201
|
Grover HM, Smith PM, Ferguson AV. Phoenixin influences the excitability of nucleus of the solitary tract neurones, effects which are modified by environmental and glucocorticoid stress. J Neuroendocrinol 2020; 32:e12855. [PMID: 32436241 DOI: 10.1111/jne.12855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Phoenixin (PNX) is a neuropeptide shown to play roles in the control of reproduction. The nucleus of the solitary tract (NTS), a critical autonomic integrating centre in the hindbrain, is one of many areas with dense expression of PNX. Using coronal NTS slices obtained from male Sprague-Dawley rats, the present study characterised the effects of PNX on both spike frequency and membrane potential of NTS neurones. Extracellular recordings demonstrated that bath-applied 10 nmol L-1 PNX increased the firing frequency in 32% of NTS neurones, effects which were confirmed with patch-clamp recordings showing that 50% of NTS neurones tested depolarised in response to application of the peptide. Surprisingly, the responsiveness to PNX in NTS neurones then declined suddenly to 9% (P < 0.001). This effect was subsequently attributed to stress associated with construction in our animal care facility because PNX responsiveness was again observed in slices from rats delivered and maintained in a construction-free facility. We then examined whether this loss of PNX responsiveness could be replicated in rats placed on a chronic stress regimen involving ongoing corticosterone (CORT) treatment in the construction-free facility. Slices from animals treated in this way showed a similar lack of neuronal responsiveness to PNX (9.1 ± 3.9%) within 2 weeks of CORT treatment. These effects were specific to PNX responsiveness because CORT treatment had no effect on the responsiveness of NTS neurones to angiotensin II. These results are the first to implicate PNX with respect to directly controlling the excitability of NTS neurones and also provide intriguing data showing the plasticity of these effects associated with environmental and glucocorticoid stress levels of the animal.
Collapse
Affiliation(s)
- Hanna M Grover
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Pauline M Smith
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
202
|
Lu J, Li Q, Xu D, Liao Y, Wang H. Programming of a developmental imbalance in hypothalamic glutamatergic/GABAergic afferents mediates low basal activity of the hypothalamic-pituitary-adrenal axis induced by prenatal dexamethasone exposure in male offspring rats. Toxicol Lett 2020; 331:33-41. [PMID: 32445661 DOI: 10.1016/j.toxlet.2020.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/26/2023]
Abstract
This study was intended to demonstrate that prenatal dexamethasone exposure (PDE) can induce low basal activity of the hypothalamic-pituitary-adrenal axis (HPAA) in male offspring rats and explore the underlying mechanism. Pregnant rats were subcutaneously administered 0.2 mg/kg/d dexamethasone from gestational day (GD) 9 to GD20. Male GD20 fetuses and postnatal day 85 adult male offspring rats were sacrificed under anesthesia. Hypothalamic cells were from GD20∼postnatal day (PD) 7 fetal male rats, treated with different concentrations of dexamethasone and the glucocorticoid receptor (GR) antagonist mifepristone for 5 days. The results suggested that dexamethasone enhanced the expression of hypothalamic L-glutamic acid decarboxylase (GAD) 67 by activating GR, further stimulating the conversion of glutamate to gamma-aminobutyric acid (GABA) and inducing an imbalance in glutamatergic/GABAergic afferents in the hypothalamic paraventricular nucleus (PVN). This imbalance change was maintained postnatally, leading to the inhibition of parvocellular neurons, and mediating the low basal activity of the HPAA in PDE offspring rats, which was manifested by decreased levels of blood adrenocorticotropic hormone and corticosterone as well as reduced expression levels of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) in the hypothalamus. Programming of a developmental imbalance in glutamatergic/GABAergic afferents in the PVN is a potential mechanism responsible for low basal activity of the HPAA in male PDE rats.
