201
|
Di Felice V, Zummo G. Tetralogy of fallot as a model to study cardiac progenitor cell migration and differentiation during heart development. Trends Cardiovasc Med 2009; 19:130-5. [PMID: 19818949 DOI: 10.1016/j.tcm.2009.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tetralogy of Fallot (ToF) has long been considered a congenital disorder that occurs due to environmental alterations during gestation. Recently, several mutated genes have been discovered that are thought to be responsible for the malformations observed in ToF. These genetic mutations, which are microdeletions, are sporadic and are frequently also present in trisomy 21 patients. The ToF malformations can be lethal, but for the last 50 years, surgical repairs that place an artificial patch to repair the four features of ToF have improved the survival of patients with ToF. However, 0.5% to 6% of patients who survive after surgical repair of ToF die of sudden cardiac death caused by ventricular tachycardia. In fact, even if the septum has been repaired, the patch used to close the interventricular defect may cause deformation of the heart, altering the force lines essential for normal function of the right ventricle. In the present review, we hypothesize that mutations in the GATA binding protein 4 (GATA-4)/friend of GATA-2 transcriptional complex and NKX2.5 gene may play a role in the abnormal migration and behavior of precardiac cells during heart development in patients with ToF. An understanding of cardiac precursor cell behavior is needed in order for future research regarding therapeutic approaches to correct the defects seen in ToF without affecting cardiac hemodynamics to be successful.
Collapse
Affiliation(s)
- Valentina Di Felice
- Dipartimento di Medicina Sperimentale, Università degli studi di Palermo, Italy.
| | | |
Collapse
|
202
|
Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 2009; 5:364-77. [PMID: 19796617 DOI: 10.1016/j.stem.2009.09.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Stem cell biology holds great promise for a new era of cell-based therapy, sparking considerable interest among scientists, clinicians, and their patients. However, the translational arm of stem cell science is in a relatively primitive state. Although a number of clinical studies have been initiated, the early returns point to several inherent problems. In this regard, the clinical potential of stem cells can only be fully realized by the identification of the key barriers to clinical implementation. Here, we examine experimental paradigms to address the critical steps in the transition from stem cell biology to regenerative medicine, utilizing cardiovascular disease as a case study.
Collapse
Affiliation(s)
- Emil M Hansson
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA
| | | | | |
Collapse
|
203
|
Domian IJ, Chiravuri M, van der Meer P, Feinberg AW, Shi X, Shao Y, Wu SM, Parker KK, Chien KR. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 2009; 326:426-9. [PMID: 19833966 DOI: 10.1126/science.1177350] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mammalian heart is formed from distinct sets of first and second heart field (FHF and SHF, respectively) progenitors. Although multipotent progenitors have previously been shown to give rise to cardiomyocytes, smooth muscle, and endothelial cells, the mechanism governing the generation of large numbers of differentiated progeny remains poorly understood. We have employed a two-colored fluorescent reporter system to isolate FHF and SHF progenitors from developing mouse embryos and embryonic stem cells. Genome-wide profiling of coding and noncoding transcripts revealed distinct molecular signatures of these progenitor populations. We further identify a committed ventricular progenitor cell in the Islet 1 lineage that is capable of limited in vitro expansion, differentiation, and assembly into functional ventricular muscle tissue, representing a combination of tissue engineering and stem cell biology.
Collapse
Affiliation(s)
- Ibrahim J Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza, CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Cho J, Rameshwar P, Sadoshima J. Distinct roles of glycogen synthase kinase (GSK)-3alpha and GSK-3beta in mediating cardiomyocyte differentiation in murine bone marrow-derived mesenchymal stem cells. J Biol Chem 2009; 284:36647-36658. [PMID: 19858210 DOI: 10.1074/jbc.m109.019109] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The signaling mechanisms facilitating cardiomyocyte (CM) differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs) are not well understood. 5-Azacytidine (5-Aza), a DNA demethylating agent, induces expression of cardiac-specific genes, such as Nkx2.5 and alpha-MHC, in mouse BM-derived MSCs. 5-Aza treatment caused significant up-regulation of glycogen synthase kinase (GSK)-3beta and down-regulation of beta-catenin, whereas it stimulated GSK-3alpha expression only modestly. The promoter region of GSK-3beta was heavily methylated in control MSCs, but was demethylated by 5-Aza. Although overexpression of GSK-3beta potently induced CM differentiation, that of GSK-3alpha induced markers of neuronal and chondrocyte differentiation. GSK-3 inhibitors, including LiCl, SB 216743, and BIO, abolished 5-Aza-induced up-regulation of CM-specific genes, suggesting that GSK-3 is necessary and sufficient for CM differentiation in MSCs. Although specific knockdown of endogenous GSK-3beta abolished 5-Aza-induced expression of cardiac specific genes, surprisingly, that of GSK-3alpha facilitated CM differentiation in MSCs. Although GSK-3beta is found in both the cytosol and nucleus in MSCs, GSK-3alpha is localized primarily in the nucleus. Nuclear-specific overexpression of GSK-3beta failed to stimulate CM differentiation. Down-regulation of beta-catenin mediates GSK-3beta-induced CM differentiation in MSCs, whereas up-regulation of c-Jun plays an important role in mediating CM differentiation induced by GSK-3alpha knockdown. These results suggest that GSK-3alpha and GSK-3beta have distinct roles in regulating CM differentiation in BM-derived MSCs. GSK-3beta in the cytosol induces CM differentiation of MSCs through down-regulation of beta-catenin. In contrast, GSK-3alpha in the nucleus inhibits CM differentiation through down-regulation of c-Jun.
