201
|
Li W, Zhang N, Jin C, Long MD, Rajabi H, Yasumizu Y, Fushimi A, Yamashita N, Hagiwara M, Zheng R, Wang J, Kui L, Singh H, Kharbanda S, Hu Q, Liu S, Kufe D. MUC1-C drives stemness in progression of colitis to colorectal cancer. JCI Insight 2020; 5:137112. [PMID: 32427590 DOI: 10.1172/jci.insight.137112] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022] Open
Abstract
Colitis is associated with the development of colorectal cancer (CRC) by largely undefined mechanisms that are critical for understanding the link between inflammation and cancer. Intestinal stem cells (ISCs) marked by leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) expression are of importance in both the inflammatory response to colitis and progression to colitis-associated colon cancer (CACC). Here, we report in human mucin 1-transgenic (MUC1-transgenic) mouse models of CACC, targeting the MUC1-C oncogenic protein suppresses the (a) Lgr5+ ISC population, (b) induction of Myc and core pluripotency stem cell factors, and (c) severity and progression of colitis to dysplasia and cancer. By extension to human colon cancer cells, we demonstrate that MUC1-C drives MYC, forms a complex with MYC on the LGR5 promoter, and activates LGR5 expression. We also show in CRC cells that MUC1-C induces cancer stem cell (CSC) markers (BMI1, ALDH1, FOXA1, LIN28B) and the OCT4, SOX2, and NANOG pluripotency factors. Consistent with conferring the CSC state, targeting MUC1-C suppresses the capacity of CRC cells to promote wound healing, invasion, self-renewal, and tumorigenicity. In analysis of human tissues, MUC1 expression associates with activation of inflammatory pathways, development of colitis, and aggressiveness of CRCs. These results collectively indicate that MUC1-C is of importance for integrating stemness and pluripotency in colitis and CRC. Of clinical relevance, the findings further indicate that MUC1-C represents a potentially previously unrecognized target that is druggable for treating progression of colitis and CRC.
Collapse
Affiliation(s)
- Wei Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ning Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yota Yasumizu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rongbin Zheng
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jin Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ling Kui
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Surender Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
202
|
Intestinal stem cells heterogeneity and clonal dominance during aging: two faces of the same coin? Mech Ageing Dev 2020; 189:111247. [PMID: 32505859 DOI: 10.1016/j.mad.2020.111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/20/2022]
Abstract
Intestinal epithelium undergoes dysfunctions and diseases over time with an exponential increase in the elderly population. Recent studies reported that the intestinal stem cells (ISCs) show a functional decline during aging and a lack of an appropriate cell identity control. Increase of cell-to-cell heterogeneity is a hallmark of aging tissues and organs, however there is little experimental evidence with regard to the cell heterogeneity of the ISCs. On the other hand, the ISCs continuously experience a niche clonality process that diminishes the initial cell heterogeneity over time. In this review, we discuss the latest findings on these topics focusing on the potential mechanisms driving intestinal stem cell heterogeneity and clonality during aging.
Collapse
|
203
|
Chen C, Zhang Q, Yu W, Chang B, Le AD. Oral Mucositis: An Update on Innate Immunity and New Interventional Targets. J Dent Res 2020; 99:1122-1130. [PMID: 32479139 DOI: 10.1177/0022034520925421] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral mucositis (OM), a common debilitating toxicity associated with chemo- and radiation therapies, is a significant unmet clinical need for head and neck cancer patients. The biological complexities of chemoradiotherapy-induced OM involve interactions among disrupted tissue structures, inflammatory infiltrations, and oral microbiome, whereby several master inflammatory pathways constitute the complicated regulatory networks. Oral mucosal damages triggered by chemoradiotherapy-induced cell apoptosis were further exacerbated by the amplified inflammatory cascades dominantly governed by the innate immune responses. The coexistence of microbiome and innate immune components in oral mucosal barriers indicates that a signaling hub coordinates the interaction between environmental cues and host cells during tissue and immune homeostasis. Dysbiotic shifts in oral microbiota caused by cytotoxic cancer therapies may also contribute to the progression and severity of chemoradiotherapy-induced OM. In this review, we have updated the mechanisms involving innate immunity-governed inflammatory cascades in the pathobiology of chemoradiotherapy-induced OM and the development of new interventional targets for the management of this severe morbidity in head and neck cancer patients.
Collapse
Affiliation(s)
- C Chen
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B Chang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
204
|
Li L, Duan Q, Zeng Z, Zhao J, Lu J, Sun J, Zhang J, Siwko S, Wong J, Shi T, Zhang X, Liu M, Chen J, Li D. UHRF2 promotes intestinal tumorigenesis through stabilization of TCF4 mediated Wnt/β-catenin signaling. Int J Cancer 2020; 147:2239-2252. [PMID: 32372448 DOI: 10.1002/ijc.33036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/04/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Intestinal tumors mainly originate from transformed crypt stem cells supported by Wnt signaling, which functions through downstream critical factors enriched in the intestinal stem/progenitor compartment. Here, we show Uhrf2 is predominantly expressed in intestinal crypts and adenomas in mice and is transcriptionally regulated by Wnt signaling. Upregulated UHRF2 correlates with poor prognosis in colorectal cancer patients. Although loss of Uhrf2 did not affect intestinal homeostasis and regeneration, tumor initiation and progression were inhibited, leading to a markedly prolonged life span in Uhrf2 null mice on an ApcMin background. Uhrf2 deficiency also strongly reduced primary tumor organoid formation suggesting impairment of tumor stem cells. Moreover, ablation of Uhrf2 suppressed tumor cell proliferation through downregulation of the Wnt/β-catenin pathway. Mechanistically, Uhrf2 directly interacts with and sumoylates Tcf4, a critical intranuclear effector of the Wnt pathway. Uhrf2 mediated SUMOylation stabilized Tcf4 and further sustained hyperactive Wnt signaling. Together, we demonstrate that Wnt-induced Uhrf2 expression promotes tumorigenesis through modulation of the stability of Tcf4 for maintaining oncogenic Wnt/β-catenin signaling. This is a new reciprocal feedforward regulation between Uhrf2 and Wnt signaling in tumor initiation and progression.
Collapse
Affiliation(s)
- Liang Li
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, China
| | - Qiuhui Duan
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhiyang Zeng
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jindong Zhao
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawei Lu
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialiang Sun
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, China
| | - Jiqin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xueli Zhang
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Jinlian Chen
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
205
|
Characterization of radioresistant epithelial stem cell heterogeneity in the damaged mouse intestine. Sci Rep 2020; 10:8308. [PMID: 32444673 PMCID: PMC7244543 DOI: 10.1038/s41598-020-64987-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
The small intestine has a robust regenerative capacity, and various cell types serve as "cells-of-origin" in the epithelial regeneration process after injury. However, how much each population contributes to regeneration remains unclear. Using lineage tracing, we found that Lgr5-expressing cell derivatives contained radioresistant intestinal stem cells (ISCs) crucial for epithelial regeneration in the damaged intestine after irradiation. Single-cell qRT-PCR analysis showed that surviving Lgr5-expressing cell derivatives in the damaged intestine are remarkably heterogeneous, and that the expression levels of a YAP-target gene Sca1 were inversely correlated with their "stemness", suggesting that the YAP/Wnt signal balance in surviving crypt epithelial cells determines the cellular contribution to epithelial regeneration. Single-cell RNA sequencing of Sca1-Lgr5-derivatives revealed that expression of a tetraspanin family member CD81 correlated well with the expression of ISC- and proliferation-related genes. Consistent with these findings, organoid-forming ability was confined to the CD81hiSca1- fraction within the damaged crypt epithelial cells. Characterization of radioresistant epithelial stem cell heterogeneity in the damaged intestine may contribute to therapeutic strategies for gastrointestinal diseases.
Collapse
|
206
|
Bao L, Shi B, Shi YB. Intestinal homeostasis: a communication between life and death. Cell Biosci 2020; 10:66. [PMID: 32477489 PMCID: PMC7236522 DOI: 10.1186/s13578-020-00429-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
Organ homeostasis is essential for organ physiology and disease prevention. In adult vertebrates, the intestinal epithelium is maintained through constant cell proliferation in the crypt and apoptosis of differentiated epithelial cells, mainly at the tip of the villus. Based on studies with altered cell proliferation and tissue damage in the adult mouse intestine, we hypothesize that there is a communication between cell proliferation in the crypt and cell death on the villus, likely via cell-cell and cell-ECM (extracellular matrix) interactions, to coordinate the rate of cell proliferation and death, thus ensuring epithelial homeostasis.
Collapse
Affiliation(s)
- Lingyu Bao
- 1Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No.277, Yanta West Road, Xi'an, Shaanxi, 710061 People's Republic of China.,2Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892 USA
| | - Bingyin Shi
- 1Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No.277, Yanta West Road, Xi'an, Shaanxi, 710061 People's Republic of China
| | - Yun-Bo Shi
- 2Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
207
|
Essential role for autophagy protein ATG7 in the maintenance of intestinal stem cell integrity. Proc Natl Acad Sci U S A 2020; 117:11136-11146. [PMID: 32371487 DOI: 10.1073/pnas.1917174117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium acts as a barrier between the organism and its microenvironment, including the gut microbiota. It is the most rapidly regenerating tissue in the human body thanks to a pool of intestinal stem cells (ISCs) expressing Lgr5 The intestinal epithelium has to cope with continuous stress linked to its digestive and barrier functions. Epithelial repair is crucial to maintain its integrity, and Lgr5-positive intestinal stem cell (Lgr5+ISC) resilience following cytotoxic stresses is central to this repair stage. We show here that autophagy, a pathway allowing the lysosomal degradation of intracellular components, plays a crucial role in the maintenance and genetic integrity of Lgr5+ISC under physiological and stress conditions. Using conditional mice models lacking the autophagy gene Atg7 specifically in all intestinal epithelial cells or in Lgr5+ISC, we show that loss of Atg7 induces the p53-mediated apoptosis of Lgr5+ISC. Mechanistically, this is due to increasing oxidative stress, alterations to interactions with the microbiota, and defective DNA repair. Following irradiation, we show that Lgr5+ISC repair DNA damage more efficiently than their progenitors and that this protection is Atg7 dependent. Accordingly, we found that the stimulation of autophagy on fasting protects Lgr5+ISC against DNA damage and cell death mediated by oxaliplatin and doxorubicin treatments. Finally, p53 deletion prevents the death of Atg7-deficient Lgr5+ISC but promotes genetic instability and tumor formation. Altogether, our findings provide insights into the mechanisms underlying maintenance and integrity of ISC and highlight the key functions of Atg7 and p53.
