201
|
Ratnatilaka Na Bhuket P, Luckanagul JA, Rojsitthisak P, Wang Q. Chemical modification of enveloped viruses for biomedical applications. Integr Biol (Camb) 2019; 10:666-679. [PMID: 30295307 DOI: 10.1039/c8ib00118a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The unique characteristics of enveloped viruses including nanometer size, consistent morphology, narrow size distribution, versatile functionality and biocompatibility have attracted attention from scientists to develop enveloped viruses for biomedical applications. The biomedical applications of the viral-based nanoparticles include vaccine development, imaging and targeted drug delivery. The modification of the structural elements of enveloped viruses is necessary for the desired functions. Here, we review the chemical approaches that have been utilized to develop bionanomaterials based on enveloped viruses for biomedical applications. We first provide an overview of the structures of enveloped viruses which are composed of nucleic acids, structural and functional proteins, glycan residues and lipid envelope. The methods for modification, including direct conjugation, metabolic incorporation of functional groups and peptide tag insertion, are described based on the biomolecular types of viral components. Layer-by-layer technology is also included in this review to illustrate the non-covalent modification of enveloped viruses. Then, we further elaborate the applications of chemically-modified enveloped viruses, virus-like particles and viral subcomponents in biomedical research.
Collapse
Affiliation(s)
- Pahweenvaj Ratnatilaka Na Bhuket
- Biomedicinal Chemistry Program, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
202
|
Chen W, Guo J, Cai Y, Fu Q, Chen B, Chou JJ. Unidirectional Presentation of Membrane Proteins in Nanoparticle-Supported Liposomes. Angew Chem Int Ed Engl 2019; 58:9866-9870. [PMID: 30990942 PMCID: PMC6660371 DOI: 10.1002/anie.201903093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Presentation of membrane proteins to host immune systems has been a challenging problem owing to complexity arising from the poor in vivo stability of the membrane-mimetic media often used for solubilizing the membrane proteins. The use of functionalized, biocompatible nanoparticles as substrates is shown to guide the formation of proteoliposomes, which can present many copies of membrane proteins in a unidirectional manner. The approach was demonstrated to present the membrane-proximal region of the HIV-1 envelope glycoprotein. These nanoparticle-supported liposomes are broadly applicable as membrane antigen vehicles for inducing host immune responses.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| | - Junling Guo
- Department of Biomass Science and Engineering, Sichuan University, 252 Shuncheng Street, Chengdu, Sichuan 610065, China
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| | - Bing Chen
- Division of Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, United States
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
203
|
Chen W, Cai Y, Fu Q, Chen B, Guo J, Chou JJ. Unidirectional Presentation of Membrane Proteins in Nanoparticle‐Supported Liposomes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| | - Yongfei Cai
- Division of Molecular MedicineBoston Children's HospitalDepartment of PediatricsHarvard Medical School 3 Blackfan Street Boston MA 02115 USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| | - Bing Chen
- Division of Molecular MedicineBoston Children's HospitalDepartment of PediatricsHarvard Medical School 3 Blackfan Street Boston MA 02115 USA
| | - Junling Guo
- Department of Biomass Science and EngineeringSichuan University 24 South Section Yihuan Road Chengdu Sichuan 610065 China
| | - James J. Chou
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| |
Collapse
|
204
|
Daniell H, Rai V, Xiao Y. Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1357-1368. [PMID: 30575284 PMCID: PMC6576100 DOI: 10.1111/pbi.13060] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 05/20/2023]
Abstract
To prevent vaccine-associated paralytic poliomyelitis, WHO recommended withdrawal of Oral Polio Vaccine (Serotype-2) and a single dose of Inactivated Poliovirus Vaccine (IPV). IPV however is expensive, requires cold chain, injections and offers limited intestinal mucosal immunity, essential to prevent polio reinfection in countries with open sewer system. To date, there is no virus-free and cold chain-free polio vaccine capable of inducing robust mucosal immunity. We report here a novel low-cost, cold chain/poliovirus-free, booster vaccine using poliovirus capsid protein (VP1, conserved in all serotypes) fused with cholera non-toxic B subunit (CTB) expressed in lettuce chloroplasts. PCR using unique primer sets confirmed site-specific integration of CTB-VP1 transgene cassettes. Absence of the native chloroplast genome in Southern blots confirmed homoplasmy. Codon optimization of the VP1 coding sequence enhanced its expression 9-15-fold in chloroplasts. GM1-ganglioside receptor-binding ELISA confirmed pentamer assembly of CTB-VP1 fusion protein, fulfilling a key requirement for oral antigen delivery through gut epithelium. Transmission Electron Microscope images and hydrodynamic radius analysis confirmed VP1-VLPs of 22.3 nm size. Mice primed with IPV and boosted three times with lyophilized plant cells expressing CTB-VP1co, formulated with plant-derived oral adjuvants, enhanced VP1-specific IgG1, VP1-IgA titres and neutralization (80%-100% seropositivity of Sabin-1, 2, 3). In contrast, IPV single dose resulted in <50% VP1-IgG1 and negligible VP1-IgA titres, poor neutralization and seropositivity (<20%, <40% Sabin 1,2). Mice orally boosted with CTB-VP1co, without IPV priming, failed to produce any protective neutralizing antibody. Because global population is receiving IPV single dose, booster vaccine free of poliovirus or cold chain offers a timely low-cost solution to eradicate polio.
Collapse
Affiliation(s)
- Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vineeta Rai
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yuhong Xiao
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
205
|
Muñoz-Juan A, Carreño A, Mendoza R, Corchero JL. Latest Advances in the Development of Eukaryotic Vaults as Targeted Drug Delivery Systems. Pharmaceutics 2019; 11:E300. [PMID: 31261673 PMCID: PMC6680493 DOI: 10.3390/pharmaceutics11070300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/04/2022] Open
Abstract
The use of smart drug delivery systems (DDSs) is one of the most promising approaches to overcome some of the drawbacks of drug-based therapies, such as improper biodistribution and lack of specific targeting. Some of the most attractive candidates as DDSs are naturally occurring, self-assembling protein nanoparticles, such as viruses, virus-like particles, ferritin cages, bacterial microcompartments, or eukaryotic vaults. Vaults are large ribonucleoprotein nanoparticles present in almost all eukaryotic cells. Expression in different cell factories of recombinant versions of the "major vault protein" (MVP) results in the production of recombinant vaults indistinguishable from native counterparts. Such recombinant vaults can encapsulate virtually any cargo protein, and they can be specifically targeted by engineering the C-terminus of MVP monomer. These properties, together with nanometric size, a lumen large enough to accommodate cargo molecules, biodegradability, biocompatibility and no immunogenicity, has raised the interest in vaults as smart DDSs. In this work we provide an overview of eukaryotic vaults as a new, self-assembling protein-based DDS, focusing in the latest advances in the production and purification of this platform, its application in nanomedicine, and the current preclinical and clinical assays going on based on this nanovehicle.
Collapse
Affiliation(s)
- Amanda Muñoz-Juan
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Aida Carreño
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Rosa Mendoza
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - José L Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
206
|
Pattinson DJ, Apte SH, Wibowo N, Chuan YP, Rivera-Hernandez T, Groves PL, Lua LH, Middelberg APJ, Doolan DL. Chimeric Murine Polyomavirus Virus-Like Particles Induce Plasmodium Antigen-Specific CD8 + T Cell and Antibody Responses. Front Cell Infect Microbiol 2019; 9:215. [PMID: 31275867 PMCID: PMC6593135 DOI: 10.3389/fcimb.2019.00215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
An effective vaccine against the Plasmodium parasite is likely to require the induction of robust antibody and T cell responses. Chimeric virus-like particles are an effective vaccine platform for induction of antibody responses, but their capacity to induce robust cellular responses and cell-mediated protection against pathogen challenge has not been established. To evaluate this, we produced chimeric constructs using the murine polyomavirus structural protein with surface-exposed CD8+ or CD4+ T cell or B cell repeat epitopes derived from the Plasmodium yoelii circumsporozoite protein, and assessed immunogenicity and protective capacity in a murine model. Robust CD8+ T cell responses were induced by immunization with the chimeric CD8+ T cell epitope virus-like particles, however CD4+ T cell responses were very low. The B cell chimeric construct induced robust antibody responses but there was no apparent synergy when T cell and B cell constructs were administered as a pool. A heterologous prime/boost regimen using plasmid DNA priming followed by a VLP boost was more effective than homologous VLP immunization for cellular immunity and protection. These data show that chimeric murine polyomavirus virus-like particles are a good platform for induction of CD8+ T cell responses as well as antibody responses.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan
- Antibody Formation/immunology
- Antigens, Protozoan/immunology
- B-Lymphocytes
- CD4-Positive T-Lymphocytes
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Immunity, Cellular
- Immunization
- Immunization, Secondary
- Malaria Vaccines
- Mice
- Mice, Inbred BALB C
- Plasmodium yoelii
- Polyomavirus/genetics
- Polyomavirus/immunology
- Protozoan Proteins/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- David J. Pattinson
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Simon H. Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nani Wibowo
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Yap P. Chuan
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Penny L. Groves
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Linda H. Lua
- Protein Expression Facility, University of Queensland, Brisbane, QLD, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Denise L. Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
207
|
Immunogenicity in Rabbits of Virus-Like Particles from a Contemporary Rabbit Haemorrhagic Disease Virus Type 2 (GI.2/RHDV2/b) Isolated in The Netherlands. Viruses 2019; 11:v11060553. [PMID: 31207978 PMCID: PMC6631637 DOI: 10.3390/v11060553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 11/24/2022] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV) type 2 (GI.2/RHDV2/b) is an emerging pathogen in wild rabbits and in domestic rabbits vaccinated against RHDV (GI.1). Here we report the genome sequence of a contemporary RHDV2 isolate from the Netherlands and investigate the immunogenicity of virus-like particles (VLPs) produced in insect cells. RHDV2 RNA was isolated from the liver of a naturally infected wild rabbit and the complete viral genome sequence was assembled from sequenced RT-PCR products. Phylogenetic analysis based on the VP60 capsid gene demonstrated that the RHDV2 NL2016 isolate clustered with other contemporary RHDV2 strains. The VP60 gene was cloned in a baculovirus expression vector to produce VLPs in Sf9 insect cells. Density-gradient purified RHDV2 VLPs were visualized by transmission electron microscopy as spherical particles of around 30 nm in diameter with a morphology resembling authentic RHDV. Immunization of rabbits with RHDV2 VLPs resulted in high production of serum antibodies against VP60, and the production of cytokines (IFN-γ and IL-4) was significantly elevated in the immunized rabbits compared to the control group. The results demonstrate that the recombinant RHDV2 VLPs are highly immunogenic and may find applications in serological detection assays and might be further developed as a vaccine candidate to protect domestic rabbits against RHDV2 infection.