Collapse
Affiliation(s)
- Jaeyeaon Cho
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Pranela Rameshwar
- Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103.
| |
Collapse
|
205
|
Braam SR, Passier R, Mummery CL. Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends Pharmacol Sci 2009; 30:536-45. [PMID: 19762090 DOI: 10.1016/j.tips.2009.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 01/22/2023]
Abstract
Stem cells derived from pre-implantation human embryos or from somatic cells by reprogramming are pluripotent and self-renew indefinitely in culture. Pluripotent stem cells are unique in being able to differentiate to any cell type of the human body. Differentiation towards the cardiac lineage has attracted significant attention, initially with a strong focus on regenerative medicine. Although an important research area, the heart has proven challenging to repair by cardiomyocyte replacement. However, the ability to reprogramme adult cells to pluripotent stem cells and genetically manipulate stem cells presented opportunities to develop models of human disease. The availability of human cardiomyocytes from stem cell sources is expected to accelerate the discovery of cardiac drugs and safety pharmacology by offering more clinically relevant human culture models than presently available. Here we review the state-of-the-art using stem cell-derived human cardiomyocytes in drug discovery, drug safety pharmacology, and regenerative medicine.
Collapse
Affiliation(s)
- Stefan R Braam
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
206
|
|
207
|
Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 2009; 460:113-7. [PMID: 19571884 DOI: 10.1038/nature08191] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/05/2009] [Indexed: 11/08/2022]
Abstract
The generation and expansion of diverse cardiovascular cell lineages is a critical step during human cardiogenesis, with major implications for congenital heart disease. Unravelling the mechanisms for the diversification of human heart cell lineages has been hampered by the lack of genetic tools to purify early cardiac progenitors and define their developmental potential. Recent studies in the mouse embryo have identified a multipotent cardiac progenitor that contributes to all of the major cell types in the murine heart. In contrast to murine development, human cardiogenesis has a much longer onset of heart cell lineage diversification and expansion, suggesting divergent pathways. Here we identify a diverse set of human fetal ISL1(+) cardiovascular progenitors that give rise to the cardiomyocyte, smooth muscle and endothelial cell lineages. Using two independent transgenic and gene-targeting approaches in human embryonic stem cell lines, we show that purified ISL1(+) primordial progenitors are capable of self-renewal and expansion before differentiation into the three major cell types in the heart. These results lay the foundation for the generation of human model systems for cardiovascular disease and novel approaches for human regenerative cardiovascular medicine.
Collapse
|
208
|
Affiliation(s)
- Peter J Schlueter
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
209
|
A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 2009; 11:951-7. [PMID: 19620969 PMCID: PMC2748816 DOI: 10.1038/ncb1906] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/20/2009] [Indexed: 01/05/2023]
Abstract
Regulation of multipotent cardiac progenitor cell (CPC) expansion and subsequent differentiation into cardiomyocytes, smooth muscle or endothelial cells is a fundamental aspect of basic cardiovascular biology and cardiac regenerative medicine. However, the mechanisms governing these decisions remain unclear. Here, we show that Wnt/beta-catenin signalling, which promotes expansion of CPCs, is negatively regulated by Notch1-mediated control of phosphorylated beta-catenin accumulation within CPCs, and that Notch1 activity in CPCs is required for their differentiation. Notch1 positively, and beta-catenin negatively, regulated expression of the cardiac transcription factors, Isl1, Myocd and Smyd1. Surprisingly, disruption of Isl1, normally expressed transiently in CPCs before their differentiation, resulted in expansion of CPCs in vivo and in an embryonic stem (ES) cell system. Furthermore, Isl1 was required for CPC differentiation into cardiomyocyte and smooth muscle cells, but not endothelial cells. These findings reveal a regulatory network controlling CPC expansion and cell fate that involves unanticipated functions of beta-catenin, Notch1 and Isl1 that may be leveraged for regenerative approaches involving CPCs.
Collapse
|
210
|
Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimarães-Camboa N, Evans SM, Tzahor E. Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 2009; 16:822-32. [PMID: 19531353 DOI: 10.1016/j.devcel.2009.05.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 04/07/2009] [Accepted: 05/11/2009] [Indexed: 11/28/2022]
Abstract
Adult skeletal muscle possesses a remarkable regenerative capacity, due to the presence of satellite cells, adult muscle stem cells. We used fate-mapping techniques in avian and mouse models to show that trunk (Pax3(+)) and cranial (MesP1(+)) skeletal muscle and satellite cells derive from separate genetic lineages. Similar lineage heterogeneity is seen within the head musculature and satellite cells, due to their shared, heterogenic embryonic origins. Lineage tracing experiments with Isl1Cre mice demonstrated the robust contribution of Isl1(+) cells to distinct jaw muscle-derived satellite cells. Transplantation of myofiber-associated, Isl1-derived satellite cells into damaged limb muscle contributed to muscle regeneration. In vitro experiments demonstrated the cardiogenic nature of cranial- but not trunk-derived satellite cells. Finally, overexpression of Isl1 in the branchiomeric muscles of chick embryos inhibited skeletal muscle differentiation in vitro and in vivo, suggesting that this gene plays a role in the specification of cardiovascular and skeletal muscle stem cell progenitors.
