201
|
Development of a novel chronic intermittent hypoxia chamber. Sleep Breath 2011; 16:177-9. [PMID: 21213061 DOI: 10.1007/s11325-010-0470-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To develop a novel chronic intermittent hypoxia chamber for rat models. DESIGN The intermittent hypoxia chamber included two animal cabins (28 × 20 × 15 cm) and a hypoxia chamber (80 × 80 × 60 cm) between them, as well as the actuating device. Pure nitrogen was fed into the hypoxia chamber continuously in order to keep the low O(2) concentration. Each animal cabin could move in and out of the hypoxia chamber with precise timing function. As a result, the animal cabins could be covered by the hypoxia chamber and got the same low O(2) concentration as in the hypoxia chamber and normal O(2) concentration as out of the hypoxia chamber. Twelve healthy, male Sprague-Dawley rats (200~250 g) were selected to test the effect of the intermittent hypoxia chamber. The O(2) concentration in the hypoxia chamber was 10 ± 0.5%, and the cycle time of intermittent hypoxia was 180 s (the hypoxia and normoxic time was 90 s, respectively). The hypoxia chamber ran 8 h per day. The arterial blood gas analysis (ABSA) of rats was conducted when the animal cabin was located inside and outside the hypoxia chamber. RESULTS The chronic intermittent hypoxia chamber ran safely and reliably. The ABSA showed that the lowest PaO(2) was 35.75 ± 4.02 mmHg and the lowest SaO(2) was 68.62 ± 8.36% when the animal cabin was covered by the hypoxia chamber. CONCLUSIONS The chronic intermittent hypoxia chamber designed by us was suitable to establish a chronic intermittent hypoxia model for rats.
Collapse
|
202
|
Belo D, Coito AL, Paiva T, Sanches JM. Topographic EEG Brain Mapping before, during and after Obstructive Sleep Apnea Episodes. PATTERN RECOGNITION AND IMAGE ANALYSIS 2011. [DOI: 10.1007/978-3-642-21257-4_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
203
|
Wang Y, Zhang SXL, Gozal D. Reactive oxygen species and the brain in sleep apnea. Respir Physiol Neurobiol 2010; 174:307-16. [PMID: 20833273 PMCID: PMC3088760 DOI: 10.1016/j.resp.2010.09.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 02/07/2023]
Abstract
Rodents exposed to intermittent hypoxia (IH), a model of obstructive sleep apnea (OSA), manifest impaired learning and memory and somnolence. Increased levels of reactive oxygen species (ROS), oxidative tissue damage, and apoptotic neuronal cell death are associated with the presence of IH-induced CNS dysfunction. Furthermore, treatment with antioxidants or overexpression of antioxidant enzymes is neuroprotective during IH. These findings mimic clinical cases of OSA and suggest that ROS may play a key causal role in OSA-induced neuropathology. Controlled production of ROS occurs in multiple subcellular compartments of normal cells and de-regulation of such processes may result in excessive ROS production. The mitochondrial electron transport chain, especially complexes I and III, and the NADPH oxidase in the cellular membrane are the two main sources of ROS in brain cells, although other systems, including xanthine oxidase, phospholipase A2, lipoxygenase, cyclooxygenase, and cytochrome P450, may all play a role. The initial evidence for NADPH oxidase and mitochondrial involvement in IH-induced ROS production and neuronal injury unquestionably warrants future research efforts.
Collapse
Affiliation(s)
- Yang Wang
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
204
|
Abstract
Mitochondrial dysfunction and oxidative stress contribute to several neurologic disorders and have recently been implicated in acquired epilepsies such as temporal lobe epilepsy (TLE). Acquired epilepsy is typically initiated by a brain injury followed by a "latent period" whereby molecular, biochemical and other cellular alterations occur in the brain leading to chronic epilepsy. Mitochondrial dysfunction and oxidative stress are emerging as factors that not only occur acutely as a result of precipitating injuries such as status epilepticus (SE), but may also contribute to epileptogenesis and chronic epilepsy. Mitochondria are the primary site of reactive oxygen species (ROS) making them uniquely vulnerable to oxidative damage that may affect neuronal excitability and seizure susceptibility. This mini-review provides an overview of evidence suggesting the role of mitochondrial dysfunction and oxidative stress as acute consequences of injuries that are known to incite chronic epilepsy and their involvement in the chronic stages of acquired epilepsy.
Collapse
Affiliation(s)
- Simon Waldbaum
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
205
|
Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. Brain Res 2010; 1372:133-44. [PMID: 21111718 DOI: 10.1016/j.brainres.2010.11.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by a progressive, selective loss of motor neurons (MN) in brain and spinal cord. The mechanisms of selective and age-dependent MN degeneration in ALS have not been defined. Recent studies suggest that the elevation of intracellular oxidative toxicity contributes to death of MN, but the molecular pathways remain largely unknown. In order to study the possible molecular pathways that the oxidative toxicity induced MN death in ALS, a MN-like cell NSC34, a primary neuronal cell (PNC) of mouse prontal cortex, and a G93A-SOD1 transgenic mouse model were used. Exposure of NSC34 and PNC to cobalt chloride or chronic sustained hypoxic conditions showed a dramatic increase of cellular Hif-1α (hypoxia inducing factor-1α), HO-1 (heme oxygenases-1), and UCP4 (uncoupling protein 4) expression by Western blot analysis, accompanied with increasing cellular apoptosis by histone protein release assay. In an ALS mouse model, the caspase 3 activation, Aif (apoptosis inducing factor), cytochrome c redistribution in MN of spinal cord significantly increased at 70days of disease progression, and Hif-1α expression significantly increased at whole disease stages by an immunohistochemical positive cell counting and Western blot analysis, respectively. The data on this in vitro and in vivo study suggested that oxidative toxicity promoted multiple molecular pathways associated with MN death in ALS and at least were partially associated with the changes of Hif-1α, HO-1, UCP4 expressive increment, caspase 3 activation and Aif, cytochrome c redistribution.
Collapse
|
206
|
Esteva S, Pedret R, Fort N, Torrella JR, Pagès T, Viscor G. Oxidative stress status in rats after intermittent exposure to hypobaric hypoxia. Wilderness Environ Med 2010; 21:325-31. [PMID: 21168785 DOI: 10.1016/j.wem.2010.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Programs of intermittent hypobaric hypoxia (IHH) exposure are used to raise hemoglobin concentration and erythrocyte mass. Although acclimation response increases blood oxygen transport capacity leading to a VO(2max) increase, the effects of reactive oxygen species (ROS) might determine the behavior of erythrocytes and plasma, thus causing a worse peripheral blood flow. The goals of the study were to establish the hematological changes and to discern whether an IHH protocol modifies the antioxidant/pro-oxidant balance in laboratory rats. METHODS Male rats were subjected to an IHH program consisting of a daily 4-hour session for 5 days/week until completing 22 days of hypoxia exposure in a hypobaric chamber at a simulated altitude of 5000 m. Blood samples were taken at the end of the exposure period (H) and at 20 (P20) and 40 (P40) days after the end of the program, and compared to control (C), maintained at sea-level pressure. Hematological parameters were measured together with several oxidative stress indicators: plasma thiobarbituric acid reactive substances (TBARS) and erythrocyte catalase (CAT) and superoxide dismutase (SOD). RESULTS Red blood cell (RBC) count, hemoglobin concentration and hematocrit were higher in H group as compared to all the other groups (p < 0.001). However, there were no significant differences between the 4 groups in any of the oxidative stress-related parameters. CONCLUSIONS The absence of significant differences between groups indicates that our IHH program has little impact on the general redox status, even in the laboratory rat, which is more sensitive to hypoxia than humans. We conclude that IHH does not increase oxidative stress.
Collapse
Affiliation(s)
- Santiago Esteva
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
207
|
Lessard A, Coleman CG, Pickel VM. Chronic intermittent hypoxia reduces neurokinin-1 (NK(1)) receptor density in small dendrites of non-catecholaminergic neurons in mouse nucleus tractus solitarius. Exp Neurol 2010; 223:634-44. [PMID: 20206166 PMCID: PMC2864350 DOI: 10.1016/j.expneurol.2010.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/18/2010] [Accepted: 02/21/2010] [Indexed: 12/16/2022]
Abstract
Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK(1)) receptors. Acute hypoxia results in internalization of NK(1) receptors, suggesting that CIH also may affect the subcellular distribution of NK(1) receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK(1) receptor and TH in the cNTS of male mice subjected to 10days or 35days of CIH or intermittent air. Electron microscopy revealed that NK(1) receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK(1) receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35days, P<0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35days, P<0.01, unpaired Student t-test) density of NK(1) immunogold particles exclusively in small (<0.1microm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK(1) receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients.