Collapse
|
208
|
Rüdt M, Vormittag P, Hillebrandt N, Hubbuch J. Process monitoring of virus-like particle reassembly by diafiltration with UV/Vis spectroscopy and light scattering. Biotechnol Bioeng 2019; 116:1366-1379. [PMID: 30684365 PMCID: PMC6593973 DOI: 10.1002/bit.26935] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
Virus-like particles (VLPs) have shown great potential as biopharmaceuticals in the market and in clinics. Nonenveloped, in vivo assembled VLPs are typically disassembled and reassembled in vitro to improve particle stability, homogeneity, and immunogenicity. At the industrial scale, cross-flow filtration (CFF) is the method of choice for performing reassembly by diafiltration. Here, we developed an experimental CFF setup with an on-line measurement loop for the implementation of process analytical technology (PAT). The measurement loop included an ultraviolet and visible (UV/Vis) spectrometer as well as a light scattering photometer. These sensors allowed for monitoring protein concentration, protein tertiary structure, and protein quaternary structure. The experimental setup was tested with three Hepatitis B core Antigen (HBcAg) variants. With each variant, three reassembly processes were performed at different transmembrane pressures (TMPs). While light scattering provided information on the assembly progress, UV/Vis allowed for monitoring the protein concentration and the rate of VLP assembly based on the microenvironment of Tyrosine-132. VLP formation was verified by off-line dynamic light scattering (DLS) and transmission electron microscopy (TEM). Furthermore, the experimental results provided evidence of aggregate-related assembly inhibition and showed that off-line size-exclusion chromatography does not provide a complete picture of the particle content. Finally, a Partial-Least Squares (PLS) model was calibrated to predict VLP concentrations in the process solution. Q 2 values of 0.947-0.984 were reached for the three HBcAg variants. In summary, the proposed experimental setup provides a powerful platform for developing and monitoring VLP reassembly steps by CFF.
Collapse
Affiliation(s)
- Matthias Rüdt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Nils Hillebrandt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| |
Collapse
|
209
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
210
|
Zhao L, Kopylov M, Potter CS, Carragher B, Finn MG. Engineering the PP7 Virus Capsid as a Peptide Display Platform. ACS NANO 2019; 13:4443-4454. [PMID: 30912918 PMCID: PMC6991139 DOI: 10.1021/acsnano.8b09683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As self-assembling polyvalent nanoscale structures that can tolerate substantial genetic and chemical modification, virus-like particles are useful in a variety of fields. Here we describe the genetic modification and structural characterization of the Leviviridae PP7 capsid protein as a platform for the presentation of functional polypeptides. This particle was shown to tolerate the display of sequences from 1 kDa (a cell penetrating peptide) to 14 kDa (the Fc-binding double Z-domain) on its exterior surface as C-terminal genetic fusions to the coat protein. In addition, a dimeric construct allowed the presentation of exogenous loops between capsid monomers and the simultaneous presentation of two different peptides at different positions on the icosahedral structure. The PP7 particle is thereby significantly more tolerant of these types of polypeptide additions than Qβ and MS2, the other Leviviridae-derived VLPs in common use.
Collapse
Affiliation(s)
- Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Mykhailo Kopylov
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, United States
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, United States
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
211
|
Prime-Boost Immunizations with DNA, Modified Vaccinia Virus Ankara, and Protein-Based Vaccines Elicit Robust HIV-1 Tier 2 Neutralizing Antibodies against the CAP256 Superinfecting Virus. J Virol 2019; 93:JVI.02155-18. [PMID: 30760570 PMCID: PMC6450106 DOI: 10.1128/jvi.02155-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/26/2019] [Indexed: 12/31/2022] Open
Abstract
A vaccine regimen that elicits broadly neutralizing antibodies (bNAbs) is a major goal in HIV-1 vaccine research. In this study, we assessed the immunogenicity of the CAP256 superinfecting viral envelope (CAP256 SU) protein delivered by modified vaccinia virus Ankara (MVA) and DNA vaccines in different prime-boost combinations followed by a soluble protein (P) boost. The envelope protein (Env) contained a flexible glycine linker and I559P mutation. Trimer-specific bNAbs PGT145, PG16, and CAP256 VRC26_08 efficiently bound to the membrane-bound CAP256 envelope expressed on the surface of cells transfected or infected with the DNA and MVA vaccines. The vaccines were tested in two different vaccination regimens in rabbits. Both regimens elicited autologous tier 2 neutralizing antibodies (NAbs) and high-titer binding antibodies to the matching CAP256 Env and CAP256 V1V2 loop scaffold. The immunogenicity of DNA and MVA vaccines expressing membrane-bound Env alone was compared to that of Env stabilized in a more native-like conformation on the surface of Gag virus-like particles (VLPs). The inclusion of Gag in the DNA and MVA vaccines resulted in earlier development of tier 2 NAbs for both vaccination regimens. In addition, a higher proportion of the rabbits primed with DNA and MVA vaccines that included Gag developed tier 2 NAbs than did those primed with vaccine expressing Env alone. Previously, these DNA and MVA vaccines expressing subtype C mosaic HIV-1 Gag were shown to elicit strong T cell responses in mice. Here we show that when the CAP256 SU envelope protein is included, these vaccines elicit autologous tier 2 NAbs.IMPORTANCE A vaccine is urgently needed to combat HIV-1, particularly in sub-Saharan Africa, which remains disproportionately affected by the AIDS pandemic and accounts for the majority of new infections and AIDS-related deaths. In this study, two different vaccination regimens were compared. Rabbits that received two DNA primes followed by two modified vaccinia virus Ankara (MVA) and two protein inoculations developed better immune responses than those that received two MVA and three protein inoculations. In addition, DNA and MVA vaccines that expressed mosaic Gag VLPs presenting a stabilized Env antigen elicited better responses than Env alone, which supports the inclusion of Gag VLPs in an HIV-1 vaccine.
Collapse
|
212
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
213
|
Attachment of flagellin enhances the immunostimulatory activity of a hemagglutinin-ferritin nano-cage. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:223-235. [DOI: 10.1016/j.nano.2019.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 10/31/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
|
214
|
Klijn ME, Vormittag P, Bluthardt N, Hubbuch J. High-throughput computational pipeline for 3-D structure preparation and in silico protein surface property screening: A case study on HBcAg dimer structures. Int J Pharm 2019; 563:337-346. [PMID: 30935914 DOI: 10.1016/j.ijpharm.2019.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Knowledge-based experimental design can aid biopharmaceutical high-throughput screening (HTS) experiments needed to identify critical manufacturability parameters. Prior knowledge can be obtained via computational methods such as protein property extraction from 3-D protein structures. This study presents a high-throughput 3-D structure preparation and refinement pipeline that supports structure screenings with an automated and data-dependent workflow. As a case study, three chimeric virus-like particle (VLP) building blocks, hepatitis B core antigen (HBcAg) dimers, were constructed. Molecular dynamics (MD) refinement quality, speed, stability, and correlation to zeta potential data was evaluated using different MD simulation settings. Settings included 2 force fields (YASARA2 and AMBER03) and 2 pKa computation methods (YASARA and H++). MD simulations contained a data-dependent termination via identification of a 2 ns Window of Stability, which was also used for robust descriptor extraction. MD simulation with YASARA2, independent of pKa computation method, was found to be most stable and computationally efficient. These settings resulted in a fast refinement (6.6-37.5 h), a good structure quality (-1.17--1.13) and a strong linear dependence between dimer surface charge and complete chimeric HBcAg VLP zeta potential. These results indicate the computational pipeline's applicability for early-stage candidate assessment and design optimization of HTS manufacturability or formulability experiments.