Collapse
Affiliation(s)
- Itamar Harel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
211
|
Kang J, Nathan E, Xu SM, Tzahor E, Black BL. Isl1 is a direct transcriptional target of Forkhead transcription factors in second-heart-field-derived mesoderm. Dev Biol 2009; 334:513-22. [PMID: 19580802 DOI: 10.1016/j.ydbio.2009.06.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
Abstract
The cells of the second heart field (SHF) contribute to the outflow tract and right ventricle, as well as to parts of the left ventricle and atria. Isl1, a member of the LIM-homeodomain transcription factor family, is expressed early in this cardiac progenitor population and functions near the top of a transcriptional pathway essential for heart development. Isl1 is required for the survival and migration of SHF-derived cells into the early developing heart at the inflow and outflow poles. Despite this important role for Isl1 in early heart formation, the transcriptional regulation of Isl1 has remained largely undefined. Therefore, to identify transcription factors that regulate Isl1 expression in vivo, we screened the conserved noncoding sequences from the mouse Isl1 locus for enhancer activity in transgenic mouse embryos. Here, we report the identification of an enhancer from the mouse Isl1 gene that is sufficient to direct expression to the SHF and its derivatives. The Isl1 SHF enhancer contains three consensus Forkhead transcription factor binding sites that are efficiently and specifically bound by Forkhead transcription factors. Importantly, the activity of the enhancer is dependent on these three Forkhead binding sites in transgenic mouse embryos. Thus, these studies demonstrate that Isl1 is a direct transcriptional target of Forkhead transcription factors in the SHF and establish a transcriptional pathway upstream of Isl1 in the SHF.
Collapse
Affiliation(s)
- Jione Kang
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Box 2240, San Francisco, CA 94158-2517, USA
| | | | | | | | | |
Collapse
|
212
|
Klaus A, Birchmeier W. Developmental signaling in myocardial progenitor cells: a comprehensive view of Bmp- and Wnt/beta-catenin signaling. Pediatr Cardiol 2009; 30:609-16. [PMID: 19099173 DOI: 10.1007/s00246-008-9352-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/15/2008] [Indexed: 12/22/2022]
Abstract
The tight regulation of different signaling systems and the transcriptional and translational networks during embryonic development have been the focus of embryologists in recent decades. Defective developmental signaling due to genetic mutation or temporal and region-specific alteration of gene expression causes embryonic lethality or accounts for birth defects (e.g., congenital heart disease). The formation of the heart requires the coordinated integration of multiple cardiac progenitor cell populations derived from the first and second heart fields and from cardiac neural crest cells. This article summarizes what has been learned from conditional mutagenesis of Bmp pathway components and the Wnt effector, beta-catenin, in the developing heart of mice. Although Bmp signaling is required for cardiac progenitor cell specification, proliferation, and differentiation, recent studies have demonstrated distinct functions of Wnt/beta-catenin signaling at various stages of heart development.
Collapse
Affiliation(s)
- Alexandra Klaus
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | | |
Collapse
|
213
|
Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik's cube of cell therapy for heart disease. Dis Model Mech 2009; 2:344-58. [PMID: 19553696 PMCID: PMC2707103 DOI: 10.1242/dmm.000240] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute ischemic injury and chronic cardiomyopathies damage healthy heart tissue. Dead cells are gradually replaced by a fibrotic scar, which disrupts the normal electromechanical continuum of the ventricular muscle and compromises its pumping capacity. Recent studies in animal models of ischemic cardiomyopathy suggest that transplantation of various stem cell preparations can improve heart recovery after injury. The first clinical trials in patients produced some encouraging results, showing modest benefits. Most of the positive effects are probably because of a favorable paracrine influence of stem cells on the disease microenvironment. Stem cell therapy attenuates inflammation, reduces apoptosis of surrounding cells, induces angiogenesis, and lessens the extent of fibrosis. However, little new heart tissue is formed. The current challenge is to find ways to improve the engraftment, long-term survival and appropriate differentiation of transplanted stem cells within the cardiovascular tissue. Hence, there has been a surge of interest in pluripotent stem cells with robust cardiogenic potential, as well as in the inherent repair and regenerative mechanisms of the heart. Recent discoveries on the biology of adult stem cells could have relevance for cardiac regeneration. Here, we discuss current developments in the field of cardiac repair and regeneration, and present our ideas about the future of stem cell therapy.
Collapse
Affiliation(s)
- Konstantinos D. Boudoulas
- Vanderbilt University, Department of Medicine and Department of Cell and Developmental Biology, Division of Cardiovascular Medicine, Nashville, TN 37232, USA
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Cardiology, Baltimore, MD 21205, USA
| | - Antonis K. Hatzopoulos
- Vanderbilt University, Department of Medicine and Department of Cell and Developmental Biology, Division of Cardiovascular Medicine, Nashville, TN 37232, USA
| |
Collapse
|
214
|
Willems E, Bushway PJ, Mercola M. Natural and synthetic regulators of embryonic stem cell cardiogenesis. Pediatr Cardiol 2009; 30:635-42. [PMID: 19319460 PMCID: PMC3478151 DOI: 10.1007/s00246-009-9409-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 03/03/2009] [Indexed: 12/24/2022]
Abstract
Debilitating cardiomyocyte loss underlies the progression to heart failure. Although there have been significant advances in treatment, current therapies are intended to improve or preserve heart function rather than regenerate lost myocardium. A major hurdle in implementing a cell-based regenerative therapy is the inefficient differentiation of cardiomyocytes from either endogenous or exogenous stem cell sources. Moreover, cardiomyocytes that develop in human embryonic stem cell (hESC) or human-induced pluripotent stem cell (hIPSC) cultures are comparatively immature, even after prolonged culture, and differences in their calcium handling, ion channel, and force generation properties relative to adult cardiomyocytes raise concerns of improper integration and function after transplantation. Thus, the discovery of natural and novel small molecule synthetic regulators of differentiation and maturation would accelerate the development of stem-cell-based myocardial therapies. Here, we document recent advances in defining natural signaling pathways that direct the multistep cardiomyogenic differentiation program and the development of small molecules that might be used to enhance differentiation as well as the potential characteristics of lead candidates for pharmaceutical stimulation of endogenous myocardial replacement.
