201
|
Ebrahimzadeh MA, Biparva P, Mohammadi H, Tavakoli S, Rafiei A, Kardan M, Badali H, Eslami S. Highly Concentrated Multifunctional Silver Nanoparticle Fabrication through Green Reduction of Silver Ions in Terms of Mechanics and Therapeutic Potentials. Anticancer Agents Med Chem 2020; 19:2140-2153. [PMID: 31736448 DOI: 10.2174/1871520619666191021115609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/15/2019] [Accepted: 09/13/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Green synthesis of silver nanoparticles (AgNPs) is limited to produce AgNPs with only relatively low concentrations, and is unsuitable for large-scale productions. The use of Myrtus communis (MC) leaf methanolic extract (rich in hydrolyzable tannins) has been recommended to resolve the issues related to the aggregation of nanoparticles at high concentrations of silver ions with added facet of antioxidant properties. METHODS The produced highly concentrated MC-AgNPs were characterized by using imaging and spectroscopic methods. Subsequently, antioxidant, anticancer and antifungal activities of the nanoparticles were evaluated. RESULTS The thermogravimetric analysis and energy dispersive spectroscopy quantitative results suggested that the nanoparticles are biphasic in nature (bio-molecule + Ag0) and layered in structure, suggesting the formation of nanoparticles through a different mechanism than those described in the literature. MC-AgNPs showed greater scavenging activity of nitric oxide and iron (II) chelating ability than the extract. It also showed good reducing power compared to the standard antioxidant. Remarkable anticancer activity of MC-AgNPs (IC50 = 5.99µg/mL) was found against HCT-116 (human colon carcinoma) cell lines after 24h exposure with a therapeutic index value 2-fold higher than the therapeutic index of standard doxorubicin. Furthermore, distinct antifungal activity (MIC = 4µg/mL) was found against Candida krusei. CONCLUSION The current method outperforms the existing methods because it produces a large amount of multifunctional nanoscale hybrid materials more efficiently using natural sources; thus, it may be used for diverse biomedical applications.
Collapse
Affiliation(s)
- Mohammad A Ebrahimzadeh
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pourya Biparva
- Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirin Tavakoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Kardan
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Eslami
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
202
|
Mohsenpour R, Mousavi‐Sabet H, Hedayati A, Rezaei A, Yalsuyi AM, Faggio C. In vitro effects of silver nanoparticles on gills morphology of female Guppy (
Poecilia reticulate
) after a short‐term exposure. Microsc Res Tech 2020; 83:1552-1557. [DOI: 10.1002/jemt.23549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Reza Mohsenpour
- Department of Fisheries, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| | - Hamed Mousavi‐Sabet
- Department of Fisheries, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| | - Aliakbar Hedayati
- Department of Fisheries Science Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Amir Rezaei
- Department of Fisheries, Faculty of Natural Resources & Marine Sciences Tarbiat Modares University Noor Iran
| | - Ahmad Mohamadi Yalsuyi
- Department of Fisheries Science Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
203
|
Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent 2020; 7:105-109. [PMID: 32939454 PMCID: PMC7470068 DOI: 10.1080/26415275.2020.1796674] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
AIM To determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus (S. aureus).Methodology: The antimicrobial efficacy of the silver nanoparticles was determined by the standard methods of Clinical and Laboratory Standards Institute (CLSI). Different concentrations of silver nanoparticles were prepared, and MIC was calculated by tube macro-dilution method. The MBC was determined by the lowest concentration that kills 99.9% of the initial bacterial population. The data were analyzed by ANOVA and Tukey's post hoc test using SPSS software. RESULTS The MIC and MBC of silver nanoparticles against S. aureus was found to be 0.625 mg/ml. CONCLUSION The result obtained from this study shows that silver nanoparticles have potential bactericidal effects against S. aureus at a concentration of 0.625 mg/ml. Silver nanoparticles can be incorporated in the root canal medicaments, sealers and irrigants as it possess potent antimicrobial efficacy against S. aureus.
Collapse
Affiliation(s)
- Prashik Parvekar
- Pacific Academy of Higher Education, Research University, Udaipur, India
| | - Jayant Palaskar
- Department of Prosthodontics, Sinhagad Dental College, Pune, India
| | - Sandeep Metgud
- Department of Endodontics, Pacific Dental College, Udaipur, India
| | - Rahul Maria
- Department of Endodontics, Bhabha College of Dental Sciences, Bhopal, India
| | - Smita Dutta
- Department of Endodontics, College of Dental Medicine, Qassim University, Kingdom of Saudi Arabia
| |
Collapse
|
204
|
Mukherjee N, Mitra S, Adak S, Chakraborty S, Sau A, Goswami A. Evaluation of the growth response of spore forming lactic acid Bacillus–Bacillus coagulans in presence of oxide nanoparticles. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01512-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
205
|
Al-Doaiss AA, Jarrar Q, Alshehri M, Jarrar B. In vivo study of silver nanomaterials' toxicity with respect to size. Toxicol Ind Health 2020; 36:540-557. [PMID: 32677580 DOI: 10.1177/0748233720937201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles (Ag NPs) are widely used in nanomedicine, pharmaceutical products, industry and other consumer products owing to their unique physiochemical properties with probable potential risk to human health and the ecosystems. The aim of this work was to investigate the in-life morphological effects, biochemical, histological and histochemical alterations that might be induced by variable sizes of Ag NPs in hepatic, renal and testicular tissues with the hypothesis that variable sizes of nano-Ag could induce variable effects in the vital organs. Five groups of adult healthy male mice (BALB/C) were exposed to 35 intraperitoneal injections of Ag NPs (1 mg/kg bw) using five different particle sizes (10, 20, 40, 60 and 100 nm). All mice were subjected to in-life morphometric, biochemical, histological and histochemical analysis. The findings demonstrated that Ag NPs could induce alterations in the average body weight gain, food consumption, water intake and organ indices. In addition, these NPs significantly altered hepatic and renal biomarkers. Moreover, Ag NPs produced ground glass hepatocyte cytoplasm, with mitotic activity, nuclear alterations, degeneration, glycogen depletion and inflammatory cells infiltration in the liver. The kidneys of treated mice exhibited proximal renal tubules degeneration, distal renal tubules regeneration, glomerular shrinkage, Bowman's capsule thickening and interstitial inflammation. The testicular tissues demonstrated spermatocyte sloughing and spermatid giant cell formation. The findings together indicated that Ag NPs could interact with the anatomical structures of the liver, kidney and testis in ways that could induce injury. In addition, the results indicated that smaller Ag NPs posed a greater potential risk than the larger ones, which might be associated with their behaviour, dissolution rate, bioavailability and their probable variable toxicokinetics.
Collapse
Affiliation(s)
- Amin A Al-Doaiss
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Pharmacy Practice, Faculty of Pharmacy, 108568Isra University, Amman, Jordan
| | - Mohammed Alshehri
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Bashir Jarrar
- Nanobiology Unit, Biological Sciences, College of Science, 123295Jerash Private University, Jerash, Jordan
| |
Collapse
|
206
|
Aminianfar M, Parvardeh S, Soleimani M. In vitro and in vivo Assessment of Silver Nanoparticles Against Clostridium botulinum Type A Botulinum. Curr Drug Discov Technol 2020; 16:113-119. [PMID: 29623844 DOI: 10.2174/1570163815666180403163946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Clostridium botulinum causes botulism, a serious paralytic illness that results from the ingestion of a botulinum toxin. Because silver nanoparticle products exhibit strong antimicrobial activity, applications for silver nanoparticles in healthcare have expanded. Therefore, the objective of the current study was to assess a therapeutic strategy for the treatment of botulism toxicity using silver nanoparticles. METHODS A preliminary test was conducted using doses that produce illness in laboratory animals to determine the absolute lethal dose (LD100) of botulinum toxin type A (BoNT/A) in mice. Next, the test animals were divided into six groups containing six mice each. Groups I, II and III were the negative control (botulinum toxin only), positive control-1 (nano-silver only) and positive control-2 (no treatment), respectively. The remaining groups were allocated to the toxin that was supplemented with three nano-silver treatments. RESULTS The mortality rates of mice caused by BoNT/A significantly reduced in the treatment groups with different doses and injection intervals of nano-silver when compared to the negative control group. BoNT/A toxicity induced by intraperitoneal injection of the toxin of Clostridium botulinum causes rapid death while when coupled with nano-osilver results in delayed death in mice. CONCLUSION These results, while open to future improvement, represent a preliminary step towards the satisfactory control of BoNT/A with the use of silver nanoparticles for human protection against this bioterrorism threat. Further study in this area can elucidate the underlying mechanism for detoxifying BoNT/A by silver nanoparticles.