Collapse
Affiliation(s)
- Marieke E Klijn
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Baden-Wuerttemberg, Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Baden-Wuerttemberg, Germany
| | - Nicolai Bluthardt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Baden-Wuerttemberg, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Baden-Wuerttemberg, Germany.
| |
Collapse
|
215
|
Guo J, Zhou A, Sun X, Sha W, Ai K, Pan G, Zhou C, Zhou H, Cong H, He S. Immunogenicity of a Virus-Like-Particle Vaccine Containing Multiple Antigenic Epitopes of Toxoplasma gondii Against Acute and Chronic Toxoplasmosis in Mice. Front Immunol 2019; 10:592. [PMID: 30984177 PMCID: PMC6449433 DOI: 10.3389/fimmu.2019.00592] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
There is no effective protective vaccine against human toxoplasmosis, which is a potential threat to nearly a third of the world population. Vaccines based on virus-like particles (VLPs) have been highly successful in humans for many years, but have rarely been applied against Toxoplasma gondii infection. In this study, we inserted a B cell epitope (SAG182−102 or SAG1301−320), a CD8+ cell epitope (HF10 or ROP7), and a CD4+ cell epitope (AS15) of T. gondii into a truncated HBcΔ(amino acids1–149) particle to construct four chimeric VLP vaccine formulations, i.e., HBcΔH82, HBcΔH301, HBcΔ R82, and HBcΔ R301. When these chimeric HBc particles were expressed in Escherichia coli, they showed icosahedral morphology similar to that of the original VLPs and were evaluated as vaccine formulations against acute and chronic toxoplasmosis in a mouse model (BALB/c mice (H-2d). All these chimeric HBc VLPs induced strong humoral and cellular immune responses with high IgG antibody titers and interferon(IFN)-γ production. Only the mice immunized with HBcΔH82 showed prolonged survival time (15.6 ± 3.8 vs. 5.6 ± 0.8 days) against acute infection with RH tachyzoites and decrease in brain parasite load (1,454 ± 239 vs. 2,091 ± 263) against chronic infection with Prugniuad cysts, as compared to the findings for the control group. These findings suggest that HBc VLPs would act as an effective carrier for delivering effective multiple antigenic epitopes and would be beneficial for developing a safe and long-acting vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, School of Medicine, Shandong University, Jinan, China
| | - Xiahui Sun
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wenchao Sha
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Kang Ai
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ge Pan
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chunxue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huaiyu Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hua Cong
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shenyi He
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
216
|
Shan W, Zheng H, Fu G, Liu C, Li Z, Ye Y, Zhao J, Xu D, Sun L, Wang X, Chen XL, Bi S, Ren L, Fu G. Bioengineered Nanocage from HBc Protein for Combination Cancer Immunotherapy. NANO LETTERS 2019; 19:1719-1727. [PMID: 30724087 DOI: 10.1021/acs.nanolett.8b04722] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein nanocages are promising multifunctional platforms for nanomedicine owing to the ability to decorate their surfaces with multiple functionalities through genetic and/or chemical modification to achieve desired properties for therapeutic and diagnostic purposes. Here, we describe a model antigen (OVA peptide) that was conjugated to the surface of a naturally occurring hepatitis B core protein nanocage (HBc NC) by genetic modification. The engineered OVA-HBc nanocages (OVA-HBc NCs), displaying high density repetitive array of epitopes in a limited space by self-assembling into symmetrical structure, not only can induce bone marrow derived dendritic cells (BMDC) maturation effectively but also can be enriched in the draining lymph nodes. Naïve C57BL/6 mice immunized with OVA-HBc NCs are able to generate significant and specific cytotoxic T lymphocyte (CTL) responses. Moreover, OVA-HBc NCs as a robust nanovaccine can trigger preventive antitumor immunity and significantly delay tumor growth. When combined with a low-dose chemotherapy drug (paclitaxel), OVA-HBc NCs could specifically inhibit progression of an established tumor. Our findings support HBc-based nanocages with modularity and scalability as an attractive nanoplatform for combination cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjun Shan
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Guofeng Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Chenfeng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zizhen Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health , Xiamen University , Xiamen , Fujian 361102 , P. R. China
| | - Yuhan Ye
- Zhongshan Hospital , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Jie Zhao
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Dan Xu
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Liping Sun
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health , Xiamen University , Xiamen , Fujian 361102 , P. R. China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Shengli Bi
- Chinese Center for Disease Control & Prevention Institute for Viral Disease Control & Prevention , Beijing 102206 , P. R. China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
- Cancer Research Center of Xiamen University , Xiamen , Fujian 361102 , China
| |
Collapse
|
217
|
Construction and Immunogenicity of Novel Chimeric Virus-Like Particles Bearing Antigens of Infectious Bronchitis Virus and Newcastle Disease Virus. Viruses 2019; 11:v11030254. [PMID: 30871190 PMCID: PMC6465995 DOI: 10.3390/v11030254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) are two poultry pathogens seriously affecting the poultry industry. Here, IBV S1 and the ectodomain of NDV F proteins were separately linked with the trans-membrane and carboxy-terminal domain of IBV S protein (STMCT), composing rS and rF; thus, a novel chimeric infectious bronchitis-Newcastle disease (IB-ND) virus-like particles (VLPs) vaccine containing the rS, rF, and IBV M protein was constructed. Under the transmission electron microscope (TEM), VLPs possessing similar morphology to natural IBV were observed. To evaluate the immunogenicity of chimeric IB-ND VLPs, specific pathogen-free (SPF) chickens were immunized with three increasing doses (50, 75, and 100 μg protein of VLPs). Results of ELISAs detecting IBV and NDV specific antibodies and IL-4 and IFN-γ T cell cytokines indicated that vaccination with chimeric IB-ND VLPs could efficiently induce humoral and cellular immune responses. In the challenge study, chimeric IB-ND VLPs (100 μg protein) provided 100% protection against IBV or NDV virulent challenge from death, and viral RNA levels in tissues and swabs were greatly reduced. Collectively, chimeric IB-ND VLPs are highly immunogenic and could provide complete protection from an IBV or NDV virulent challenge. Chimeric IB-ND VLPs are an appealing vaccine candidate and a promising vaccine platform bearing multivalent antigens.
Collapse
|
218
|
Zheng Y, Lee PW, Wang C, Thomas LD, Stewart PL, Steinmetz NF, Pokorski JK. Freeze-Drying To Produce Efficacious CPMV Virus-like Particles. NANO LETTERS 2019; 19:2099-2105. [PMID: 30801195 PMCID: PMC7272238 DOI: 10.1021/acs.nanolett.9b00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In situ cancer vaccination that uses immune stimulating agents is revolutionizing the way that cancer is treated. In this realm, viruses and noninfectious virus-like particles have gained significant traction in reprogramming the immune system to recognize and eliminate malignancies. Recently, cowpea mosaic virus-like particles (VLPs) have shown exceptional promise in their ability to fight a variety of cancers. However, the current methods used to produce CPMV VLPs rely on agroinfiltration in plants. These protocols remain complicated and labor intensive and have the potential to introduce unwanted immunostimulatory agents, like lipopolysaccharides. This Letter describes a simple "post-processing" method to remove RNA from wild-type CPMV, while retaining the structure and function of the capsid. Lyophilization was able to eject encapsulated RNA to form lyo-eCPMV and, when purified, eliminated nearly all traces of encapsulated RNA. Lyo-eCPMV was characterized by cryo-electron microscopy single particle reconstruction to confirm the structural integrity of the viral capsid. Finally, lyo-eCPMV showed equivalent anticancer efficacy as eCPMV, produced by agroinfiltration, when using an invasive melanoma model. These results describe a straightforward method to prepare CPMV VLPs from infectious virions.
Collapse
Affiliation(s)
- Yi Zheng
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Parker W. Lee
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chao Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Linda D. Thomas
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Phoebe L. Stewart
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
- School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
219
|
Špakova A, Šimoliūnas E, Batiuškaitė R, Pajeda S, Meškys R, Petraitytė-Burneikienė R. Self-Assembly of Tail Tube Protein of Bacteriophage vB_EcoS_NBD2 into Extremely Long Polytubes in E. coli and S. cerevisiae. Viruses 2019; 11:E208. [PMID: 30832262 PMCID: PMC6466441 DOI: 10.3390/v11030208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Nucleotides, peptides and proteins serve as a scaffold material for self-assembling nanostructures. In this study, the production of siphovirus vB_EcoS_NBD2 (NBD2) recombinant tail tube protein gp39 reached approximately 33% and 27% of the total cell protein level in Escherichia coli and Saccharomyces cerevisiae expression systems, respectively. A simple purification protocol allowed us to produce a recombinant gp39 protein with 85%⁻90% purity. The yield of gp39 was 2.9 ± 0.36 mg/g of wet E. coli cells and 0.85 ± 0.33 mg/g for S. cerevisiae cells. The recombinant gp39 self-assembled into well-ordered tubular structures (polytubes) in vivo in the absence of other phage proteins. The diameter of these structures was the same as the diameter of the tail of phage NBD2 (~12 nm). The length of these structures varied from 0.1 µm to >3.95 µm, which is 23-fold the normal NBD2 tail length. Stability analysis demonstrated that the polytubes could withstand various chemical and physical conditions. These polytubes show the potential to be used as a nanomaterial in various fields of science.