Collapse
|
215
|
Koyanagi M, Iwasaki M, Haendeler J, Leitges M, Zeiher AM, Dimmeler S. Wnt5a increases cardiac gene expressions of cultured human circulating progenitor cells via a PKC delta activation. PLoS One 2009; 4:e5765. [PMID: 19492056 PMCID: PMC2686162 DOI: 10.1371/journal.pone.0005765] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/24/2009] [Indexed: 12/22/2022] Open
Abstract
Background Wnt signaling controls the balance between stem cell proliferation and differentiation and body patterning throughout development. Previous data demonstrated that non-canonical Wnts (Wnt5a, Wnt11) increased cardiac gene expression of circulating endothelial progenitor cells (EPC) and bone marrow-derived stem cells cultured in vitro. Since previous studies suggested a contribution of the protein kinase C (PKC) family to the Wnt5a-induced signalling, we investigated which PKC isoforms are activated by non-canonical Wnt5a in human EPC. Methodology/Principal Findings Immunoblot experiments demonstrated that Wnt5a selectively activated the novel PKC isoform, PKC delta, as evidenced by phosphorylation and translocation. In contrast, the classical Ca2+-dependent PKC isoforms, PKC alpha and beta2, and one of the other novel PKC isoforms, PKC epsilon, were not activated by Wnt5a. The PKC delta inhibitor rottlerin significantly blocked co-culture-induced cardiac differentiation in vitro, whereas inhibitors directed against the classical Ca2+-dependent PKC isoforms or a PKC epsilon-inhibitory peptide did not block cardiac differentiation. In accordance, EPC derived from PKC delta heterozygous mice exhibited a significant reduction of Wnt5a-induced cardiac gene expression compared to wild type mice derived EPC. Conclusions/Significance These data indicate that Wnt5a enhances cardiac gene expressions of EPC via an activation of PKC delta.
Collapse
Affiliation(s)
- Masamichi Koyanagi
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
| | - Masayoshi Iwasaki
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
| | - Judith Haendeler
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Andreas M. Zeiher
- Department of Cardiology, Internal Medicine III, J.W. Goethe University, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
216
|
Riazi AM, Takeuchi JK, Hornberger LK, Zaidi SH, Amini F, Coles J, Bruneau BG, Van Arsdell GS. NKX2-5 regulates the expression of beta-catenin and GATA4 in ventricular myocytes. PLoS One 2009; 4:e5698. [PMID: 19479054 PMCID: PMC2684637 DOI: 10.1371/journal.pone.0005698] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/30/2009] [Indexed: 11/27/2022] Open
Abstract
Background The molecular pathway that controls cardiogenesis is temporally and spatially regulated by master transcriptional regulators such as NKX2-5, Isl1, MEF2C, GATA4, and β-catenin. The interplay between these factors and their downstream targets are not completely understood. Here, we studied regulation of β-catenin and GATA4 by NKX2-5 in human fetal cardiac myocytes. Methodology/Principal Findings Using antisense inhibition we disrupted the expression of NKX2-5 and studied changes in expression of cardiac-associated genes. Down-regulation of NKX2-5 resulted in increased β-catenin while GATA4 was decreased. We demonstrated that this regulation was conferred by binding of NKX2-5 to specific elements (NKEs) in the promoter region of the β-catenin and GATA4 genes. Using promoter-luciferase reporter assay combined with mutational analysis of the NKEs we demonstrated that the identified NKX2-5 binding sites were essential for the suppression of β-catenin, and upregulation of GATA4 by NKX2-5. Conclusions This study suggests that NKX2-5 modulates the β-catenin and GATA4 transcriptional activities in developing human cardiac myocytes.
Collapse
Affiliation(s)
- Ali M Riazi
- Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
Insight into the mechanisms underlying congenital heart defects and the use of stem cells for cardiac repair are major research goals in cardiovascular biology. In the early embryo, progenitor cells in pharyngeal mesoderm contribute to the rapid growth of the heart tube during looping morphogenesis. These progenitor cells constitute the second heart field (SHF) and were first identified in 2001. Direct or indirect perturbation of SHF addition to the heart results in congenital heart defects, including arterial pole alignment defects. Over the last 3 years, a number of studies have identified key intercellular signaling pathways that control the proliferation and deployment of SHF progenitor cells. Here, we review data concerning Wnt, fibroblast growth factor, bone morphogenetic protein, Hedgehog, and retinoic acid signaling that have begun to identify the ligand sources and responding cell types controlling SHF development. These studies have revealed the importance of signals from pharyngeal mesoderm itself, as well as critical inputs from adjacent pharyngeal epithelia and neural crest cells. Proliferation is emerging as a central checkpoint in the regulation of SHF development. Together, these studies contribute to defining the niche of cardiac progenitor cells in the early embryo, and we discuss the implications of these findings for the regulation of resident stem cell populations in the fetal and postnatal heart. Characterization of signals that maintain, expand, and regulate the differentiation of cardiac progenitor cells is essential for understanding both the etiology of congenital heart defects and the biomedical application of stem cell populations for cardiac repair.
