201
|
Shehab S, McGonigle D, Hughes DI, Todd AJ, Redgrave P. Anatomical evidence for an anticonvulsant relay in the rat ventromedial medulla. Eur J Neurosci 2005; 22:1431-44. [PMID: 16190897 DOI: 10.1111/j.1460-9568.2005.04326.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pharmacological manipulation of the ventrolateral pontine reticular formation (vlPRF) of rats has an anticonvulsant effect in the maximal electroshock model of epilepsy. This study presents three anatomical experiments that determine the efferent projections from this region likely to mediate this anticonvulsant effect. In the first, the anterograde tracer biotinylated dextran amine (BDA) was injected into the vlPRF. A strong projection to the ventromedial medullary reticular formation (vmMRF) was revealed which continued only weakly to the spinal cord. In the second experiment, double-label procedures were used to indicate whether the BDA-labelled terminals from the vlPRF make contacts with neurons in vmMRF, retrogradely labelled with cholera-toxin B subunit from the lumbar spinal cord. Sections of the vmMRF were examined by: (i) light microscopy which showed significant overlap between terminals from vlPRF and retrogradely-labelled reticulospinal cells; (ii) confocal microscopy which showed labelled terminals in close association with reticulospinal cell bodies; and (iii) electron microscopy which showed vlPRF terminals making synaptic contact with reticulospinal neurons. Finally, immunohistochemical procedures in combination with anterograde tracing revealed that significant numbers of terminals labelled from vlPRF were also positive for markers of glutamatergic or GABAergic neurotransmission. This suggests that the projection from the vlPRF to the vmMRF is likely to include several different functional components. These connections could represent a final critical link of an anticonvulsant circuit that originates in the dorsal midbrain and projects via relays in the vlPRF and the vmMRF to interact with the low-level motor circuitry in the spinal cord.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al-Ain, UAE.
| | | | | | | | | |
Collapse
|
202
|
Lin LH, Talman WT. Nitroxidergic neurons in rat nucleus tractus solitarii express vesicular glutamate transporter 3. J Chem Neuroanat 2005; 29:179-91. [PMID: 15820620 DOI: 10.1016/j.jchemneu.2005.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 01/18/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
Earlier we reported that glutamate transporter (VGLUT) 2 and neuronal nitric oxide synthase (nNOS) are colocalized in some fibers and are present in apposing fibers in the nucleus tractus solitarii (NTS). Those findings provided anatomical support for a hypothesized physiological link between glutamate and nitric oxide (NO.) in the NTS. Recently a third class of VGLUT, VGLUT3, was identified, but its distribution in NTS and its anatomical relationship with nNOS have not been shown. In this study we tested the hypothesis that neurons and fibers containing VGLUT3 lie in close proximity to those containing nNOS and that both proteins colocalize in some neurons and fibers in the NTS. We perfused rats and obtained brain stem sections and nodose ganglion sections for immunofluorescent staining analyzed by confocal microscopy. The NTS contained moderate VGLUT3-immunoreactivity (IR), with the intermediate, medial and interstitial subnuclei containing higher VGLUT3-IR than other subnuclei. Although all three forms of VGLUT were present in the NTS, VGLUT3-IR was not colocalized with either VGLUT1-IR or VGLUT2-IR in either processes or cells in the brain stem. Cells and processes containing both VGLUT3-IR and nNOS-IR were noted in all NTS subnuclei and in the nodose ganglion. Triple immunofluorescent staining revealed that cells double-labeled for nNOS-IR and VGLUT3-IR were all additionally labeled for neuronal nuclear antigen (NeuN), a neuronal marker. These findings support our hypothesis that neurons and fibers containing VGLUT3 lie in close proximity to those containing nNOS and that both proteins colocalize in some neurons and fibers in the NTS.
Collapse
Affiliation(s)
- L H Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
203
|
Tordera RM, Pei Q, Sharp T. Evidence for increased expression of the vesicular glutamate transporter, VGLUT1, by a course of antidepressant treatment. J Neurochem 2005; 94:875-83. [PMID: 15992385 DOI: 10.1111/j.1471-4159.2005.03192.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The therapeutic effect of a course of antidepressant treatment is believed to involve a cascade of neuroadaptive changes in gene expression leading to increased neural plasticity. Because glutamate is linked to mechanisms of neural plasticity, this transmitter may play a role in these changes. This study investigated the effect of antidepressant treatment on expression of the vesicular glutamate transporters, VGLUT1-3 in brain regions of the rat. Repeated treatment with fluoxetine, paroxetine or desipramine increased VGLUT1 mRNA abundance in frontal, orbital, cingulate and parietal cortices, and regions of the hippocampus. Immunoautoradiography analysis showed that repeated antidepressant drug treatment increased VGLUT1 protein expression. Repeated electroconvulsive shock (ECS) also increased VGLUT1 mRNA abundance in regions of the cortex and hippocampus compared to sham controls. The antidepressant drugs and ECS did not alter VGLUT1 mRNA abundance after acute administration, and no change was detected after repeated treatment with the antipsychotic agents, haloperidol and chlorpromazine. In contrast to VGLUT1, the different antidepressant treatments did not commonly increase the expression of VGLUT2 or VGLUT3 mRNA. These data suggest that a course of antidepressant drug or ECS treatment increases expression of VGLUT1, a key gene involved in the regulation of glutamate secretion.