Collapse
Affiliation(s)
- Aliona Špakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Eugenijus Šimoliūnas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Raminta Batiuškaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Simonas Pajeda
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Rolandas Meškys
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Rasa Petraitytė-Burneikienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
220
|
Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines 2019; 18:269-280. [PMID: 30707635 DOI: 10.1080/14760584.2019.1578216] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Immunization has been a remarkably successful public health intervention; however, new approaches to vaccine design are essential to counter existing and emerging infectious diseases which have defied traditional vaccination efforts to date. Nanoparticles (ordered structures with dimensions in the range of 1-1000 nm) have great potential to supplement traditional vaccines based upon pathogen subunits, or killed or attenuated microorganisms, as exemplified by the successful licensure of virus-like particle vaccines for human papillomavirus and hepatitis B. However, the immunological mechanisms that underpin the potent immunity of nanoparticle vaccines are poorly defined. AREAS COVERED Here, we review the immunity of nanoparticle immunization. The display of antigen in a repetitive, ordered array mimics the surface of a pathogen, as does their nanoscale size. These properties facilitate enhanced innate immune activation, improved drainage and retention in lymph nodes, stronger engagement with B cell receptors, and augmented T cell help in driving B cell activation. EXPERT OPINION In the near future, increasingly complex nanoparticle vaccines displaying multiple antigens and/or co-delivered adjuvants will reach clinical trials. An improved mechanistic understanding of nanoparticle vaccination will ultimately facilitate the rational design of improved vaccines for human health.
Collapse
Affiliation(s)
- Hannah G Kelly
- a Department of Microbiology and Immunology , University of Melbourne, at The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Parkville , Australia
| | - Stephen J Kent
- a Department of Microbiology and Immunology , University of Melbourne, at The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Parkville , Australia.,c Melbourne Sexual Health Centre and Department of Infectious Diseases , Alfred Hospital and Central Clinical School, Monash University , Melbourne , Australia
| | - Adam K Wheatley
- a Department of Microbiology and Immunology , University of Melbourne, at The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Parkville , Australia
| |
Collapse
|
221
|
Taleghani N, Bozorg A, Azimi A, Zamani H. Immunogenicity of HPV and HBV vaccines: adjuvanticity of synthetic analogs of monophosphoryl lipid A combined with aluminum hydroxide. APMIS 2019; 127:150-157. [PMID: 30746792 DOI: 10.1111/apm.12927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/28/2018] [Indexed: 11/29/2022]
Abstract
Monophosphoryl lipid A (MPL), a purified and detoxified product of lipopolysaccharide (LPS) of Salmonella minnesota R595, has been used as an adjuvant in different vaccines. In this study, the efficacy of human papillomaviruses (HPV) and hepatitis B virus (HBV) vaccines formulated with aluminum hydroxide combined with two different synthetic MPLs, 3D-(6-acyl)-PHAD or 3D-PHAD, or aluminum hydroxide combined with the mixtures of such MPLs, has been assessed. The immunogenicity in female BALB/c mice was verified by two intramuscular injections of differently formulated HPV and HBV vaccines and the total immunoglobulin G (IgG) antibody response was considered to compare the employed adjuvants. As verified experimentally, a mixture of 3D-(6-acyl)-PHAD and 3D-PHAD was able to induce significantly higher antibody titer than that of either 3D-(6-acyl)-PHAD or 3D-PHAD, when used individually. Interestingly, based on the responses achieved in terms of the total antibody levels, such mixture of synthetic MPLs was found to be even more effective than the bacterially derived MPL. Accordingly, the obtained results indicated that, if designed appropriately, synthetic MPL molecules could provide improved adjuvanticity with high level of consistency.
Collapse
Affiliation(s)
- Nastaran Taleghani
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran
| | - Ali Bozorg
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran
| | - Amin Azimi
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran
| | - Homa Zamani
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
222
|
Accelerating Biologics Manufacturing by Modeling or: Is Approval under the QbD and PAT Approaches Demanded by Authorities Acceptable Without a Digital-Twin? Processes (Basel) 2019. [DOI: 10.3390/pr7020094] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Innovative biologics, including cell therapeutics, virus-like particles, exosomes,recombinant proteins, and peptides, seem likely to substitute monoclonal antibodies as the maintherapeutic entities in manufacturing over the next decades. This molecular variety causes agrowing need for a general change of methods as well as mindset in the process development stage,as there are no platform processes available such as those for monoclonal antibodies. Moreover,market competitiveness demands hyper-intensified processes, including accelerated decisionstoward batch or continuous operation of dedicated modular plant concepts. This indicates gaps inprocess comprehension, when operation windows need to be run at the edges of optimization. Inthis editorial, the authors review and assess potential methods and begin discussing possiblesolutions throughout the workflow, from process development through piloting to manufacturingoperation from their point of view and experience. Especially, the state-of-the-art for modeling inred biotechnology is assessed, clarifying differences and applications of statistical, rigorousphysical-chemical based models as well as cost modeling. “Digital-twins” are described and effortsvs. benefits for new applications exemplified, including the regulation-demanded QbD (quality bydesign) and PAT (process analytical technology) approaches towards digitalization or industry 4.0based on advanced process control strategies. Finally, an analysis of the obstacles and possiblesolutions for any successful and efficient industrialization of innovative methods from processdevelopment, through piloting to manufacturing, results in some recommendations. A centralquestion therefore requires attention: Considering that QbD and PAT have been required byauthorities since 2004, can any biologic manufacturing process be approved by the regulatoryagencies without being modeled by a “digital-twin” as part of the filing documentation?
Collapse
|
223
|
Zahid M, Rinas U. Guidelines for Small-Scale Production and Purification of Hepatitis B Surface Antigen Virus-Like Particles from Recombinant Pichia pastoris. Methods Mol Biol 2019; 1923:309-322. [PMID: 30737747 DOI: 10.1007/978-1-4939-9024-5_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Virus-like particle (VLP)-based vaccines have been in the market since decades for preventing viral infection and have proven their usefulness also in other areas of biotechnology. Here, we describe in detail simple small-scale production and purification procedures for the generation of hepatitis B surface antigen (HBsAg) VLPs using Pichia pastoris as expression host. This protocol may also be applicable with variations to other HBsAg-based VLPs additionally carrying antigens of other pathogens.
Collapse
Affiliation(s)
- Maria Zahid
- Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany.,Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ursula Rinas
- Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany. .,Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
224
|
Theillet G, Martinez J, Steinbrugger C, Lavillette D, Coutard B, Papageorgiou N, Dalbon P, Leparc-Goffart I, Bedin F. Comparative study of chikungunya Virus-Like Particles and Pseudotyped-Particles used for serological detection of specific immunoglobulin M. Virology 2019; 529:195-204. [PMID: 30721816 DOI: 10.1016/j.virol.2019.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/28/2023]
Abstract
The incidence of chikungunya virus (CHIKV) infection has increased dramatically in recent decades. Effective diagnostic methods must be available to optimize patient management. IgM-capture Enzyme-Linked Immunosorbent Assay (MAC-ELISA) is routinely used for the detection of specific CHIKV IgM. This method requires inactivated CHIKV viral lysate (VL). The use of viral bioparticles such as Virus-Like Particles (VLPs) and Pseudotyped-Particles (PPs) could represent an alternative to VL. Bioparticles performances were established by MAC-ELISA; physico-chemical characterizations were performed by field-flow fractionation (HF5) and confirmed by electron microscopy. Non-purified PPs give a detection signal higher than for VL. Results suggested that the signal difference observed in MAC-ELISA was probably due to the intrinsic antigenic properties of particles. The use of CHIKV bioparticles such as VLPs and PPs represents an attractive alternative to VL. Compared to VL and VLPs, non-purified PPs have proven to be more powerful antigens for specific IgM capture.
Collapse
Affiliation(s)
- Gérald Theillet
- bioMérieux, Innovation New Immuno-Concepts, Chemin de l'Orme, 69280 Marcy-l'Etoile, France; Unité des Virus Emergents (UVE: Aix-Marseille Univ. - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France.
| | - Jérôme Martinez
- bioMérieux, R&D Immunoassays dpt., Biomolecule Engineering - bioMAP, Chemin de l'Orme, 69280 Marcy-l'Etoile, France.
| | - Christophe Steinbrugger
- bioMérieux, R&D Immunoassays dpt., Biomolecule Engineering - bioMAP, Chemin de l'Orme, 69280 Marcy-l'Etoile, France.
| | - Dimitri Lavillette
- Unit of Interspecies Transmission of Arboviruses and Antivirals, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Bruno Coutard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Pascal Dalbon
- bioMérieux, Innovation New Immuno-Concepts, Chemin de l'Orme, 69280 Marcy-l'Etoile, France.
| | - Isabelle Leparc-Goffart
- Unité des Virus Emergents (UVE: Aix-Marseille Univ. - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France; IRBA, Unité de virologie - CNR des Arbovirus, HIA Laveran - CS50004, 13384 Marseille cedex, France
| | - Frédéric Bedin
- bioMérieux, Innovation New Immuno-Concepts, Chemin de l'Orme, 69280 Marcy-l'Etoile, France.
| |
Collapse
|
225
|
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-Based Vaccines Against Respiratory Viruses. Front Immunol 2019; 10:22. [PMID: 30733717 PMCID: PMC6353795 DOI: 10.3389/fimmu.2019.00022] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The respiratory mucosa is the primary portal of entry for numerous viruses such as the respiratory syncytial virus, the influenza virus and the parainfluenza virus. These pathogens initially infect the upper respiratory tract and then reach the lower respiratory tract, leading to diseases. Vaccination is an affordable way to control the pathogenicity of viruses and constitutes the strategy of choice to fight against infections, including those leading to pulmonary diseases. Conventional vaccines based on live-attenuated pathogens present a risk of reversion to pathogenic virulence while inactivated pathogen vaccines often lead to a weak immune response. Subunit vaccines were developed to overcome these issues. However, these vaccines may suffer from a limited immunogenicity and, in most cases, the protection induced is only partial. A new generation of vaccines based on nanoparticles has shown great potential to address most of the limitations of conventional and subunit vaccines. This is due to recent advances in chemical and biological engineering, which allow the design of nanoparticles with a precise control over the size, shape, functionality and surface properties, leading to enhanced antigen presentation and strong immunogenicity. This short review provides an overview of the advantages associated with the use of nanoparticles as vaccine delivery platforms to immunize against respiratory viruses and highlights relevant examples demonstrating their potential as safe, effective and affordable vaccines.