Collapse
Affiliation(s)
- Francesca Rochais
- Developmental Biology Institute of Marseilles-Luminy, UMR 6216 Centre National de la Recherche Scientifique-Université de laMéditerranée, Campus de Luminy, Marseille, France
| | | | | |
Collapse
|
218
|
Noseda M, Schneider MD. Fibroblasts Inform the Heart: Control of Cardiomyocyte Cycling and Size by Age-Dependent Paracrine Signals. Dev Cell 2009; 16:161-2. [DOI: 10.1016/j.devcel.2009.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
219
|
Abstract
Human embryonic stem (HES) cells are pluripotent and give rise to any cell lineage. More specifically, how the first embryonic lineage (i.e., cardiac lineage) is acquired remains in many aspects questionable. Herein, we summarize the protocols that have been used to direct the fate of HES cells toward the cardiomyocytic lineage. We further discuss the regulation of transcriptional pathways underlying this process of differentiation. Finally, we propose perspectives of this research in the near future.
Collapse
|
220
|
Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev Biol 2009; 327:273-9. [PMID: 19162003 DOI: 10.1016/j.ydbio.2008.12.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/24/2008] [Accepted: 12/29/2008] [Indexed: 02/02/2023]
Abstract
Head muscle development has been studied less intensively than myogenesis in the trunk, although this situation is gradually changing, as embryological and genetic insights accumulate. This review focuses on novel studies of the origins, composition and evolution of distinct craniofacial muscles. Cellular and molecular parallels are drawn between cardiac and branchiomeric muscle developmental programs, both of which utilize multiple lineages with distinct developmental histories, and argue for the tissues' common evolutionary origin. In addition, there is increasing evidence that the specification of skeletal muscles in the head appears to be distinct from that operating in the trunk: considerable variation among the different craniofacial muscle groups is seen, in a manner resembling myogenic specification in lower organisms.
Collapse
|
221
|
Affiliation(s)
- Satoshi Gojo
- Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, The University of Tokyo
| | - Shunei Kyo
- Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
222
|
Chien KR, Domian IJ, Parker KK. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 2008; 322:1494-7. [PMID: 19056974 DOI: 10.1126/science.1163267] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heart is a complex organ system composed of a highly diverse set of muscle and nonmuscle cells. Understanding the pathways that drive the formation, migration, and assembly of these cells into the heart muscle tissue, the pacemaker and conduction system, and the coronary vasculature is a central problem in developmental biology. Efforts to unravel the biological complexity of in vivo cardiogenesis have identified a family of closely related multipotent cardiac progenitor cells. These progenitors must respond to non-cell-autonomous signaling cues to expand, differentiate, and ultimately integrate into the three-dimensional heart structures. Coupling tissue-engineering technologies with patient-specific cardiac progenitor biology holds great promise for the development of human cell models of human disease and may lay the foundation for novel approaches in regenerative cardiovascular medicine.
Collapse
Affiliation(s)
- Kenneth R Chien
- MGH Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
223
|
Kwon C, Cordes KR, Srivastava D. Wnt/beta-catenin signaling acts at multiple developmental stages to promote mammalian cardiogenesis. Cell Cycle 2008; 7:3815-8. [PMID: 19066459 DOI: 10.4161/cc.7.24.7189] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Despite decades of progress in cardiovascular biology, heart disease remains the leading cause of death in the developed world. Recently, cell-based therapy has emerged as a promising avenue for future therapeutics. However, the molecular signals that regulate cardiac progenitor cells are not well-understood. Wnt/beta-catenin signaling is essential for expansion and differentiation of cardiac progenitors in mouse embryos and in the embryonic stem cell system. Studies from our laboratory and others highlight the pivotal roles of Wnt/beta-catenin signaling in the multiple steps of cardiogenesis and provide insights into understanding the complex regulation of cardiac progenitors. Here we discuss the required roles of Wnt/beta-catenin signaling at the different stages of heart development.
Collapse
Affiliation(s)
- Chulan Kwon
- Gladstone Institute of Cardiovascular Disease, San Francisco, San Francisco, California 94158, USA.
| | | | | |
Collapse
|
224
|
Beta-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proc Natl Acad Sci U S A 2008; 105:19762-7. [PMID: 19073933 DOI: 10.1073/pnas.0808393105] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We analyzed the effect of conditional, alphaMHC-dependent genetic beta-catenin depletion and stabilization on cardiac remodeling following experimental infarct. beta-Catenin depletion significantly improved 4-week survival and left ventricular (LV) function (fractional shortening: CT(Deltaex3-6): 24 +/- 1.9%; beta-cat(Deltaex3-6): 30.2 +/- 1.6%, P < 0.001). beta-Catenin stabilization had opposite effects. No significant changes in adult cardiomyocyte survival or hypertrophy were observed in either transgenic line. Associated with the functional improvement, LV scar cellularity was altered: beta-catenin-depleted mice showed a marked subendocardial and subepicardial layer of small cTnT(pos) cardiomyocytes associated with increased expression of cardiac lineage markers Tbx5 and GATA4. Using a Cre-dependent lacZ reporter gene, we identified a noncardiomyocyte cell population affected by alphaMHC-driven gene recombination localized to these tissue compartments at baseline. These cells were found to be cardiac progenitor cells since they coexpressed markers of proliferation (Ki67) and the cardiomyocyte lineage (alphaMHC, GATA4, Tbx5) but not cardiac Troponin T (cTnT). The cell population overlaps in part with both the previously described c-kit(pos) and stem cell antigen-1 (Sca-1)(pos) precursor cell population but not with the Islet-1(pos) precursor cell pool. An in vitro coculture assay of highly enriched (>95%) Sca-1(pos) cardiac precursor cells from beta-catenin-depleted mice compared to cells isolated from control littermate demonstrated increased differentiation toward alpha-actin(pos) and cTnT(pos) cardiomyocytes after 10 days (CT(Deltaex3-6): 38.0 +/- 1.0% alpha-actin(pos); beta-cat(Deltaex3-6): 49.9 +/- 2.4% alpha-actin(pos), P < 0.001). We conclude that beta-catenin depletion attenuates postinfarct LV remodeling in part through increased differentiation of GATA4(pos)/Sca-1(pos) resident cardiac progenitor cells.
