integration through improving the survival of the newly generated cells. CONCLUSION Aspirin treatment during the chronic stage of TLE could attenuate the spontaneous recurrent seizures in mice. Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to this anti-epileptic effect. Highlights • Aspirin attenuates spontaneous recurrent seizures of chronically epileptic mice • Aspirin increases neurogenesis of chronically epileptic hippocampus by improving the survival of newly generated cells • Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to anti-epileptic effects of aspirin.
Collapse
Affiliation(s)
- Kun Zhu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Ming Hu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China.,b Department of Human Anatomy, Histology and Embryology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Bo Yuan
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Jian-Xin Liu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Yong Liu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| |
Collapse
|
249
|
Eising E, Shyti R, 't Hoen PAC, Vijfhuizen LS, Huisman SMH, Broos LAM, Mahfouz A, Reinders MJT, Ferrari MD, Tolner EA, de Vries B, van den Maagdenberg AMJM. Cortical Spreading Depression Causes Unique Dysregulation of Inflammatory Pathways in a Transgenic Mouse Model of Migraine. Mol Neurobiol 2017; 54:2986-2996. [PMID: 27032388 PMCID: PMC5390001 DOI: 10.1007/s12035-015-9681-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023]
Abstract
Familial hemiplegic migraine type 1 (FHM1) is a rare monogenic subtype of migraine with aura caused by mutations in CACNA1A that encodes the α1A subunit of voltage-gated CaV2.1 calcium channels. Transgenic knock-in mice that carry the human FHM1 R192Q missense mutation ('FHM1 R192Q mice') exhibit an increased susceptibility to cortical spreading depression (CSD), the mechanism underlying migraine aura. Here, we analysed gene expression profiles from isolated cortical tissue of FHM1 R192Q mice 24 h after experimentally induced CSD in order to identify molecular pathways affected by CSD. Gene expression profiles were generated using deep serial analysis of gene expression sequencing. Our data reveal a signature of inflammatory signalling upon CSD in the cortex of both mutant and wild-type mice. However, only in the brains of FHM1 R192Q mice specific genes are up-regulated in response to CSD that are implicated in interferon-related inflammatory signalling. Our findings show that CSD modulates inflammatory processes in both wild-type and mutant brains, but that an additional unique inflammatory signature becomes expressed after CSD in a relevant mouse model of migraine.
Collapse
Affiliation(s)
- Else Eising
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Reinald Shyti
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisanne S Vijfhuizen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd M H Huisman
- Department of Intelligent Systems, Faculty of EEMCS, Delft University of Technology, Delft, Netherlands
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ludo A M Broos
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Department of Intelligent Systems, Faculty of EEMCS, Delft University of Technology, Delft, Netherlands
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marcel J T Reinders
- Department of Intelligent Systems, Faculty of EEMCS, Delft University of Technology, Delft, Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
250
|
Wang H, Huang Y, Coman D, Munbodh R, Dhaher R, Zaveri HP, Hyder F, Eid T. Network evolution in mesial temporal lobe epilepsy revealed by diffusion tensor imaging. Epilepsia 2017; 58:824-834. [PMID: 28378878 DOI: 10.1111/epi.13731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of the present study is to identify novel, time-indexed imaging biomarkers of epileptogenesis in mesial temporal lobe epilepsy (MTLE). METHODS We used high-resolution brain diffusion tensor imaging (DTI) of the translationally relevant methionine sulfoximine (MSO) brain infusion model of MTLE. MSO inhibits astroglial glutamine synthetase, which is deficient in the epileptogenic hippocampal formation of patients with MTLE. MSO-infused (epileptogenic) rats were compared with phosphate-buffered saline (PBS)-infused (nonepileptogenic) rats at early (3-4 days) and late (6-9 weeks) time points during epileptogenesis. RESULTS The epileptogenic rats exhibited significant changes in DTI-measured fractional anisotropy (FA) in numerous brain regions versus nonepileptogenic rats. Changes included decreases and increases in FA in regions such as the entorhinal-hippocampal area, amygdala, corpus callosum, thalamus, striatum, accumbens, and neocortex. The FA changes evolved over time as animals transitioned from early to late epileptogenesis. For example, some areas with significant decreases in FA early in epileptogenesis changed to significant increases late in epileptogenesis. Finally, the FA changes significantly correlated with the seizure load. SIGNIFICANCE Our results suggest (1) that high-resolution DTI can be used for early identification and tracking of the epileptogenic process in MTLE, and (2) that the process identified by DTI is present in multiple brain areas, even though infusion of MSO is restricted to the unilateral entorhinal-hippocampal region.
Collapse
Affiliation(s)
- Helen Wang
- Department of Laboratory Medicine, Yale University, New Haven, CT, U.S.A
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, U.S.A
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, U.S.A
| | - Reshma Munbodh
- School of Informatics, Informatics Forum, University of Edinburgh, Edinburgh, United Kingdom
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale University, New Haven, CT, U.S.A
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, U.S.A
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, U.S.A.,Department of Biomedical Engineering, Yale University, New Haven, CT, U.S.A
| | - Tore Eid
- Department of Laboratory Medicine, Yale University, New Haven, CT, U.S.A
| |
Collapse
|