Collapse
Affiliation(s)
- Andrée Lessard
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill-Cornell Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
208
|
Xie H, Leung KL, Chen L, Chan YS, Ng PC, Fok TF, Wing YK, Ke Y, Li AM, Yung WH. Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity. Neurobiol Dis 2010; 40:155-62. [PMID: 20553872 DOI: 10.1016/j.nbd.2010.05.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 01/24/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep and breathing disorder characterized by repeated episodes of hypoxemia. OSA causes neurocognitive deficits including perception and memory impairment but the underlying mechanisms are unknown. Here we show that in a mouse model of OSA, chronic intermittent hypoxia treatment impairs both early- and late-phase long-term potentiation (LTP) in the hippocampus. In intermittent hypoxia-treated mice the excitability of CA1 neurons was reduced and hippocampal brain-derived neurotrophic factor (BDNF) was down-regulated. We further showed that exogenous application of BDNF restored the magnitude of LTP in hippocampal slices from hypoxia-treated mice. In addition, microinjection of BDNF into the brain of the hypoxic mice prevented the impairment in LTP. These data suggest that intermittent hypoxia impairs hippocampal neuronal excitability and reduces the expression of BDNF leading to deficits in LTP and memory formation. Thus, BDNF level may be a novel therapeutic target for alleviating OSA-induced neurocognitive deficits.
Collapse
Affiliation(s)
- Hui Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Relationship between obstructive sleep apnea severity and sleep, depression and anxiety symptoms in newly-diagnosed patients. PLoS One 2010; 5:e10211. [PMID: 20419135 PMCID: PMC2855711 DOI: 10.1371/journal.pone.0010211] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/26/2010] [Indexed: 11/19/2022] Open
Abstract
Obstructive sleep apnea (OSA) occurs in at least 10% of the population, and leads to higher morbidity and mortality; however, relationships between OSA severity and sleep or psychological symptoms are unclear. Existing studies include samples with wide-ranging comorbidities, so we assessed relationships between severity of OSA and common sleep and psychological disturbances in recently diagnosed OSA patients with minimal co-morbidities. We studied 49 newly diagnosed, untreated OSA patients without major co-morbidities such as mental illness, cardiovascular disease, or stroke; subjects were not using psychoactive medications or tobacco (mean +/- std age: 46.8+/-9.1 years; apnea/hyponea index [AHI]: 32.1+/-20.5 events/hour; female/male: 12/37; weight <125 kg). We evaluated relationships between the AHI and daytime sleepiness (Epworth Sleepiness Scale; ESS), sleep quality (Pittsburg Sleep Quality Index; PSQI), depressive symptoms (Beck Depression Inventory-II; BDI), and anxiety symptoms (Beck Anxiety Inventory; BAI), as well as sex and body mass index (BMI). AHI was similar in females and males. Mean levels of all symptoms were above normal thresholds, but AHI was not correlated with age, ESS, PSQI, BDI, or BAI; only BMI was correlated with OSA severity. No differences in mean AHI appeared when subjects were grouped by normal versus elevated values of ESS, PSQI, BDI, or BAI. Consistent with other studies, a strong link between OSA severity and psychological symptoms did not appear in these newly diagnosed patients, suggesting that mechanisms additional to the number and frequency of hypoxic events and arousals occurring with apneas contribute to adverse health effects in OSA. OSA patients presenting with mild or moderate severity, and no major co-morbidities will not necessarily have low levels of sleep or psychological disturbances.
Collapse
|
210
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
211
|
Douglas RM, Ryu J, Kanaan A, Del Carmen Rivero M, Dugan LL, Haddad GG, Ali SS. Neuronal death during combined intermittent hypoxia/hypercapnia is due to mitochondrial dysfunction. Am J Physiol Cell Physiol 2010; 298:C1594-602. [PMID: 20357179 DOI: 10.1152/ajpcell.00298.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breathing-disordered states, such as in obstructive sleep apnea, which are cyclical in nature, have been postulated to induce neurocognitive morbidity in both pediatric and adult populations. The oscillatory nature of intermittent hypoxia, especially when chronic, may mimic the paradigm of ischemia-reperfusion in that tissues and cells are exposed to episodes of low and high O(2) and this may lead to oxidant stress. Therefore, we decided to explore the potential contribution of oxidant stress in our intermittent hypoxia/hypercapnia animal model and the role that mitochondria might play in this stress. Neonatal mice were exposed to intermittent hypoxia/hypercapnia for 10 days and 2 wk. Combined intermittent hypoxia/hypercapnia led to a marked increase in apoptotic cell death in the cerebral cortex. Oxygen consumption studies in isolated mitochondria from intermittent hypoxia/hypercapnia-exposed brains demonstrated significant reductions in both state 4 and state 3 respiratory activities by approximately 60% and 75%, respectively. Electron paramagnetic resonance spectroscopy registered a significant increase in superoxide production during nonphosphorylating state 4 by 37%, although superoxide leakage during state 3 did not increase upon treatment. Neuronal superoxide-specific dihydroethidium oxidation was also greater in exposed animals. These studies indicate that intermittent hypoxia/hypercapnia leads to oxidative stress due to mitochondrial response within the mouse central nervous system.
Collapse
Affiliation(s)
- Robert M Douglas
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Gozal D, Nair D, Goldbart AD. Physical activity attenuates intermittent hypoxia-induced spatial learning deficits and oxidative stress. Am J Respir Crit Care Med 2010; 182:104-12. [PMID: 20224062 DOI: 10.1164/rccm.201001-0108oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exposure to intermittent hypoxia (IH), such as occurs in sleep-disordered breathing, is associated with substantial cognitive impairments, oxidative stress and inflammation, and increased neuronal cell losses in brain regions underlying learning and memory in rats. Physical activity (PA) is now recognized as neuroprotective in models of neuronal injury and degeneration. OBJECTIVES To examine whether PA will ameliorate IH-induced deficits. METHODS Young adult Sprague-Dawley rats were randomly assigned to one of four treatment groups including normal activity (NA) or PA for 3 months and then subjected to either normoxia (RA) or exposure to IH during the light phase during the last 14 days. MEASUREMENTS AND MAIN RESULTS Significant impairments in IH-exposed rats emerged on both latency and pathlength to locate the hidden platform in a water maze and decreased spatial bias during the probe trials. These impairments were not observed in PA-IH rats. In addition, the PA-IH group, relative to NA-IH, conferred greater resistance to both lipid peroxidation and 8-hydroxy-2'-deoxyguanosine (DNA damage) in both the cortex and hippocampus. In support of a neuroprotective effect from PA, PA-IH versus NA-IH rats showed greater AKT activation and neuronal insulin growth factor-1 in these regions. CONCLUSIONS Behavioral modifications such as increased physical activity are associated with decreased susceptibility to IH-induced spatial task deficits and lead to reduced oxidative stress, possibly through improved preservation of insulin growth factor-1-Akt neuronal signaling. Considering the many advantages of PA, interventional strategies targeting behavioral modifications leading to increased PA should be pursued in patients with sleep-disordered breathing.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, 5721 South Maryland Avenue, MC 8000, Suite K-160, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
213
|
Chen R, Xiong KP, Lian YX, Huang JY, Zhao MY, Li JX, Liu CF. Daytime sleepiness and its determining factors in Chinese obstructive sleep apnea patients. Sleep Breath 2010; 15:129-35. [PMID: 20174875 DOI: 10.1007/s11325-010-0337-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of this study was to characterize excessive daytime sleepiness (EDS) in a large cohort of Chinese patients with various severity of obstructive sleep apnea-hypopnea syndrome (OSAHS), and investigate its correlations with clinical/polysomnographic variables. MATERIALS AND METHODS A total of 1,035 consecutive Chinese patients with snoring (mean age ± SD 45 ± 15 years, BMI 26.6 ± 4.3 kg/m(2)) were examined by overnight polysomnography, and subjective EDS was assessed using the Epworth Sleepiness Scale (ESS). RESULTS The 1,035 patients were compared according to severity of sleep-disordered breathing: AHI <5 (primary snoring group or normal overall AHI) (24.1%), AHI 5-20 (mild OSAHS, 21.7%), AHI >20-40 (moderate OSAHS 16.5%), and AHI >40 (severe OSAHS 37.7%). ESS score progressively increased as the severity of OSAHS aggravated among these patients. More severe OSAHS patients were characterized by EDS, nocturnal hypoxemia, and disruption of sleep structure. Progressive worsening of nocturnal hypoxemia was observed from mild to severe OSAHS patients with a strong correlation with ESS score. The stepwise multiple regression analysis performed to evaluate the correlations of individual clinical and polysomnographic variables with the ESS score revealed that the ESS score significantly correlated with the oxygen desaturation index (ODI), apnea-hypopnea index (AHI), and body mass index (BMI), and ODI was the strongest determinant of ESS score. CONCLUSION EDS is correlated with the severity of OSAHS. More severe patients are characterized by higher ESS score, higher BMI, and progressive worsening of nocturnal hypoxemia. Nocturnal hypoxemia is a major determinant of EDS in Chinese OSAHS patients.