Collapse
|
225
|
Pavlinkova G, Salbaum JM, Kappen C. Wnt signaling in caudal dysgenesis and diabetic embryopathy. ACTA ACUST UNITED AC 2008; 82:710-9. [PMID: 18937363 DOI: 10.1002/bdra.20495] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Congenital defects are a major complication of diabetic pregnancy, and the leading cause of infant death in the first year of life. Caudal dysgenesis, occurring up to 200-fold more frequently in children born to diabetic mothers, is a hallmark of diabetic pregnancy. Given that there is also an at least threefold higher risk for heart defects and NTDs, it is important to identify the underlying molecular mechanisms for aberrant embryonic development. METHODS We have investigated gene expression in a transgenic mouse model of caudal dysgenesis, and in a pharmacological model using situ hybridization and quantitative real-time PCR. RESULTS We identified altered expression of several molecules that control developmental processes and embryonic growth. CONCLUSIONS The results from our models point towards major implication of altered Wnt signaling in the pathogenesis of developmental anomalies associated with embryonic exposure to maternal diabetes.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
226
|
Chen VC, Stull R, Joo D, Cheng X, Keller G. Notch signaling respecifies the hemangioblast to a cardiac fate. Nat Biotechnol 2008; 26:1169-78. [PMID: 18820686 PMCID: PMC4410743 DOI: 10.1038/nbt.1497] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/27/2008] [Indexed: 11/09/2022]
Abstract
To efficiently generate cardiomyocytes from embryonic stem (ES) cells in culture it is essential to identify key regulators of the cardiac lineage and to develop methods to control them. Using a tet-inducible mouse ES cell line to enforce expression of a constitutively activated form of the Notch 4 receptor, we show that signaling through the Notch pathway can efficiently respecify hemangioblasts to a cardiac fate, resulting in the generation of populations consisting of >60% cardiomyocytes. Microarray analyses reveal that this respecification is mediated in part through the coordinated regulation of the BMP and Wnt pathways by Notch signaling. Together, these findings have uncovered a potential role for the Notch pathway in cardiac development and provide an approach for generating large numbers of cardiac progenitors from ES cells.
Collapse
Affiliation(s)
- Vincent C Chen
- Department of Gene and Cell Medicine, The Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
227
|
Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22:2308-41. [PMID: 18765787 PMCID: PMC2749675 DOI: 10.1101/gad.1686208] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called beta-catenin (Armadillo in Drosophila). Conditional loss- and gain-of-function mutations of beta-catenin in mice provided powerful tools for the functional analysis of canonical Wnt signaling in many tissues and organs. Such studies revealed roles of Wnt signaling that were previously not accessible to genetic analysis due to the early embryonic lethality of conventional beta-catenin knockout mice, as well as the redundancy of Wnt ligands, receptors, and transcription factors. Analysis of conditional beta-catenin loss- and gain-of-function mutant mice demonstrated that canonical Wnt signals control progenitor cell expansion and lineage decisions both in the early embryo and in many organs. Canonical Wnt signaling also plays important roles in the maintenance of various embryonic or adult stem cells, and as recent findings demonstrated, in cancer stem cell types. This has opened new opportunities to model numerous human diseases, which have been associated with deregulated Wnt signaling. Our review summarizes what has been learned from genetic studies of the Wnt pathway by the analysis of conditional beta-catenin loss- and gain-of-function mice.
Collapse
Affiliation(s)
- Tamara Grigoryan
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Wend
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Alexandra Klaus
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
228
|
Habib M, Caspi O, Gepstein L. Human embryonic stem cells for cardiomyogenesis. J Mol Cell Cardiol 2008; 45:462-74. [PMID: 18775434 DOI: 10.1016/j.yjmcc.2008.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/30/2008] [Accepted: 08/19/2008] [Indexed: 11/28/2022]
Abstract
Myocardial cell replacement strategies are emerging as novel therapeutic paradigms for heart failure but are hampered by the paucity of sources for human cardiomyocytes. Human embryonic stem cells (hESC) are pluripotent stem cell lines derived from human blastocysts that can be propagated, in culture, in the undifferentiated state under special conditions and coaxed to differentiate into cell derivatives of all three germ layers, including cardiomyocytes. The current review describes the derivation and properties of the hESC lines and the different cardiomyocyte differentiation system established so far using these cells. Data regarding the structural, molecular, and functional properties of the hESC-derived cardiomyocytes is provided as well as description of the methods used to achieve cardiomyocyte enrichment and purification in this system. The possible applications of this unique differentiation system in several cardiovascular research and applied areas are discussed. Specific emphasis is put on the descriptions of the efforts performed to date to assess the feasibility of this emerging technology in the fields of cardiac cell replacement therapy and tissue engineering. Finally, the obstacles remaining on the road to clinical translation are described as well as the steps required to fully harness the potential of this new technology.