Collapse
Affiliation(s)
- Juan Lu
- Jiangmen Central Hospital Affiliated Jiangmen Hospital of Sun YAT-SEN University, Jiangmen, 529000, China; Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Gansu provincial hospital of TCM Affiliated to Gansu University of Chinese Medicine, Gansu, 730050, China
| | - Qiang Li
- Gansu provincial hospital of TCM Affiliated to Gansu University of Chinese Medicine, Gansu, 730050, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yongbin Liao
- Jiangmen Central Hospital Affiliated Jiangmen Hospital of Sun YAT-SEN University, Jiangmen, 529000, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
203
|
Olescowicz G, Sampaio TB, de Paula Nascimento-Castro C, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Protective Effects of Agmatine Against Corticosterone-Induced Impairment on Hippocampal mTOR Signaling and Cell Death. Neurotox Res 2020; 38:319-329. [DOI: 10.1007/s12640-020-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
|
204
|
Lu J, Li Q, Ma G, Hong C, Zhang W, Wang Y, Wang H. Prenatal ethanol exposure-induced hypothalamic an imbalance of glutamatergic/GABAergic projections and low functional expression in male offspring rats. Food Chem Toxicol 2020; 141:111419. [PMID: 32437893 DOI: 10.1016/j.fct.2020.111419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
This study was designed to demonstrate that prenatal ethanol exposure (PEE) can induce low functional expression of the hypothalamus in male offspring rats and explore the underlying mechanism. Pregnant rats were administered 4 g/kg ethanol or normal saline by oral gavage each day from gestational day (GD) 9 to GD20. Male GD20 foetuses and postnatal day 120 adult offspring rats were sacrificed under anaesthesia. Hypothalamic cells from male GD20~postnatal day (PD) 7 rats were treated with different doses of corticosterone and the glucocorticoid receptor (GR) antagonist mifepristone for 5 days. In this study, we found that PEE-induced overexposure of maternal glucocorticoids enhanced the expression of L-glutamic acid decarboxylase (GAD) 67 in the hypothalamic paraventricular nucleus (PVN) by activating the glucocorticoid metabolic activation system, further inducing the conversion of glutamate to L-gamma-aminobutyric acid (GABA) and developmental imbalance of glutamatergic/GABAergic projections to the PVN. The imbalance change was maintained until after birth, resulting in the inhibition of parvocellular neurons and low functional expression of the hypothalamus in PEE offspring rats. Our study indicated that low functional expression of the hypothalamus in male PEE offspring rats was associated with developmental programming of an imbalance of glutamatergic/GABAergic projections to the PVN.
Collapse
Affiliation(s)
- Juan Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Department of Orthopedics, Gansu Provincial Hospital of TCM Affiliated to Gansu University of Chinese Medicine, Gansu, 730050, China
| | - Qiang Li
- Department of Orthopedics, Gansu Provincial Hospital of TCM Affiliated to Gansu University of Chinese Medicine, Gansu, 730050, China
| | - Guoqin Ma
- Department of Orthopedics, Gansu Provincial Hospital of TCM Affiliated to Gansu University of Chinese Medicine, Gansu, 730050, China
| | - Chenghao Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Wenqian Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuxia Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
205
|
Saman Y, Arshad Q, Dutia M, Rea P. Stress and the vestibular system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 152:221-236. [PMID: 32450997 DOI: 10.1016/bs.irn.2020.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we review the existing literature regarding the interactions between stress and the mechanisms that maintain balance. Evidence suggests that the interplay between neuro-endocrine and psychological factors may have a significant role in balance function. For example, in healthy individuals vestibular stimulation has been shown to trigger the stress response as indicated by increased blood cortisol levels, whereas in patients with vestibular pathology factors such as resilience and anxiety may be the key focus of interactions with stress. Critically, factors such as anxiety are known to influence clinical outcomes, despite our mechanistic understanding of these processes remaining in their infancy.