Collapse
Affiliation(s)
- Rui Chen
- Sleeping Center, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, China
| | | | | | | | | | | | | |
Collapse
|
214
|
Aviles-Reyes RX, Angelo MF, Villarreal A, Rios H, Lazarowski A, Ramos AJ. Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem 2010; 112:854-69. [DOI: 10.1111/j.1471-4159.2009.06535.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
215
|
One week of exposure to intermittent hypoxia impairs attentional set-shifting in rats. Behav Brain Res 2010; 210:123-6. [PMID: 20122971 DOI: 10.1016/j.bbr.2010.01.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/24/2010] [Accepted: 01/25/2010] [Indexed: 01/02/2023]
Abstract
Intermittent hypoxia (IH), a characteristic of sleep apnea, was modeled in Fischer Brown Norway rats (10h/day for 7 days) followed by cognitive testing in an attentional set-shifting task. The ability to shift attention from one sensory modality (e.g., odor) to another (e.g., digging medium) was impaired, a finding that could not be attributed to deficits in attention, discrimination, learning, or motor performance. Instead, the deficit is likely to reflect impaired allocation of attentional resources of the working memory system.
Collapse
|
216
|
Almendros I, Montserrat JM, Torres M, González C, Navajas D, Farré R. Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea. Respir Res 2010; 11:3. [PMID: 20078851 PMCID: PMC2817656 DOI: 10.1186/1465-9921-11-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/15/2010] [Indexed: 12/03/2022] Open
Abstract
Background Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and non-invasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9 mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O2 supply induced by obstructive apneas mimicking OSA.
Collapse
|
217
|
Kohler MJ, Lushington K, Kennedy JD. Neurocognitive performance and behavior before and after treatment for sleep-disordered breathing in children. Nat Sci Sleep 2010; 2:159-85. [PMID: 23616708 PMCID: PMC3630946 DOI: 10.2147/nss.s6934] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurocognitive and behavioral problems are increasingly reported in children with sleep-disordered breathing (SDB). The impact of treatment for SDB on neurocognition and behavior is, therefore, an issue of increasing importance. To date, there has been little consideration given to the quality of studies when reviewing associated neurocognitive and behavioral problems in children with SDB, and furthermore, there has been little systematic review of treatment outcomes. The aim of this review was to provide an up-to-date and critical review of the current literature. Findings indicate a specific pattern of neurocognitive problems in children with SDB; however, the pattern of behavioral problems is less clear. Very few studies were found to provide a rigorous investigation of posttreatment neurocognitive and behavior outcomes. Despite this, relatively consistent improvements in global intelligence, attention, and visual spatial ability are shown; however, persistent deficits in other domains are also evident. For behavior, problems of hyperactivity, aggression or conduct problems, and somatic complaints improve following treatment. In contrast, symptoms of anxiety and social problems less consistently improve. These findings should aid in the development of more targeted investigations and well-designed studies exploring both the causative mechanisms and the treatment response for neurocognitive and behavior problems in children with SDB.
Collapse
Affiliation(s)
- Mark J Kohler
- Children's Research Centre, University of Adelaide, North Adelaide, Australia
| | | | | |
Collapse
|
218
|
Pialoux V, Hanly PJ, Foster GE, Brugniaux JV, Beaudin AE, Hartmann SE, Pun M, Duggan CT, Poulin MJ. Effects of Exposure to Intermittent Hypoxia on Oxidative Stress and Acute Hypoxic Ventilatory Response in Humans. Am J Respir Crit Care Med 2009; 180:1002-9. [DOI: 10.1164/rccm.200905-0671oc] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
219
|
Ward CP, McCoy JG, McKenna JT, Connolly NP, McCarley RW, Strecker RE. Spatial learning and memory deficits following exposure to 24 h of sleep fragmentation or intermittent hypoxia in a rat model of obstructive sleep apnea. Brain Res 2009; 1294:128-37. [PMID: 19643093 PMCID: PMC2762190 DOI: 10.1016/j.brainres.2009.07.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 01/02/2023]
Abstract
Obstructive sleep apnea is primarily characterized by hypoxemia due to frequent apneic episodes and fragmentation of sleep due to the brief arousals that terminate the apneic episodes. Though neurobehavioral deficits frequently accompany sleep apnea, the relative roles of hypoxia versus sleep fragmentation are difficult to separate in apneic patients. Here, we assessed cognitive function as measured by water maze in the Fischer/Brown Norway (FBN) rat, comparing 24 h of sleep interruption (SI) to 24 h of intermittent hypoxia (IH), in order to dissociate their relative contributions to cognitive impairment. For SI, automated treadmills were used to induce brief ambulation in rats every 2 min, either prior to, or after, initial water maze acquisition training. IH was simulated by cycling environmental oxygen levels between 6% and 19% every 2 min, again either prior to, or after, acquisition. Twenty-four hours of IH exposure had no significant effect on either acquisition or retention, irrespective of whether IH occurred prior to, or after, acquisition. To replicate previous work, another group of rats, exposed to 3 days of IH (10 h/day) prior to acquisition, had impaired performance during acquisition. A comparison of the 24 h IH and 3 day IH findings suggests that a minimum amount of IH exposure is necessary to produce detectable spatial memory impairments. Although SI before acquisition had no effect on acquisition or later retention of the hidden platform location, SI after acquisition robustly impaired retention, indicating that spatial memory consolidation is more susceptible to the effects of sleep disruption than is the acquisition (learning) of spatial information.
Collapse
Affiliation(s)
- Christopher P. Ward
- VA Boston Healthcare System and Harvard Medical School, Laboratory of Neuroscience, Brockton, MA
- University of Houston-Clear Lake, Department of Psychology, Houston, TX
| | - John G. McCoy
- VA Boston Healthcare System and Harvard Medical School, Laboratory of Neuroscience, Brockton, MA
- Stonehill College, Department of Psychology, Easton, MA
| | - James T. McKenna
- VA Boston Healthcare System and Harvard Medical School, Laboratory of Neuroscience, Brockton, MA
| | - Nina P. Connolly
- VA Boston Healthcare System and Harvard Medical School, Laboratory of Neuroscience, Brockton, MA
- Wheaton College, Department of Psychology, Norton, MA
| | - Robert W. McCarley
- VA Boston Healthcare System and Harvard Medical School, Laboratory of Neuroscience, Brockton, MA
| | - Robert E. Strecker
- VA Boston Healthcare System and Harvard Medical School, Laboratory of Neuroscience, Brockton, MA
| |
Collapse
|
220
|
Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF. Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol 2009; 20:598-612. [PMID: 19863544 DOI: 10.1111/j.1750-3639.2009.00339.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, protects brain function against oxidative stress induced by D-galactose (D-gal) (Sigma-Aldrich, St. Louis, MO, USA). Our data showed that PSPC enhanced open-field activity, decreased step-through latency, and improved spatial learning and memory ability in D-gal-treated old mice by decreasing advanced glycation end-products' (AGEs) formation and the AGE receptor (RAGE) expression, and by elevating Cu,Zn-superoxide dismutase (Cu,Zn-SOD) (Sigma-Aldrich) and catalase (CAT) expression and activity. Cleavage of caspase-3 and increased terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling (TUNEL)-positive cells in D-gal-treated old mice were inhibited by PSPC, which might be attributed to its antioxidant property. PSPC also suppressed the activation of c-Jun NH(2)-terminal kinase (JNK) and the release of cytochrome c from mitochondria that counteracted the onset of neuronal apoptosis in D-gal-treated old mice. Furthermore, it was demonstrated that phosphoinositide 3-kinase (PI3K) activation was required for PSPC to promote the neuronal survival accompanied with phosphorylation and activation of Akt and p44/42 mitogen-activated protein kinase (MAPK) by using PI3K inhibitor LY294002 (Cell Signaling Technology, Inc., Beverly, MA, USA), implicating a neuronal survival mechanism. The present results suggest that neuronal survival promoted by PSPC may be a potentially effective method to enhance resistance of neurons to age-related disease.
Collapse
Affiliation(s)
- Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou, China
| | | | | | | | | |
Collapse
|
221
|
Khayat R, Patt B, Hayes D. Obstructive sleep apnea: the new cardiovascular disease. Part I: Obstructive sleep apnea and the pathogenesis of vascular disease. Heart Fail Rev 2009; 14:143-53. [PMID: 18807180 PMCID: PMC2698951 DOI: 10.1007/s10741-008-9112-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 08/12/2008] [Indexed: 12/21/2022]
Abstract
Obstructive sleep apnea (OSA) is increasingly recognized as a novel cardiovascular risk factor. OSA is implicated in the pathogenesis of hypertension, left ventricular dysfunction, coronary artery disease and stroke. OSA exerts its negative cardiovascular consequences through its unique pattern of intermittent hypoxia. Endothelial dysfunction, oxidative stress, and inflammation are all consequences of OSA directly linked to intermittent hypoxia and critical pathways in the pathogenesis of cardiovascular disease in patients with OSA. This review will discuss the known mechanisms of vascular dysfunction in patients with OSA and their implications for cardiovascular disease.