Collapse
Affiliation(s)
- Mohammad Aminianfar
- Department of Infectious Diseases, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soleimani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
207
|
You Z, Nirmalananthan-Budau N, Resch-Genger U, Panne U, Weidner SM. Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation. J Chromatogr A 2020; 1626:461392. [PMID: 32797861 DOI: 10.1016/j.chroma.2020.461392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
Two sets of polystyrene nanoparticles (PSNPs) with comparable core sizes but different carboxyl group densities were made and separated using asymmetric flow field flow fractionation (AF4), capillary electrophoresis (CE), and the off-line hyphenation of both methods. Our results revealed the significant potential of two-dimensional off-line AF4-CE hyphenation to improve the separation and demonstrated for the first time, the applicability of CE to determine the functional group density of nanoparticles (NPs). Compared to the result acquired with conductometric titration, the result obtained with synthesized 100 nm sized PSNPs revealed only a slight deviation of 1.7%. Commercial 100 nm sized PSNPs yielded a deviation of 4.6%. For 60 nm sized PSNPs, a larger deviation of 10.6% between both methods was observed, which is attributed to the lower separation resolution.
Collapse
Affiliation(s)
- Zengchao You
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany; Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, Berlin D-12489, Germany
| | | | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany
| | - Ulrich Panne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany; Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, Berlin D-12489, Germany
| | - Steffen M Weidner
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
| |
Collapse
|
208
|
Formulation of Chitosan Stabilized Silver Nanoparticle-Containing Wound Healing Film: In Vitro and In Vivo Characterization. J Pharm Sci 2020; 109:2196-2205. [DOI: 10.1016/j.xphs.2020.03.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
|
209
|
Ayech A, Josende ME, Ventura-Lima J, Ruas C, Gelesky MA, Ale A, Cazenave J, Galdopórpora JM, Desimone MF, Duarte M, Halicki P, Ramos D, Carvalho LM, Leal GC, Monserrat JM. Toxicity evaluation of nanocrystalline silver-impregnated coated dressing on the life cycle of worm Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110570. [PMID: 32311611 DOI: 10.1016/j.ecoenv.2020.110570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In recent times, however, due to the emergence of bacterial strains with resistance to conventional antibiotics, silver has again gained attention as an alternative for developing new efficient bactericides, including the use of silver nanoparticles (AgNPs). However, the improper disposal of these items after use may cause toxicological effects on organisms in the environment. To evaluate the potential environmental hazard of nanosilver-coated dressings, the nematode Caenorhabditis elegans was chosen as a test organism. The assays were conducted in 24-well plates that contain four different sizes of coated dressing to obtain different concentrations. L1 and L4 C. elegans larval stages were exposed to these nanosilver concentrations. Dressing cutouts were arranged between two layers of agar for 3 days and Escherichia coli (OP 50 strain) was added as food source for the worms. After the exposure period, growth, reproduction, fertility, silver concentration in the medium and the concentration of reactive oxygen species (ROS) in the worms were evaluated. Scanning and transmission electron microscopy analyses were performed on the coated dressings, as well as analyses of zeta potential, ionic release and antibacterial power in two bacterial strains (Pseudomonas aeruginosa and Staphylococcus aureus). It was verified the antibacterial power of the coated dressing, in both bacteria strains tested. Characterization of the coated dressing indicated heterogeneous nanoparticles, as well as distinct zeta potentials for the medium in water and saline medium (0.9% NaCl). L1 larval worms exposed to nanosilver-coated dressing showed a high ROS concentration and reductions in growth, fertility and reproduction. Worms exposed to the coated dressing during the L4 stage showed almost no response. Overall, the obtained results indicate the potential environmental hazard of nanosilver-coated dressings.
Collapse
Affiliation(s)
- A Ayech
- Universidade Federal do Rio Grande- FURG, Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - M E Josende
- Universidade Federal do Rio Grande- FURG, Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - J Ventura-Lima
- Universidade Federal do Rio Grande- FURG, Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - C Ruas
- Universidade Federal do Rio Grande- FURG, Escola de Química e Alimentos (EQA), Programa de Pós-graduação em Química Tecnológica e Ambiental (PPGQTA), Rio Grande, RS, Brazil
| | - M A Gelesky
- Universidade Federal do Rio Grande- FURG, Escola de Química e Alimentos (EQA), Programa de Pós-graduação em Química Tecnológica e Ambiental (PPGQTA), Rio Grande, RS, Brazil
| | - A Ale
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina
| | - J Cazenave
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina
| | - J M Galdopórpora
- Universidad de Buenos Aires (UBA), CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - M F Desimone
- Universidad de Buenos Aires (UBA), CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - M Duarte
- Universidade Federal do Rio Grande- FURG, Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - P Halicki
- Universidade Federal do Rio Grande- FURG, Faculdade de Medicina (FAMED), Programa de Pós-graduação em Ciências da Saúde (PPGCS), Rio Grande, RS, Brazil
| | - D Ramos
- Universidade Federal do Rio Grande- FURG, Faculdade de Medicina (FAMED), Programa de Pós-graduação em Ciências da Saúde (PPGCS), Rio Grande, RS, Brazil
| | - L M Carvalho
- Universidade Federal de Santa Maria (UFSM), Departamento de Química, Programa de Pós-graducação em Ciências Farmacéuticas, Santa María, RS, Brazil
| | - G C Leal
- Universidade Federal de Santa Maria (UFSM), Departamento de Química, Programa de Pós-graducação em Ciências Farmacéuticas, Santa María, RS, Brazil
| | - J M Monserrat
- Universidade Federal do Rio Grande- FURG, Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil.
| |
Collapse
|
210
|
Lai Y, Dong L, Zhou H, Yan B, Chen Y, Cai Y, Liu J. Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Ag +in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138050. [PMID: 32217391 DOI: 10.1016/j.scitotenv.2020.138050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Health concerns of silver nanoparticles (AgNPs) emerged with the increase of their industrial and biomedical application and thus human exposure. The highly dynamic properties of AgNPs lead to coexposure to nanoparticulate and ionic silver, and the combined effects of different Ag species might alter their individual toxicity. Herein, the toxicity of AgNPs combined with ionic Ag+ toward the rat was investigated after intravenous (i.v.) exposure to either AgNPs (5 mg/kg), Ag+ (5 mg/kg), or a mixture of Ag+ and AgNPs (5 mg/kg for both). Comparable results by histopathological and biochemical studies revealed that the exposure to individual AgNPs causes no apparent toxicity in rats, while Ag+ ions at the same dose induced marked acute toxicity. More importantly, while there was a negligible combined effect on the Ag accumulation, the less toxic AgNPs ameliorated Ag+ induced toxicity to rat organs after coexposure to the mixture of Ag+ and AgNPs, which might result from the complexation of Ag+ with the thiols like metallothioneins. Therefore, the combined toxicity of particulate and ionic Ag was complicated by their individual toxicities and also their interaction with intracellular detoxification biomolecules, regardless of differences in Ag accumulation. Although further investigations are still needed for the potential toxic mechanisms of the coexposed AgNPs and Ag+, considerations of the combined toxicity of different Ag species will reflect more accurate assessments of their health impacts.