Collapse
|
204
|
Nahmani M, Erisir A. VGluT2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex. J Comp Neurol 2005; 484:458-73. [PMID: 15770654 DOI: 10.1002/cne.20505] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A vesicular glutamate transporter, VGluT2, has been suggested to be the transporter utilized in the thalamocortical pathway. We examined the reliability of this marker in identifying and discriminating thalamic terminals in adult and developing ferret visual cortex. We studied brain sections stained for the transporter protein and/or anterogradely filled thalamocortical or intracortical axons, by using light, confocal, and electron microscopy. Under light microscopy, VGluT2 immunoreactivity (ir) in adult animals [past postnatal day (P)90] and in neonatal animals as early as P27 formed a dense band in layer 4 and appeared as scattered puncta in layers 6 and 1. Confocal dual-labeling analyses of P46 and adult striate cortices indicated that VGluT2 was present in thalamocortical axons, suggesting that thalamic projections utilize this transporter during postnatal development as well as adulthood. In contrast, extracellularly filled intracortical axons failed to colocalize with VGluT2-ir, suggesting that no significant terminal population originating in cortex contained VGluT2 in layer 4. Electron microscopic analysis revealed that, in adult layer 4, VGluT2-ir was present in large terminals, forming asymmetric synapses. Similar to anterogradely labeled thalamocortical terminals, VGluT2-ir synaptic terminals were different from their unlabeled counterparts in terms of terminal area (0.6 vs. 0.3 microm), synaptic length (486 vs. 353 nm), and preference for synapsing on spines (77% vs. 59%). Moreover, no significant differences were found between VGluT2-ir and anterogradely labeled thalamocortical terminals. Comparable similarities were also demonstrated at P46. These results indicate that thalamocortical terminals in layer 4 of visual cortex utilize VGluT2 and suggest that this marker can be used to identify thalamic axons specifically in adult and developing animals.
Collapse
Affiliation(s)
- Marc Nahmani
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904-4400, USA
| | | |
Collapse
|
205
|
Hur EE, Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected]. J Comp Neurol 2005; 483:351-73. [PMID: 15682395 DOI: 10.1002/cne.20444] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate transmission is critical for controlling cortical activity, but the specific contribution of the different isoforms of vesicular glutamate transporters in subcortical pathways to the neocortex is largely unknown. To determine the distribution and neocortical projections of vesicular glutamate transporter2 (Vglut2)-containing neurons, we used in situ hybridization and injections of the retrograde tracer Fluoro-Gold into the medial prefrontal and primary somatosensory cortices. The thalamus contains the majority of Vglut2 cells projecting to the neocortex (approximately 90% for the medial prefrontal cortex and 96% for the primary somatosensory cortex) followed by the hypothalamus and basal forebrain, the claustrum, and the brainstem. There are significantly more Vglut2 neurons projecting to the medial prefrontal cortex than to the primary somatosensory cortex. The medial prefrontal cortex also receives a higher percentage of Vglut2 projection from the hypothalamus than the primary somatosensory cortex. About 50% of thalamic Vglut2 projection to the medial prefrontal cortex and as much as 80% of the thalamic projection to primary somatosensory cortex originate in various relay thalamic nuclei. The remainder arise from different midline and intralaminar nuclei traditionally thought to provide nonspecific or diffuse projection to the cortex. The extrathalamic Vglut2 corticopetal projections, together with the thalamic intralaminar-midline Vglut2 corticopetal projections, may participate in diffuse activation of the neocortex.