Collapse
Affiliation(s)
- Rami Khayat
- The Ohio State University Sleep Heart Program, The Ohio State University, 473 W 12th Ave, Suite 105, Columbus, OH 43210, USA e-mail:
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, 473 W 12th Ave, Suite 105, Columbus, OH 43210, USA
| | - Brian Patt
- The Ohio State University Sleep Heart Program, The Ohio State University, 473 W 12th Ave, Suite 105, Columbus, OH 43210, USA e-mail:
| | - Don Hayes
- The Ohio State University Sleep Heart Program, The Ohio State University, 473 W 12th Ave, Suite 105, Columbus, OH 43210, USA e-mail:
| |
Collapse
|
222
|
|
223
|
Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, Geiger JD, Liu R, Porter JE, Lei S. GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 2009; 63:230-43. [PMID: 19640481 PMCID: PMC2735825 DOI: 10.1016/j.neuron.2009.06.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/23/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABA(B) receptors, the functions of these receptors in this region remain unexplored. Here, we examined the effects of GABA(B) receptor activation on neuronal excitability in the EC and spatial learning. Application of baclofen, a specific GABA(B) receptor agonist, inhibited significantly neuronal excitability in the EC. GABA(B) receptor-mediated inhibition in the EC was mediated via activating TREK-2, a type of two-pore domain K(+) channels, and required the functions of inhibitory G proteins and protein kinase A pathway. Depression of neuronal excitability in the EC underlies GABA(B) receptor-mediated inhibition of spatial learning as assessed by Morris water maze. Our study indicates that GABA(B) receptors exert a tight control over spatial learning by modulating neuronal excitability in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Chuanxiu Yang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Lalida Rojanathammanee
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Laurel Grisanti
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - John Watt
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Jonathan D. Geiger
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Rugao Liu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - James E. Porter
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
224
|
Skelly JR, Bradford A, Jones JFX, O'Halloran KD. Superoxide scavengers improve rat pharyngeal dilator muscle performance. Am J Respir Cell Mol Biol 2009; 42:725-31. [PMID: 19635929 DOI: 10.1165/rcmb.2009-0160oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Obstructive sleep apnea is a common disorder associated with upper airway muscle dysfunction. Agents that improve respiratory muscle performance may be useful as an adjunct therapy. The aim of this study was to examine the effects of antioxidants on rat pharyngeal dilator muscle performance. Adult male Wistar rats were killed humanely and isometric contractile properties of isolated sternohyoid muscle strips were examined in physiological salt solution at 35 degrees C in vitro. Muscle strips were incubated in tissue baths under hyperoxic (95%O(2)/5%CO(2)) or hypoxic (95%N(2)/5%CO(2)) conditions in the absence (control) or presence of the antioxidants: N-acetylcysteine (10 mM), Tiron (10 mM), or Tempol (10 mM). Force-frequency relationship was determined in response to supramaximal stimulation (10-100 Hz in increments of 10-20 Hz, train duration: 300 ms). Isometric force was also recorded during repetitive muscle stimulation (40 Hz, 300 ms every 2 s for 2 min). Under hyperoxic conditions, Tiron and Tempol, but not N-acetylcysteine, significantly increased sternohyoid muscle force and caused a left-shift in the force-frequency relationship. In addition, Tempol had a significant positive inotropic effect over the initial 90 seconds of repeated muscle activation. Hypoxia caused a significant decrease in sternohyoid muscle force. Under hypoxic conditions, Tempol-incubated muscles generated significantly higher forces compared with control muscles and showed improved performance in the early phase of the fatigue trial. This study illustrates that superoxide scavengers increase upper airway muscle force and that this effect persists under hypoxic conditions. We conclude that antioxidant treatment may be beneficial as a therapy in obstructive sleep apnea.
Collapse
Affiliation(s)
- J Richard Skelly
- UCD School of Medicine and Medical Science, Room C228, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
225
|
Torii S, Kobayashi K, Takahashi M, Katahira K, Goryo K, Matsushita N, Yasumoto KI, Fujii-Kuriyama Y, Sogawa K. Magnesium deficiency causes loss of response to intermittent hypoxia in paraganglion cells. J Biol Chem 2009; 284:19077-89. [PMID: 19433582 DOI: 10.1074/jbc.m109.004424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Magnesium deficiency is suggested to contribute to many age-related diseases. Hypoxia-inducible factor 1alpha (HIF-1alpha) is known to be a master regulator of hypoxic response. Here we show that hypomagnesemia suppresses reactive oxygen species (ROS)-induced HIF-1alpha activity in paraganglion cells of the adrenal medulla and carotid body. In PC12 cells cultured in the low magnesium medium and treated with cobalt chloride (CoCl(2)) or exposed to intermittent hypoxia, ROS-mediated HIF-1alpha activity was suppressed. This suppression was due to up-regulation of inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS) that was caused by NF-kappaB activation, which resulted from ROS and calcium influx mainly through the T-type calcium channels. Induction of tyrosine hydroxylase, a target of HIF-1, by CoCl(2) injection was suppressed in the adrenal medulla of magnesium-deficient mice because of up-regulation of IPAS. Also in the carotid body of magnesium-deficient mice, CoCl(2) and chronic intermittent hypoxia failed to enhance the tyrosine hydroxylase expression. These results demonstrate that serum magnesium levels are a key determinant for ROS-induced hypoxic responses.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Wilkerson JER, Mitchell GS. Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation. Exp Neurol 2009; 217:116-23. [PMID: 19416672 PMCID: PMC2691872 DOI: 10.1016/j.expneurol.2009.01.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). We hypothesized that: 1) daily AIH (dAIH) preconditioning enhances phrenic and hypoglossal (XII) LTF in a rat strain with low constitutive LTF expression; 2) dAIH induces brain-derived neurotrophic factor (BDNF), a critical protein for phrenic LTF (pLTF) in the cervical spinal cord; and 3) dAIH increases post-AIH extracellular regulated kinase (ERK) activation. Phrenic and XII motor output were monitored in anesthetized dAIH- or sham-treated Brown Norway rats with and without acute AIH. pLTF was observed in both sham (18+/-9% baseline; 60 min post-hypoxia; p<0.05; n=18) and dAIH treated rats (37+/-8%; p<0.05; n=14), but these values were not significantly different (p=0.13). XII LTF was not observed in sham-treated rats (4+/-5%), but was revealed in dAIH pretreated rats (48+/-18%; p<0.05). dAIH preconditioning increased basal ventral cervical BDNF protein levels (24+/-8%; p<0.05), but had no significant effect on ERK phosphorylation. AIH increased BDNF in sham (25+/-8%; p<0.05), but not dAIH-pretreated rats (-7+/-4%), and had complex effects on ERK phosphorylation (ERK2 increased in shams whereas ERK1 increased in dAIH-treated rats). Thus, dAIH elicits metaplasticity in LTF, revealing XII LTF in a rat strain with no constitutive XII LTF expression. Increased BDNF synthesis may no longer be necessary for phrenic LTF following dAIH preconditioning since BDNF concentration is already elevated.
Collapse
Affiliation(s)
- Julia E R Wilkerson
- Department of Comparative Biosciences, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706, USA
| | | |
Collapse
|
227
|
Abstract
Endothelial activation and inflammation are important mediators of accelerated atherogenesis and consequent increased cardiovascular morbidity in obstructive sleep apnea (OSA). Repetitive episodes of hypoxia/reoxygenation associated with transient cessation of breathing during sleep in OSA resemble ischemia/reperfusion injury and may be the main culprit underlying endothelial dysfunction in OSA. Additional factors such as repetitive arousals resulting in sleep fragmentation and deprivation and individual genetic suseptibility to vascular manifestations of OSA contribute to impaired endothelial function in OSA. The present review focuses on possible mechanisms that underlie endothelial activation and inflammation in OSA.
Collapse
Affiliation(s)
- Amy Atkeson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
228
|
Abstract
Data from animal and human studies provide a biological plausibility to the notion that obstructive sleep apnea activates pathways that lead to insulin resistance, atherosclerosis and hypertension. Sleep apnea thus activates the same pathways as does obesity. That obstructive sleep apnea is a risk factor for cardiovascular disease is supported by epidemiological association studies. Longitudinal cohort studies also provide evidence that patients with untreated severe sleep apnea have an increased rate of cardiovascular events. But these studies, while highly suggestive, do not provide the evidence needed to convince the skeptic. This would only be obtained by randomized treatment trials with hard cardiovascular endpoints such as cardiac events and deaths. While such studies are in the planning stages, they will be challenging. There are issues about randomizing individuals with severe sleep apnea and excessive sleepiness into no therapy, since they are at known increased risk for car crashes. Thus, lack of therapy puts others on the road at risk as well as the subject with sleep apnea. There is, moreover, the concern that treating obstructive sleep apnea in very obese individuals will have little impact, since any effect of therapy for OSA will be overwhelmed by the effects of obesity itself. Data from randomized treatment trials for cardiovascular endpoints will likely not be available for many years. In the interim, physicians need to consider how to treat such patients. It is proposed that given that CPAP treatment for obstructive sleep apnea is highly effective and essentially totally safe, and that the evidence is suggestive that sleep apnea is a risk factor for cardiovascular disease, then we propose all patients with severe sleep apnea should be treated to reduce cardiovascular risk.