Collapse
Affiliation(s)
- Yujian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijie Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
211
|
Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges. Mol Pharm 2020; 18:550-575. [PMID: 32519875 DOI: 10.1021/acs.molpharmaceut.0c00346] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The poor healing associated with chronic wounds affects millions of people worldwide through high mortality rates and associated costs. Chronic wounds present three main problems: First, the absence of a suitable environment to facilitate cell migration, proliferation, and angiogenesis; second, bacterial infection; and third, unbalanced and prolonged inflammation. Unfortunately, current therapeutic approaches have not been able to overcome these main issues and, therefore, have limited clinical success. Over the past decade, incorporating the unique advantages of nanomedicine into wound healing approaches has yielded promising outcomes. Nanomedicine is capable of stimulating various cellular and molecular mechanisms involved in the wound microenvironment via antibacterial, anti-inflammatory, and angiogenetic effects, potentially reversing the wound microenvironment from nonhealing to healing. This review briefly discusses wound healing mechanisms and pathophysiology and then highlights recent findings regarding the opportunities and challenges of using nanomedicine in chronic wound management.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mohammad Javad Hajipour
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02912, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
212
|
Gao W, Zhang J, Xue Q, Yin X, Yin X, Li C, Wang Y. Acute and Subacute Toxicity Study of Graphene-Based Tumor Cell Nucleus-Targeting Fluorescent Nanoprobes. Mol Pharm 2020; 17:2682-2690. [PMID: 32478520 DOI: 10.1021/acs.molpharmaceut.0c00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene-based tumor cell nuclear targeting fluorescent nanoprobes (GTTNs) were synthesized in our laboratory as a kind of nanomaterial and showed good performance for both in vivo and in vitro imaging. GTTNs directly cross the cell membrane and specifically target the tumor cell nucleus via a cell membrane permeability targeting (CMPT) mechanism, which takes advantage of the increased permeability of the tumor cell membranes. GTTNs with a CMPT mechanism achieve high targeting efficiency in tumor tissues. With the tumor cell nucleus-targeting characterization, the GTTN distinguishes tumor cells at the single-cell level and recognizes the tumor tissue interface in a very early stage and shows great potential in clinical applications. Toxicity studies are extremely critical for clinical applications. Therefore, we studied the acute and subacute toxicity of GTTNs using an in vivo method and examined the following experimental indicators: mouse body weight, organ coefficients, serum biochemical parameters, and histological changes. The results showed that there were no significant differences in any indicators between the experimental and control mice. We also used an in vitro method to study the cytotoxicity of GTTNs in GES-1 (gastric epithelial cell) cells. Surprisingly, the results demonstrated over 80% cell viability when the incubation time reached up to 72 h under a 200 mg/L concentration of GTTNs, which indicated that GTTNs had low cytotoxicity. GTTNs barely showed any acute or subacute toxicity or cytotoxicity in vivo and in vitro, respectively, which supports their use for clinical applications.
Collapse
Affiliation(s)
- Wenchao Gao
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China.,Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China
| | - Qianghua Xue
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China
| | - Xiaofeng Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China.,Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Street, Shanghai 200444, P. R. China
| |
Collapse
|
213
|
Badar W, Ullah Khan MA. Analytical study of biosynthesised silver nanoparticles against multi-drug resistant biofilm-forming pathogens. IET Nanobiotechnol 2020; 14:331-340. [PMID: 32463024 PMCID: PMC8676042 DOI: 10.1049/iet-nbt.2019.0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/09/2020] [Accepted: 02/26/2020] [Indexed: 11/19/2022] Open
Abstract
The emergence of the huge number of multi-drug resistant (MDR) bacteria requires an alternative to the drugs. Silver nanoparticles (AgNPs) are a strong candidate for this due to their bactericidal properties, which can be better concluded by understanding their morphology and chemistry. The study hypothesised that AgNPs synthesised using leaves of Syzygium cumini can be used to treat locally emerging MDRs forming biofilms on indwelling medical devices. Synthesised particles were characterised by methods like UV-visible spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and Zetasizer. Fourier transform infrared spectroscopy, and high-performance liquid chromatography were used to predict phytochemicals present in the leaves. The shape of particles is revealed to be relatively spherical, with average size to be around 10-100 nm. Phenolic compounds are attributed to the formation of nanoparticles, stability analysis shows particles to be stable, and zeta potential determined the surface charge to be -20.1 mV. Biosynthesised particles are found to possess efficient antibacterial activity MDR bacteria developing biofilms in medical devices; hence, it is concluded that S. cumini based NPs can be used to develop a layer on implant-related medical devices. Toxicity evaluation against A594 cancer cells portrays AgNPs to be potential tumour reduction agents in a concentration-dependent manner.
Collapse
Affiliation(s)
- Wafa Badar
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
214
|
Nephrotoxicity and genotoxicity of silver nanoparticles in juvenile rats and possible mechanisms of action. Arh Hig Rada Toksikol 2020; 71:121-129. [PMID: 32975098 PMCID: PMC7968490 DOI: 10.2478/aiht-2020-71-3364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
Because of their widespread use and potential adverse effects in young developing organism, this study focused on the nephrotoxicity and genotoxicity of chronic low-dose exposure to silver nanoparticles (AgNPs) in 32 14-day-old male Wistar rats, randomly divided into three groups receiving AgNP solution (3 mg/kg body weight) intraperitoneally for one, two, or three weeks and the untreated control group (eight animals per group). When the rats were eight weeks old, blood creatinine and urine microalbumin were tested, followed by haematoxylin and eosin (H&E) staining. Proteinuria was found in the animals treated with AgNP for three weeks, and H&E staining revealed pathological changes in the kidney sections of this group. DNA damage was detected with the alkaline comet assay in the groups treated for two and three weeks. All results indicate that chronic exposure, even at a low dose, may affect animal health. The main culprit might be increased and time-dependent reactive oxygen species (ROS) production. Highly reactive ROS could cause a major structural damage to proteins and DNA, change the expression of ion channel proteins, and trigger inflammation. The findings of our in vivo experiment raise concern about nephrotoxic and genotoxic effects of silver nanoparticles in young organisms and call for further investigation of nanoparticle properties that can be modified to minimise the risks.
Collapse
|
215
|
Mohanta YK, Hashem A, Abd_Allah EF, Jena SK, Mohanta TK. Bacterial synthesized metal and metal salt nanoparticles in biomedical applications: An up and coming approach. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Abeer Hashem
- Botany and Microbiology DepartmentKing Saud University Riyadh 11451 Saudi Arabia
| | | | - Santosh Kumar Jena
- Department of BiotechnologyNorth Orissa University Baripada 757003 India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research CenterUniversity of Nizwa Nizwa 616 Oman
| |
Collapse
|
216
|
Guo R, Li K, Qin J, Niu S, Hong W. Development of polycationic micelles as an efficient delivery system of antibiotics for overcoming the biological barriers to reverse multidrug resistance in Escherichia coli. NANOSCALE 2020; 12:11251-11266. [PMID: 32412567 DOI: 10.1039/d0nr01366h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Highly pathogenic Gram-negative bacteria (G-) are tenacious and pose a serious threat to public health, mainly because of three biological barriers: cell envelope blockages, biofilm protection, and macrophages shelter. One strategy to bypass the biological barriers and consequently achieve a satisfying G- bactericidal effect is to utilize polymeric micelles with superior bacterial recognition and binding capabilities. In the current study, we explored the biological barriers penetration ability of a traditional polycationic micellar system (PP-PEI) based on a copolymer of polylactide-poly (ethylene glycol)-polyethylenimine (PLA5K-PEG2K-PEI2K). Subsequently, tetracycline (TC) with good fluorescence property was encapsulated into the PLA core of the micelle (PP-PEI/TC) through hydrophobic interaction. The combination of a PEI shell and loaded antibiotic drug endowed the polycationic micelles with a greater capacity for killing drug-resistant bacteria, destructing biofilms, and eradicating intracellular bacteria, compared with free TC and micelles without the inoculation of a PEI moiety. Confocal laser scanning microscopy (CLSM) and flow cytometry illustrated that PP-PEI/TC could completely penetrate and accumulate in drug-resistant E. coli, biofilms, and infected macrophages. The efficient biological barrier penetration was elucidated as due to the strong electrostatic interactions between the polycationic PEI block and the anionic composition of the bacterial outer membrane (e.g., LPS), macrophage cell membrane (e.g., phospholipid), and extracellular polymeric substances (e.g., eDNA), which was confirmed by biolayer interferometry (BLI). Once the micellar system was bound to a negatively-charged surface, bacterial and cellular enzymes could degrade the PP-PEI core to release its antibacterial content and finally kill planktonic bacteria, bacteria over the depth of a biofilm, and/or intracellular bacteria. In vivo imaging indicated that fluorescent polycationic micelles accumulated in bacterial infection sites with strong fluorescence. In vivo antibacterial experiments showed that PP-PEI/TC could dramatically reduce the number of drug-resistant E. coli EB1-1 in the peritoneal cavity of acute peritonitis BALB/c mice compared with its counterparts. In conclusion, our study demonstrated that polycationic micelles with a PEI shell could penetrate into drug-resistant bacteria, the biofilm matrix, and infected macrophages and lead to the spatiotemporal release of antibacterial agents for the comprehensive treatment of drug-resistant relevant infections.