Collapse
|
208
|
Abstract
Drosophila melanogaster has historically been a workhorse model organism for studying developmental biology. In addition, Drosophila is an excellent model for studying how damaged tissues and organs can regenerate. Recently, new precision approaches that enable both highly targeted injury and genetic manipulation have accelerated progress in this field. Here, we highlight these techniques and review examples of recently discovered mechanisms that regulate regeneration in Drosophila larval and adult tissues. We also discuss how, by applying these powerful approaches, studies of Drosophila can continue to guide the future of regeneration research.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Erez Cohen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Rachel Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
209
|
Chiba M, Uehara H, Niiyama I, Kuwata H, Monzen S. Changes in miRNA expressions in the injured small intestine of mice following high‑dose radiation exposure. Mol Med Rep 2020; 21:2452-2458. [PMID: 32323814 PMCID: PMC7185298 DOI: 10.3892/mmr.2020.11054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 01/20/2020] [Indexed: 12/02/2022] Open
Abstract
The small intestine is one of the most highly regenerative and radiosensitive tissues in mammals, including humans. Exposure to high doses of ionizing radiation causes serious intestinal damage. Recently, several investigations have been conducted using radioprotective agents to determine ways for reducing intestinal damage caused by radiation exposure. However, a thorough understanding of functional changes occurring in the small intestine of mice exposed to high-dose radiation is necessary for developing novel and more potent radioprotective agents. In this study, we examined changes in microRNA (miRNA/miR) expressions in the small intestine of mice at 72 h after X-ray exposure (10 Gy). We identified seven upregulated miRNAs and six downregulated miRNAs in the small intestine of mice following radiation exposure using miRNA microarray analysis. Particularly, miR-34a-5p was highly expressed, which was confirmed by reverse transcription-quantitative PCR. Forkhead box P1 (Foxp1) was predicted to be a target of the mRNA of miR-34a-5p using OmicsNet. Decreased Foxp1 expression in the small intestine following radiation exposure was confirmed, suggesting that Foxp1 expression recovery may induce the suppression of radiation-induced enteritis. Therefore, miR-34a-5p is a potential target molecule for developing novel radioprotective agents.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Haruka Uehara
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Ikumi Niiyama
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Haruka Kuwata
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Satoru Monzen
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| |
Collapse
|
210
|
Trentesaux C, Striedinger K, Pomerantz JH, Klein OD. From gut to glutes: The critical role of niche signals in the maintenance and renewal of adult stem cells. Curr Opin Cell Biol 2020; 63:88-101. [PMID: 32036295 PMCID: PMC7247951 DOI: 10.1016/j.ceb.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Stem cell behavior is tightly regulated by spatiotemporal signaling from the niche, which is a four-dimensional microenvironment that can instruct stem cells to remain quiescent, self-renew, proliferate, or differentiate. In this review, we discuss recent advances in understanding the signaling cues provided by the stem cell niche in two contrasting adult tissues, the rapidly cycling intestinal epithelium and the slowly renewing skeletal muscle. Drawing comparisons between these two systems, we discuss the effects of niche-derived growth factors and signaling molecules, metabolic cues, the extracellular matrix and biomechanical cues, and immune signals on stem cells. We also discuss the influence of the niche in defining stem cell identity and function in both normal and pathophysiologic states.
Collapse
Affiliation(s)
- Coralie Trentesaux
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Katharine Striedinger
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA.
| |
Collapse
|
211
|
Gao YL, Shao LH, Dong LH, Chang PY. Gut commensal bacteria, Paneth cells and their relations to radiation enteropathy. World J Stem Cells 2020; 12:188-202. [PMID: 32266051 PMCID: PMC7118286 DOI: 10.4252/wjsc.v12.i3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical "button" because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy.
Collapse
Affiliation(s)
- Yan-Li Gao
- Department of Pediatric Ultrasound, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hong Shao
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China.
| |
Collapse
|
212
|
Fouillade C, Curras-Alonso S, Giuranno L, Quelennec E, Heinrich S, Bonnet-Boissinot S, Beddok A, Leboucher S, Karakurt HU, Bohec M, Baulande S, Vooijs M, Verrelle P, Dutreix M, Londoño-Vallejo A, Favaudon V. FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence. Clin Cancer Res 2020; 26:1497-1506. [PMID: 31796518 DOI: 10.1158/1078-0432.ccr-19-1440] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/29/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE One of the main limitations to anticancer radiotherapy lies in irreversible damage to healthy tissues located within the radiation field. "FLASH" irradiation at very high dose-rate is a new treatment modality that has been reported to specifically spare normal tissue from late radiation-induced toxicity in animal models and therefore could be a promising strategy to reduce treatment toxicity. EXPERIMENTAL DESIGN Lung responses to FLASH irradiation were investigated by qPCR, single-cell RNA sequencing (sc-RNA-Seq), and histologic methods during the acute wound healing phase as well as at late stages using C57BL/6J wild-type and Terc-/- mice exposed to bilateral thorax irradiation as well as human lung cells grown in vitro. RESULTS In vitro studies gave evidence of a reduced level of DNA damage and induced lethality at the advantage of FLASH. In mouse lung, sc-RNA-seq and the monitoring of proliferating cells revealed that FLASH minimized the induction of proinflammatory genes and reduced the proliferation of progenitor cells after injury. At late stages, FLASH-irradiated lungs presented less persistent DNA damage and senescent cells than after CONV exposure, suggesting a higher potential for lung regeneration with FLASH. Consistent with this hypothesis, the beneficial effect of FLASH was lost in Terc-/- mice harboring critically short telomeres and lack of telomerase activity. CONCLUSIONS The results suggest that, compared with conventional radiotherapy, FLASH minimizes DNA damage in normal cells, spares lung progenitor cells from excessive damage, and reduces the risk of replicative senescence.
Collapse
Affiliation(s)
- Charles Fouillade
- Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France.
| | - Sandra Curras-Alonso
- Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
- Institut Curie, CNRS UMR 3244, PSL Research University, Paris, France
| | - Lorena Giuranno
- Department of Radiotherapy, Grow-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Eddy Quelennec
- Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | - Sophie Heinrich
- Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
- Institut Curie, Translational Research Department, Experimental Radiotherapy Platform, PSL Research University, Centre Universitaire, Orsay, France
| | - Sarah Bonnet-Boissinot
- Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | - Arnaud Beddok
- Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | - Sophie Leboucher
- Institut Curie, CNRS UMR 3348, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | | | - Mylène Bohec
- Institut Curie Genomics of Excellence (ICGex) Platform, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Paris, France
| | - Marc Vooijs
- Department of Radiotherapy, Grow-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Pierre Verrelle
- Radiation Oncology Department, Institut Curie, Paris, France
- Institut Curie, Inserm U 1196-CNRS UMR 9187, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | - Marie Dutreix
- Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | | | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France.
| |
Collapse
|
213
|
Zhu L, Lu X, Liu L, Voglmeir J, Zhong X, Yu Q. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium. Vet Res 2020; 51:34. [PMID: 32138776 PMCID: PMC7057645 DOI: 10.1186/s13567-020-00755-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Akkermansia muciniphila, a novel mucin-degrading bacterium, has been demonstrated to prevent the development of obesity and related complications. However, whether it can protect poultry from intestinal mucosal damage by enteropathogens has never been mentioned. In this study, we found that A. muciniphila colonized in the intestine and then relieved intestinal mucosal damage in chicks caused by S. pullorum, including anatomical and morphological damage, alleviation of body weight and intestinal inflammation. The repair process activated by A. muciniphila is accompanied by an increase in the number of goblet cells in the chick’s intestine and an up-regulation of Mucin 2 and trefoil factor 2 (Tff2). In addition, we also demonstrate that A. muciniphila improved colon length, crypt depth, increased the proliferating cell nuclear antigen, with the accelerated proliferation of intestinal epithelium through Wnt/β-catenin signaling pathway, thereby restoring the damaged intestinal mucosa. This study suggests that A. muciniphila activates the proliferation of intestinal cells protecting the intestinal barrier, thus relieving infection with S. pullorum in chickens.
Collapse
Affiliation(s)
- Linda Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, Jiangsu, China
| | - Xiaoxi Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, Jiangsu, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, Jiangsu, China.