Collapse
Affiliation(s)
- Yougan Saman
- ENT Department, Leicester Royal Infirmary, Leicester, United Kingdom; inAmind Laboratory, Department of Psychology, Neuroscience and Behaviour, University of Leicester, Leicester, United Kingdom.
| | - Qadeer Arshad
- ENT Department, Leicester Royal Infirmary, Leicester, United Kingdom; inAmind Laboratory, Department of Psychology, Neuroscience and Behaviour, University of Leicester, Leicester, United Kingdom; Academic Department of Neuro-otology, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom
| | - Mayank Dutia
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Rea
- ENT Department, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
206
|
Lee JK, Park JK, Kim H, Kang JY, Park JY, Do SH, Ahn RS. Association of the HPA axis response to upcoming competition and shooting outcomes in elite junior shooting players. Stress 2020; 23:153-161. [PMID: 31469025 DOI: 10.1080/10253890.2019.1660871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Successful shooting performance in competition is reliant on several factors such as shooting techniques and competition-associated psychological stresses. This study examined the hypothalamus-pituitary-adrenal (HPA) axis response to upcoming competition and its association with shooting outcomes in elite junior shooting players. The cortisol awakening response (CAR) and dehydroepiandrosterone (DHEA) secretion after awakening were measured for two consecutive days (the day before and on the day of competition for the selection of national shooting team members) in 19 junior men and 21 junior women players, and the shooting scores of the individual players were obtained. The total cortisol secretion during the CAR period (CARauc) increased, but total DHEA secretion during the post-awakening period (Daucawk) decreased on the day of competition, compared with one day before competition. The CARauc was higher in women than in men players, whereas Daucawk was higher in men than in women players across the two consecutive days. Cortisol and DHEA levels were comparable between low-scored (below the mean scores for air pistol or air rifle players) and high-scored players one day before competition. However, the CARauc on the day of competition was higher and the variations in the CARauc and molar CARauc/Daucawk ratios across the two consecutive days were greater in low-scored than in high-scored men and women players. These results indicated that upcoming competition involves alterations of the CAR and DHEA secretion after the awakening period, and greater HPA response to the upcoming competition was adversely associated with shooting scores in junior shooting athletes.Lay summaryAn important upcoming competition was perceived as a strong stressor on awakening that induced alteration in CAR and DHEA secretion after the awakening period in elite shooting players. This study observed that, irrespective of their age and period of shooting practice, the HPA axis function on the day of competition was associated with shooting outcomes in elite shooting players.
Collapse
Affiliation(s)
- Jae-Koo Lee
- Department of Leisure and Sports Studies, Sahmyook University, Seoul, Republic of Korea
| | - Jae-Koo Park
- Competition Improvement Committee in Korea Shooting Federation, Seoul, Republic of Korea
| | - Hoon Kim
- College of Humanities and Liberal Art, Daegu Univesity, Gyeongsan, Republic of Korea
| | - Jung-Yim Kang
- Graduated school of Integrative Medicine, CHA University, Pocheon, Republic of Korea
| | - Jai-Young Park
- Center for Clinical Medical Research, The Armed Forces Capital Hospital, Sungnam, Republic of Korea
| | - Sang-Hwan Do
- Seoul National University Bundang Hospital, School of Medicine, Seoul National University, Sungnam, Republic of Korea
| | - Ryun-Sup Ahn
- Seoul National University Bundang Hospital, School of Medicine, Seoul National University, Sungnam, Republic of Korea
| |
Collapse
|
207
|
Spexin as an anxiety regulator in mouse hippocampus: Mechanisms for transcriptional regulation of spexin gene expression by corticotropin releasing factor. Biochem Biophys Res Commun 2020; 525:326-333. [PMID: 32093887 DOI: 10.1016/j.bbrc.2020.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 11/23/2022]
Abstract
Spexin (SPX) acts as a neuropeptide with pleiotropic functions that can participate in anxiety regulation. Corticotropin releasing factor (CRF) is widely expressed in brain tissues and associated with depression and anxiety and addiction. With the anxious mice under chronic unpredictable stress, we found SPX mRNA expression level in the hippocampus of the brain was significantly reduced, while local CRF mRNA expression level was increased. Furthermore, CRF injection in the hippocampus could also decrease SPX mRNA expression levels in hippocampus and other brain tissues, including pituitary and hypothalamus. With the primary mouse hippocampal cell model, CRF treatment could decrease SPX mRNA expression at hippocampal cell level and this inhibitory effect was mediated only by corticotropin releasing factor receptor 2 (CRFR2) but not corticotropin releasing factor receptor 1 (CRFR1). In HEK293 cells with CRFR2 over-expression, CRF could also inhibit SPX promoter activity coupling with AC/cAMP/PKA and MEK1/2/Erk1/2 cascades. In addition, Epac was also involved with the CRF-repressed SPX promoter activity and cross-talked with MEK1/2/Erk1/2 pathway. CRF could inhibit SPX gene expression in mouse hippocampus via transcriptional activation at the promoter level with coupling of AC/cAMP and MEK1/2/Erk1/2 signaling, which will be relevant to the anxiety response mediated by SPX in central nervous system.