Collapse
Affiliation(s)
- Rong Guo
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| | - Keke Li
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Institute of Integrative Medicine, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Zhangheng Road 826, Shanghai, 200433, P. R. China
| | - Shengli Niu
- Key laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, P.R. China
| | - Wei Hong
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| |
Collapse
|
217
|
Ipe DS, Kumar PTS, Love RM, Hamlet SM. Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics. Front Microbiol 2020; 11:1074. [PMID: 32670214 PMCID: PMC7326045 DOI: 10.3389/fmicb.2020.01074] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotics used to treat bacterial infections can become ineffective over time or result in the emergence of antibiotic resistant pathogens. With the advent of nanotechnology, silver nanoparticles (AgNPs) have gained significant attention as a therapeutic agent due to the well-known antimicrobial properties of silver. However, there are concerns and limited literature on the potential cytotoxicity of nanoparticles at effective antimicrobial concentrations. AgNPs prepared from silver nitrate with glucose reduction were characterized by surface plasmon resonance, dynamic light scattering, zeta potential analysis and transmission electron microscopy. The cytotoxicity of AgNPs towards human gingival fibroblasts over 7 days was determined using cell proliferation assays and confocal microscopy. AgNP MIC and antibacterial effects alone and in combination with 11 antibiotics were determined against a panel of nine microbial species including gram-positive and gram-negative bacterial species. AgNPs concentrations ≤ 1 μg/mL were non-cytotoxic but also showed no antibacterial effects. However, when combined with each of eleven antibiotics, the biocompatible concentration of AgNPs (1 μg/mL) resulted in significant inhibition of bacterial growth for multiple bacterial species that were resistant to either the antibiotics or AgNPs alone. This study presents a promising strategy with further testing in vivo, to develop novel antimicrobial agents and strategies to confront emerging antimicrobial resistance.
Collapse
Affiliation(s)
- Deepak S Ipe
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - P T Sudheesh Kumar
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia
| | - Robert M Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia
| | - Stephen M Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
218
|
Abstract
A potential new bactericide treatment for NiTi orthodontic archwires based in the electrodeposition of silver nanoparticles on the surface was studied. Twenty-five archwires were treated by electrodeposition, obtaining nanoparticles of silver embedded on the archwire surface. These were evaluated in order to investigate the possible changes on the superelastic characteristics (critical temperatures and stresses), the nickel ion release, and the bacteria culture behavior. The chemical composition was analyzed by Energy Dispersive X-Ray Spectroscopy-microanalysis; the singular temperatures of the martensitic transformation were obtained by a flow calorimeter. Induced martensitic transformation stresses were obtained by mechanical testing apparatus. Nickel ion release was analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) equipment using artificial saliva solution at 37 °C. Bacterial tests were studied with the most used oral bacterial strains: Streptococcus sanguinis and Lactobacillus salivarius. NiTi samples were immersed in bacterial suspensions for 2 h at 37 °C. Adhered bacteria were separated and seeded on agar plates: Tood-Hewitt (TH) and Man-Rogosa-Sharpe (MRS) for S. sanguinis and for L.salivarius, respectively. These were then incubated at 37 °C for 1 day and the colonies were analyzed. The results showed that the transformation temperatures and the critical stresses have not statistically significant differences. Likewise, nickel ion release at different immersion times in saliva at 37 °C does not present changes between the original and treated with silver nanoparticles archwires. Bacteria culture results showed that the reduction of the bacteria due to the presence to the nanoparticles of silver is higher than 90%. Consequently, the new treatment with nanoparticles of silver could be a good candidate as bactericidic orthodontic archwire.
Collapse
|
219
|
Mukherjee M, Gangopadhyay K, Das R, Purkayastha P. Development of Non-ionic Surfactant and Protein-Coated Ultrasmall Silver Nanoparticles: Increased Viscoelasticity Enables Potency in Biological Applications. ACS OMEGA 2020; 5:8999-9006. [PMID: 32337464 PMCID: PMC7178788 DOI: 10.1021/acsomega.0c00825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
To enhance the interactivity with biological cells, we developed ultrasmall (5 nm in diameter) Ag NPs coated with a mixture of Tween-20 (Tw-20) surfactant and human serum albumin (HSA) or hemoglobin (Hb) proteins. These were tested with cancerous and healthy cell lines to investigate the therapeutic applicability. Using the established concept of generation of reactive oxygen species (ROS) and the ROS-induced oxidative stress in carcinogenic cells by Ag NPs, we found that the presently synthesized Ag NPs selectively destroyed the cancerous cells. A mixture of Tw-20 with protein, where the surfactant was in large excess, created a coating over the Ag NPs resulting weaker protein-protein interactions and facilitating interfacial protein-surfactant interactions, which leads to an increase in the film viscoelasticity to enhance the stability of the Ag NPs and cell viability. Moreover, this concept has been applied to drug delivery using a model fluorophore (fluorescein) on Ag NPs to explore the prospects in photodynamic therapy. The results are encouraging and deserve further investigation.
Collapse
Affiliation(s)
- Mousumi Mukherjee
- Department
of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research
(IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Kaustav Gangopadhyay
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Rahul Das
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Pradipta Purkayastha
- Department
of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research
(IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
220
|
The Effect of the Chorion on Size-Dependent Acute Toxicity and Underlying Mechanisms of Amine-Modified Silver Nanoparticles in Zebrafish Embryos. Int J Mol Sci 2020; 21:ijms21082864. [PMID: 32325940 PMCID: PMC7215958 DOI: 10.3390/ijms21082864] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/16/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
As the worldwide application of nanomaterials in commercial products increases every year, various nanoparticles from industry might present possible risks to aquatic systems and human health. Presently, there are many unknowns about the toxic effects of nanomaterials, especially because the unique physicochemical properties of nanomaterials affect functional and toxic reactions. In our research, we sought to identify the targets and mechanisms for the deleterious effects of two different sizes (~10 and ~50 nm) of amine-modified silver nanoparticles (AgNPs) in a zebrafish embryo model. Fluorescently labeled AgNPs were taken up into embryos via the chorion. The larger-sized AgNPs (LAS) were distributed throughout developing zebrafish tissues to a greater extent than small-sized AgNPs (SAS), which led to an enlarged chorion pore size. Time-course survivorship revealed dose- and particle size-responsive effects, and consequently triggered abnormal phenotypes. LAS exposure led to lysosomal activity changes and higher number of apoptotic cells distributed among the developmental organs of the zebrafish embryo. Overall, AgNPs of ~50 nm in diameter exhibited different behavior from the ~10-nm-diameter AgNPs. The specific toxic effects caused by these differences in nanoscale particle size may result from the different mechanisms, which remain to be further investigated in a follow-up study.
Collapse
|
221
|
Kumar A, Behl T, Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol 2020; 149:1262-1274. [PMID: 32044364 DOI: 10.1016/j.ijbiomac.2020.02.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/18/2022]
Abstract
Limitation of antibacterial activity, low water vapour, oxygen permeation and mechanical strength are the disadvantages of existing wound dressings. The present research is focused on synthesis of Polyvinyl alcohol (PVA) and Chitosan (CH) hydrogels using freeze thaw process. The formation of AgNPs and PVA/CH hydrogels was confirmed by UV spectroscopy, particle size, morphology, spectral analysis, swelling studies, and in-vitro drug release studies. The particle size of AgNPs was found to be in the range of 20-35 nm with an intense peak at 430 nm. The results of spectral peaks showed that PVA/CH blend maintains characteristics peak of -OH and -NH in the spectrum with higher intensity. The morphology and tensile strength of hydrogels showed a wrinkled surface with an increase in force and extension values from 0.49 to 11.15 N and 45 to 129 mm, respectively. A controlled release of 84.3% (28 h) of Ocimum sanctum extract was noticed from hydrogel discs which scavenges 69.2% of free radicals as compared to raw extract 82.5% (16 h) which scavenges 63.1% of free radicals, respectively. The results of zone of inhibition (ZOI) against gram +ve and gram -ve bacteria was found to be 9.3 mm and 6.3 mm, respectively.