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
214
|
Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su X, Verzi MP. HNF4 Regulates Fatty Acid Oxidation and Is Required for Renewal of Intestinal Stem Cells in Mice. Gastroenterology 2020; 158:985-999.e9. [PMID: 31759926 PMCID: PMC7062567 DOI: 10.1053/j.gastro.2019.11.031] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Functions of intestinal stem cells (ISCs) are regulated by diet and metabolic pathways. Hepatocyte nuclear factor 4 (HNF4) family are transcription factors that bind fatty acids. We investigated how HNF4 transcription factors regulate metabolism and their functions in ISCs in mice. METHODS We performed studies with Villin-CreERT2;Lgr5-EGFP-IRES-CreERT2;Hnf4αf/f;Hnf4γCrispr/Crispr mice, hereafter referred to Hnf4αγDKO. Mice were given tamoxifen to induce Cre recombinase. Mice transgenic with only Cre alleles (Villin-CreERT2, Lgr5-EGFP-IRES-CreERT2, Hnf4α+/+, and Hnf4γ+/+) or mice given vehicle were used as controls. Crypt and villus cells were isolated, incubated with fluorescently labeled fatty acids or glucose analog, and analyzed by confocal microscopy. Fatty acid oxidation activity and tricarboxylic acid (TCA) cycle metabolites were measured in cells collected from the proximal half of the small intestine of Hnf4αγDKO and control mice. We performed chromatin immunoprecipitation and gene expression profiling analyses to identify genes regulated by HNF4 factors. We established organoids from duodenal crypts, incubated them with labeled palmitate or acetate, and measured production of TCA cycle metabolites or fatty acids. Acetate, a precursor of acetyl coenzyme A (CoA) (a product of fatty acid β-oxidation [FAO]), or dichloroacetate, a compound that promotes pyruvate oxidation and generation of mitochondrial acetyl-CoA, were used for metabolic intervention. RESULTS Crypt cells rapidly absorbed labeled fatty acids, and messenger RNA levels of Lgr5+ stem cell markers (Lgr5, Olfm4, Smoc2, Msi1, and Ascl2) were down-regulated in organoids incubated with etomoxir, an inhibitor of FAO, indicating that FAO was required for renewal of ISCs. HNF4A and HNF4G were expressed in ISCs and throughout the intestinal epithelium. Single knockout of either HNF4A or HNF4G did not affect maintenance of ISCs, but double-knockout of HNF4A and HNF4G resulted in ISC loss; stem cells failed to renew. FAO supports ISC renewal, and HNF4 transcription factors directly activate FAO genes, including Acsl5 and Acsf2 (encode regulators of acyl-CoA synthesis), Slc27a2 (encodes a fatty acid transporter), Fabp2 (encodes fatty acid binding protein), and Hadh (encodes hydroxyacyl-CoA dehydrogenase). In the intestinal epithelium of Hnf4αγDKO mice, expression levels of FAO genes, FAO activity, and metabolites of TCA cycle were all significantly decreased, but fatty acid synthesis transcripts were increased, compared with control mice. The contribution of labeled palmitate or acetate to the TCA cycle was reduced in organoids derived from Hnf4αγDKO mice, compared with control mice. Incubation of organoids derived from double-knockout mice with acetate or dichloroacetate restored stem cells. CONCLUSIONS In mice, the transcription factors HNF4A and HNF4G regulate the expression of genes required for FAO and are required for renewal of ISCs.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Roshan P. Vasoya
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalie H. Toke
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Aditya Parthasarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Shirley Luo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Eric Chiles
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA,Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA,Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA,Correspondence: (M.P.V.)
| |
Collapse
|
215
|
Murata K, Jadhav U, Madha S, van Es J, Dean J, Cavazza A, Wucherpfennig K, Michor F, Clevers H, Shivdasani RA. Ascl2-Dependent Cell Dedifferentiation Drives Regeneration of Ablated Intestinal Stem Cells. Cell Stem Cell 2020; 26:377-390.e6. [PMID: 32084390 DOI: 10.1016/j.stem.2019.12.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022]
Abstract
Ablation of LGR5+ intestinal stem cells (ISCs) is associated with rapid restoration of the ISC compartment. Different intestinal crypt populations dedifferentiate to provide new ISCs, but the transcriptional and signaling trajectories that guide this process are unclear, and a large body of work suggests that quiescent "reserve" ISCs contribute to regeneration. By timing the interval between LGR5+ lineage tracing and lethal injury, we show that ISC regeneration is explained nearly completely by dedifferentiation, with contributions from absorptive and secretory progenitors. The ISC-restricted transcription factor ASCL2 confers measurable competitive advantage to resting ISCs and is essential to restore the ISC compartment. Regenerating cells re-express Ascl2 days before Lgr5, and single-cell RNA sequencing (scRNA-seq) analyses reveal transcriptional paths underlying dedifferentiation. ASCL2 target genes include the interleukin-11 (IL-11) receptor Il11ra1, and recombinant IL-11 enhances crypt cell regenerative potential. These findings reveal cell dedifferentiation as the principal means for ISC restoration and highlight an ASCL2-regulated signal that enables this adaptive response.
Collapse
Affiliation(s)
- Kazutaka Murata
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Unmesh Jadhav
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Justin Dean
- Department of Cancer Data Sciences, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alessia Cavazza
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Kai Wucherpfennig
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Franziska Michor
- Department of Cancer Data Sciences, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
216
|
Novellasdemunt L, Kucharska A, Jamieson C, Prange‐Barczynska M, Baulies A, Antas P, van der Vaart J, Gehart H, Maurice MM, Li VSW. NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor. EMBO J 2020; 39:e102771. [PMID: 31867777 PMCID: PMC6996568 DOI: 10.15252/embj.2019102771] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal stem cell (ISC) marker LGR5 is a receptor for R-spondin (RSPO) that functions to potentiate Wnt signalling in the proliferating crypt. It has been recently shown that Wnt plays a priming role for ISC self-renewal by inducing RSPO receptor LGR5 expression. Despite its pivotal role in homeostasis, regeneration and cancer, little is known about the post-translational regulation of LGR5. Here, we show that the HECT-domain E3 ligases NEDD4 and NEDD4L are expressed in the crypt stem cell regions and regulate ISC priming by degrading LGR receptors. Loss of Nedd4 and Nedd4l enhances ISC proliferation, increases sensitivity to RSPO stimulation and accelerates tumour development in Apcmin mice with increased numbers of high-grade adenomas. Mechanistically, we find that both NEDD4 and NEDD4L negatively regulate Wnt/β-catenin signalling by targeting LGR5 receptor and DVL2 for proteasomal and lysosomal degradation. Our findings unveil the previously unreported post-translational control of LGR receptors via NEDD4/NEDD4L to regulate ISC priming. Inactivation of NEDD4 and NEDD4L increases Wnt activation and ISC numbers, which subsequently enhances tumour predisposition and progression.
Collapse
Affiliation(s)
| | - Anna Kucharska
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Cara Jamieson
- Oncode Institute and Department of Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Anna Baulies
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Pedro Antas
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Jelte van der Vaart
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) UtrechtUtrechtThe Netherlands
| | - Helmuth Gehart
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) UtrechtUtrechtThe Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Vivian SW Li
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
217
|
Abo H, Chassaing B, Harusato A, Quiros M, Brazil JC, Ngo VL, Viennois E, Merlin D, Gewirtz AT, Nusrat A, Denning TL. Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nat Commun 2020; 11:513. [PMID: 31980634 PMCID: PMC6981263 DOI: 10.1038/s41467-019-14258-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/22/2019] [Indexed: 01/07/2023] Open
Abstract
Gut microbiota and their metabolites are instrumental in regulating intestinal homeostasis. However, early-life microbiota associated influences on intestinal development remain incompletely understood. Here we demonstrate that co-housing of germ-free (GF) mice with specific-pathogen free (SPF) mice at weaning (exGF) results in altered intestinal gene expression. Our results reveal that one highly differentially expressed gene, erythroid differentiation regulator-1 (Erdr1), is induced during development in SPF but not GF or exGF mice and localizes to Lgr5+ stem cells and transit amplifying (TA) cells. Erdr1 functions to induce Wnt signaling in epithelial cells, increase Lgr5+ stem cell expansion, and promote intestinal organoid growth. Additionally, Erdr1 accelerates scratch-wound closure in vitro, increases Lgr5+ intestinal stem cell regeneration following radiation-induced injury in vivo, and enhances recovery from dextran sodium sulfate (DSS)-induced colonic damage. Collectively, our findings indicate that early-life microbiota controls Erdr1-mediated intestinal epithelial proliferation and regeneration in response to mucosal damage. Gut microbiota and their metabolites regulate homeostasis of the intestine, but their effects on intestine development are unclear. Here the authors use RNAseq and germ free mice to show that intestinal microbiota promote the expression of Erdr1, which increases Lgr5+ intestinal stem cell number and activity.
Collapse
Affiliation(s)
- Hirohito Abo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Benoit Chassaing
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.,Neuroscience Institute and Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.,INSERM, U1016, Paris, France.,Université de Paris, Paris, France
| | - Akihito Harusato
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer C Brazil
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vu L Ngo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Emilie Viennois
- Center for Diagnostics and Therapeutics, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Didier Merlin
- Center for Diagnostics and Therapeutics, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
218
|
Zhou J, Huang D, Zhu M, Gao C, Yan H, Li X, Wang X. Wnt/β‐catenin‐mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress. J Cell Physiol 2020; 235:5613-5627. [DOI: 10.1002/jcp.29492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jia‐yi Zhou
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Deng‐gui Huang
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Min Zhu
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Chun‐qi Gao
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Hui‐chao Yan
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Xiang‐guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical SciencesGuangdong University of Technology Guangzhou China
| | - Xiu‐qi Wang
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| |
Collapse
|
219
|
Innate immune receptor NOD2 mediates LGR5 + intestinal stem cell protection against ROS cytotoxicity via mitophagy stimulation. Proc Natl Acad Sci U S A 2020; 117:1994-2003. [PMID: 31919280 PMCID: PMC6994981 DOI: 10.1073/pnas.1902788117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist muramyl dipeptide (MDP), a peptidoglycan motif common to all bacteria, supports leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)+ intestinal stem cell (ISC) survival through NOD2 activation upon an otherwise lethal oxidative stress-mediated signal. However, the underlying protective mechanisms remain unknown. Here, using irradiation as stressor and primarily murine-derived intestinal organoids as a model system, we show that MDP induced a significant reduction of total and mitochondrial reactive oxygen species (ROS) within ISCs, which was associated with mitophagy induction. ATG16L1 knockout (KO) and NOD2 KO organoids did not benefit from the MDP-induced cytoprotection. We confirmed the MDP-dependent induction of ISC mitophagy upon stress in vivo. These findings elucidate the NOD2-mediated mechanism of cytoprotection involving the clearance of the lethal excess of ROS molecules through mitophagy, triggered by the coordinated activation of NOD2 and ATG16L1 by a nuclear factor κB (NF-κB)-independent pathway.