Collapse
|
208
|
van Wamelen DJ, Wan YM, Ray Chaudhuri K, Jenner P. Stress and cortisol in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 152:131-156. [PMID: 32450994 DOI: 10.1016/bs.irn.2020.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress is ubiquitous with many factors contributing to its effects, including psychological responses and associated biological factors, including cortisol related physiological responses, and inflammation. Also in Parkinson's disease there is growing evidence for the role of stress in some key symptoms, even stretching to the prodromal stage. Here we discuss the possible contributions of the range and nature of stress in PD and we aim to summarize the current knowledge about the role of stress-related responses on motor and non-motor symptoms, the underlying pathophysiology, and the potential implications for treatment.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- King's College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom; Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Yi-Min Wan
- King's College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom; Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom; Department of Psychiatry, Ng Teng Fong General Hospital, Singapore, Singapore
| | - K Ray Chaudhuri
- King's College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom; Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Peter Jenner
- King's College London, Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Sciences, Faculty of Health Sciences and Medicine, London, United Kingdom
| |
Collapse
|
209
|
Aklan I, Sayar Atasoy N, Yavuz Y, Ates T, Coban I, Koksalar F, Filiz G, Topcu IC, Oncul M, Dilsiz P, Cebecioglu U, Alp MI, Yilmaz B, Davis DR, Hajdukiewicz K, Saito K, Konopka W, Cui H, Atasoy D. NTS Catecholamine Neurons Mediate Hypoglycemic Hunger via Medial Hypothalamic Feeding Pathways. Cell Metab 2020; 31:313-326.e5. [PMID: 31839488 PMCID: PMC9017597 DOI: 10.1016/j.cmet.2019.11.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/22/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Glucose is the essential energy source for the brain, whose deficit, triggered by energy deprivation or therapeutic agents, can be fatal. Increased appetite is the key behavioral defense against hypoglycemia; however, the central pathways involved are not well understood. Here, we describe a glucoprivic feeding pathway by tyrosine hydroxylase (TH)-expressing neurons from nucleus of solitary tract (NTS), which project densely to the hypothalamus and elicit feeding through bidirectional adrenergic modulation of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons. Acute chemogenetic inhibition of arcuate nucleus (ARC)-projecting NTSTH neurons or their target, AgRP neurons, impaired glucoprivic feeding induced by 2-Deoxy-D-glucose (2DG) injection. Neuroanatomical tracing results suggested that ARC-projecting orexigenic NTSTH neurons are largely distinct from neighboring catecholamine neurons projecting to parabrachial nucleus (PBN) that promotes satiety. Collectively, we describe a circuit organization in which an ascending pathway from brainstem stimulates appetite through key hunger neurons in the hypothalamus in response to hypoglycemia.