Collapse
Affiliation(s)
- Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
222
|
Sanchís J, Jiménez-Lamana J, Abad E, Szpunar J, Farré M. Occurrence of Cerium-, Titanium-, and Silver-Bearing Nanoparticles in the Besòs and Ebro Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3969-3978. [PMID: 32191837 DOI: 10.1021/acs.est.9b05996] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The presence of anthropogenic nanoparticles (NPs) in the aquatic environment has become an emerging concern in terms of environmental and health safety. In the present study, we assessed the presence of Ag-bearing, Ti-bearing, and Ce-bearing NPs in the Barcelona catchment area, including the Besòs River basin and the Barcelona coast, and in the Ebro River Delta, using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). Ti-NPs and Ce-NPs were ubiquitously detected in surface waters, and their presence was related to a high natural background. Concentrations of Ti-NPs ranged from 23.2 × 106 to 298 × 106 Ti-NPs/L, with high concentrations being detected in areas with little anthropogenic pressure, while the presence of nanosilver (17.9 × 106 to 45.1 × 106 Ag-NPs/L) in the analyzed rivers was limited to certain hotspots close to wastewater treatment plants discharge points. The concentrations of Ce-NPs in the river ranged from 18.1 × 106 to 278 × 106 NPs/L, and they were related to the natural occurrence of the mineral Monazite-(Ce). Overall, the concentrations of these nanomaterials in the Barcelonan coast were significantly attenuated by river-sea environmental dilution. Nevertheless, Ce-NPs were eventually detected in some seawater samples with low levels of lanthanum-NPs, suggesting anthropogenic inputs of nanoCeO2, probably from atmospheric deposition.
Collapse
Affiliation(s)
- Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain
- University of Girona, 17071, Girona, Catalonia, Spain
| | | | - Esteban Abad
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2SUPPA, CNRS, IPREM, Pau, France
| | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| |
Collapse
|
223
|
KORKMAZ N. Bioreduction: the biological activity, characterization, and synthesis of silver. Turk J Chem 2020; 44:325-334. [PMID: 33488160 PMCID: PMC7671225 DOI: 10.3906/kim-1910-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/13/2019] [Indexed: 11/24/2022] Open
Abstract
Today, nanoparticles are effectively used in different areas. Initially, physical and chemical methods were used in the synthesis of nanoparticles. Biosynthesis (green synthesis) has emerged as an alternative to overcome the toxic effects of chemically synthesized nanoparticles. In this study, green synthesis of silver nanoparticles (AgNPs) with the leaf extract of Anthurium andraeanum was performed. UV-Vis spectrophotometry, scanning transmission electron microscopy, and XRD were applied to characterize the biosynthesized nanoparticles. As a result of the characterization, the spectra showed that a spectrum at a wavelength of about 419 nm and a spherical size of 38 nm nanoparticles was formed. Antibacterial and biofilm inhibition activities of AgNPs against gram-positive and gram-negative bacteria were determined. AgNPs at a concentration of 1 mg/mL showed antibacterial activity against all of the bacterial strains. In the antibiofilm activity study, the highest inhibition percentage was obtained against the P. fluorescens strain at 87.1%, at a concentration of 0.5 mg/mL.
Collapse
Affiliation(s)
- Nesrin KORKMAZ
- Department of Biotechnology, Faculty of Science, Bartın University, BartınTurkey
| |
Collapse
|
224
|
Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AS, Shim YY, Reaney MJ, Cho JY. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel) 2020; 12:E855. [PMID: 32244822 PMCID: PMC7226404 DOI: 10.3390/cancers12040855] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Nanobiotechnology has grown rapidly and become an integral part of modern disease diagnosis and treatment. Biosynthesized silver nanoparticles (AgNPs) are a class of eco-friendly, cost-effective and biocompatible agents that have attracted attention for their possible biomedical and bioengineering applications. Like many other inorganic and organic nanoparticles, such as AuNPs, iron oxide and quantum dots, AgNPs have also been widely studied as components of advanced anticancer agents in order to better manage cancer in the clinic. AgNPs are typically produced by the action of reducing reagents on silver ions. In addition to numerous laboratory-based methods for reduction of silver ions, living organisms and natural products can be effective and superior source for synthesis of AgNPs precursors. Currently, plants, bacteria and fungi can afford biogenic AgNPs precursors with diverse geometries and surface properties. In this review, we summarized the recent progress and achievements in biogenic AgNPs synthesis and their potential uses as anticancer agents.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh;
| | - Md. Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA;
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh;
| | | | - Youn Young Shim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Martin J.T. Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
| |
Collapse
|
225
|
Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01318-w] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
226
|
Bin-Jumah M, Al-Abdan M, Albasher G, Alarifi S. Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro. Int J Nanomedicine 2020; 15:1537-1548. [PMID: 32210550 PMCID: PMC7074819 DOI: 10.2147/ijn.s239861] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Extensive use of metallic nanomaterials in different areas of agriculture and commercial products induce significant harmful effects on human health and the environment. In the current study, we synthesized an eco-friendly approach silver nanoparticles (AgNPs) using root extracts of Beta vulgaris L. Methods The synthesized green silver nanoparticles (gAgNPs) were characterized by dynamic light scattering (DLS) and high-resolution transmission electron microscope (HR-TEM). The gAgNPs had a round shape and the mean size was 20−50 nm. The cytotoxic effects of gAgNPs were determined in human hepatic normal (CHANG) and cancer (HUH-7) cells by using tetrazolium salt (MTT) and lactate dehydrogenase (LDH) assays for 24 h. Results and Discussion It was clear from the observations of this experiment that higher concentrations of gAgNPs reduce cell viability. The production of reactive oxygen species (ROS) was evaluated by using DCFDA. The gAgNPs induced more ROS in the HuH-7 cells than in the CHANG cells. The fragmentation of DNA was evaluated by alkaline single-cell gel electrophoresis and the maximum DNA strand breakage was found at a higher concentration exposure of gAgNPs for 24 h. It is important to notice that the HuH-7 cells showed an increased sensitivity to gAgNPs than the CHANG cells. The apoptotic and necrotic effects of gAgNPs on both the cells were evaluated using annexin-V-FITC and propidium iodide staining. An increased count of apoptotic and necrotic cells was found following a higher concentration exposure of gAgNPs. The apoptotic protein expression in these cells due to gAgNPs exposure was determined using immunoblotting techniques and the level of Bcl2 was decreased. However, the expression of BAX and protein was increased in both cells. Conclusion Therefore, it can be concluded that higher concentrations of gAgNPs may induce significant cytotoxicity and cause DNA damage and apoptosis.
Collapse
Affiliation(s)
- May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Monera Al-Abdan
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
227
|
Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 Cells. Int J Mol Sci 2020; 21:ijms21051618. [PMID: 32120830 PMCID: PMC7084348 DOI: 10.3390/ijms21051618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/03/2023] Open
Abstract
Nano Ag has excellent antibacterial properties and is widely used in various antibacterial materials, such as antibacterial medicine and medical devices, food packaging materials and antibacterial textiles. Despite the many benefits of nano-Ag, more and more research indicates that it may have potential biotoxic effects. Studies have shown that people who ingest nanoparticles by mouth have the highest uptake in the intestinal tract, and that the colon area is the most vulnerable to damage and causes the disease. In this study, we examined the toxic effects of different concentrations of Ag-NPs on normal human colon cells (NCM460) and human colon cancer cells (HCT116). As the concentration of nanoparticles increased, the activity of the two colon cells decreased and intracellular reactive oxygen species (ROS) increased. RT-qPCR and Western-blot analyses showed that Ag NPs can promote the increase in P38 protein phosphorylation levels in two colon cells and promote the expression of P53 and Bax. The analysis also showed that Ag NPs can promote the down-regulation of Bcl-2, leading to an increased Bax / Bcl-2 ratio and activation of P21, further accelerating cell death .This study showed that a low concentration of nano Ag has no obvious toxic effect on colon cells, while nano Ag with concentrations higher than 15 μg/mL will cause oxidative damage to colon cells.