Collapse
|
229
|
Xu J, Long YS, Gozal D, Epstein PN. Beta-cell death and proliferation after intermittent hypoxia: role of oxidative stress. Free Radic Biol Med 2009; 46:783-90. [PMID: 19133326 DOI: 10.1016/j.freeradbiomed.2008.11.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 11/05/2008] [Accepted: 11/30/2008] [Indexed: 12/19/2022]
Abstract
Intermittent hypoxia (IH), such as occurs in sleep apnea, induces increased oxidative stress and is associated with altered glucose homeostasis. Because pancreatic beta cells are very sensitive to oxidative stress we tested whether they could be affected by IH. The effects of IH exposure (24 h/day, 5.7 and 21% O(2) alternation) in mice on beta-cell proliferation and beta-cell death were tested using Ki67 staining and TUNEL staining, respectively. To assess the role of oxidative stress in these processes, transgenic mice with beta-cell-specific overexpression of the antioxidant protein MnSOD were exposed to IH. After 4 days of IH exposure, beta-cell proliferation was increased almost fourfold. Coinciding with the increase in proliferation, the subcellular localization of the cell cycle regulator cyclin D2 was increased in the nucleus. In addition, beta-cell death was increased approximately fourfold. MnSOD transgene did not alter the effects of IH on beta-cell proliferation, but completely abrogated the IH effects on cell death. Thus, IH exposure that mimics sleep apnea can lead to increased beta-cell proliferation and cell death. Furthermore, the cell death response seems to be due to oxidative stress.
Collapse
Affiliation(s)
- Jianxiang Xu
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
230
|
Abstract
Chronic intermittent or episodic hypoxia, as occurs during a number of disease states, can have devastating effects, and prolonged exposure to this hypoxia can result in cell injury or cell death. Indeed, intermittent hypoxia activates a number of signaling pathways that are involved in oxygen sensing, oxidative stress, metabolism, catecholamine biosynthesis, and immune responsiveness. The cumulative effect of these processes over time can undermine cell integrity and lead to a decline in function. Furthermore, the ability to respond adequately to various stressors is hampered, and this is traditionally defined as premature aging or senescence. This review highlights recent advances in our understanding of the cellular and molecular mechanisms that are involved in the response to intermittent hypoxia and the potential interplay among various pathways that may accelerate the aging process.
Collapse
Affiliation(s)
- Robert M Douglas
- Department of Pediatrics, University of California San Diego, and Rady Children's Hospital-San Diego, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
231
|
Ignacak ML, Harbaugh SV, Dayyat E, Row BW, Gozal D, Czyzyk-Krzeska MF. Intermittent hypoxia regulates RNA polymerase II in hippocampus and prefrontal cortex. Neuroscience 2009; 158:1436-45. [PMID: 19095046 PMCID: PMC2668983 DOI: 10.1016/j.neuroscience.2008.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/09/2008] [Accepted: 11/13/2008] [Indexed: 01/13/2023]
Abstract
Intermittent hypoxia (IH) is a major pathological factor in the development of neural deficits associated with sleep-disordered breathing. Here we demonstrate that IH lasting 2 or 30 days, but not sustained hypoxia (SH) of the same duration, was accompanied by several posttranslational modifications of the large subunit of RNA polymerase II, Rpb1, including hydroxylation of proline 1465, phosphorylation of serine 5 residues within the C-terminal domain, and nondegradative ubiquitylation. These modifications were found to occur in two regions of the brain, hippocampal region CA1 and the prefrontal cortex, but not in neocortex, brainstem and CA3 region of hippocampus. We also found that mice exposed to 14 or 30 days of IH, but not SH, demonstrated cognitive deficits in behavioral assays. Furthermore, by using the pheochromocytoma-derived PC12 cell line, we showed that, under in vitro IH conditions, induction of Rpb1 hydroxylation, phosphorylation, and ubiquitylation required that the von Hippel-Lindau protein be present. We hypothesize that the observed modifications of Rpb1 participate in regulating the expression of genes involved in mediating cognitive deficits evoked by chronic IH.
Collapse
Affiliation(s)
- Monika L. Ignacak
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH, 45267-0505
| | - Svetlana V. Harbaugh
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH, 45267-0505
| | - Ehab Dayyat
- Kosair Children’s Hospital Research Institute, and Departments of Pediatrics, Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Barry W. Row
- Kosair Children’s Hospital Research Institute, and Departments of Pediatrics, Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - David Gozal
- Kosair Children’s Hospital Research Institute, and Departments of Pediatrics, Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | | |
Collapse
|
232
|
Abstract
There is increasing evidence of a causal relationship between sleep-disordered breathing and metabolic dysfunction. Metabolic syndrome (MetS), a cluster of risk factors that promote atherosclerotic cardiovascular disease, comprises central obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension, manifestations of altered total body energy regulation. Excess caloric intake is indisputably the key driver of MetS, but other environmental and genetic factors likely play a role; in particular, obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), may induce or exacerbate various aspects of MetS. Clinical studies show that OSA can affect glucose metabolism, cholesterol, inflammatory markers, and nonalcoholic fatty liver disease. Animal models of OSA enable scientists to circumvent confounders such as obesity in clinical studies. In the most widely used model, which involves exposing rodents to IH during their sleep phase, the IH alters circadian glucose homeostasis, impairs muscle carbohydrate uptake, induces hyperlipidemia, and upregulates cholesterol synthesis enzymes. Complicating factors such as obesity or a high-fat diet lead to progressive insulin resistance and liver inflammation, respectively. Mechanisms for these effects are not yet fully understood, but are likely related to energy-conserving adaptations to hypoxia, which is a strong catabolic stressor. Finally, IH may contribute to the morbidity of MetS by inducing inflammation and oxidative stress. Identification of OSA as a potential causative factor in MetS would have immense clinical impact and could improve the management and understanding of both disorders.
Collapse
Affiliation(s)
- Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | |
Collapse
|
233
|
MacFarlane PM, Wilkerson JER, Lovett-Barr MR, Mitchell GS. Reactive oxygen species and respiratory plasticity following intermittent hypoxia. Respir Physiol Neurobiol 2008; 164:263-71. [PMID: 18692605 PMCID: PMC2642907 DOI: 10.1016/j.resp.2008.07.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 07/13/2008] [Accepted: 07/15/2008] [Indexed: 11/18/2022]
Abstract
The neural network controlling breathing exhibits plasticity in response to environmental or physiological challenges. For example, while hypoxia initiates rapid and robust increases in respiratory motor output to defend against hypoxemia, it also triggers persistent changes, or plasticity, in chemosensory neurons and integrative pathways that transmit brainstem respiratory activity to respiratory motor neurons. Frequently studied models of hypoxia-induced respiratory plasticity include: (1) carotid chemosensory plasticity and metaplasticity induced by chronic intermittent hypoxia (CIH), and (2) acute intermittent hypoxia (AIH) induced phrenic long-term facilitation (pLTF) in naïve and CIH preconditioned rats. These forms of plasticity share some mechanistic elements, although they differ in anatomical location and the requirement for CIH preconditioning. Both forms of plasticity require serotonin receptor activation and formation of reactive oxygen species (ROS). While the cellular sources and targets of ROS are not well known, recent evidence suggests that ROS modify the balance of protein phosphatase and kinase activities, shifting the balance towards net phosphorylation and favoring cellular reactions that induce and/or maintain plasticity. Here, we review possible sources of ROS, and the impact of ROS on phosphorylation events relevant to respiratory plasticity.