Collapse
Affiliation(s)
- Manhal Habib
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
229
|
Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 2008; 3:69-84. [PMID: 18593560 DOI: 10.1016/j.stem.2008.06.009] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/11/2008] [Accepted: 06/13/2008] [Indexed: 02/06/2023]
Abstract
During embryonic development, multipotent cardiovascular progenitor cells are specified from early mesoderm. Using mouse ESCs in which gene expression can be temporally regulated, we have found that transient expression of Mesp1 dramatically accelerates and enhances multipotent cardiovascular progenitor specification through an intrinsic and cell autonomous mechanism. Genome-wide transcriptional analysis indicates that Mesp1 rapidly activates and represses a discrete set of genes, and chromatin immunoprecipitation shows that Mesp1 directly binds to regulatory DNA sequences located in the promoter of many key genes in the core cardiac transcriptional machinery, resulting in their rapid upregulation. Mesp1 also directly represses the expression of key genes regulating other early mesoderm and endoderm cell fates. Our results demonstrate that Mesp1 acts as a key regulatory switch during cardiovascular specification, residing at the top of the hierarchy of the gene network responsible for cardiovascular cell-fate determination.
Collapse
Affiliation(s)
- Antoine Bondue
- Université Libre de Bruxelles, IRIBHM, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
230
|
Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M, Wang W, Niwa N, Nerbonne JM, Kyba M, Murphy KM. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 2008; 3:55-68. [PMID: 18593559 PMCID: PMC2497439 DOI: 10.1016/j.stem.2008.04.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 03/14/2008] [Accepted: 04/14/2008] [Indexed: 11/29/2022]
Abstract
Wnt signaling is required for development of mesoderm-derived lineages and expression of transcription factors associated with the primitive streak. In a functional screen, we examined the mesoderm-inducing capacity of transcription factors whose expression was Wnt-dependent in differentiating ESCs. In contrast to many inactive factors, we found that mesoderm posterior 1 (Mesp1) promoted mesoderm development independently of Wnt signaling. Transient Mesp1 expression in ESCs promotes changes associated with epithelial-mesenchymal transition (EMT) and induction of Snai1, consistent with a role in gastrulation. Mesp1 expression also restricted the potential fates derived from ESCs, generating mesoderm progenitors with cardiovascular, but not hematopoietic, potential. Thus, in addition to its effects on EMT, Mesp1 may be capable of generating the recently identified multipotent cardiovascular progenitor from ESCs in vitro.
Collapse
Affiliation(s)
- R Coleman Lindsley
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Edge AS, Chen ZY. Hair cell regeneration. Curr Opin Neurobiol 2008; 18:377-82. [PMID: 18929656 PMCID: PMC5653255 DOI: 10.1016/j.conb.2008.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 01/03/2023]
Abstract
The mammalian inner ear largely lacks the capacity to regenerate hair cells, the sensory cells required for hearing and balance. Recent studies in both lower vertebrates and mammals have uncovered genes and pathways important in hair cell development and have suggested ways that the sensory epithelia could be manipulated to achieve hair cell regeneration. These approaches include the use of inner ear stem cells, transdifferentiation of nonsensory cells, and induction of a proliferative response in the cells that can become hair cells.
Collapse
Affiliation(s)
- Albert Sb Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, United States.
| | | |
Collapse
|
232
|
Abstract
An improved understanding of stem-cell and regenerative biology, as well as a better control of stem-cell fate, is likely to produce treatments for many devastating diseases and injuries. Chemical approaches are starting to have an increasingly important role in this young field. Attention has focused on chemical approaches that allow the precise manipulation of cells in vitro to obtain homogeneous cell types for cell-based therapies. Another promising approach is the development of conventional chemical and biological therapeutics to stimulate endogenous cells to regenerate. Such therapeutics can act on target cells or their niches in vivo to promote cell survival, proliferation, differentiation, reprogramming and homing.
Collapse
Affiliation(s)
- Yue Xu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
233
|
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008; 454:109-13. [PMID: 18568026 DOI: 10.1038/nature07060] [Citation(s) in RCA: 756] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 05/08/2008] [Indexed: 11/09/2022]
Abstract
The heart is formed from cardiogenic progenitors expressing the transcription factors Nkx2-5 and Isl1 (refs 1 and 2). These multipotent progenitors give rise to cardiomyocyte, smooth muscle and endothelial cells, the major lineages of the mature heart. Here we identify a novel cardiogenic precursor marked by expression of the transcription factor Wt1 and located within the epicardium-an epithelial sheet overlying the heart. During normal murine heart development, a subset of these Wt1(+) precursors differentiated into fully functional cardiomyocytes. Wt1(+) proepicardial cells arose from progenitors that express Nkx2-5 and Isl1, suggesting that they share a developmental origin with multipotent Nkx2-5(+) and Isl1(+) progenitors. These results identify Wt1(+) epicardial cells as previously unrecognized cardiomyocyte progenitors, and lay the foundation for future efforts to harness the cardiogenic potential of these progenitors for cardiac regeneration and repair.
Collapse
|
234
|
Cohen ED, Tian Y, Morrisey EE. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 2008; 135:789-98. [PMID: 18263841 DOI: 10.1242/dev.016865] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Emerging evidence indicates that Wnt signaling regulates crucial aspects of cardiovascular biology (including cardiac morphogenesis, and the self-renewal and differentiation of cardiac progenitor cells). The ability of Wnt signaling to regulate such diverse aspects of cardiovascular development rests on the multifarious downstream and tangential targets affected by this pathway. Here, we discuss the roles for Wnt signaling in cardiac and vascular development, and focus on the emerging role of Wnt signaling in cardiovascular morphogenesis and progenitor cell self-renewal.