Collapse
Affiliation(s)
- Soultan Al-Halifa
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
| | - Laurie Gauthier
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Dominic Arpin
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
226
|
Mignaqui AC, Ruiz V, Durocher Y, Wigdorovitz A. Advances in novel vaccines for foot and mouth disease: focus on recombinant empty capsids. Crit Rev Biotechnol 2019; 39:306-320. [DOI: 10.1080/07388551.2018.1554619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ana Clara Mignaqui
- National Agricultural Technology Institute, Institute of Virology and Technological Innovations IVIT, CONICET-INTA, Hurlingham, Buenos Aires, Argentina
| | - Vanesa Ruiz
- National Agricultural Technology Institute, Institute of Virology and Technological Innovations IVIT, CONICET-INTA, Hurlingham, Buenos Aires, Argentina
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, Quebec, Canada
| | - Andrés Wigdorovitz
- National Agricultural Technology Institute, Institute of Virology and Technological Innovations IVIT, CONICET-INTA, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
227
|
Shukla R, Ramasamy V, Rajpoot RK, Arora U, Poddar A, Ahuja R, Beesetti H, Swaminathan S, Khanna N. Next generation designer virus-like particle vaccines for dengue. Expert Rev Vaccines 2019; 18:105-117. [PMID: 30587054 DOI: 10.1080/14760584.2019.1562909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION A safe and efficacious vaccine for dengue continues to be an unmet public health need. The recent licensing of a dengue vaccine (Dengvaxia) developed by Sanofi has brought to the fore the safety issue of vaccine-induced infection enhancement. AREAS COVERED This article focuses on two new yeast-produced tetravalent dengue envelope domain III-displaying virus-like particulate vaccine candidates reported in early 2018 and reviews the rationale underlying their design, and pre-clinical data which suggest that these may offer promising alternate options. EXPERT COMMENTARY These are the only vaccine candidates so far to have demonstrated the induction of primarily serotype-specific neutralizing antibodies to all dengue virus serotypes in experimental animals. Interestingly, these antibodies lack infection-enhancing potential when evaluated using the AG129 mouse model.
Collapse
Affiliation(s)
- Rahul Shukla
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Viswanathan Ramasamy
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Ravi Kant Rajpoot
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Upasana Arora
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Ankur Poddar
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Richa Ahuja
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Hemalatha Beesetti
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Sathyamangalam Swaminathan
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Navin Khanna
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India.,b NCR Biotech Science Cluster , Translational Health Science & Technology Institute , Faridabad , India
| |
Collapse
|
228
|
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019; 6:e6185. [PMID: 30656066 PMCID: PMC6336016 DOI: 10.7717/peerj.6185] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yangfan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
229
|
Chang J, Zhang Y, Yang D, Jiang Z, Wang F, Yu L. Potent neutralization activity against type O foot-and-mouth disease virus elicited by a conserved type O neutralizing epitope displayed on bovine parvovirus virus-like particles. J Gen Virol 2018; 100:187-198. [PMID: 30547855 DOI: 10.1099/jgv.0.001194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study, ten sites on the N terminus and different surface variable regions (VRs) of the bovine parvovirus (BPV) VP2 capsid protein were selected according to an alignment of its sequence with that of the BPV-1 strain HADEN for insertion of the type O foot-and-mouth disease virus (FMDV) conserved neutralizing epitope 8E8. Ten epitope-chimeric BPV VP2 capsid proteins carrying the 8E8 epitope were expressed in Sf9 cells, and electron micrographs demonstrated that these fusion proteins self-assembled into virus-like particles (VLPs) with properties similar to those of natural BPV virions. Immunofluorescence assay (IFA) and Western blot analysis demonstrated that each of the ten epitope-chimeric VLPs reacted with both anti-BPV serum and anti-type O FMDV mAb 8E8. These results indicated that insertions of the 8E8 epitope at these sites on the BPV VP2 protein did not interfere with the immunoreactivity of VP2 or VLP formation, and that the exogenous epitope 8E8 was correctly expressed in BPV VLPs. In addition, anti-BPV IgG antibodies were induced in mice by intramuscular inoculation with each of the ten chimeric VLPs, indicating that the immunogenicity of the chimeric VLPs was not disrupted. Importantly, potent anti-FMDV viral neutralizing (VN) antibodies, which exhibited the highest titre of 1 : 176, were induced by two chimeric VLPs, rBPV-VLP-8E8(391) and rBPV-VLP-8E8(395), in which the 8E8 epitope was inserted into positions 391/392 and 395/396, respectively, in the VR VIII of BPV VP2. Our results demonstrated that the 391/392 and 395/396 positions in the VR VIII of the BPV VP2 protein can effectively display a foreign epitope, making this an attractive approach for the design of nanoparticle-vectored and epitope-based vaccines.
Collapse
Affiliation(s)
- Jitao Chang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Yue Zhang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Zhigang Jiang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Fang Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| |
Collapse
|
230
|
Shrestha A, Sadeyen JR, Iqbal M. Enhancing Protective Efficacy of Poultry Vaccines through Targeted Delivery of Antigens to Antigen-Presenting Cells. Vaccines (Basel) 2018; 6:E75. [PMID: 30445683 PMCID: PMC6313852 DOI: 10.3390/vaccines6040075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Avian viral diseases including avian influenza, Marek's disease and Newcastle disease are detrimental to economies around the world that depend on the poultry trade. A significant zoonotic threat is also posed by avian influenza viruses. Vaccination is an important and widely used method for controlling these poultry diseases. However, the current vaccines do not provide full protection or sterile immunity. Hence, there is a need to develop improved vaccines. The major aim of developing improved vaccines is to induce strong and specific humoral and cellular immunity in vaccinated animals. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to antigen-presenting cells (APCs) including dendritic cells, macrophages and B cells. APCs have a central role in the initiation and maintenance of immune responses through their ability to capture, process and present antigens to T and B cells. Vaccine technology that selectively targets APCs has been achieved by coupling antigens to monoclonal antibodies or ligands that are targeted by APCs. The aim of this review is to discuss existing strategies of selective delivery of antigens to APCs for effective vaccine development in poultry.
Collapse
Affiliation(s)
- Angita Shrestha
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
- Department of Zoology, University of Oxford, Oxford OX1 2JD, UK.
| | - Jean-Remy Sadeyen
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
| | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
| |
Collapse
|
231
|
He L, Kumar S, Allen JD, Huang D, Lin X, Mann CJ, Saye-Francisco KL, Copps J, Sarkar A, Blizard GS, Ozorowski G, Sok D, Crispin M, Ward AB, Nemazee D, Burton DR, Wilson IA, Zhu J. HIV-1 vaccine design through minimizing envelope metastability. SCIENCE ADVANCES 2018; 4:eaau6769. [PMID: 30474059 PMCID: PMC6248932 DOI: 10.1126/sciadv.aau6769] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/19/2018] [Indexed: 05/17/2023]
Abstract
Overcoming envelope metastability is crucial to trimer-based HIV-1 vaccine design. Here, we present a coherent vaccine strategy by minimizing metastability. For 10 strains across five clades, we demonstrate that the gp41 ectodomain (gp41ECTO) is the main source of envelope metastability by replacing wild-type gp41ECTO with BG505 gp41ECTO of the uncleaved prefusion-optimized (UFO) design. These gp41ECTO-swapped trimers can be produced in CHO cells with high yield and high purity. The crystal structure of a gp41ECTO-swapped trimer elucidates how a neutralization-resistant tier 3 virus evades antibody recognition of the V2 apex. UFO trimers of transmitted/founder viruses and UFO trimers containing a consensus-based ancestral gp41ECTO suggest an evolutionary root of metastability. The gp41ECTO-stabilized trimers can be readily displayed on 24- and 60-meric nanoparticles, with incorporation of additional T cell help illustrated for a hyperstable 60-mer, I3-01. In mice and rabbits, these gp140 nanoparticles induced tier 2 neutralizing antibody responses more effectively than soluble trimers.