Collapse
Affiliation(s)
- P M MacFarlane
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
234
|
Shin C, Kim JK, Kim JH, Jung KH, Cho KJ, Lee CK, Lee SG. Increased cell-free DNA concentrations in patients with obstructive sleep apnea. Psychiatry Clin Neurosci 2008; 62:721-7. [PMID: 19068010 DOI: 10.1111/j.1440-1819.2008.01876.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Blood concentrations of cell-free DNA, which is considered to be released during apoptosis, are elevated under some pathological conditions such as cardiovascular disease and cancer. The association between obstructive sleep apnea (OSA) and cell-free DNA concentrations has not been reported so far. The purpose of the present study was to examine the association between OSA and plasma DNA concentrations. METHODS A case-control study was conducted using a total of 164 men aged 39-67 years, who were free of coronary heart disease and cancer. Laboratory-based overnight polysomnography was performed for all participants. RESULTS On the basis of polysomnography, patients with an apnea-hypopnea index (AHI) = 5-30 events/h were defined as having mild-moderate OSA (n = 33) and those with >30 events/h were defined as having severe OSA (n = 49). All 82 controls had AHI < 5 events/h. Plasma DNA concentrations from all participants were analyzed for the beta-globin gene using fluorescence-based real-time polymerase chain reaction. Patients with severe OSA had significantly higher plasma DNA concentrations than persons with mild-moderate OSA and those without OSA (P < 0.05). AHI was significantly associated with body mass index (P < 0.001), hypertension (P < 0.001), and plasma DNA concentration (P < 0.05). CONCLUSION After taking into account hypertension and other potential risk factors, persons with high plasma DNA concentrations (>8 microg/L) had approximately fourfold higher odds of OSA than those with low DNA levels. Further data are warranted to confirm the association for men and to evaluate the association for women.
Collapse
Affiliation(s)
- Chol Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
PURPOSE OF REVIEW To delineate some of the major morbid phenotypes that have emerged in pediatric obstructive sleep apnea (OSA), address new concepts in our understanding of OSA-associated morbidities, and elaborate on innovative therapeutic schemes that may improve outcomes for this condition. In addition, the conceptual framework whereby a childhood condition such as OSA can be linked to specific adult diseases will be presented. RECENT FINDINGS OSA in children is a frequent condition that affects up to 3% of nonobese, otherwise healthy children. In recent years, increased awareness of OSA and changes in obesity rates in children have contributed to significant changes in disease prevalence and clinical presentation, such that distinct morbidity-related phenotypes have become apparent. Furthermore, oxidative stress and systemic inflammatory pathways are mechanistically involved in the pathophysiology of OSA-associated morbidity. Adenotonsillectomy, the treatment of choice for pediatric OSA, may not be as efficacious as previously thought. Alternative nonsurgical therapies have started to emerge and may become an essential component of treatment. SUMMARY Pediatric OSA, particularly when obesity is concurrently present, is associated with substantial end-organ morbidities that primarily but not exclusively affect central nervous and cardiovascular systems. These morbidities are pathophysiologically mediated by inflammatory and free radical mediators. Although adenotonsillectomy remains the first line of treatment, more critical assessment of its role is needed, and incorporation of nonsurgical approaches to pediatric OSA seems warranted.
Collapse
|
236
|
Yan B, Li L, Harden SW, Gozal D, Lin Y, Wead WB, Wurster RD, Cheng ZJ. Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguous of F344 rats. Am J Physiol Regul Integr Comp Physiol 2008; 296:R299-308. [PMID: 19020286 DOI: 10.1152/ajpregu.90412.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic intermittent hypoxia (CIH), as occurs in sleep apnea, impairs baroreflex-mediated reductions in heart rate (HR) and enhances HR responses to electrical stimulation of vagal efferent. We tested the hypotheses that HR responses to activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the nucleus ambiguous (NA) are reduced in CIH-exposed rats and that this impairment is associated with degeneration of glutamate receptor (GluR)-immunoreactive NA neurons. Fischer 344 rats (3-4 mo) were exposed to room air (RA) or CIH for 35-50 days (n = 18/group). At the end of the exposures, AMPA (4 pmol, 20 nl) and NMDA (80 pmol, 20 nl) were microinjected into the same location of the left NA (-200 microm to +200 microm relative to caudal end of area postrema; n = 6/group), and HR and arterial blood pressure responses were measured. In addition, brain stem sections at the level of -800, -400, 0, +400, and +800 microm relative to obex were processed for AMPA and NMDA receptor immunohistochemistry. The number of NA neurons expressing AMPA receptors and NMDA receptors (NMDARs) was quantified. Compared with RA, we found that after CIH 1) HR responses to microinjection of AMPA into the left NA were reduced (RA -290 +/- 30 vs. CIH -227 +/- 15 beats/min, P < 0.05); 2) HR responses to microinjection of NMDA into the left NA were reduced (RA -302 +/- 16 vs. CIH -238 +/- 27 beats/min, P < 0.05); and 3) the number of NMDAR1, AMPA GluR1, and AMPA GluR2/3-immunoreactive cells in the NA was reduced (P < 0.05). These results suggest that degeneration of NA neurons expressing GluRs contributes to impaired baroreflex control of HR in rats exposed to CIH.
Collapse
Affiliation(s)
- Binbin Yan
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Parkway, Orlando, FL 32816, USA
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Alkhalil M, Schulman ES, Getsy J. Obstructive sleep apnea syndrome and asthma: the role of continuous positive airway pressure treatment. Ann Allergy Asthma Immunol 2008; 101:350-7. [PMID: 18939721 DOI: 10.1016/s1081-1206(10)60309-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To review the concept of a possible link between asthma and obstructive sleep apnea syndrome (OSAS) and the impact on asthma symptoms of treatment of OSAS with continuous positive airway pressure (CPAP) in patients with both conditions. DATA SOURCES The Ovid, MEDLINE, and PubMed databases from 1950 to the present were searched for relevant articles regarding a possible relationship between asthma and OSAS and the effectiveness of CPAP in treating OSAS. STUDY SELECTION Articles describing pathophysiologic conditions occurring in OSAS that may be linked to asthma pathogenesis were used for this review. RESULTS The data suggest that OSAS is an independent risk factor for asthma exacerbations. CPAP has been shown in prospective clinical studies to have a positive impact on asthma outcome in patients with concomitant OSAS. Ameliorative mechanisms of treatment with CPAP include mechanical and neuromechanical effects, gastroesophageal acid reflux suppression, local and systemic anti-inflammatory effects (including suppression of increased serum levels of inflammatory cytokines, chemokines, and vascular endothelial growth factor), cardiac function improvements, leptin level suppression, weight reduction, and sleep restoration. CONCLUSIONS Asthma and OSAS are increasingly troublesome public health issues. Mounting evidence implicates OSAS as a risk factor for asthma exacerbations, thereby linking these 2 major epidemics. We describe potential mechanisms whereby CPAP, the first line of therapy for OSAS, might modify airway smooth muscle function and asthma control in patients with both disorders. Despite the ever-increasing population of patients with both disorders, large, prospective, randomized controlled studies are necessary to more fully evaluate CPAP and asthma outcomes.
Collapse
Affiliation(s)
- Michel Alkhalil
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.
| | | | | |
Collapse
|
238
|
Lin M, Ai J, Li L, Huang C, Chapleau MW, Liu R, Gozal D, Wead WB, Wurster RD, Cheng Z'J'. Structural remodeling of nucleus ambiguus projections to cardiac ganglia following chronic intermittent hypoxia in C57BL/6J mice. J Comp Neurol 2008; 509:103-17. [PMID: 18425809 DOI: 10.1002/cne.21732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The baroreflex control of heart rate (HR) is reduced following chronic intermittent hypoxia (CIH). Since the nucleus ambiguus (NA) plays a key role in baroreflex control of HR, we examined whether CIH remodels vagal efferent projections to cardiac ganglia. C57BL/6J mice (3-4 months of age) were exposed to either room air (RA) or CIH for 3 months. Confocal microscopy was used to examine NA axons and terminals in cardiac ganglia following Fluoro-Gold (FG) injections to label cardiac ganglia, and microinjections of tracer DiI into the left NA to anterogradely label vagal efferents. We found that: 1) Cardiac ganglia were widely distributed on the dorsal surface of the atria. Although the total number of cardiac ganglia did not differ between RA and CIH mice, the size of ganglia and the somatic area of cardiac principal neurons (PNs) were significantly decreased (P < 0.01), and the size of the PN nuclei was increased following CIH (P < 0.01). 2) NA axons entered cardiac ganglia and innervated PNs with dense basket endings in both RA and CIH mice, and the percentage of innervated PNs was similar (RA: 50 +/- 1.0%; CIH: 49 +/- 1.0%; P > 0.10). In CIH mice, however, swollen cardiac axons and terminals without close contacts to PNs were found. Furthermore, varicose endings around PNs appeared swollen and the axonal varicose area around PNs was almost doubled in size (CIH: 163.1 +/- 6.4 microm(2); RA: 88 +/- 3.9 microm(2), P < 0.01). Thus, CIH significantly altered the structure of cardiac ganglia and resulted in reorganized vagal efferent projections to cardiac ganglia. Such remodeling of cardiac ganglia and vagal efferent projections provides new insight into the effects of CIH on the brain-heart circuitry of C57BL/6J mice.