Collapse
|
220
|
Engel RM, Chan WH, Nickless D, Hlavca S, Richards E, Kerr G, Oliva K, McMurrick PJ, Jardé T, Abud HE. Patient-Derived Colorectal Cancer Organoids Upregulate Revival Stem Cell Marker Genes following Chemotherapeutic Treatment. J Clin Med 2020; 9:jcm9010128. [PMID: 31906589 PMCID: PMC7019342 DOI: 10.3390/jcm9010128] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer stem cells have been proposed to drive disease progression, tumour recurrence and chemoresistance. However, studies ablating leucine rich repeat containing G protein-coupled receptor 5 (LGR5)-positive stem cells have shown that they are rapidly replenished in primary tumours. Following injury in normal tissue, LGR5+ stem cells are replaced by a newly defined, transient population of revival stem cells. We investigated whether markers of the revival stem cell population are present in colorectal tumours and how this signature relates to chemoresistance. We examined the expression of different stem cell markers in a cohort of patient-derived colorectal cancer organoids and correlated expression with sensitivity to 5-fluorouracil (5-FU) treatment. Our findings revealed that there was inter-tumour variability in the expression of stem cell markers. Clusterin (CLU), a marker of the revival stem cell population, was significantly enriched following 5-FU treatment and expression correlated with the level of drug resistance. Patient outcome data revealed that CLU expression is associated with both lower patient survival and an increase in disease recurrence. This suggests that CLU is a marker of drug resistance and may identify cells that drive colorectal cancer progression.
Collapse
Affiliation(s)
- Rebekah M. Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern Victoria 3144, Australia; (K.O.); (P.J.M.)
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David Nickless
- Anatomical Pathology Department, Cabrini Pathology, Cabrini Hospital, Malvern, Victoria 3144, Australia;
| | - Sara Hlavca
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Monash BDI Organoid Program, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Karen Oliva
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern Victoria 3144, Australia; (K.O.); (P.J.M.)
| | - Paul J. McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern Victoria 3144, Australia; (K.O.); (P.J.M.)
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Monash BDI Organoid Program, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Correspondence: (T.J.); (H.E.A.)
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Monash BDI Organoid Program, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Correspondence: (T.J.); (H.E.A.)
| |
Collapse
|
221
|
Abstract
Aging is a multifactorial process. Organ maintenance and tissue regeneration are impaired upon aging mainly due to loss of stem cell function in organs that depend on stem cell in the adult. Intestine is such an organ, and upon aging intestinal regeneration is impaired due to decline of intestinal stem cell function. To determine the aging status of intestine and intestinal stem cells, histological analyses; analyses of the level of proliferation markers in tissue by immunofluorescence and/or quantitative RT-PCR; and gene expression analysis for stemness related genes in isolated crypts, intestinal stem cells (ISC), and Paneth cells can be used. To analyze the level of regeneration in intestine and thus determine a decline in ISC function, techniques like in vitro organoid cultures and lineage tracing with BrdU, lineage tracing using transgenic mice and histological analyses of tissue regeneration after 3 and 5 days after two rounds of 10 Gy of radiation (a 10 + 10 Gy IR experiment) can be applied. In this chapter we will focus on protocols for lineage tracing, the 10 + 10 gy IR experiment and for organoid cultures from young and aged mouse intestine.Lineage tracing experiments in intestine can be done in many ways. In this chapter we describe a protocol for lineage tracing upon BrdU incorporation and lineage tracing using the Lgr5eGFPCreERT2 Rosa26YFP transgenic mouse. For BrdU based-lineage tracing BrdU is administrated via intraperitoneal injections into mice. Animals will be analyzed 3 days (72 h) after BrdU administration. For experiments involving Lgr5eGFPCreERT2 Rosa26YFP mice, mice will be analyzed after tamoxifen injection that activates Cre in Lgr5 positive (ISC) cells, which will result in permanent YFP expression. This allows for tracing of YFP positive cells in the intestine. The time point for the analysis of the intestinal tissue will depend in this case on the underlying scientific question that will be addressed. For 10 + 10 Gy experiments, animals will be irradiated with a radiation dose of 10 Gy on 2 consecutive days. The intestinal tissue will be analyzed 3 and 5 days after the second dose of radiation. Quantitative analyses of crypt depth and determination of the rate of crypt fission upon histochemistry will provide an estimation on the in vivo regenerative potential of ISCs. For serial organoid culture experiments, crypts will be harvested from mouse intestine, initially plated at concentrations ranging from 500 to 1000 crypts per well in Matrigel and grown in conditional medium or ISC medium. ISC Medium is changed every 2 days. After 1 week in culture, the organoids will be disrupted via a syringe and replated in fresh Matrigel. As the ability to form multilobed organoids is considered to be a direct stem cell function, the frequency of organoid formation in serial replating experiments can serve as a quantitative measurement of ISC function. For example, we demonstrated a reduced frequency of organoid formation as well as a reduction in number of lobes formed per organoid after 4-5 replatings of intestinal organoids from aged compared to young mice. These three techniques are thus, in combination, able to quantify the regeneration potential of intestinal stem cells and thus determine the extent to which intestinal stem cell regenerative function is reduced upon aging.
Collapse
|
222
|
Chaves-Pérez A, Yilmaz M, Perna C, de la Rosa S, Djouder N. URI is required to maintain intestinal architecture during ionizing radiation. Science 2019; 364:364/6443/eaaq1165. [PMID: 31147493 DOI: 10.1126/science.aaq1165] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 08/13/2018] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
Abstract
Ionizing radiation (IR) can cause gastrointestinal syndrome (GIS), a lethal disorder, by means of unknown mechanisms. We show that high-dose irradiation increases unconventional prefoldin RPB5 interactor (URI) levels in mouse intestinal crypt, but organ regeneration correlates with URI reductions. URI overexpression in intestine protects mice from radiation-induced GIS, whereas halving URI expression sensitizes mice to IR. URI specifically inhibits β-catenin in stem cell-like label-retaining (LR) cells, which are essential for organ regeneration after IR. URI reduction activates β-catenin-induced c-MYC expression, causing proliferation of and DNA damage to LR cells, rendering them radiosensitive. Therefore, URI labels LR cells which promote tissue regeneration in response to high-dose irradiation, and c-MYC inhibitors could be countermeasures for humans at risk of developing GIS.
Collapse
Affiliation(s)
- Almudena Chaves-Pérez
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Mahmut Yilmaz
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Sergio de la Rosa
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain.
| |
Collapse
|
223
|
Kretzschmar K, Clevers H. IFN-γ: The T cell's license to kill stem cells in the inflamed intestine. Sci Immunol 2019; 4:eaaz6821. [PMID: 31811056 DOI: 10.1126/sciimmunol.aaz6821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 03/21/2025]
Abstract
IFN-γ produced by T cells directly induces intestinal stem cell death upon inflammation-induced intestinal injury (see the related Research Article by Takashima et al.).
Collapse
Affiliation(s)
- Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands.
- Princess Máxima Center (PMC) for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
224
|
Li M, Gu MM, Lang Y, Shi J, Chen BPC, Guan H, Yu L, Zhou PK, Shang ZF. The vanillin derivative VND3207 protects intestine against radiation injury by modulating p53/NOXA signaling pathway and restoring the balance of gut microbiota. Free Radic Biol Med 2019; 145:223-236. [PMID: 31580946 DOI: 10.1016/j.freeradbiomed.2019.09.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/21/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022]
Abstract
The intestine is a highly radiosensitive tissue that is susceptible to structural and functional damage due to systemic as well as localized radiation exposure. Unfortunately, no effective prophylactic or therapeutic agents are available at present to manage radiation-induced intestinal injuries. We observed that the vanillin derivative VND3207 improved the survival of lethally irradiated mice by promoting intestinal regeneration and increasing the number of surviving crypts. Pre-treatment with VND3207 significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and their daughter cells, the transient Ki67+ proliferating cells. Mechanistically, VND3207 decreased oxidative DNA damage and lipid peroxidation and maintained endogenous antioxidant status by increasing the level of superoxide dismutase and total antioxidant capacity. In addition, VND3207 maintained appropriate levels of activated p53 that triggered cell cycle arrest but were not sufficient to induce NOXA-mediated apoptosis, thus ensuring DNA damage repair in the irradiated small intestinal crypt cells. Furthermore, VND3207 treatment restores the intestinal bacterial flora structures altered by TBI exposure. In conclusion, VND3207 promoted intestinal repair following radiation injury by reducing reactive oxygen species-induced DNA damage and modulating appropriate levels of activated p53 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Meng-Meng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yue Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianming Shi
- Suzhou Digestive Diseases and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lan Yu
- Suzhou Digestive Diseases and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China.