Collapse
|
228
|
Gupta B, Kumari A, Belwal S, Singh RV, Fahmi N. Synthesis, characterization of platinum(II) complexes of Schiff base ligands and evaluation of cytotoxic activity of platinum nanoparticles. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1728552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bhavana Gupta
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Anita Kumari
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Savita Belwal
- Department of Chemistry, Anurag group of institutions, Hyderabad, India
| | - R. V Singh
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Nighat Fahmi
- Department of Chemistry, University of Rajasthan, Jaipur, India
| |
Collapse
|
229
|
Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E292. [PMID: 32050443 PMCID: PMC7075170 DOI: 10.3390/nano10020292] [Citation(s) in RCA: 584] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Daniela Gomes
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Ana Laura Lopez-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Maria L. Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Eliana B. Souto
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
230
|
Gao J, Na H, Zhong R, Yuan M, Guo J, Zhao L, Wang Y, Wang L, Zhang F. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surf B Biointerfaces 2020; 186:110704. [DOI: 10.1016/j.colsurfb.2019.110704] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023]
|
231
|
Rodriguez-Garraus A, Azqueta A, Vettorazzi A, López de Cerain A. Genotoxicity of Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E251. [PMID: 32023837 PMCID: PMC7075128 DOI: 10.3390/nano10020251] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in diverse sectors such as medicine, food, cosmetics, household items, textiles and electronics. Given the extent of human exposure to AgNPs, information about the toxicological effects of such products is required to ensure their safety. For this reason, we performed a bibliographic review of the genotoxicity studies carried out with AgNPs over the last six years. A total of 43 articles that used well-established standard assays (i.e., in vitro mouse lymphoma assays, in vitro micronucleus tests, in vitro comet assays, in vivo micronucleus tests, in vivo chromosome aberration tests and in vivo comet assays), were selected. The results showed that AgNPs produce genotoxic effects at all DNA damage levels evaluated, in both in vitro and in vivo assays. However, a higher proportion of positive results was obtained in the in vitro studies. Some authors observed that coating and size had an effect on both in vitro and in vivo results. None of the studies included a complete battery of assays, as recommended by ICH and EFSA guidelines, and few of the authors followed OECD guidelines when performing assays. A complete genotoxicological characterization of AgNPs is required for decision-making.
Collapse
Affiliation(s)
- Adriana Rodriguez-Garraus
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
232
|
Nawaz S, Bano A. Effects of PGPR ( Pseudomonas sp.) and Ag-nanoparticles on Enzymatic Activity and Physiology of Cucumber. Recent Pat Food Nutr Agric 2020; 11:124-136. [PMID: 31322080 DOI: 10.2174/2212798410666190716162340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND The present investigation aimed to evaluate the role of Plant Growth- Promoting Rhizobacteria (PGPR) and Ag-nanoparticles on two varieties (American variety, Poinsett 76 and Desi variety, Sialkot selection) of cucumber plants. METHODS Cucumber seeds prior to sowing, were inoculated with two strains of PGPR, Pseudomonas putida (KX574857) and Pseudomonas stutzeri (KX574858) at the rate of 106 cells/ml. Agnanoparticles (5ppm) were sprayed on the plant at early vegetative phase 27 d after sowing. RESULTS The proline, sugar, protein, phenolics, flavonoids, chlorophyll and carotenoids contents of leaves of plants and the activities of Phenylalanine Ammonia-Lyase (PAL), Superoxide Dismutase (SOD) and Catalase (CAT) were determined from leaves of plants at early vegetative phase. After 3 months of seeds sowing, Ag-nanoparticles enhanced the length of root but decreased the length of shoot and fresh weight of root and shoot as compared to control whereas, the leaf protein, proline, phenolics, flavonoids, chlorophyll b, total chlorophyll, sugar and Phenylalanine Ammonia-Lyase (PAL) activity of plants were increased significantly over control. Ag-nanoparticles also suppressed the effect of PGPR for root, shoot length but augmented the protein and phenolics contents of leaves of both the varieties. CONCLUSION The combined treatment of Ag-nanoparticles and PGPR enhanced flavonoids content of leaves and the activities of PAL, SOD and CAT in leaves of plants over control. Agnanoparticles effectively increased the Phenylalanine Ammonia-Lyase (PAL), Catalase (CAT) and superoxide dismutase (SOD) activities in leaves of both the varieties. Pseudomonas putida may be used either alone or in combination with Ag-nanoparticles to enhance the antioxidant and defense enzyme activities. Hence, the plant can tolerate the diseases and stresses in a much better way with higher protein and phenolics content.
Collapse
Affiliation(s)
- Sehrish Nawaz
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| |
Collapse
|
233
|
Wang L, Andreassen JP, Ucar S. Precipitation of silver particles with controlled morphologies from aqueous solutions. CrystEngComm 2020. [DOI: 10.1039/c9ce01601e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mono- and polycrystalline silver particles were formed with morphologies ranging from polyhedral, to hopper, dendritic and spherulitic particles with increasing supersaturation.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Chemical Engineering
- Norwegian University of Science and Technology
- Trondheim
- Norway
| | - Jens-Petter Andreassen
- Department of Chemical Engineering
- Norwegian University of Science and Technology
- Trondheim
- Norway
| | - Seniz Ucar
- Department of Chemical Engineering
- Norwegian University of Science and Technology
- Trondheim
- Norway
| |
Collapse
|
234
|
Anbukkarasi M, Thomas PA, Teresa PA, Anand T, Geraldine P. Comparison of the efficacy of a Tabernaemontana divaricata extract and of biosynthesized silver nanoparticles in preventing cataract formation in an in-vivo system of selenite-induced cataractogenesis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
235
|
Ahmad MZ, Ahmad J, Warsi MH, Abdel-Wahab BA, Akhter S. Metallic nanoparticulate delivery systems. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:279-328. [DOI: 10.1016/b978-0-08-102985-5.00013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
236
|
Lagashetty A, Ganiger SK, R. K. P, Reddy S, Pari M. Microwave-assisted green synthesis, characterization and adsorption studies on metal oxide nanoparticles synthesized using Ficus Benghalensis plant leaf extracts. NEW J CHEM 2020. [DOI: 10.1039/d0nj01759k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthesis of metal oxide nanoparticles by reduction with plant leaf extract is an eco-friendly method.
Collapse
Affiliation(s)
- Arunkumar Lagashetty
- Department of Studies in Chemistry
- Vijayanagara Sri Krishnadevaraya University
- Ballari-583105
- India
| | | | - Preeti R. K.
- Department of Zoology
- Gulbarga University
- Kalaburagi
- India
| | - Shashidhar Reddy
- Department of Chemistry
- SDM College of Engineering and Technology
- Dharwad-580002
- India
| | - Malathesh Pari
- Department of Studies in Chemistry
- Vijayanagara Sri Krishnadevaraya University
- Ballari-583105
- India
| |
Collapse
|
237
|
Nanoparticle-Mediated Chaetomium, Unique Multifunctional Bullets: What Do We Need for Real Applications in Agriculture? Fungal Biol 2020. [DOI: 10.1007/978-3-030-31612-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
238
|
Brito SDC, Bresolin JD, Sivieri K, Ferreira MD. Low-density polyethylene films incorporated with silver nanoparticles to promote antimicrobial efficiency in food packaging. FOOD SCI TECHNOL INT 2019; 26:353-366. [PMID: 31870192 DOI: 10.1177/1082013219894202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Technological innovations in packaging are intended to prevent microbiological contaminations for ensuring food safety and preservation. In this context, researchers have investigated the antimicrobial effect of low-density polyethylene films incorporated with the following concentrations of silver nanoparticles: 1.50, 3.75, 7.50, 15.00, 30.00, 60.00, and 75.00 µg/ml. The films were characterized using field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. From the results of these techniques, it could be concluded that the silver nanoparticles incorporated in the low-density polyethylene films did not influence their physical, chemical, and thermal properties. The direct contact assays, shake-flask assays, and bacterial images obtained using scanning electron microscopy were used to analyze the antimicrobial activity of the films. In the microbial analyses, it was verified that the nanostructured films exhibited antimicrobial properties against all the microorganisms studied, although more notably for fungi and Gram-negative bacteria than the Gram-positive bacteria. Moreover, it was discovered that the packages, in which silver nanoparticles were incorporated, inhibited the growth and reproduction of bacterial cells during the early stages. These results suggest that the extruded low-density polyethylene films incorporated with silver nanoparticles may be an essential tool for improving food quality and safety.