Collapse
Affiliation(s)
- Min Lin
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Jelic S, Le Jemtel TH. Inflammation, Oxidative Stress, and the Vascular Endothelium in Obstructive Sleep Apnea. Trends Cardiovasc Med 2008; 18:253-60. [DOI: 10.1016/j.tcm.2008.11.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
240
|
Jun J, Savransky V, Nanayakkara A, Bevans S, Li J, Smith PL, Polotsky VY. Intermittent hypoxia has organ-specific effects on oxidative stress. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1274-81. [PMID: 18703411 DOI: 10.1152/ajpregu.90346.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Obstructive sleep apnea is characterized by upper airway collapse, leading to intermittent hypoxia (IH). It has been postulated that IH-induced oxidative stress may contribute to several chronic diseases associated with obstructive sleep apnea. We hypothesize that IH induces systemic oxidative stress by upregulating NADPH oxidase, a superoxide-generating enzyme. NADPH oxidase is regulated by a cytosolic p47(phox) subunit, which becomes phosphorylated during enzyme activation. Male C57BL/6J mice were exposed to IH with an inspired O(2) fraction nadir of 5% 60 times/h during the 12-h light phase (9 AM-9 PM) for 1 or 4 wk. In the aorta and heart, IH did not affect lipid peroxidation [malondialdehyde (MDA) level], nitrotyrosine level, or p47(phox) expression and phosphorylation. In contrast, in the liver, exposure to IH for 1 wk resulted in a trend to an increase in MDA levels, whereas IH for 4 wk resulted in a 38% increase in MDA levels accompanied by upregulation of p47(phox) expression and phosphorylation. Administration of an NADPH oxidase inhibitor, apocynin, during IH exposure attenuated IH-induced increases in hepatic MDA. In p47(phox)-deficient mice, MDA levels were higher at baseline and, unexpectedly, decreased during IH. In conclusion, oxidative stress levels and pathways under IH conditions are organ and duration specific.
Collapse
Affiliation(s)
- Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
241
|
Soukhova-O'Hare GK, Ortines RV, Gu Y, Nozdrachev AD, Prabhu SD, Gozal D. Postnatal Intermittent Hypoxia and Developmental Programming of Hypertension in Spontaneously Hypertensive Rats. Hypertension 2008; 52:156-62. [DOI: 10.1161/hypertensionaha.108.110296] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obstructive and central apneas during sleep are associated with chronic intermittent hypoxia (CIH) and increased cardiovascular morbidity. Spontaneously hypertensive rats exposed to CIH during postnatal days 4 to 30 develop exaggerated hypertension as adults. We hypothesized that reactive oxygen species and altered L-Ca
2+
channel activity may underlie the postnatal programming of exaggerated blood pressure and cardiac remodeling. Newborn male spontaneously hypertensive rats were exposed to CIH (10% and 21% O
2
alternating every 90 seconds, 12 h/d, for postnatal days 4 to 30) or normoxia (room air). In each condition, spontaneously hypertensive rats received daily (SC) 1 of 3 treatments:
l
-calcium channel blocker nifedipine (5 mg/kg), superoxide dismutase mimetic MnTMPyP pentachloride (10 mg/kg), or vehicle (polyethylene glycol). Blood pressure was evaluated monthly for 6 months after birth, and echocardiographic assessments were conducted at 6 months of age. CIH vehicle-treated rats presented higher systolic blood pressure (187±5 mm Hg) as compared with normoxic vehicle treated controls (163±2 mm Hg;
P
<0.001). Postnatal CIH elicited marked increases in left ventricular wall thickness in a pattern of concentric hypertrophy with augmented systolic contractility. The treatment with nifedipine in the CIH group attenuated blood pressure (159±2 mm Hg;
P
<0.001) and normalized left ventricular wall thickness and systolic function, whereas the treatment with SOD mimetic decreased blood pressure (165±2 mm Hg;
P
<0.001) and reduced left ventricular wall thickness without changes in the systolic function. We conclude that Ca
2+
and reactive oxygen species–mediated signaling during intermittent hypoxia are critical mechanisms underlying postnatal programming of an increased severity of hypertension and hypertrophic cardiac remodeling in a genetically susceptible rodent model.
Collapse
Affiliation(s)
- Galia K. Soukhova-O'Hare
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - Roger V. Ortines
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - Yan Gu
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - Alexander D. Nozdrachev
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - Sumanth D. Prabhu
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - David Gozal
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| |
Collapse
|
242
|
Soukhova-O'Hare GK, Shah ZA, Lei Z, Nozdrachev AD, Rao CV, Gozal D. Erectile dysfunction in a murine model of sleep apnea. Am J Respir Crit Care Med 2008; 178:644-50. [PMID: 18535258 DOI: 10.1164/rccm.200801-190oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Erectile dysfunction (ED) is frequent in obstructive sleep apnea syndrome (OSAS). Chronic intermittent hypoxia (CIH), one of the hallmarks of OSAS, could mediate ED. OBJECTIVES To determine whether intermittent hypoxia during sleep affects erectile dysfunction in mice. METHODS Three groups of C57BL/6 mice were exposed to CIH for 5 or 24 weeks. Sexual function was evaluated by in vivo telemetry of corpus spongiosum pressure. Spontaneous erections, sexual activity during mating, and noncontact tests were assessed after 5 weeks of CIH and after treatment with tadalafil. Plasma testosterone was measured after 8 and 24 weeks of CIH, and the expression of nitric oxide synthase (NOS) isoforms was examined in penile tissue. MEASUREMENTS AND MAIN RESULTS Noncontact, spontaneous, and contact sexual activity in the mice was suppressed after CIH. Spontaneous erection counts decreased after the first week of CIH by 55% (P < 0.001) and remained unchanged thereafter. Recovery of erectile activity during normoxia for 6 weeks was incomplete. Compared with control mice, latencies for mounts and intromissions increased by 60- and 40-fold, respectively (P < 0.001), and the sexual activity index decreased sixfold. Tadalafil treatment significantly attenuated these effects. Immunoblot analyses of NOS proteins in the erectile tissue showed decreased expression of endothelial NOS after CIH (P < 0.01), with no changes in plasma testosterone levels after 8 and 24 weeks of CIH. CONCLUSIONS CIH during sleep is associated with decreased libido in mice. The decreased expression of endothelial NOS protein in erectile tissue and the favorable response to tadalafil suggest that altered nitric oxide mechanisms underlie CIH-mediated ED. No changes in testosterone emerge after intermittent hypoxia.
Collapse
Affiliation(s)
- Galia K Soukhova-O'Hare
- Kosair Children's Hospital Research Institute, University of Louisville, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
243
|
Gupte SA, Wolin MS. Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 2008; 10:1137-52. [PMID: 18315496 PMCID: PMC2443404 DOI: 10.1089/ars.2007.1995] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 12/03/2007] [Accepted: 12/07/2007] [Indexed: 02/02/2023]
Abstract
It has been well known for >100 years that systemic blood vessels dilate in response to decreases in oxygen tension (hypoxia; low PO2), and this response appears to be critical to supply blood to the stressed organ. Conversely, pulmonary vessels constrict to a decrease in alveolar PO2 to maintain a balance in the ventilation-to-perfusion ratio. Currently, although little question exists that the PO2 affects vascular reactivity and vascular smooth muscle cells (VSMCs) act as oxygen sensors, the molecular mechanisms involved in modulating the vascular reactivity are still not clearly understood. Many laboratories, including ours, have suggested that the intracellular calcium concentration ([Ca2+]i), which regulates vasomotor function, is controlled by free radicals and redox signaling, including NAD(P)H and glutathione (GSH) redox. In this review article, therefore, we discuss the implications of redox and oxidant alterations seen in pulmonary and systemic hypertension, and how key targets that control [Ca2+]i, such as ion channels, Ca2+ release from internal stores and uptake by the sarcoplasmic reticulum, and the Ca2+ sensitivity to the myofilaments, are regulated by changes in intracellular redox and oxidants associated with vascular PO2sensing in physiologic or pathophysiologic conditions.
Collapse
Affiliation(s)
- Sachin A Gupte
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
244
|
Abstract
Recent increases in our awareness to the high prevalence of sleep disorders in general and of sleep-disordered breathing among children, in particular, has led to concentrated efforts aiming to understand the pathophysiological mechanisms, clinical manifestations, and potential consequences of such conditions. In this review, I will briefly elaborate on some of the pathogenetic elements leading to the occurrence of obstructive sleep apnea (OSA) in children, focus on the psychobehavioral consequences of pediatric OSA, and review the evidence on the potential mechanisms underlying the close association between central nervous system morbidity and the episodic hypoxia and sleep fragmentation that characterize OSA.