Collapse
Affiliation(s)
- Linling He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D. Allen
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colin J. Mann
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen L. Saye-Francisco
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabrielle S. Blizard
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139-3583, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Corresponding author. (I.A.W.); (J.Z.)
| | - Jiang Zhu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Corresponding author. (I.A.W.); (J.Z.)
| |
Collapse
|
232
|
Boigard H, Cimica V, Galarza JM. Dengue-2 virus-like particle (VLP) based vaccine elicits the highest titers of neutralizing antibodies when produced at reduced temperature. Vaccine 2018; 36:7728-7736. [PMID: 30377067 DOI: 10.1016/j.vaccine.2018.10.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023]
Abstract
A dengue vaccine capable of rapidly eliciting a robust and balanced immunity against the four virus serotypes after only a few immunizations is greatly needed. We describe a new strategy to develop dengue vaccines based on the assembly of virus-like particles (VLPs) utilizing the structural proteins CprME together with a modified complex of the NS2B/NS3 protease, which enhances particle formation and yield. These VLPs are produced in mammalian cells and resemble native dengue virus as demonstrated by negative staining and immunogold labelling electron microscopy (EM). We found that VLPs produced at lower temperature (31 °C) were recognized by conformational monoclonal antibodies (MAbs) 4G2, 3H5 and C10 whereas VLPs produced at higher temperature (37 °C) were not recognized by these MAbs. To investigate the significance of these conformational discrepancies in vaccine performance, we tested the immunogenicity of VLP vaccines produced at 31 °C or 37 °C. Mice immunized with the VLP vaccine produced at 31 °C (VLP-31 °C) elicited the highest titer of neutralizing antibodies when compared to those elicited by equivalent doses of the vaccine produced at 37 °C (VLP-37 °C), inactivated dengue virus vaccine or to the titer of a human anti-dengue-2 convalescence serum reference. Our results demonstrate that the conformation of the E protein displayed on the VLP vaccine plays a critical role in the induction of highly neutralizing antibodies. These findings will guide development of a tetravalent vaccine capable of eliciting a robust and balanced neutralizing response against the four-dengue serotypes regardless of background immunity.
Collapse
Affiliation(s)
- Hélène Boigard
- TechnoVax, Inc., 6 Westchester Plaza, 6E, Elmsford, NY 10523, United States
| | - Velasco Cimica
- TechnoVax, Inc., 6 Westchester Plaza, 6E, Elmsford, NY 10523, United States
| | - Jose M Galarza
- TechnoVax, Inc., 6 Westchester Plaza, 6E, Elmsford, NY 10523, United States.
| |
Collapse
|
233
|
Generation of therapeutic antisera for emerging viral infections. NPJ Vaccines 2018; 3:42. [PMID: 30323953 PMCID: PMC6173733 DOI: 10.1038/s41541-018-0082-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/10/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
The recent Ebola virus outbreak has highlighted the therapeutic potential of antisera and renewed interest in this treatment approach. While human convalescent sera may not be readily available in the early stages of an outbreak, antisera of animal origin can be produced in a short time frame. Here, we compared adjuvanted virus-like particles (VLP) with recombinant modified vaccinia virus Ankara and vesicular stomatitis virus (VSV), both expressing the Ebola virus antigens. The neutralizing antibody titers of rabbits immunized with adjuvanted VLPs were similar to those immunized with the replication-competent VSV, indicating that presentation of the antigen in its native conformation rather than de novo antigen expression is essential for production of functional antibodies. This approach also yielded high-titer antisera against Nipah virus glycoproteins, illustrating that it is transferable to other virus families. Multiple-step immunoglobulin G purification using a two-step 20–40% ammonium sulfate precipitation followed by protein A affinity chromatography resulted in 90% recovery of functionality and sustained in vivo stability. Adjuvanted VLP-based immunization strategies are thus a promising approach for the rapid generation of therapeutic antisera against emerging infections. Passive immunity through the transfer of anti-serum represents the earliest clinical application of antibodies and is still widely used to this day in the form of anti-venoms. Veronika von Messling and colleagues at the Paul Ehrlich Institute investigate the potential of generating neutralizing anti-serum to the emerging viruses Ebola and Nipah. The authors compare different vaccination platforms in mice and rabbits and find that following multiple vaccine challenges, neutralizing antibody titers equivalent to that seen in convalescent patients could be obtained. Purification of the IgG fraction and processing into F(ab’)2 fragments has the potential to significantly reduce xeno-responses yet the authors find that neutralizing capacity is largely retained albeit at the cost of a shorter in vivo half-life. These findings offer the hope of rapidly generating large quantities of neutralizing anti-serum that could be used in a viral outbreak scenario.
Collapse
|
234
|
Ruiz V, Baztarrica J, Rybicki EP, Meyers AE, Wigdorovitz A. Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus-like particles are immunogenic in mice. ACTA ACUST UNITED AC 2018; 20:e00283. [PMID: 30319941 PMCID: PMC6180338 DOI: 10.1016/j.btre.2018.e00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/27/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Foot-and-mouth disease (FMD) remains one of the most feared viral diseases affecting cloven-hoofed animals, and results in severe economic losses. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of recombinant FMDV-like particles (VLPs) as subunit vaccines has gained importance because of their immunogenic properties and safety. We evaluated the production of FMD VLPs, via Agrobacterium-mediated transient expression, and the immunogenicity of these structures in mice. Leaves were infiltrated with pEAQ-HT and pRIC 3.0 vectors encoding the capsid precursor P1-2A and the protease 3C. The recombinant protein yield was 3-4 mg/kg of fresh leaf tissue. Both groups of mice immunized with purified VLPs and mice immunized with the crude leaf extract elicited a specific humoral response with similar antibody titers. Thus, minimally processed plant material containing transiently expressed FMD VLPs could be a scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Andrés Wigdorovitz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
235
|
Naskalska A, Dabrowska A, Nowak P, Szczepanski A, Jasik K, Milewska A, Ochman M, Zeglen S, Rajfur Z, Pyrc K. Novel coronavirus-like particles targeting cells lining the respiratory tract. PLoS One 2018; 13:e0203489. [PMID: 30183777 PMCID: PMC6124810 DOI: 10.1371/journal.pone.0203489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Virus like particles (VLPs) produced by the expression of viral structural proteins can serve as versatile nanovectors or potential vaccine candidates. In this study we describe for the first time the generation of HCoV-NL63 VLPs using baculovirus system. Major structural proteins of HCoV-NL63 have been expressed in tagged or native form, and their assembly to form VLPs was evaluated. Additionally, a novel procedure for chromatography purification of HCoV-NL63 VLPs was developed. Interestingly, we show that these nanoparticles may deliver cargo and selectively transduce cells expressing the ACE2 protein such as ciliated cells of the respiratory tract. Production of a specific delivery vector is a major challenge for research concerning targeting molecules. The obtained results show that HCoV-NL63 VLPs may be efficiently produced, purified, modified and serve as a delivery platform. This study constitutes an important basis for further development of a promising viral vector displaying narrow tissue tropism.
Collapse
Affiliation(s)
- Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AN); (KP)
| | - Agnieszka Dabrowska
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paulina Nowak
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Jasik
- Department of Skin Structural Studies, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine, Sosnowiec, Poland
| | - Aleksandra Milewska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marek Ochman
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Slawomir Zeglen
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Krzysztof Pyrc
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AN); (KP)
| |
Collapse
|
236
|
Wei Y, Kumar P, Wahome N, Mantis NJ, Middaugh CR. Biomedical Applications of Lumazine Synthase. J Pharm Sci 2018; 107:2283-2296. [DOI: 10.1016/j.xphs.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
|
237
|
Production of Ebola virus-like particles in Drosophila melanogaster Schneider 2 cells. J Virol Methods 2018; 261:156-159. [PMID: 30145180 PMCID: PMC7113664 DOI: 10.1016/j.jviromet.2018.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
In this study, we generated recombinant virus-like particles (VLPs) against family Filoviridae, genus Ebolavirus, species Zaire ebolavirus, strain Makona (EBOV) in Drosophila melanogaster Schneider 2 (S2) cells using the EBOV Makona. S2 cells were cotransfected with four viral plasmids encoding EBOV Makona proteins and protein expression was analyzed by immunoblotting. We confirmed that EBOV Makona proteins were successfully expressed in S2 cells. Additionally, we further examined the formation of intracellular and extracellular VLPs by electron microscopy. eVLPs were produced by sucrose gradient ultracentrifugation of S2 cells transfected with EBOV Makona genes, and production of VLPs was confirmed by immunoblot analysis. Collectively, our findings showed that the S2 cell system could be a promising tool for efficient production of eVLPs.