Collapse
Affiliation(s)
- Sabrina da Costa Brito
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, São Carlos, Brazil
| | - Joana D Bresolin
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, São Carlos, Brazil
| | - Kátia Sivieri
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcos D Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, São Carlos, Brazil
| |
Collapse
|
239
|
Roy H, Deolalkar M, Desai AS. Synthesis of Calix-Salen Silver Corates for Evaluation of Their Antimicrobial and Anticancer Activities. ACS OMEGA 2019; 4:21346-21352. [PMID: 31867529 PMCID: PMC6921623 DOI: 10.1021/acsomega.9b02948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 05/09/2023]
Abstract
Silver-based products are becoming popular as antimicrobial agents because of the failure of antibiotics available for tackling the drug-resistant microbial strains. As silver is well tolerated by normal human cells, silver complexes have emerged as important antineoplastic agents. Further, if silver ions are encapsulated within an organic molecule-an azacorand-it may serve as a better substitute for cisplatin or other metal complexes. The calix-salen-type corates were synthesized using silver ions as the template. 5,5'-methylene-bis-salicylaldehyde was reacted with ethylene diamine in methanol at room temperature in the presence of silver nitrate. The resultant corand trapped the silver template in their cavity. The electron-withdrawing and electron-releasing groups like -NO2, -Br, -C(CH3)3, and -OCH3 were substituted on the bis-aldehyde to study their effects on the antimicrobial and anticancer activities of silver corates. The silver corates were found to have better antimicrobial activity than some of the standard drugs. Bromo-substituted corate-3, nitro-substituted corate-4, and tert-butyl-substituted corate-5 were found to be potent antibacterial agents among all. The bromo-substituted corate-3 was found to be the most potent fungicidal agent among all silver corates. The result of antineoplastic activity suggests that unsubstituted corate-1 and bromo-substituted corate-3 are potential candidates to be used as therapeutic molecules for cancer treatment, which requires further validation.
Collapse
Affiliation(s)
- Hetal Roy
- Department
of Chemistry, Faculty of Science and Department of Zoology, Faculty
of Science, The Maharaja Sayajirao University
of Baroda, Vadodara 390002, Gujarat, India
| | - Mihamee Deolalkar
- Department
of Chemistry, Faculty of Science and Department of Zoology, Faculty
of Science, The Maharaja Sayajirao University
of Baroda, Vadodara 390002, Gujarat, India
| | - Arpita S. Desai
- Department
of Chemistry, Faculty of Science and Department of Zoology, Faculty
of Science, The Maharaja Sayajirao University
of Baroda, Vadodara 390002, Gujarat, India
- E-mail:
| |
Collapse
|
240
|
Lagashetty A, Ganiger SK, Shashidhar. Synthesis, characterization and antibacterial study of Ag-Au Bi-metallic nanocomposite by bioreduction using piper betle leaf extract. Heliyon 2019; 5:e02794. [PMID: 31886426 PMCID: PMC6921103 DOI: 10.1016/j.heliyon.2019.e02794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022] Open
Abstract
Biological reduction method using plant extract for the synthesis of metal and metal oxides are attracted much to the researchers due to its simplicity, which integrates the chemical technology. The special attention is given to the green synthesis of nanoparticles by easily available plants with eco-friendly system compared to other conventional methods. Silver-gold nanocomposite (Ag–Au NCp's) is synthesized by biological reduction of silver nitrate and gold chloride with biological reduction method. These metal salts are simultaneously reduced by betle leaf extract to form respective silver and gold nanocomposite. The structure and morphology of as prepared Ag–Au NCp's sample was characterized by employing powder X-ray diffraction (XRD) tool and by Scanning Electron Micrograph (SEM) tool respectively. Fourier Transform infrared (FTIR) spectral study was undertaken to know the bonding in the prepared silver sample. Energy dispersive X-ray analysis (EDX) study was undertaken to know the formation Ag–Au NCp's. Antibacterial studies are undertaken for the said nanocomposite to know its activity against bacteria.
Collapse
Affiliation(s)
- Arunkumar Lagashetty
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka, India
| | - Sangappa K Ganiger
- Department of Physics, Government Engineering College, Raichur, Karnataka, India
| | - Shashidhar
- Department of Chemistry, S D.M College of Engineering and Technology Dharwad, Karnataka, India
| |
Collapse
|
241
|
Nasser F, Constantinou J, Lynch I. Nanomaterials in the Environment Acquire an "Eco-Corona" Impacting their Toxicity to Daphnia Magna-a Call for Updating Toxicity Testing Policies. Proteomics 2019; 20:e1800412. [PMID: 31750982 DOI: 10.1002/pmic.201800412] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/06/2019] [Indexed: 01/07/2023]
Abstract
Nanomaterials (NMs) are particles with at least one dimension between 1 and 100 nm and a large surface area to volume ratio, providing them with exceptional qualities that are exploited in a variety of industrial fields. Deposition of NMs into environmental waters during or after use leads to the adsorption of an ecological (eco-) corona, whereby a layer of natural biomolecules coats the NM changing its stability, identity and ultimately toxicity. The eco-corona is not currently incorporated into ecotoxicity tests, although it has been shown to alter the interactions of NMs with organisms such as Daphnia magna (D. magna). Here, the literature on environmental biomolecule interactions with NMs is synthesized and a framework for understanding the eco-corona composition and its role in modulating NMs ecotoxicity is presented, utilizing D. magna as a model. The importance of including biomolecules as part of the current international efforts to update the standard testing protocols for NMs, is highlighted. Facilitating the formation of an eco-corona prior to NMs ecotoxicity testing will ensure that signaling pathways perturbed by the NMs are real rather than being associated with the damage arising from reactive NM surfaces "acquiring" a corona by pulling biomolecules from the organism's surface.
Collapse
Affiliation(s)
- Fatima Nasser
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Julia Constantinou
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
242
|
KORKMAZ N. Antibacterial Activity and Biofilm Property of Silver Nanoparticles Synthesized by Using Saintpaulia Aqueous Leaf Extract. ACTA ACUST UNITED AC 2019. [DOI: 10.21597/jist.561197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
243
|
Hussain Z, Thu HE, Sohail M, Khan S. Hybridization and functionalization with biological macromolecules synergistically improve biomedical efficacy of silver nanoparticles: Reconceptualization of in-vitro, in-vivo and clinical studies. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
244
|
Chitra G, Selvi MS, Franklin DS, Sudarsan S, Sakthivel M, Guhanathan S. pH-sensitive biopolymeric hydrogel-based on indole-3-acetic acid for wound healing and anti-cancer applications. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1339-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
245
|
De Leersnyder I, De Gelder L, Van Driessche I, Vermeir P. Revealing the Importance of Aging, Environment, Size and Stabilization Mechanisms on the Stability of Metal Nanoparticles: A Case Study for Silver Nanoparticles in a Minimally Defined and Complex Undefined Bacterial Growth Medium. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1684. [PMID: 31775314 PMCID: PMC6955861 DOI: 10.3390/nano9121684] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022]
Abstract
Although the production and stabilization of metal nanoparticles (MNPs) is well understood, the behavior of these MNPs (possible aggregation or disaggregation) when they are intentionally or unintentionally exposed to different environments is a factor that continues to be underrated or overlooked. A case study is performed to analyze the stability of silver nanoparticles (AgNPs)-one of the most frequently used MNPs with excellent antibacterial properties-within two bacterial growth media: a minimally defined medium (IDL) and an undefined complex medium (LB). Moreover, the effect of aging, size and stabilization mechanisms is considered. Results clearly indicate a strong aggregation when AgNPs are dispersed in IDL. Regarding LB, the 100 nm electrosterically stabilized AgNPs remain stable while all others aggregate. Moreover, a serious aging effect is observed for the 10 nm electrostatically stabilized AgNPs when added to LB: after aggregation a restabilization effect occurs over time. Generally, this study demonstrates that the aging, medium composition (environment), size and stabilization mechanism-rarely acknowledged as important factors in nanotoxicity studies-have a profound impact on the AgNPs stabilization and should gain more attention in scientific research.