Collapse
Affiliation(s)
- Elizabeth E Hur
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | | |
Collapse
|
206
|
Blaesse P, Ehrhardt S, Friauf E, Nothwang HG. Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell Tissue Res 2005; 320:33-50. [PMID: 15714284 DOI: 10.1007/s00441-004-1054-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/29/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have been identified so far, which are differentially expressed in the brain. Here, we have investigated the spatiotemporal distribution of the three VGLUTs in the rat superior olivary complex (SOC), a prominent processing center, which receives strong glutamatergic inputs and which lies within the auditory brainstem. Immunoreactivity (ir) against all three VGLUTs was found in the SOC nuclei throughout development (postnatal days P0-P60). It was predominantly seen in axon terminals, although cytoplasmic labeling also occurred. Each transporter displayed a characteristic expression pattern. In the adult SOC, VGLUT1 labeling varied from strong in the medial nucleus of the trapezoid body, lateral superior olive, and medial superior olive (MSO) to moderate (ventral and lateral nuclei of the trapezoid body) to faint (superior paraolivary nucleus). VGLUT2-ir was moderate to strong throughout the SOC, whereas VGLUT3 was only weakly expressed. These results extend previous reports on co-localization of VGLUTs in the auditory brainstem. As in the adult, specific features were seen during development for all three transporters. Intensity increases and decreases occurred with both VGLUT1 and VGLUT3, whereas VGLUT2-ir remained moderately high throughout development. A striking result was obtained with VGLUT3, which was only transiently expressed in the different SOC nuclei between P0 and P12. A transient occurrence of VGLUT1-immunoreactive terminals on somata of MSO neurons was another striking finding. Our results imply a considerable amount of synaptic reorganization in the glutamatergic inputs to the SOC and suggest differential roles of VGLUTs during maturation and in adulthood.
Collapse
Affiliation(s)
- Peter Blaesse
- Abteilung Tierphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Kaiserslautern, Deutschland
| | | | | | | |
Collapse
|
207
|
Harkany T, Holmgren C, Härtig W, Qureshi T, Chaudhry FA, Storm-Mathisen J, Dobszay MB, Berghuis P, Schulte G, Sousa KM, Fremeau RT, Edwards RH, Mackie K, Ernfors P, Zilberter Y. Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3. J Neurosci 2005; 24:4978-88. [PMID: 15163690 PMCID: PMC6729377 DOI: 10.1523/jneurosci.4884-03.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies implicate dendritic endocannabinoid release from subsynaptic dendrites and subsequent inhibition of neurotransmitter release from nerve terminals as a means of retrograde signaling in multiple brain regions. Here we show that type 1 cannabinoid receptor-mediated endocannabinoid signaling is not involved in the retrograde control of synaptic efficacy at inhibitory synapses between fast-spiking interneurons and pyramidal cells in layer 2/3 of the neocortex. Vesicular neurotransmitter transporters, such as vesicular glutamate transporters (VGLUTs) 1 and 2, are localized to presynaptic terminals and accumulate neurotransmitters into synaptic vesicles. A third subtype of VGLUTs (VGLUT3) was recently identified and found localized to dendrites of various cell types. We demonstrate, using multiple immunofluorescence labeling and confocal laser-scanning microscopy, that VGLUT3-like immunoreactivity is present in dendrites of layer 2/3 pyramidal neurons in the rat neocortex. Electron microscopy analysis confirmed that VGLUT3-like labeling is localized to vesicular structures, which show a tendency to accumulate in close proximity to postsynaptic specializations in dendritic shafts of pyramidal cells. Dual whole-cell recordings revealed that retrograde signaling between fast-spiking interneurons and pyramidal cells was enhanced under conditions of maximal efficacy of VGLUT3-mediated glutamate uptake, whereas it was reduced when glutamate uptake was inhibited by incrementing concentrations of the nonselective VGLUT inhibitor Evans blue (0.5-5.0 microm) or intracellular Cl- concentrations (4-145 mm). Our results present further evidence that dendritic vesicular glutamate release, controlled by novel VGLUT isoforms, provides fast negative feedback at inhibitory neocortical synapses, and demonstrate that glutamate can act as a retrograde messenger in the CNS.
Collapse
Affiliation(s)
- Tibor Harkany
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1141] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
209
|
Stornetta RL, Rosin DL, Simmons JR, McQuiston TJ, Vujovic N, Weston MC, Guyenet PG. Coexpression of vesicular glutamate transporter-3 and γ-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J Comp Neurol 2005; 492:477-94. [PMID: 16228993 DOI: 10.1002/cne.20742] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Markers of serotonergic, gamma-aminobutyric acid (GABA)-ergic (glutamic acid decarboxylase, 67 kDa isoform; GAD-67), and glutamatergic transmission (vesicular glutamate transporter 3; VGLUT3) have been detected in presumed sympathetic premotor neurons of the medullary raphe, a region that controls sympathetic tone to brown fat, skin blood vessels, and heart. In this study, the degree of coexpression of these markers was examined in raphe neurons by simultaneous histological detection of tryptophan hydroxylase (TrpOH) immunoreactivity with GAD-67 mRNA and VGLUT3 mRNA. Over half (52%) of the VGLUT3 mRNA-positive neurons expressed one or both of the other markers. The proportion of VGLUT3 neurons containing at least one of the other two markers was even higher (89%) for VGLUT3 spinally projecting neurons. VGLUT3 neurons containing markers for both serotonin and GABA were especially numerous (50-72%, depending on rostrocaudal level) within the marginal layer of raphe pallidus and the parapyramidal region. The dual GABAergic and glutamatergic nature of some bulbospinal raphe neurons was suggested by the presence of nerve terminals immunoreactive (ir) for both VGLUT3 and GABA in the intermediolateral cell column (IML) as detected by electron microscopy. VGLUT3-ir terminals formed approximately equal numbers of symmetric and asymmetric synapses onto presumed preganglionic neurons (nitric oxide synthase-ir profiles) or GABA-ir dendrites in IML, and terminals immunoreactive for both VGLUT3 and GABA always formed symmetric synapses. These data suggest that medullary raphe VGLUT3 neurons could inhibit sympathetic outflow and that their spinal targets include both preganglionic neurons and GABAergic interneurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
210
|
Croft BG, Fortin GD, Corera AT, Edwards RH, Beaudet A, Trudeau LE, Fon EA. Normal biogenesis and cycling of empty synaptic vesicles in dopamine neurons of vesicular monoamine transporter 2 knockout mice. Mol Biol Cell 2004; 16:306-15. [PMID: 15496457 PMCID: PMC539174 DOI: 10.1091/mbc.e04-07-0559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.