| | - Ping-Kun Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China; Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
225
|
Gaillard D, Shechtman LA, Millar SE, Barlow LA. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice. Sci Rep 2019; 9:17934. [PMID: 31784592 PMCID: PMC6884601 DOI: 10.1038/s41598-019-54216-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck cancer patients receiving conventional repeated, low dose radiotherapy (fractionated IR) suffer from taste dysfunction that can persist for months and often years after treatment. To understand the mechanisms underlying functional taste loss, we established a fractionated IR mouse model to characterize how taste buds are affected. Following fractionated IR, we found as in our previous study using single dose IR, taste progenitor proliferation was reduced and progenitor cell number declined, leading to interruption in the supply of new taste receptor cells to taste buds. However, in contrast to a single dose of IR, we did not encounter increased progenitor cell death in response to fractionated IR. Instead, fractionated IR induced death of cells within taste buds. Overall, taste buds were smaller and fewer following fractionated IR, and contained fewer differentiated cells. In response to fractionated IR, expression of Wnt pathway genes, Ctnnb1, Tcf7, Lef1 and Lgr5 were reduced concomitantly with reduced progenitor proliferation. However, recovery of Wnt signaling post-IR lagged behind proliferative recovery. Overall, our data suggest carefully timed, local activation of Wnt/β-catenin signaling may mitigate radiation injury and/or speed recovery of taste cell renewal following fractionated IR.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
226
|
Wang Y, Chiang IL, Ohara TE, Fujii S, Cheng J, Muegge BD, Ver Heul A, Han ND, Lu Q, Xiong S, Chen F, Lai CW, Janova H, Wu R, Whitehurst CE, VanDussen KL, Liu TC, Gordon JI, Sibley LD, Stappenbeck TS. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell 2019; 179:1144-1159.e15. [PMID: 31708126 PMCID: PMC6904908 DOI: 10.1016/j.cell.2019.10.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - I-Ling Chiang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Takahiro E Ohara
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Satoru Fujii
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jiye Cheng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Brian D Muegge
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Aaron Ver Heul
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nathan D Han
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Qiuhe Lu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Feidi Chen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chin-Wen Lai
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hana Janova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Charles E Whitehurst
- Boehringer Ingelheim Pharmaceuticals, Immunology and Respiratory Disease Research, Ridgefield, CT 06877, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
227
|
Zhou JY, Wang Z, Zhang SW, Lin HL, Gao CQ, Zhao JC, Yang C, Wang XQ. Methionine and Its Hydroxyl Analogues Improve Stem Cell Activity To Eliminate Deoxynivalenol-Induced Intestinal Injury by Reactivating Wnt/β-Catenin Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11464-11473. [PMID: 31532211 DOI: 10.1021/acs.jafc.9b04442] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The intestinal epithelium is derived from intestinal stem cells (ISCs) and has direct contact with nutrients and toxins. However, whether methionine (Met) or a methionine hydroxyl analogue (2-hydroxy-4-(methylthio)butanoic acid (HMB)) can alleviate deoxynivalenol (DON)-induced intestinal injury remains unknown. Mice were treated orally with Met or HMB on days 1-11 and with DON on days 4-8. On day 12, the mice were sacrificed, and the jejunum was collected for crypt isolation and culture. Mouse enteroids were treated with DON and Met or HMB ex vivo. The results showed that Met and HMB increased the average daily feed intake and average daily gain of the mice. Met and HMB also improved the jejunal structure and barrier integrity and promoted ISC expansion, as indicated by the increased enteroid formation efficiency and area, under DON-induced injury conditions. In addition, DON-induced decreases in ISC activity were rescued Wnt/β-catenin signaling reactivation by Met or HMB in vivo and ex vivo. Collectively, our findings reveal that Met and HMB alleviated DON-induced intestinal injury by improving ISC expansion and reactivating Wnt/β-catenin signaling. Our study thus provides a nutritional intervention for intestinal diseases involving Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
| | - Zhe Wang
- College of Letters & Science , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Sai-Wu Zhang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
| | - Hua-Lin Lin
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
| | - Chun-Qi Gao
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
- Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Jiang-Chao Zhao
- Department of Animal Science , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Chengbo Yang
- Department of animal science, Faculty of Agricultural and Food Sciences , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Xiu-Qi Wang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
| |
Collapse
|
228
|
Li K, Zhang J, Cao J, Li X, Tian H. 1,4-Dithiothreitol treatment ameliorates hematopoietic and intestinal injury in irradiated mice: Potential application of a treatment for acute radiation syndrome. Int Immunopharmacol 2019; 76:105913. [PMID: 31627170 DOI: 10.1016/j.intimp.2019.105913] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Radiation exposure poses a significant threat to public health, which can lead to acute hematopoietic system and intestinal system injuries due to their higher radiation sensitivity. Hence, antioxidants and thiol-reducing agents could have a potential protective effect against this complication. The dithiol compound 1,4-dithiothreitol (DTT) has been used in biochemistry, peptide/protein chemistry and clinical medicine. However, the effect of DTT on ionizing radiation (IR)-induced hematopoietic injury and intestinal injury are unknown. The current investigation was designed to evaluate the effect of DTT as a safe and clinically applicable thiol-radioprotector in irradiated mice. DTT treatment improved the survival of irradiated mice and ameliorated whole body irradiation (WBI)-induced hematopoietic injury by attenuating myelosuppression and myeloid skewing, increasing self-renewal and differentiation of hematopoietic progenitor cells/hematopoietic stem cells (HPCs/HSCs). In addition, DTT treatment protected mice from abdominal irradiation (ABI)-induced changes in crypt-villus structures and function. Furthermore, treatment with DTT significantly enhanced the ABI-induced reduction in Olfm4 positive cells and offspring cells of Lgr5+ stem cells, including lysozyme+ Paneth cells and Ki67+ cells. Moreover, IR-induced DNA strand break damage, and the expression of proapoptotic-p53, Bax, Bak protein and antiapoptotic-Bcl-2 protein were reversed in DTT treated mice, and DTT also promoted small intestine repair after radiation exposure via the p53 intrinsic apoptotic pathway. In general, these results demonstrated the potential of DTT for protection against hematopoietic injury and intestinal injury after radiation exposure, suggesting DTT as a novel effective agent for radioprotection.
Collapse
Affiliation(s)
- Kui Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Jian Cao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
229
|
Yu L, Tian X, Gao D, Lang Y, Zhang XX, Yang C, Gu MM, Shi J, Zhou PK, Shang ZF. Oral administration of hydroxylated-graphene quantum dots induces intestinal injury accompanying the loss of intestinal stem cells and proliferative progenitor cells. Nanotoxicology 2019; 13:1409-1421. [DOI: 10.1080/17435390.2019.1668068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lan Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Suzhou Digestive Diseases and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Dexuan Gao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yue Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiang-Xiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chen Yang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Meng-Meng Gu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianming Shi
- Suzhou Digestive Diseases and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ping-Kun Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
230
|
Impaired Wnt/β-catenin pathway leads to dysfunction of intestinal regeneration during necrotizing enterocolitis. Cell Death Dis 2019; 10:743. [PMID: 31582728 PMCID: PMC6776513 DOI: 10.1038/s41419-019-1987-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/17/2019] [Indexed: 01/21/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal disease characterized by acute intestinal injury. Intestinal stem cell (ISC) renewal is required for gut regeneration in response to acute injury. The Wnt/β-catenin pathway is essential for intestinal renewal and ISC maintenance. We found that ISC expression, Wnt activity and intestinal regeneration were all decreased in both mice with experimental NEC and in infants with acute active NEC. Moreover, intestinal organoids derived from NEC-injured intestine of both mice and humans failed to maintain proliferation and presented more differentiation. Administration of Wnt7b reversed these changes and promoted growth of intestinal organoids. Additionally, administration of exogenous Wnt7b rescued intestinal injury, restored ISC, and reestablished intestinal epithelial homeostasis in mice with NEC. Our findings demonstrate that during NEC, Wnt/β-catenin signaling is decreased, ISC activity is impaired, and intestinal regeneration is defective. Administration of Wnt resulted in the maintenance of intestinal epithelial homeostasis and avoidance of NEC intestinal injury.
Collapse
|
231
|
Preclinical murine platform to evaluate therapeutic countermeasures against radiation-induced gastrointestinal syndrome. Proc Natl Acad Sci U S A 2019; 116:20672-20678. [PMID: 31551264 PMCID: PMC6789742 DOI: 10.1073/pnas.1906611116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, there are no therapies available to mitigate intestinal damage after radiation injury. Efforts to study and design new therapies are hampered by a lack of models that can be readily adopted to study therapeutic targets. Here we describe a preclinical platform to evaluate therapeutic countermeasures against intestinal radiation injury in vivo in a mouse model that permits inducible and reversible gene suppression following radiation exposure. We demonstrate that transient intestinal Apc suppression stimulates intestinal regeneration and mitigates lethality after radiation intestinal injury, thus validating pulsed Wnt pathway agonism as a therapeutic strategy. This platform can be readily adopted to study theoretically any gene of interest associated with the biology and treatment of intestinal radiation injury. Radiation-induced gastrointestinal syndrome (RIGS) is a limiting factor for therapeutic abdominopelvic radiation and is predicted to be a major source of morbidity in the event of a nuclear accident or radiological terrorism. In this study, we developed an in vivo mouse-modeling platform that enables spatial and temporal manipulation of potential RIGS targets in mice following whole-abdomen irradiation without the confounding effects of concomitant hematopoietic syndrome that occur following whole-body irradiation. We then tested the utility of this platform to explore the effects of transient Wnt pathway activation on intestinal regeneration and animal recovery following induction of RIGS. Our results demonstrate that intestinal epithelial suppression of adenomatous polyposis coli (Apc) mitigates RIGS lethality in vivo after lethal ionizing radiation injury-induced intestinal epithelial damage. These results highlight the potential of short-term Wnt agonism as a therapeutic target and establish a platform to evaluate other strategies to stimulate intestinal regeneration after ionizing radiation damage.
Collapse
|
232
|
Wei X, Luo L, Chen J. Roles of mTOR Signaling in Tissue Regeneration. Cells 2019; 8:cells8091075. [PMID: 31547370 PMCID: PMC6769890 DOI: 10.3390/cells8091075] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin (mTOR), is a serine/threonine protein kinase and belongs to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family. mTOR interacts with other subunits to form two distinct complexes, mTORC1 and mTORC2. mTORC1 coordinates cell growth and metabolism in response to environmental input, including growth factors, amino acid, energy and stress. mTORC2 mainly controls cell survival and migration through phosphorylating glucocorticoid-regulated kinase (SGK), protein kinase B (Akt), and protein kinase C (PKC) kinase families. The dysregulation of mTOR is involved in human diseases including cancer, cardiovascular diseases, neurodegenerative diseases, and epilepsy. Tissue damage caused by trauma, diseases or aging disrupt the tissue functions. Tissue regeneration after injuries is of significance for recovering the tissue homeostasis and functions. Mammals have very limited regenerative capacity in multiple tissues and organs, such as the heart and central nervous system (CNS). Thereby, understanding the mechanisms underlying tissue regeneration is crucial for tissue repair and regenerative medicine. mTOR is activated in multiple tissue injuries. In this review, we summarize the roles of mTOR signaling in tissue regeneration such as neurons, muscles, the liver and the intestine.
Collapse
Affiliation(s)
- Xiangyong Wei
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lingfei Luo
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jinzi Chen
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
233
|
Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno-Serrano M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz ÖH. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell 2019; 178:1115-1131.e15. [PMID: 31442404 PMCID: PMC6732196 DOI: 10.1016/j.cell.2019.07.048] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Abstract
Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (βOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes βOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous βOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, βOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through βOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of βOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.