Collapse
|
238
|
Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry: The Current and Emerging Perspectives. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7278459. [PMID: 30175140 PMCID: PMC6098882 DOI: 10.1155/2018/7278459] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
Collapse
|
239
|
Liu J, Ren Z, Wang H, Zhao Y, Wilker PR, Yu Z, Sun W, Wang T, Feng N, Li Y, Wang H, Ji X, Li N, Yang S, He H, Qin C, Gao Y, Xia X. Influenza virus-like particles composed of conserved influenza proteins and GPI-anchored CCL28/GM-CSF fusion proteins enhance protective immunity against homologous and heterologous viruses. Int Immunopharmacol 2018; 63:119-128. [PMID: 30081250 DOI: 10.1016/j.intimp.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/01/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Influenza viruses cause significant morbidity and mortality and pose a substantial threat to public health. Vaccination represents the principle means of preventing influenza virus infection. Current vaccine approaches are hindered by the need to routinely reformulate vaccine compositions in an effort to account for the progressive antigenic changes that occur as influenza viruses circulate in the human population. In this study, we evaluated chimeric virus-like particle (cVLP) vaccines containing conserved elements of influenza proteins (HL5M2e (HA stem gene with 5M2e gene inserted) and NP), with or without glycosylphosphatidylinositol-anchored CCL28 (GPI-CCL28) and/or GM-CSF (GPI-GM-CSF) fusion proteins as molecular adjuvants. cVLPs elicited strong humoral and cellular immune responses against homologous and heterologous viruses, and improved survival following lethal challenge with both homologous and heterologous viruses. Inclusion of GPI-anchored adjuvants in cVLP vaccines augmented the generation of influenza-specific humoral and cellular immune responses in mice in comparison to the non-adjuvanted cVLP vaccines. VLPs containing GPI-anchored adjuvants reduced morbidity and improved survival to lethal challenge with homologous and heterologous influenza viruses. This work suggests that VLP vaccines incorporating conserved influenza virus proteins and GPI-anchored molecular adjuvants may serve as a platform for a broadly protective "universal" influenza vaccine.
Collapse
Affiliation(s)
- Jing Liu
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medicine, Kaifeng 475004, China; Henan University, Kaifeng, Hennan Province, China
| | - Hongmei Wang
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province 250014, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Peter R Wilker
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Zhijun Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Xianliang Ji
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province 250014, China
| | - Chuan Qin
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Xianzhu Xia
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
240
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
241
|
Zaveckas M, Goda K, Ziogiene D, Gedvilaite A. Purification of recombinant trichodysplasia spinulosa–associated polyomavirus VP1-derived virus-like particles using chromatographic techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1090:7-13. [DOI: 10.1016/j.jchromb.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
|
242
|
Abstract
Plants and their rich variety of natural compounds are used to maintain and to improve health since the earliest stages of civilization. Despite great advances in synthetic organic chemistry, one fourth of present-day drugs have still a botanical origin, and we are currently living a revival of interest in new pharmaceuticals from plant sources. Modern biotechnology has defined the potential of plants to be systems able to manufacture not only molecules naturally occurring in plants but also newly engineered compounds, from small to complex protein molecules, which may originate even from non-plant sources. Among these compounds, pharmaceuticals such as vaccines, antibodies and other therapeutic or prophylactic entities can be listed. For this technology, the term plant molecular farming has been coined with reference to agricultural applications due to the use of crops as biofactories for the production of high-added value molecules. In this perspective, edible plants have also been thought as a tool to deliver by the oral route recombinant compounds of medical significance for new therapeutic strategies. Despite many hurdles in establishing regulatory paths for this “novel” biotechnology, plants as bioreactors deserve more attention when considering their intrinsic advantages, such as the quality and safety of the recombinant molecules that can be produced and their potential for large-scale and low-cost production, despite worrying issues (e.g. amplification and diffusion of transgenes) that are mainly addressed by regulations, if not already tackled by the plant-made products already commercialized. The huge benefits generated by these valuable products, synthesized through one of the safest, cheapest and most efficient method, speak for themselves. Milestone for plant-based recombinant protein production for human health use was the approval in 2012 by the US Food and Drug Administration of plant-made taliglucerase alfa, a therapeutic enzyme for the treatment of Gaucher’s disease, synthesized in carrot suspension cultures by Protalix BioTherapeutics. In this review, we will go through the various approaches and results for plant-based production of proteins and recent progress in the development of plant-made pharmaceuticals (PMPs) for the prevention and treatment of human diseases. An analysis on acceptance of these products by public opinion is also tempted.
Collapse
|
243
|
Toprani VM, Cheng Y, Wahome N, Khasa H, Kueltzo LA, Schwartz RM, Middaugh CR, Joshi SB, Volkin DB. Structural Characterization and Formulation Development of a Trivalent Equine Encephalitis Virus-Like Particle Vaccine Candidate. J Pharm Sci 2018; 107:2544-2558. [PMID: 29883665 DOI: 10.1016/j.xphs.2018.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
The zoonotic equine encephalitis viruses (EEVs) can cause debilitating and life-threatening disease, leading to ongoing vaccine development efforts for an effective virus-like particle (VLP) vaccine based on 3 strains of EEV (Eastern, Western, and Venezuelan or EEE, WEE and VEE VLPs, respectively). In this work, transmission electron microscopy and light scattering studies showed enveloped, spherical, and ∼70 nm sized VLPs. Biophysical studies demonstrated optimal VLP physical stability in the pH range of 7.5-8.5 and at temperatures below ∼50°C. Interestingly, the individual stability profiles differed notably between the 3 VLPs. Numerous pharmaceutical excipients were screened for their VLP stabilizing effects against thermal stress. Sucrose, sorbitol, sodium chloride, and pluronic F-68 were identified as promising stabilizers and the concentrations and combinations of these additives were optimized. Candidate monovalent VLP bulk formulations were incubated at temperatures ranging from -80°C to 40°C to establish freeze-thaw, long-term (2°C-8°C) and accelerated stability trends. Good VLP stability profiles were observed at each storage temperature, except for a distinct instability observed at -20°C. The interaction of monovalent and trivalent VLP formulations with aluminum adjuvants was examined, both in terms of antigen adsorption and desorption over time. The implications of these findings on future vaccine formulation development of EEV VLPs are discussed.
Collapse
Affiliation(s)
- Vishal M Toprani
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Yuan Cheng
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Newton Wahome
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Harshit Khasa
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Lisa A Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Schwartz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - C Russell Middaugh
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|
244
|
Gonzalez-Castro R, Acero Galindo G, García Salcedo Y, Uribe Campero L, Vazquez Perez V, Carrillo-Tripp M, Gevorkian G, Gomez Lim MA. Plant-based chimeric HPV-virus-like particles bearing amyloid-β epitopes elicit antibodies able to recognize amyloid plaques in APP-tg mouse and Alzheimer's disease brains. Inflammopharmacology 2018; 26:817-827. [PMID: 29094307 DOI: 10.1007/s10787-017-0408-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
The main amyloid-beta (Aβ) variants detected in the human brain are full-length Aβ1-40 and Aβ1-42 peptides; however, a significant proportion of AD brain Aβ consists also of N-terminal truncated/modified species. The majority of the previous immunotherapeutic strategies targeted the N-terminal immunodominant epitope of the full-length Aβ; however, most of the pathological N-truncated forms of Aβ lack this critical B cell epitope. Recently, virus-like particles (VLPs), self-assembled structures with highly ordered repetitive patterns on their surface and capable of inducing robust immune responses, were applied as a promising platform for various antigen expressions. In this study, we expressed in plants two chimeric HPV16 L1 capsid proteins obtained by introduction of the β-amyloid 11-28 epitope (Aβ 11-28) into the h4 helix or into the coil regions of the L1 protein. The Aβ 11-28 epitope was chosen because it is present in the full-length Aβ 1-42 as well as in the truncated/modified amyloid peptide species. After expression, we assembled the chimerical L1/Aβ 11-28 into a VLP in which the Aβ 11-28 epitope is exposed at very high density (360 times) on the surface of the VLP. The chimeric VLPs elicited in mice Aβ-specific antibodies binding to β-amyloid plaques in APP-tg mouse and AD brains. Our study is the first to demonstrate a successful production in plants and immunogenic properties in mice of chimeric HPV16 L1 VLPs bearing Aβ epitope that may be of potential relevance for the development of multivalent vaccines for a multifactorial disease such as AD.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Amino Acid Sequence
- Amyloid beta-Peptides/genetics
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Antibodies, Viral/genetics
- Antibodies, Viral/metabolism
- Brain/drug effects
- Brain/metabolism
- Chimera/genetics
- Chimera/metabolism
- Epitopes/genetics
- Epitopes/metabolism
- Human papillomavirus 16/genetics
- Human papillomavirus 16/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Plant Viruses/genetics
- Plant Viruses/metabolism
- Plaque, Amyloid/drug therapy
- Plaque, Amyloid/genetics
- Plaque, Amyloid/metabolism
- Vaccines, Virus-Like Particle/metabolism
- Vaccines, Virus-Like Particle/pharmacology
- Vaccines, Virus-Like Particle/therapeutic use
Collapse
Affiliation(s)
- R Gonzalez-Castro
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36500, Irapuato, Guanajuato, Mexico
| | - G Acero Galindo
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, CP 04510, Mexico, DF, Mexico
| | - Y García Salcedo
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36500, Irapuato, Guanajuato, Mexico
| | - L Uribe Campero
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36500, Irapuato, Guanajuato, Mexico
| | - V Vazquez Perez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36500, Irapuato, Guanajuato, Mexico
| | - M Carrillo-Tripp
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36500, Irapuato, Guanajuato, Mexico
| | - G Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, CP 04510, Mexico, DF, Mexico
| | - M A Gomez Lim
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36500, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
245
|
A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity. Emerg Microbes Infect 2018; 7:94. [PMID: 29777102 PMCID: PMC5959873 DOI: 10.1038/s41426-018-0094-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 11/09/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is an infectious disease that mainly affects infants and children, causing considerable morbidity and mortality worldwide. HFMD is commonly caused by enterovirus 71 (EV71) and coxsackieviruses A16 (CVA16), A6 (CVA6), and A10 (CVA10). Formalin-inactivated EV71 vaccines are currently available in China; however, these vaccines fail to confer cross-protection against infections by other HFMD-causing enteroviruses, highlighting the necessity of developing a multivalent HFMD vaccine. Our previous studies demonstrated that recombinant virus-like particles (VLP) of EV71, CVA16, and CVA6 are capable of inducing protective immunity against homologous virus challenges in mice. In this study, we generated CVA10-VLP using a baculovirus-insect cell expression system and then combined CVA10-VLP with EV71-VLP, CVA16-VLP, and CVA6-VLP to formulate a tetravalent VLP vaccine. Immunogenicity and protective efficacy of tetravalent VLP vaccine was compared with that of monovalent VLP vaccines. Mouse immunization studies revealed that the tetravalent vaccine elicited antigen-specific and long-lasting serum antibody responses comparable to those elicited by its corresponding monovalent vaccines. Moreover, tetravalent vaccine immune sera strongly neutralized EV71, CVA16, CVA10, and CVA6 strains with neutralization titers similar to those of their monovalent counterparts, indicating a good compatibility among the four antigens in the combination vaccine. Importantly, passively transferred tetravalent vaccine-immunized sera conferred efficient protection against single or mixed infections with EV71, CVA16, CVA10, and CVA6 viruses in mice, whereas the monovalent vaccines could only protect mice against homotypic virus infections but not heterotypic challenges. These results demonstrate that the tetravalent VLP vaccine represents a promising broad-spectrum HFMD vaccine candidate.