Collapse
Affiliation(s)
- David Gozal
- Kosair Children's Hospital Research Institute and Division of Pediatric Sleep Medicine, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
245
|
Sarada S, Himadri P, Ruma D, Sharma S, Pauline T, Mrinalini. Selenium protects the hypoxia induced apoptosis in neuroblastoma cells through upregulation of Bcl-2. Brain Res 2008; 1209:29-39. [DOI: 10.1016/j.brainres.2008.02.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 01/03/2023]
|
246
|
Chathu F, Krishnakumar A, Paulose CS. Acetylcholine esterase activity and behavioral response in hypoxia induced neonatal rats: effect of glucose, oxygen and epinephrine supplementation. Brain Cogn 2008; 68:59-66. [PMID: 18406032 DOI: 10.1016/j.bandc.2008.02.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 12/15/2022]
Abstract
Brain damage due to an episode of hypoxia remains a major problem in infants causing deficit in motor and sensory function. Hypoxia leads to neuronal functional failure, cerebral palsy and neuro-developmental delay with characteristic biochemical and molecular alterations resulting in permanent or transitory neurological sequelae or even death. During neonatal hypoxia, traditional resuscitation practices include the routine administration of 100% oxygen, epinephrine and glucose. In the present study, we assessed the changes in the cholinergic system by measuring the acetylcholinesterase (AChE) activity and the behavioral responses shown by hypoxia induced neonatal rats and hypoxic rats supplemented with glucose, oxygen and epinephrine using elevated plus-maze and open-field test. The acetylcholine esterase enzyme activity showed a significant decrease in cerebral cortex, whereas it increased significantly in the muscle of experimental rats when compared to control. Hypoxic rats supplemented with glucose, glucose and oxygen showed a reversal to the control status. Behavioral studies were carried out in experimental rats with elevated plus-maze test and open-field test. Hypolocomotion and anxiogenic behavioral responses were observed in all experimental rats when compared to control, hypoxic rats supplemented with glucose, glucose and oxygen. Thus, our results suggest that brain damage due to hypoxia, oxygen and epinephrine supplementation in the neonatal rats cause acetylcholine-neuromuscular-defect leading to hypolocomotion and anxiogenic behavioral response. Glucose and glucose with oxygen supplementation to hypoxic neonates protect the brain damage for a better functional status in the later life.
Collapse
Affiliation(s)
- Finla Chathu
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | | |
Collapse
|
247
|
Yamauchi M, Kimura H. Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid Redox Signal 2008; 10:755-68. [PMID: 18177236 DOI: 10.1089/ars.2007.1946] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obstructive sleep apnea (OSA) is a major public health problem because of its high prevalence in morbidity and mortality. A growing body of evidence suggests that OSA is an important risk factor for cardiovascular diseases. Although the mechanism for the initiation and aggravation of cardiovascular disease has not been fully elucidated, one theorized mechanism is intermittent hypoxia, which is produced by each sleep-disordered breathing event. This repeated hypoxia and reoxygenation cycle is similar to hypoxia-reperfusion injury, which initiates oxidative stress. Recent studies have suggested that OSA is associated with increased levels of oxidative stress or antioxidant deficiencies or both. Oxidative stress is involved in the activation of redox-sensitive transcription factors, which regulate downstream products such as inflammatory cytokines, chemokines, and adhesion molecules. This pathway may be able to explain the pathogenesis of atherosclerosis, a common pathologic factor underlying all types of cardiovascular disease. In addition, endothelial dysfunction derived from oxidative stress can contribute to cardiovascular diseases. This review summarizes current available evidence for and against the occurrence of oxidative stress in OSA and discusses the putative pathways initiating cardiovascular consequences associated with OSA.
Collapse
Affiliation(s)
- Motoo Yamauchi
- Second Department of Internal Medicine, Nara Medical University, Nara, Japan.
| | | |
Collapse
|
248
|
Tjong YW, Li MF, Hung MW, Fung ML. Melatonin ameliorates hippocampal nitric oxide production and large conductance calcium-activated potassium channel activity in chronic intermittent hypoxia. J Pineal Res 2008; 44:234-43. [PMID: 18339118 DOI: 10.1111/j.1600-079x.2007.00515.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Melatonin protects against hippocampal injury induced by intermittent hypoxia (IH). IH-induced oxidative stress is associated with decreases in constitutive production of nitric oxide (NO) and in the activity of large conductance calcium-activated potassium (BK) channels in hippocampal neurons. We tested the hypothesis that administration of melatonin alleviates the NO deficit and impaired BK channel activity in the hippocampus of IH rats. Sprague-Dawley rats were injected with melatonin (10 mg/kg, i.p.) or vehicle before daily IH exposure for 8 hr for 7 days. The NO and intracellular calcium ([Ca2+]i) levels in the CA1 region of hippocampal slices were measured by electrochemical microsenor and spectrofluorometry, respectively. The activity of BK channels was recorded by patch-clamping electrophysiology in dissociated CA1 neurons. Malondialdehyde levels were increased in the hippocampus of hypoxic rats and were lowered by the melatonin treatment. Levels of NO under resting and hypoxic conditions, and the protein expression of neuronal NO synthase (nNOS) were significantly reduced in the CA1 neurons of hypoxic animals compared with the normoxic controls. These deficits were mitigated in the melatonin-treated hypoxic rats with an improved [Ca2+]i response to acute hypoxia. The open probability of BK channels was decreased in the hypoxic rats and was partially restored in the melatonin-treated animals, without alterations in the expression of channel subunits and unitary conductance. Acute treatment of melatonin had no significant effects on the BK channel activity or on the [Ca2+]i response to hypoxia. Collectively, these results suggest that melatonin ameliorates the constitutive NO production and BK channel activity via an antioxidant mechanism against an IH-induced down-regulation of nNOS expression in hippocampal neurons.
Collapse
Affiliation(s)
- Y W Tjong
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
249
|
Simpson JA, Brunt KR, Iscoe S. Repeated inspiratory occlusions acutely impair myocardial function in rats. J Physiol 2008; 586:2345-55. [PMID: 18325978 DOI: 10.1113/jphysiol.2007.150086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Repeated episodes of hypoxia and sympathetic activation during obstructive sleep apnoea are implicated in the initiation and progression of cardiovascular diseases, but the acute effects are unknown. We hypothesized that repeated inspiratory occlusions cause acute myocardial dysfunction and injury. In 22 spontaneously breathing pentobarbital-anaesthetized rats, inspiration was occluded for 30 s every 2 min for 3 h. After approximately 1.5 h, mean arterial pressure started to fall; heart rate between occlusions was stable throughout, consistent with only transient increases in sympathetic activity during each occlusion. Three hours of occlusions resulted in ventricular diastolic dysfunction (reduced peak rate of change of ventricular pressure and slower relaxation). Post-occlusions, the left ventricular contractile response to dobutamine was blunted. After 1 h of recovery, left ventricular pressure generation had returned to values no different from those in sham animals in 5 of 9 of the animals. Cardiac myofibrils from rats subjected to occlusions had depressed calcium-activated myosin ATPase activity, indicating myofilament contractile dysfunction that was not due to breakdown of contractile proteins. Haematoxylin and eosin-stained cross-sections revealed multifocal areas of necrosis within the septum and both ventricles. Repeated inspiratory occlusions, analogous to moderately severe obstructive sleep apnoea, acutely cause global cardiac dysfunction with multifocal myocardial infarcts.
Collapse
Affiliation(s)
- Jeremy A Simpson
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
250
|
MacFarlane PM, Mitchell GS. Respiratory long-term facilitation following intermittent hypoxia requires reactive oxygen species formation. Neuroscience 2008; 152:189-97. [PMID: 18207649 PMCID: PMC2570770 DOI: 10.1016/j.neuroscience.2007.12.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 11/19/2022]
Abstract
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). LTF is a progressive and sustained increase in respiratory motor output as expressed in phrenic and hypoglossal (XII) nerve activity. Since reactive oxygen species (ROS) play important roles in several forms of neuroplasticity, and ROS production is increased by intermittent hypoxia, we tested the hypothesis that ROS are necessary for phrenic and XII LTF following AIH. Urethane-anesthetized, paralyzed, vagotomized and pump-ventilated Sprague-Dawley rats were exposed to AIH (11% O2, 3, 5 min episodes, 5 min intervals), and both phrenic and XII nerve activity were monitored for 60 min post-AIH. Although phrenic and XII LTF were observed in control rats, i.v. manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP), a superoxide anion scavenger, attenuated both phrenic and XII LTF in a dose dependent manner. Localized application of MnTMPyP (5.5 mM; 10 microl) to the intrathecal space of the cervical spinal cord (C4) abolished phrenic, but not XII LTF. Thus, ROS are necessary for AIH-induced respiratory LTF, and the relevant ROS appear to be localized near respiratory motor nuclei since cervical MnTMPyP injections impaired phrenic (and not XII) LTF. Phrenic LTF is a novel form of ROS-dependent neuroplasticity since its ROS-dependence resides in the spinal cord.
Collapse
Affiliation(s)
- PM MacFarlane
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA 53706, Ph.: 608-263-5013, Fax: 608-263-3926,
| | - GS Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA 53706, Ph.: 608-263-5878, Fax: 608-263-3926,
| |
Collapse
|