Collapse
Affiliation(s)
- Chia-Wei Cheng
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Moshe Biton
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Adam L Haber
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nuray Gunduz
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - George Eng
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA
| | - Liam T Gaynor
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Surya Tripathi
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Gizem Calibasi-Kocal
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Steffen Rickelt
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Vincent L Butty
- BioMicro Center at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | | | - Ameena M Iqbal
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | | | - Shinya Imada
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Mehmet Sefa Ulutas
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Biology, Siirt University, Science and Arts Faculty, 56100 Siirt, Turkey
| | | | - Mark T Whary
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Stuart S Levine
- BioMicro Center at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Yasemin Basbinar
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA
| | | | - James G Fox
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Christopher Terranova
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kunal Rai
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210 USA
| | - Aviv Regev
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
234
|
Wang Y, Xu W, Maddera L, Tsuchiya D, Thomas N, Yu CR, Parmely T. Alkaline phosphatase-based chromogenic and fluorescence detection method for BaseScope™ In Situ hybridization. J Histotechnol 2019; 42:193-201. [PMID: 31416394 DOI: 10.1080/01478885.2019.1620906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The BaseScope™ assay is a novel, highly sensitive RNA in situ hybridization (ISH) technique, allowing detection of short RNA sequences as well as discrimination between single-nucleotide alterations. Multiplexing BaseScope™ ISH with immunofluorescence assay has proven challenging because the diffusion of colorimetric dyes such as Fast Red in aqueous solutions degrades spatial resolution. In this study, we explore alkaline phosphatase-based fluorescent signal detection methods and integrate it with BaseScope™ RNA ISH. We found that Fast Blue BB/NAMP can be used in BaseScope™ ISH for signal detection. Additionally, we found that the calcium binding fluorochromes calcein and xylenol orange can be used to localize alkaline phosphatase activity in both immunohistochemistry (IHC) and BaseScope™ ISH assays. When applied to mouse brain and intestine tissue sections, we successfully detected circular RNA molecules and cell proliferation antigen Ki-67 proteins. This technological advance expanded the substrate selection of alkaline phosphatase-based BaseScope™ RNA ISH to allow researchers and clinical professionals accurately assess RNA targets with immunofluorescent multiplexing.
Collapse
Affiliation(s)
- Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Wenjing Xu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Lucinda Maddera
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Nancy Thomas
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - C Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tari Parmely
- Stowers Institute for Medical Research, Kansas City, MO, USA
| |
Collapse
|
235
|
Transient enhancement of p53 activity protects from radiation-induced gastrointestinal toxicity. Proc Natl Acad Sci U S A 2019; 116:17429-17437. [PMID: 31409715 DOI: 10.1073/pnas.1909550116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal (GI) syndrome is a serious side effect and dose-limiting toxicity observed in patients undergoing lower-abdominal radiotherapy. Previous mouse studies show that p53 gene dosage determines susceptibility to GI syndrome development. However, the translational relevance of p53 activity has not been addressed. Here, we used a knock-in mouse in which the p53-Mdm2 negative feedback loop is genetically disrupted. These mice retain biallelic p53 and thus, normal basal p53 levels and activity. However, due to the lack of p53-mediated Mdm2 transcription, irradiated Mdm2 P2/P2 mice exhibit enhanced acute p53 activity, which protects them from GI failure. Intestinal crypt cells residing in the +4 and higher positions exhibit decreased apoptosis, increased p21 expression, and hyperproliferation to reinstate intestinal integrity. Correspondingly, pharmacological augmentation of p53 activity in wild-type mice with an Mdm2 inhibitor protects against GI toxicity without affecting therapeutic outcome. Our results suggest that transient disruption of the p53-Mdm2 interaction to enhance p53 activity could be a viable prophylactic strategy for alleviating GI syndrome in patients undergoing radiotherapy.
Collapse
|
236
|
Khalifa J, François S, Rancoule C, Riccobono D, Magné N, Drouet M, Chargari C. Gene therapy and cell therapy for the management of radiation damages to healthy tissues: Rationale and early results. Cancer Radiother 2019; 23:449-465. [PMID: 31400956 DOI: 10.1016/j.canrad.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, ionizing radiations have numerous applications, especially in medicine for diagnosis and therapy. Pharmacological radioprotection aims at increasing detoxification of free radicals. Radiomitigation aims at improving survival and proliferation of damaged cells. Both strategies are essential research area, as non-contained radiation can lead to harmful effects. Some advances allowing the comprehension of normal tissue injury mechanisms, and the discovery of related predictive biomarkers, have led to developing several highly promising radioprotector or radiomitigator drugs. Next to these drugs, a growing interest does exist for biotherapy in this field, including gene therapy and cell therapy through mesenchymal stem cells. In this review article, we provide an overview of the management of radiation damages to healthy tissues via gene or cell therapy in the context of radiotherapy. The early management aims at preventing the occurrence of these damages before exposure or just after exposure. The late management offers promises in the reversion of constituted late damages following irradiation.
Collapse
Affiliation(s)
- J Khalifa
- Départment de radiothérapie, institut Claudius-Regaud, institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - S François
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Rancoule
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - D Riccobono
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - N Magné
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - M Drouet
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Chargari
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France; Service de santé des armées, école du Val-de-Grâce, 74, boulevard de Port-Royal, 75005 Paris, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vailant, 94805 Villejuif, France
| |
Collapse
|
237
|
Herrero D, Cañón S, Pelacho B, Salvador-Bernáldez M, Aguilar S, Pogontke C, Carmona RM, Salvador JM, Perez-Pomares JM, Klein OD, Prósper F, Jimenez-Borreguero LJ, Bernad A. Bmi1-Progenitor Cell Ablation Impairs the Angiogenic Response to Myocardial Infarction. Arterioscler Thromb Vasc Biol 2019; 38:2160-2173. [PMID: 29930004 DOI: 10.1161/atvbaha.118.310778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective- Cardiac progenitor cells reside in the heart in adulthood, although their physiological relevance remains unknown. Here, we demonstrate that after myocardial infarction, adult Bmi1+ (B lymphoma Mo-MLV insertion region 1 homolog [PCGF4]) cardiac cells are a key progenitor-like population in cardiac neovascularization during ventricular remodeling. Approach and Results- These cells, which have a strong in vivo differentiation bias, are a mixture of endothelial- and mesenchymal-related cells with in vitro spontaneous endothelial cell differentiation capacity. Genetic lineage tracing analysis showed that heart-resident Bmi1+ progenitor cells proliferate after acute myocardial infarction and differentiate to generate de novo cardiac vasculature. In a mouse model of induced myocardial infarction, genetic ablation of these cells substantially deteriorated both heart angiogenesis and the ejection fraction, resulting in an ischemic-dilated cardiac phenotype. Conclusions- These findings imply that endothelial-related Bmi1+ progenitor cells are necessary for injury-induced neovascularization in adult mouse heart and highlight these cells as a suitable therapeutic target for preventing dysfunctional left ventricular remodeling after injury.
Collapse
Affiliation(s)
- Diego Herrero
- From the Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain (D.H., S.C., M.S.-B., S.A., R.M.C., J.M.S., A.B.)
| | - Susana Cañón
- From the Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain (D.H., S.C., M.S.-B., S.A., R.M.C., J.M.S., A.B.)
| | - Beatriz Pelacho
- Center for Applied Medical Research (CIMA) Regenerative Medicine Area, University of Navarra, Pamplona, Spain (B.P., F.P.).,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain (B.P., F.P.)
| | - María Salvador-Bernáldez
- From the Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain (D.H., S.C., M.S.-B., S.A., R.M.C., J.M.S., A.B.)
| | - Susana Aguilar
- From the Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain (D.H., S.C., M.S.-B., S.A., R.M.C., J.M.S., A.B.)
| | - Cristina Pogontke
- Department of Animal Biology, Faculty of Sciences, Instituto de Investigación Biomédica de Málaga (IBIMA) and BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía), Universidad de Málaga, Spain (C.P., J.M.P.-P.)
| | - Rosa María Carmona
- From the Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain (D.H., S.C., M.S.-B., S.A., R.M.C., J.M.S., A.B.)
| | - Jesús María Salvador
- From the Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain (D.H., S.C., M.S.-B., S.A., R.M.C., J.M.S., A.B.)
| | - Jose María Perez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto de Investigación Biomédica de Málaga (IBIMA) and BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía), Universidad de Málaga, Spain (C.P., J.M.P.-P.)
| | - Ophir David Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco (O.D.K.)
| | - Felipe Prósper
- Center for Applied Medical Research (CIMA) Regenerative Medicine Area, University of Navarra, Pamplona, Spain (B.P., F.P.).,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain (B.P., F.P.)
| | - Luis Jesús Jimenez-Borreguero
- Cardiovascular Development and Repair Department, National Cardiovascular Research Center (CNIC) and Hospital de La Princesa, Madrid, Spain (L.J.J.-B.)
| | - Antonio Bernad
- From the Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain (D.H., S.C., M.S.-B., S.A., R.M.C., J.M.S., A.B.)
| |
Collapse
|
238
|
Chopyk DM, Stuart JD, Zimmerman MG, Wen J, Gumber S, Suthar MS, Thapa M, Czaja MJ, Grakoui A. Acetaminophen Intoxication Rapidly Induces Apoptosis of Intestinal Crypt Stem Cells and Enhances Intestinal Permeability. Hepatol Commun 2019; 3:1435-1449. [PMID: 31701068 PMCID: PMC6824060 DOI: 10.1002/hep4.1406] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Acetaminophen (APAP)‐induced liver injury is the most common cause of acute liver failure (ALF) in the Western world. APAP toxicity progresses to multiorgan dysfunction and thus has broader whole‐body implications. Importantly, greater 30‐day mortality has been observed in liver transplant recipients following ALF due to APAP‐related versus non‐APAP‐related causes. Reasons for this discrepancy have yet to be determined. Extrahepatic toxicities of APAP overdose may represent underappreciated and unaddressed comorbidities within this patient population. In the present study, rapid induction of apoptosis following APAP overdose was observed in the intestine, an organ that greatly influences the physiology of the liver. Strikingly, apoptotic cells appeared to be strictly restricted to the intestinal crypts. The use of leucine‐rich repeat‐containing G protein–coupled receptor 5 (LGR5) reporter mice confirmed that the LGR5‐positive (+) crypt base stem cells were disproportionately affected by APAP‐induced cell death. Although the apoptotic cells were cleared within 24 hours after APAP treatment, potentially long‐lived consequences on the intestine due to APAP exposure were indicated by prolonged deficits in gut barrier function. Moreover, small intestinal cell death was found to be independent of tumor necrosis factor receptor signaling and may represent a direct toxic insult to the intestine by exposure to high concentrations of APAP. Conclusion: APAP induces intestinal injury through a regulated process of apoptotic cell death that disproportionately affects LGR5+ stem cells. This work advances our understanding of the consequences of APAP toxicity in a novel organ that was not previously considered as a significant site of injury and thus presents potential new considerations for patient management.