Collapse
|
246
|
Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, Kim J, Byun YH, Sung J, Lee J, Yu JE, Park C, Kim YS, Cho NH, Chang J, Seong BL. Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles. Front Immunol 2018; 9:1093. [PMID: 29868035 PMCID: PMC5966535 DOI: 10.3389/fimmu.2018.01093] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
The folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in in silico design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages. Capitalizing on a novel function of RNA as a molecular chaperone (chaperna: chaperone + RNA), we provide a robust protein-folding vehicle that may be implemented to NP assembly in bacterial hosts. The receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) was fused with the RNA-interaction domain (RID) and bacterioferritin, and expressed in Escherichia coli in a soluble form. Site-specific proteolytic removal of the RID prompted the assemblage of monomers into NPs, which was confirmed by electron microscopy and dynamic light scattering. The mutations that affected the RNA binding to RBD significantly increased the soluble aggregation into amorphous structures, reducing the overall yield of NPs of a defined size. This underscored the RNA-antigen interactions during NP assembly. The sera after mouse immunization effectively interfered with the binding of MERS-CoV RBD to the cellular receptor hDPP4. The results suggest that RNA-binding controls the overall kinetic network of the antigen folding pathway in favor of enhanced assemblage of NPs into highly regular and immunologically relevant conformations. The concentration of the ion Fe2+, salt, and fusion linker also contributed to the assembly in vitro, and the stability of the NPs. The kinetic "pace-keeping" role of chaperna in the super molecular assembly of antigen monomers holds promise for the development and delivery of NPs and virus-like particles as recombinant vaccines and for serological detection of viral infections.
Collapse
Affiliation(s)
- Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jihoon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Myung Hee Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jieun Kim
- Life Science and Biotechnology, Underwood International College, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jemin Sung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
247
|
Sulczewski FB, Liszbinski RB, Romão PRT, Rodrigues Junior LC. Nanoparticle vaccines against viral infections. Arch Virol 2018; 163:2313-2325. [PMID: 29728911 DOI: 10.1007/s00705-018-3856-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Despite numerous efforts, we still do not have prophylactic vaccines for many clinically relevant viruses, such as HIV, hepatitis C virus, Zika virus, and respiratory syncytial virus. Several factors have contributed to the current lack of effective vaccines, including the high rate of viral mutation, low immunogenicity of recombinant viral antigens, instability of viral antigenic proteins administered in vivo, sophisticated mechanisms of viral immune evasion, and inefficient induction of mucosal immunity by vaccine models studied to date. Some of these obstacles could be partially overcome by the use of vaccine adjuvants. Nanoparticles have been intensively investigated as vaccine adjuvants because they possess chemical and structural properties that improve immunogenicity. The use of nanotechnology in the construction of immunization systems has developed into the field of viral nanovaccinology. The purpose of this paper is to review and correlate recent discoveries concerning nanoparticles and specific properties that contribute to the immunogenicity of viral nanoparticle vaccines, bio-nano interaction, design of nanoparticle vaccines for clinically relevant viruses, and future prospects for viral nanoparticle vaccination.
Collapse
Affiliation(s)
- Fernando B Sulczewski
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Av. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Raquel B Liszbinski
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Av. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Av. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Luiz Carlos Rodrigues Junior
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Av. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
248
|
Khong H, Volmari A, Sharma M, Dai Z, Imo CS, Hailemichael Y, Singh M, Moore DT, Xiao Z, Huang XF, Horvath TD, Hawke DH, Overwijk WW. Peptide Vaccine Formulation Controls the Duration of Antigen Presentation and Magnitude of Tumor-Specific CD8 + T Cell Response. THE JOURNAL OF IMMUNOLOGY 2018; 200:3464-3474. [PMID: 29643190 DOI: 10.4049/jimmunol.1700467] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
Abstract
Despite remarkable progresses in vaccinology, therapeutic cancer vaccines have not achieved their full potential. We previously showed that an excessively long duration of Ag presentation critically reduced the quantity and quality of vaccination-induced T cell responses and subsequent antitumor efficacy. In this study, using a murine model and tumor cell lines, we studied l-tyrosine amino acid-based microparticles as a peptide vaccine adjuvant with a short-term Ag depot function for the induction of tumor-specific T cells. l-Tyrosine microparticles did not induce dendritic cell maturation, and their adjuvant activity was not mediated by inflammasome activation. Instead, prolonged Ag presentation in vivo translated into increased numbers and antitumor activity of vaccination-induced CD8+ T cells. Indeed, prolonging Ag presentation by repeated injection of peptide in saline resulted in an increase in T cell numbers similar to that observed after vaccination with peptide/l-tyrosine microparticles. Our results show that the duration of Ag presentation is critical for optimal induction of antitumor T cells, and can be manipulated through vaccine formulation.
Collapse
Affiliation(s)
- Hiep Khong
- Immunology Program, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030.,Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Annika Volmari
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Meenu Sharma
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Zhimin Dai
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Chinonye S Imo
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Yared Hailemichael
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Manisha Singh
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Derek T Moore
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Zhilan Xiao
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Xue-Fei Huang
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Thomas D Horvath
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - David H Hawke
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Willem W Overwijk
- Immunology Program, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030; .,Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| |
Collapse
|
249
|
Zhou Y, Zhang C, Liu Q, Gong S, Geng L, Huang Z. A virus-like particle vaccine protects mice against coxsackievirus A10 lethal infection. Antiviral Res 2018; 152:124-130. [DOI: 10.1016/j.antiviral.2018.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/03/2018] [Accepted: 02/17/2018] [Indexed: 12/23/2022]
|
250
|
Barasa AK, Ye P, Phelps M, Arivudainambi GT, Tison T, Ogembo JG. BALB/c mice immunized with a combination of virus-like particles incorporating Kaposi sarcoma-associated herpesvirus (KSHV) envelope glycoproteins gpK8.1, gB, and gH/gL induced comparable serum neutralizing antibody activity to UV-inactivated KSHV. Oncotarget 2018; 8:34481-34497. [PMID: 28404899 PMCID: PMC5470984 DOI: 10.18632/oncotarget.15605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022] Open
Abstract
Infection with Kaposi sarcoma-associated herpesvirus (KSHV) is estimated to account for over 44,000 new cases of Kaposi sarcoma annually, with 84% occurring in Africa, where the virus is endemic. To date, there is no prophylactic vaccine against KSHV. KSHV gpK8.1, gB, and gH/gL glycoproteins, implicated in the virus entry into host cells, are attractive vaccine targets for eliciting potent neutralizing antibodies (nAbs) against virus infection. We incorporated gpK8.1, gB, or gH/gL on the surface of virus-like particles (VLPs) and characterized these VLPs for their composition, size, and functionality. To determine which viral glycoprotein(s) elicit the most effective serum-nAbs, we immunized BALB/c mice with gpK8.1, gB, or gH/gL VLPs individually or in combination. Neutralizing antibody assay revealed that sera from mice immunized with the VLPs inhibited KSHV infection of HEK-293 cells in a dose-dependent manner. As a single immunogen, gpK8.1 VLPs stimulated comparable nAb activity to that of UV-inactivated KSHV (UV-KSHV). In contrast, UV-KSHV stimulated higher titers of nAb compared to gB (p = 0.0316) or gH/gL (p = 0.0486). Mice immunized with the combination of gB and gH/gL VLPs had a better nAb response than those immunized with either gB (p = 0.0268), or gH/gL (p = 0.0397) as single VLP immunogens. Immunization with any VLP combination stimulated comparable nAb activity to UV-KSHV serum. Our data provide the first evidence that KSHV gpK8.1, gB, and gH/gL glycoproteins can be incorporated onto the surface of VLPs and used as prophylactic vaccine candidates, with potential to prevent KSHV infection.
Collapse
Affiliation(s)
- Anne K Barasa
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | - Peng Ye
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Meredith Phelps
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Timelia Tison
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Javier Gordon Ogembo
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|