Collapse
Affiliation(s)
- Ethan David Cohen
- Cardiovascular Institute, Institute for Regenerative Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
235
|
Martin-Puig S, Wang Z, Chien KR. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2008; 2:320-31. [PMID: 18397752 DOI: 10.1016/j.stem.2008.03.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heart cells are the unitary elements that define cardiac function and disease. The recent identification of distinct families of cardiovascular progenitor cells begins to build a foundation for our understanding of the developmental logic of human cardiovascular disease, and also points to new approaches to arrest and/or reverse its progression, a major goal of regenerative medicine. In this review, we highlight recent clarifications, revisions, and advances in our understanding of the many lives of a heart cell, with a primary focus on the emerging links between cardiogenesis and heart stem cell biology.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114-2790, USA
| | | | | |
Collapse
|
236
|
|
237
|
Abstract
The Wnt signalling pathway is an ancient system that has been highly conserved during evolution. It has a crucial role in the embryonic development of all animal species, in the regeneration of tissues in adult organisms and in many other processes. Mutations or deregulated expression of components of the Wnt pathway can induce disease, most importantly cancer. The first gene to be identified that encodes a Wnt signalling component, Int1 (integration 1), was molecularly characterized from mouse tumour cells 25 years ago. In parallel, the homologous gene Wingless in Drosophila melanogaster, which produces developmental defects in embryos, was characterized. Since then, further components of the Wnt pathway have been identified and their epistatic relationships have been defined. This article is a Timeline of crucial discoveries about the components and functions of this essential pathway.
Collapse
Affiliation(s)
- Alexandra Klaus
- Max Delbrück Centre for Molecular Medicine, Robert-Roessle-Strasse 10, 13,125 Berlin, Germany
| | | |
Collapse
|
238
|
Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR. Islet1 cardiovascular progenitors: a single source for heart lineages? Development 2008; 135:193-205. [PMID: 18156162 DOI: 10.1242/dev.001883] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The creation of regenerative stem cell therapies for heart disease requires that we understand the molecular mechanisms that govern the fates and differentiation of the diverse muscle and non-muscle cell lineages of the heart. Recently, different cardiac cell types have been reported to arise from a common, multipotent Islet1 (Isl1)-positive progenitor, suggesting that a clonal model of heart lineage diversification might occur that is analogous to hematopoiesis. The ability to isolate, renew and differentiate Isl1(+) precursors from postnatal and embryonic hearts and from embryonic stem cells provides a powerful cell-based system for characterizing the signaling pathways that control cardiovascular progenitor formation, renewal, lineage specification and conversion to specific differentiated progeny.
Collapse
Affiliation(s)
- Karl-Ludwig Laugwitz
- Massachusetts General Hospital - Cardiovascular Research Center, Charles River Plaza/CPZN 3208, 185 Cambridge Street, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
239
|
Abstract
Multipotent cardiac progenitor cells are found in the fetal and adult heart of many mammalian species including humans and form as intermediates during the differentiation of embryonic stem cells. Despite similar biological properties, the molecular identities of these different cardiac progenitor cell populations appear to be distinct. Elucidating the origins and lineage relationships of these cell populations will accelerate clinical applications such as drug screening and cell therapy as well as shedding light on the pathogenic mechanisms underlying cardiac diseases.
Collapse
Affiliation(s)
- Sean M Wu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
240
|
Nathan E, Monovich A, Tirosh-Finkel L, Harrelson Z, Rousso T, Rinon A, Harel I, Evans SM, Tzahor E. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 2008; 135:647-57. [PMID: 18184728 DOI: 10.1242/dev.007989] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During embryogenesis, paraxial mesoderm cells contribute skeletal muscle progenitors, whereas cardiac progenitors originate in the lateral splanchnic mesoderm (SpM). Here we focus on a subset of the SpM that contributes to the anterior or secondary heart field (AHF/SHF), and lies adjacent to the cranial paraxial mesoderm (CPM), the precursors for the head musculature. Molecular analyses in chick embryos delineated the boundaries between the CPM, undifferentiated SpM progenitors of the AHF/SHF, and differentiating cardiac cells. We then revealed the regionalization of branchial arch mesoderm: CPM cells contribute to the proximal region of the myogenic core, which gives rise to the mandibular adductor muscle. SpM cells contribute to the myogenic cells in the distal region of the branchial arch that later form the intermandibular muscle. Gene expression analyses of these branchiomeric muscles in chick uncovered a distinct molecular signature for both CPM- and SpM-derived muscles. Islet1 (Isl1) is expressed in the SpM/AHF and branchial arch in both chick and mouse embryos. Lineage studies using Isl1-Cre mice revealed the significant contribution of Isl1(+) cells to ventral/distal branchiomeric (stylohyoid, mylohyoid and digastric) and laryngeal muscles. By contrast, the Isl1 lineage contributes to mastication muscles (masseter, pterygoid and temporalis) to a lesser extent, with virtually no contribution to intrinsic and extrinsic tongue muscles or extraocular muscles. In addition, in vivo activation of the Wnt/beta-catenin pathway in chick embryos resulted in marked inhibition of Isl1, whereas inhibition of this pathway increased Isl1 expression. Our findings demonstrate, for the first time, the contribution of Isl1(+) SpM cells to a subset of branchiomeric skeletal muscles.
Collapse
Affiliation(s)
- Elisha Nathan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|