Collapse
Affiliation(s)
- Daniel M Chopyk
- Emory Vaccine Center, Division of Microbiology and Immunology Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Johnasha D Stuart
- Emory Vaccine Center, Division of Microbiology and Immunology Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Matthew G Zimmerman
- Division of Infectious Diseases, Department of Pediatrics Emory University School of Medicine Atlanta GA.,Emory Vaccine Center Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Jing Wen
- Division of Digestive Diseases, Department of Medicine Emory University School of Medicine Atlanta GA
| | - Sanjeev Gumber
- Division of Pathology and Laboratory Medicine Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Mehul S Suthar
- Division of Infectious Diseases, Department of Pediatrics Emory University School of Medicine Atlanta GA.,Emory Vaccine Center Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Manoj Thapa
- Emory Vaccine Center, Division of Microbiology and Immunology Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Mark J Czaja
- Division of Digestive Diseases, Department of Medicine Emory University School of Medicine Atlanta GA
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA.,Division of Infectious Diseases, Department of Medicine Emory University School of Medicine Atlanta GA
| |
Collapse
|
239
|
Li Y, Ma S, Zhang Y, Yao M, Zhu X, Guan F. (−)-Epicatechin mitigates radiation-induced intestinal injury and promotes intestinal regeneration via suppressing oxidative stress. Free Radic Res 2019; 53:851-864. [PMID: 31234659 DOI: 10.1080/10715762.2019.1635692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Minghao Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
240
|
Lee CL, Daniel AR, Holbrook M, Brownstein J, Silva Campos LD, Hasapis S, Ma Y, Borst LB, Badea CT, Kirsch DG. Sensitization of Vascular Endothelial Cells to Ionizing Radiation Promotes the Development of Delayed Intestinal Injury in Mice. Radiat Res 2019; 192:258-266. [PMID: 31265788 PMCID: PMC6776243 DOI: 10.1667/rr15371.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure of the gastrointestinal (GI) tract to ionizing radiation can cause acute and delayed injury. However, critical cellular targets that regulate the development of radiation-induced GI injury remain incompletely understood. Here, we investigated the role of vascular endothelial cells in controlling acute and delayed GI injury after total-abdominal irradiation (TAI). To address this, we used genetically engineered mice in which endothelial cells are sensitized to radiation due to the deletion of the tumor suppressor p53. Remarkably, we found that VE-cadherin-Cre; p53FL/FL mice, in which both alleles of p53 are deleted in endothelial cells, were not sensitized to the acute GI radiation syndrome, but these mice were highly susceptible to delayed radiation enteropathy. Histological examination indicated that VE-cadherin-Cre; p53FL/FL mice that developed delayed radiation enteropathy had severe vascular injury in the small intestine, which was manifested by hemorrhage, loss of microvessels and tissue hypoxia. In addition, using dual-energy CT imaging, we showed that VE-cadherin-Cre; p53FL/FL mice had a significant increase in vascular permeability of the small intestine in vivo 28 days after TAI. Together, these findings demonstrate that while sensitization of endothelial cells to radiation does not exacerbate the acute GI radiation syndrome, it is sufficient to promote the development of late radiation enteropathy.
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710.,Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Andrea R Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Matt Holbrook
- Department of Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Jeremy Brownstein
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | | | - Stephanie Hasapis
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Luke B Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606
| | - Cristian T Badea
- Department of Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
241
|
Fasting Reduces Intestinal Radiotoxicity, Enabling Dose-Escalated Radiation Therapy for Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2019; 105:537-547. [PMID: 31271824 DOI: 10.1016/j.ijrobp.2019.06.2533] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/20/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Chemotherapy combined with radiation therapy is the most commonly used approach for treating locally advanced pancreatic cancer. The use of curative doses of radiation in this disease setting is constrained because of the close proximity of the head of the pancreas to the duodenum. The purpose of this study was to determine whether fasting protects the duodenum from high-dose radiation, thereby enabling dose escalation for efficient killing of pancreatic tumor cells. METHODS AND MATERIALS C57BL/6J mice were either fed or fasted for 24 hours and then exposed to total abdominal radiation at 11.5 Gy. Food intake, body weight, overall health, and survival were monitored. Small intestines were harvested at various time points after radiation, and villi length, crypt depth, and number of crypts per millimeter of intestine were determined. Immunohistochemistry was performed to assess apoptosis and double-strand DNA breaks, and microcolony assays were performed to determine intestinal stem cell regeneration capacity. A syngeneic KPC model of pancreatic cancer was used to determine the effects of fasting on the radiation responses of both pancreatic cancer and host intestinal tissues. RESULTS We demonstrated that a 24-hour fast in mice improved intestinal stem cell regeneration, as revealed by microcolony assay, and improved host survival of lethal doses of total abdominal irradiation compared with fed controls. Fasting also improved survival of mice with orthotopic pancreatic tumors subjected to lethal abdominal radiation compared with controls with free access to food. Furthermore, fasting did not affect tumor cell killing by radiation therapy and enhanced γ-H2AX staining after radiation therapy, suggesting an additional mild radiosensitizing effect. CONCLUSIONS These results establish proof of concept for fasting as a dose-escalation strategy, enabling ablative radiation in the treatment of unresectable pancreatic cancer.
Collapse
|
242
|
Wenqin D, Yaodong Z, Wanji S, Fengli Z, Li S, Haili J, Ping L, Mei Z. Armillariella Oral Solution Ameliorates Small Intestinal Damage in a Mouse Model of Chemotherapy-Induced Mucositis. Nutr Cancer 2019; 71:1142-1152. [PMID: 31210536 DOI: 10.1080/01635581.2019.1599029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Armillariella oral solution (AOS) shows therapeutic effect on gastrointestinal disorders. We aimed to investigate the potential efficacy of AOS on chemotherapy-induced intestinal mucositis in mice. Methods: Intestinal mucositis was induced in C57BL/6 mice by daily intraperitoneal injection of 5-FU (50 mg/kg) for 7 days. Effects of AOS (at 1, 5, and 10 mL/kg), or combined Bifidobacterium and Lactobacillus (CBL, 450 mg/kg) on the accompanying morphometry and histology, expression of Ki-67, caspase-3, Lgr5 and apoptosis of intestinal crypt cells were assessed. Results: Continuous administration of 5-FU to mice caused severe intestinal mucositis, which was histologically characterized by the destruction of intestinal crypts and shortening of villi, accompanied by diarrhea and body weight loss. Daily AOS administration dose-dependently reduced the severity of intestinal mucositis, diarrhea and body weight loss. Similar beneficial effects were observed with CBL. The expression of Ki-67 and Lgr5 decreased and the expression of caspase-3, and the number of apoptotic cells increased 24 h after the first 5-FU administration (P < 0.05), and these responses were significantly reduced by AOS treatment (P < 0.05, at 5 or 10 mL/kg). Conclusions: AOS can alleviate 5-FU-induced mucositis in mice via increasing Lgr5 expression and suppressing apoptotic responses in the intestinal crypt cells.
Collapse
Affiliation(s)
- Dong Wenqin
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhu Yaodong
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Song Wanji
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhang Fengli
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Su Li
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Jiang Haili
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Li Ping
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhang Mei
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| |
Collapse
|
243
|
Oost KC, van Voorthuijsen L, Fumagalli A, Lindeboom RGH, Sprangers J, Omerzu M, Rodriguez-Colman MJ, Heinz MC, Verlaan-Klink I, Maurice MM, Burgering BMT, van Rheenen J, Vermeulen M, Snippert HJG. Specific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene. Cell Rep 2019; 22:1600-1614. [PMID: 29425513 PMCID: PMC5847189 DOI: 10.1016/j.celrep.2018.01.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/01/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
Organoid technology provides the possibility of culturing patient-derived colon tissue and colorectal cancers (CRCs) while maintaining all functional and phenotypic characteristics. Labeling stem cells, especially in normal and benign tumor organoids of human colon, is challenging and therefore limits maximal exploitation of organoid libraries for human stem cell research. Here, we developed STAR (stem cell Ascl2 reporter), a minimal enhancer/promoter element that reports transcriptional activity of ASCL2, a master regulator of LGR5+ intestinal stem cells. Using lentiviral infection, STAR drives specific expression in stem cells of normal organoids and in multiple engineered and patient-derived CRC organoids of different genetic makeup. STAR reveals that differentiation hierarchies and the potential for cell fate plasticity are present at all stages of human CRC development. Organoid technology, in combination with the user-friendly nature of STAR, will facilitate basic research into human adult stem cell biology.