Collapse
Affiliation(s)
- Ilse De Leersnyder
- Laboratory of Chemical Analysis (LCA), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Leen De Gelder
- Department of Biotechnology, Laboratory for Environmental Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Isabel Van Driessche
- Department of Chemistry, Sol-Gel Center for Research on Inorganic Powders and Thin Film Synthesis (SCRiPTS), Faculty of Sciences, 9000 Ghent, Belgium
| | - Pieter Vermeir
- Laboratory of Chemical Analysis (LCA), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
246
|
Ferreira LAB, Dos Reis SB, do Nascimento da Silva E, Cadore S, Bernardes JDS, Durán N, de Jesus MB. Thiol-antioxidants interfere with assessing silver nanoparticle cytotoxicity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102130. [PMID: 31760163 DOI: 10.1016/j.nano.2019.102130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Many studies have shown that silver nanoparticles (AgNP) induce oxidative stress, and it is commonly assumed that this is the main mechanism of AgNP cytotoxicity. Most of these studies rely on antioxidants to establish this cause-and-effect relationship; nevertheless, details on how these antioxidants interact with the AgNP are often overlooked. This work aimed to investigate the molecular mechanisms underlying the use of antioxidants with AgNP nanoparticles. Thus, we studied the molecular interaction between the thiol-antioxidants (N-acetyl-L-Cysteine, L-Cysteine, and glutathione) or non-thiol-antioxidants (Trolox) with chemically and biologically synthesized AgNP. Both antioxidants could mitigate ROS production in Huh-7 hepatocarcinoma cells, but only thiol-antioxidants could prevent the cytotoxic effect, directly binding to the AgNP leading to aggregation. Our findings show that data interpretation might not be straightforward when using thiol-antioxidants to study the interactions between metallic nanoparticles and cells. This artifact exemplifies potential pitfalls that could hinder the progress of nanotechnology and the understanding of the nanotoxicity mechanism.
Collapse
Affiliation(s)
- Luiz A B Ferreira
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Samara Bonesso Dos Reis
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Emanueli do Nascimento da Silva
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Department of Chemistry, Institute of Exact and Biologic Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Solange Cadore
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | - Nelson Durán
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo B de Jesus
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
247
|
Wang C, Liu X, Han Z, Zhang X, Wang J, Wang K, Yang Z, Wei Z. Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109508. [PMID: 31408819 DOI: 10.1016/j.ecoenv.2019.109508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
As a new type of antibacterial agent, nanosilver has attracted great attention in biomedical applications. However, the safety of nanosilver to humans and the environment has not been well elucidated. The objective of this study was to investigate the influence of nanosilver on novel effector mechanism of neutrophil extracellular traps (NETs), and its possible molecular mechanisms. In this study, nanosilver (10, 20 and 40 μg/mL) was incubated with neutrophils for 90 min. Then, nanosilver-induced the release of NETs was observed by laser confocal microscopy. Nanosilver-induced NETs release was also quantitatively detected by pico Green®. In addition, the role of NADPH oxidase, extracellular signal-regulated kinase (ERK) and p38 signaling pathways in nanosilver-induced NETs release were detected by the inhibitors and pico Green®. The results indicated that nanosilver significantly activated polymorphonuclear neutrophils (PMN) to release NETs, which was a DNA-based network structure modified with histones (H3) and neutrophil elastase (NE). The inhibitors of NADPH oxidase, ERK and p38 signaling pathways significantly inhibited the formation of nanosilver-induced NETs. Furthermore, nanosilver did not alter the extracellular lactate dehydrogenase (LDH) level of PMN cells. All these results showed that nanosilver significantly induced NETs release, and the potential molecular mechanisms were correlated with reactive oxygen species (ROS) production-dependent on NADPH oxidase, ERK and p38 signaling pathways, which might provide a new perspective on nanosilver-induced excess NETs release related to the host immune damage.
Collapse
Affiliation(s)
- Chaoqun Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Zhen Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Xu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Kai Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| |
Collapse
|
248
|
Holmila RJ, Vance SA, King SB, Tsang AW, Singh R, Furdui CM. Silver Nanoparticles Induce Mitochondrial Protein Oxidation in Lung Cells Impacting Cell Cycle and Proliferation. Antioxidants (Basel) 2019; 8:E552. [PMID: 31739476 PMCID: PMC6912658 DOI: 10.3390/antiox8110552] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Silver nanoparticles (AgNPs) are widely used nanomaterials in both commercial and clinical biomedical applications, due to their antibacterial properties. AgNPs are also being explored for the treatment of cancer in particular in combination with ionizing radiation. In this work, we studied the effects of AgNPs and ionizing radiation on mitochondrial redox state and function in a panel of lung cell lines (A549, BEAS-2B, Calu-1 and NCI-H358). The exposure to AgNPs caused cell cycle arrest and decreased cell proliferation in A549, BEAS-2B and Calu-1, but not in NCI-H358. The mitochondrial reactive oxygen species (ROS) and protein oxidation increased in a time- and dose-dependent manner in the more sensitive cell lines with the AgNP exposure, but not in NCI-H358. While ionizing radiation also induced changes in the mitochondrial redox profiles, in general, these were not synergistic with the effects of AgNPs with the exception of NCI-H358 and only at a higher dose of radiation.
Collapse
Affiliation(s)
- Reetta J. Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (R.J.H.); (A.W.T.)
| | - Stephen A. Vance
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA; (S.A.V.); (S.B.K.)
| | - Stephen Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA; (S.A.V.); (S.B.K.)
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (R.J.H.); (A.W.T.)
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (R.J.H.); (A.W.T.)
| |
Collapse
|
249
|
Shati AA, Elsaid FG. Biosynthesized silver nanoparticles and their genotoxicity. J Biochem Mol Toxicol 2019; 34:e22418. [PMID: 31714658 DOI: 10.1002/jbt.22418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/17/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022]
Abstract
The human-pathogenic bacteria have become highly resistant to conventional antibiotics; for this reason, a new biosynthesized nanomaterial might be a solution. The culture filtrate of two isolates of Fusarium oxysporum (14, 17) was used in the biosynthesis of nanosilver (AgNPs). The size of the nanoparticles produced by isolate F14 ranged from 19 to 30 nm, whereas the size of those formed via isolate F17 ranged between 16 and 25 nm. Moreover, the produced bio-nanosilver was tested against the human-pathogenic bacteria Proteus vulgaris, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumonia and the outcome results displayed great antibacterial efficacy in a different manner compared with the three different biogenic antibiotics. Collectively, the results depicted that the silver nanoparticles (AgNPs) showed a three and a half times greater activity than the used antibiotics. Differential display reverse transcription-polymerase chain reaction was used to study gene regulation in the treated E. coli (F14) compared with the nontreated ones. Different upregulated and downregulated genes were observed. The cytotoxicity of the produced AgNPs was examined on rats with an average body weight of 200 g each; these animals were grouped into three different groups. The obtained AgNPs showed very low toxicity on the treated rats in comparison to the control group. The physiological parameters, for example, alanine aminotransferase, aspartate transaminase, albumin, creatinine, and urea in the treated animals were changed within to a lower degree compared with those in the nontreated animals. The current study exhibited that AgNPs might be favorable antibacterial agents, especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Fahmy G Elsaid
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
250
|
Bhutiya PL, Misra N, Rasheed MA, Hasan SZ. Silver Nanoparticles Deposited Algal Nanofibrous Cellulose Sheet for Antibacterial Activity. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00690-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|