Collapse
Affiliation(s)
- Benjamin G Croft
- Centre for Neuronal Survival and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
211
|
Honma S, Kawano M, Hayashi S, Kawano H, Hisano S. Expression and immunohistochemical localization of vesicular glutamate transporter 2 in the migratory pathway from the rat olfactory placode. Eur J Neurosci 2004; 20:923-36. [PMID: 15305861 DOI: 10.1111/j.1460-9568.2004.03544.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The localization of vesicular glutamate transporter 2 (VGLUT2) was examined by immunohistochemistry and in situ hybridization histochemistry in the developing rat olfactory region with special relation to the spatiotemporal location of NCAM, a neural cell adhesion molecule expressed in differentiated neurons, and the calcium-binding protein calbindin D-28k, a marker of neurons migrating from the vomeronasal organ anlage (Y. Toba et al. (2001) J. Neuroendocrinol., 13, 683-694). Both VGLUT2 and NCAM immunoreactivities were first detected at embryonic day 11.5 (E11.5) in the neuronal cell mass beneath the telencephalic vesicle. After E12.5, VGLUT2-immunoreactive cells were detected in the migratory pathways from both medial and lateral olfactory pits, anlagen of the vomeronasal organ and olfactory epithelium. Between E15.5 and E19.5, moderate to intense VGLUT2 immunoreactivity was observed in cell clusters situated along NCAM-bearing vomeronasal nerves, and frequently colocalized with calbindin D-28k immunoreactivity. Using in situ hybridization histochemistry, VGLUT2 mRNA signals were detected in the clustered cells as well as in cells of the vomeronasal and olfactory epithelium. After E20.5, migrating cells gradually decreased in number and VGLUT2 immunoreactivity attenuated in the clustered cells, although calbindin D-28k immunoreactivity in these residual cells was still intense. The presence of intense VGLUT2 immunoreactivity in neurons actively migrating from the olfactory placode suggests that this transporter is involved in the migratory process of these neurons.
Collapse
Affiliation(s)
- Shizuka Honma
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
212
|
Guyenet PG, Stornetta RL, Weston MC, McQuiston T, Simmons JR. Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons. Auton Neurosci 2004; 114:1-10. [PMID: 15331039 DOI: 10.1016/j.autneu.2004.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
Most of the CNS neurons that regulate circulation and respiration reside in regions of the brain characterized by extreme cellular heterogeneity (nucleus of the solitary tract, reticular formation, parabrachial nuclei, periaqueductal gray matter, hypothalamus, etc.). The chemical neuroanatomy of these regions is correspondingly complex and teasing out specific circuits in their midst remains a problem that is usually very difficult if not impossible to solve by conventional tract-tracing methods, Fos methodology or electrophysiology in slices. In addition, identifying the type of amino acid or peptide transmitter used by electrophysiologically recorded neurons has been until recently an especially difficult task either for lack of a specific marker or because such markers (many peptides for example) are exported to synaptic terminals and thus undetectable in neuronal cell bodies. In this review, we describe a general purpose method that solves many of these problems. The approach combines juxtacellular labeling in vivo with the histological identification of mRNAs that provide definitive neurochemical phenotypic identification (e.g. vesicular glutamate transporter 1 or 2, glutamic acid decarboxylase). The results obtained with this method are discussed in the general context of amino acid transmission in brainstem cardiorespiratory pathways. The presence of markers of amino acid transmission in specific aminergic pre-sympathetic neurons is especially emphasized as is the extensive co-localization of markers of GABAergic and glycinergic transmission in the brainstem reticular formation.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | | | | | | | | |
Collapse
|