Collapse
Affiliation(s)
- Koen C Oost
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Lisa van Voorthuijsen
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Arianna Fumagalli
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rik G H Lindeboom
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Joep Sprangers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Manja Omerzu
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Maria J Rodriguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Maria C Heinz
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Ingrid Verlaan-Klink
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Madelon M Maurice
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jacco van Rheenen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel Vermeulen
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
244
|
Wu Y, Tang L, Wang B, Sun Q, Zhao P, Li W. The role of autophagy in maintaining intestinal mucosal barrier. J Cell Physiol 2019; 234:19406-19419. [PMID: 31020664 DOI: 10.1002/jcp.28722] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/23/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
The intestinal mucosal barrier is the first line to defense against luminal content penetration and performs numerous biological functions. The intestinal epithelium contains a huge surface that is lined by a monolayer of intestinal epithelial cells (IECs). IECs are dominant mediators in maintaining intestinal homeostasis that drive diverse functions including nutrient absorption, physical segregation, secretion of antibacterial peptides, and modulation of immune responses. Autophagy is a cellular self-protection mechanism in response to various stresses, and accumulating studies have revealed its importance in participating physiological processes of IECs. The regulatory effects of autophagy depend on the specific IEC types. This review aims to elucidate the myriad roles of autophagy in regulating the functions of different IECs (stem cells, enterocytes, goblet cells, and Paneth cells), and present the progress of autophagy-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide new preventive and therapeutic strategies for gastrointestinal dysfunction and diseases.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
245
|
Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J, Ouladan S, Fink M, Barutcu S, Trcka D, Shen J, Chan K, Wrana JL, Gregorieff A. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 2019; 569:121-125. [PMID: 31019301 DOI: 10.1038/s41586-019-1154-y] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/27/2019] [Indexed: 11/09/2022]
Abstract
The turnover of the intestinal epithelium is driven by multipotent LGR5+ crypt-base columnar cells (CBCs) located at the bottom of crypt zones1. However, CBCs are lost following injury, such as irradiation2, but the intestinal epithelium is nevertheless able to recover3. Thus, a second population of quiescent '+4' cells, or reserve stem cells (RSCs), has previously been proposed to regenerate the damaged intestine4-7. Although CBCs and RSCs were thought to be mutually exclusive4,8, subsequent studies have found that LGR5+ CBCs express RSC markers9 and that RSCs were dispensable-whereas LGR5+ cells were essential-for repair of the damaged intestine3. In addition, progenitors of absorptive enterocytes10, secretory cells11-15 and slow cycling LGR5+ cells16 have been shown to contribute to regeneration whereas the transcriptional regulator YAP1, which is important for intestinal regeneration, was suggested to induce a pro-survival phenotype in LGR5+ cells17. Thus, whether cellular plasticity or distinct cell populations are critical for intestinal regeneration remains unknown. Here we applied single-cell RNA sequencing to profile the regenerating mouse intestine and identified a distinct, damage-induced quiescent cell type that we term the revival stem cell (revSC). revSCs are marked by high clusterin expression and are extremely rare under homoeostatic conditions, yet give rise-in a temporal hierarchy-to all the major cell types of the intestine, including LGR5+ CBCs. After intestinal damage by irradiation, targeted ablation of LGR5+ CBCs, or treatment with dextran sodium sulfate, revSCs undergo a YAP1-dependent transient expansion, reconstitute the LGR5+ CBC compartment and are required to regenerate a functional intestine. These studies thus define a unique stem cell that is mobilized by damage to revive the homoeostatic stem cell compartment and regenerate the intestinal epithelium.
Collapse
Affiliation(s)
- Arshad Ayyaz
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sandeep Kumar
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bruno Sangiorgi
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bibaswan Ghoshal
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jessica Gosio
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shaida Ouladan
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Seda Barutcu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel Trcka
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jess Shen
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kin Chan
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Network Biology Collaboration Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Alex Gregorieff
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. .,Department of Pathology, McGill University and Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
246
|
Scaramozza A, Park D, Kollu S, Beerman I, Sun X, Rossi DJ, Lin CP, Scadden DT, Crist C, Brack AS. Lineage Tracing Reveals a Subset of Reserve Muscle Stem Cells Capable of Clonal Expansion under Stress. Cell Stem Cell 2019; 24:944-957.e5. [PMID: 31006621 DOI: 10.1016/j.stem.2019.03.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/09/2019] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
Abstract
Stem cell heterogeneity is recognized as functionally relevant for tissue homeostasis and repair. The identity, context dependence, and regulation of skeletal muscle satellite cell (SC) subsets remains poorly understood. We identify a minor subset of Pax7+ SCs that is indelibly marked by an inducible Mx1-Cre transgene in vivo, is enriched for Pax3 expression, and has reduced ROS (reactive oxygen species) levels. Mx1+ SCs possess potent stem cell activity upon transplantation but minimally contribute to endogenous muscle repair, due to their relative low abundance. In contrast, a dramatic clonal expansion of Mx1+ SCs allows extensive contribution to muscle repair and niche repopulation upon selective pressure of radiation stress, consistent with reserve stem cell (RSC) properties. Loss of Pax3 in RSCs increased ROS content and diminished survival and stress tolerance. These observations demonstrate that the Pax7+ SC pool contains a discrete population of radiotolerant RSCs that undergo clonal expansion under severe stress.
Collapse
Affiliation(s)
- Annarita Scaramozza
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swapna Kollu
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Xuefeng Sun
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Charles P Lin
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Advanced Microscopy Program, Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David T Scadden
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Colin Crist
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Andrew S Brack
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
247
|
Johansson J, Naszai M, Hodder MC, Pickering KA, Miller BW, Ridgway RA, Yu Y, Peschard P, Brachmann S, Campbell AD, Cordero JB, Sansom OJ. RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes. Cell Stem Cell 2019; 24:592-607.e7. [PMID: 30853556 PMCID: PMC6459002 DOI: 10.1016/j.stem.2019.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
Abstract
Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling. Within the murine intestine, genetic deletion of either mammalian ortholog, Rala or Ralb, reduced ISC function and Lgr5 positivity, drove hypersensitivity to Wnt inhibition, and impaired tissue regeneration following damage. Ablation of both genes resulted in rapid crypt death. Mechanistically, RALA and RALB were required for efficient internalization of the Wnt receptor Frizzled-7. Together, we identify a conserved role for RAL GTPases in the promotion of optimal Wnt signaling, which defines ISC number and regenerative potential.
Collapse
Affiliation(s)
- Joel Johansson
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Mate Naszai
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | - Bryan W Miller
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Yachuan Yu
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | | | - Julia B Cordero
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
248
|
Zhou JY, Huang DG, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. mTORC1 signaling activation increases intestinal stem cell activity and promotes epithelial cell proliferation. J Cell Physiol 2019; 234:19028-19038. [PMID: 30937902 DOI: 10.1002/jcp.28542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
Abstract
The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Deng-Gui Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying-Chao Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Chun-Qi Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui-Chao Yan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
249
|
Liu R, Moriggl R, Zhang D, Li H, Karns R, Ruan HB, Niu H, Mayhew C, Watson C, Bangar H, Cha SW, Haslam D, Zhang T, Gilbert S, Li N, Helmrath M, Wells J, Denson L, Han X. Constitutive STAT5 activation regulates Paneth and Paneth-like cells to control Clostridium difficile colitis. Life Sci Alliance 2019; 2:e201900296. [PMID: 30948494 PMCID: PMC6451325 DOI: 10.26508/lsa.201900296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile impairs Paneth cells, driving intestinal inflammation that exaggerates colitis. Besides secreting bactericidal products to restrain C. difficile, Paneth cells act as guardians that constitute a niche for intestinal epithelial stem cell (IESC) regeneration. However, how IESCs are sustained to specify Paneth-like cells as their niche remains unclear. Cytokine-JAK-STATs are required for IESC regeneration. We investigated how constitutive STAT5 activation (Ca-pYSTAT5) restricts IESC differentiation towards niche cells to restrain C. difficile infection. We generated inducible transgenic mice and organoids to determine the effects of Ca-pYSTAT5-induced IESC lineages on C. difficile colitis. We found that STAT5 absence reduced Paneth cells and predisposed mice to C. difficile ileocolitis. In contrast, Ca-pYSTAT5 enhanced Paneth cell lineage tracing and restricted Lgr5 IESC differentiation towards pYSTAT5+Lgr5-CD24+Lyso+ or cKit+ niche cells, which imprinted Lgr5hiKi67+ IESCs. Mechanistically, pYSTAT5 activated Wnt/β-catenin signaling to determine Paneth cell fate. In conclusion, Ca-pYSTAT5 gradients control niche differentiation. Lack of pYSTAT5 reduces the niche cells to sustain IESC regeneration and induces C. difficile ileocolitis. STAT5 may be a transcription factor that regulates Paneth cells to maintain niche regeneration.
Collapse
Affiliation(s)
- Ruixue Liu
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Dongsheng Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Haifeng Li
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MI, USA
| | - Haitao Niu
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | | | - Carey Watson
- Division of Pediatric Surgery, CCHMC, Cincinnati, OH, USA
| | - Hansraj Bangar
- Division of Infectious Diseases, CCHMC, Cincinnati, OH, USA
| | - Sang-Wook Cha
- Division of Developmental Biology, CCHMC, Cincinnati, OH, USA
| | - David Haslam
- Division of Infectious Diseases, CCHMC, Cincinnati, OH, USA
| | - Tongli Zhang
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, OH, USA
| | - Shila Gilbert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Na Li
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | | | - James Wells
- Division of Developmental Biology, CCHMC, Cincinnati, OH, USA
- Division of Endocrinology, CCHMC, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, CCHMC, Cincinnati, OH, USA
| | - Lee Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
250
|
van der Heijden M, Vermeulen L. Stem cells in homeostasis and cancer of the gut. Mol Cancer 2019; 18:66. [PMID: 30927915 PMCID: PMC6441158 DOI: 10.1186/s12943-019-0962-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelial lining is one of the most rapidly renewing cell populations in the body. As a result, the gut has been an attractive model to resolve key mechanisms in epithelial homeostasis. In particular the role of intestinal stem cells (ISCs) in the renewal process has been intensely studied. Interestingly, as opposed to the traditional stem cell theory, the ISC is not a static population but displays significant plasticity and in situations of tissue regeneration more differentiated cells can revert back to a stem cell state upon exposure to extracellular signals. Importantly, normal intestinal homeostasis provides important insight into mechanisms that drive colorectal cancer (CRC) development and growth. Specifically, the dynamics of cancer stem cells bear important resemblance to ISC functionality. In this review we present an overview of the current knowledge on ISCs in homeostasis and their role in malignant transformation. Also, we discuss the existence of stem cells in intestinal adenomas and CRC and how these cells contribute to (pre-)malignant growth. Furthermore, we will focus on new paradigms in the field of dynamical cellular hierarchies in CRC and the intimate relationship between tumor cells and their niche.
Collapse
Affiliation(s)
- Maartje van der Heijden
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands.
| |
Collapse
|