Collapse
Affiliation(s)
- Iltan Aklan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Nilufer Sayar Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA; Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Tayfun Ates
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Ilknur Coban
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Fulya Koksalar
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Gizem Filiz
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Iskalen Cansu Topcu
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Merve Oncul
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Pelin Dilsiz
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Utku Cebecioglu
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Muhammed Ikbal Alp
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Deborah R Davis
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Karolina Hajdukiewicz
- Laboratory of Animal Models, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Witold Konopka
- Laboratory of Animal Models, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
210
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
211
|
Faria MP, Laverde CF, Nunes-de-Souza RL. Anxiogenesis induced by social defeat in male mice: Role of nitric oxide, NMDA, and CRF 1 receptors in the medial prefrontal cortex and BNST. Neuropharmacology 2020; 166:107973. [PMID: 32006904 DOI: 10.1016/j.neuropharm.2020.107973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/14/2019] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) release in the right medial prefrontal cortex (RmPFC) produces anxiogenesis. In the bed nucleus of the stria terminalis (BNST), a region that receives neuronal projections from the mPFC, NO provokes anxiety, an effect that is blocked by local injections of corticotrophin-releasing factor type 1 receptor (CRF1) or n-methyl-d-aspartate receptor (NMDAr) antagonist. Anxiety is also enhanced by social defeat stress, and chronic stress impairs and facilitates, respectively, PFC and BNST roles in modulating behavioral responses to aversive situations. This study investigated whether the (i) chronic social defeat stress (CSDS) increases NO signaling in the mPFC; and/or (ii) anxiogenic effects provoked by the intra-RmPFC injection of NOC-9 (an NO donor) or by CSDS are prevented by intra-BNST injections of AP-7 (0.05 nmol) or CP 376395 (3.0 nmol), respectively, NMDAr and CRF1 antagonists, in male Swiss-Webster mice exposed to the elevated plus-maze (EPM). Results showed that (a) CSDS increased anxiety (i.e., reduced open-arm exploration) and repeatedly activated nNOS-containing neurons, as measured by ΔFosB (a stable nonspecific marker of neural activity) + nNOS double-labeling, in the right (but not left) mPFC, (b) NOC-9 in the RmPFC also increased anxiety, and (c) both CSDS and NOC-9 effects were reversed by injections of AP-7 or CP 376395 into the BNST. These results suggest that NMDA and CRF1 receptors located in BNST play an important role in the modulation of anxiety provoked by NO in the RmPFC, as well as by chronic social defeat in mice.
Collapse
Affiliation(s)
- M P Faria
- Joint Graduate Program of Physiological Sciences (PIPGCF) UFSCar-UNESP, 14800-903, Araraquara, SP, Brazil; São Paulo State University (Unesp), School of Pharmaceutical Sciences, Lab. Pharmacology, Araraquara, SP, Brazil
| | - C F Laverde
- Joint Graduate Program of Physiological Sciences (PIPGCF) UFSCar-UNESP, 14800-903, Araraquara, SP, Brazil; São Paulo State University (Unesp), School of Pharmaceutical Sciences, Lab. Pharmacology, Araraquara, SP, Brazil
| | - R L Nunes-de-Souza
- Joint Graduate Program of Physiological Sciences (PIPGCF) UFSCar-UNESP, 14800-903, Araraquara, SP, Brazil; São Paulo State University (Unesp), School of Pharmaceutical Sciences, Lab. Pharmacology, Araraquara, SP, Brazil.
| |
Collapse
|
212
|
Agrawal L, Korkutata M, Vimal SK, Yadav MK, Bhattacharyya S, Shiga T. Therapeutic potential of serotonin 4 receptor for chronic depression and its associated comorbidity in the gut. Neuropharmacology 2020; 166:107969. [PMID: 31982703 DOI: 10.1016/j.neuropharm.2020.107969] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
The latest estimates from world health organization suggest that more than 450 million people are suffering from depression and other psychiatric conditions. Of these, 50-60% have been reported to have progression of gut diseases. In the last two decades, researchers introduced incipient physiological roles for serotonin (5-HT) receptors (5-HTRs), suggesting their importance as a potential pharmacological target in various psychiatric and gut diseases. A growing body of evidence suggests that 5-HT systems affect the brain-gut axis in depressive patients, which leads to gut comorbidity. Recently, preclinical trials of 5-HT4R agonists and antagonists were promising as antipsychotic and prokinetic agents. In the current review, we address the possible pharmacological role and contribution of 5-HT4R in the pathophysiology of chronic depression and associated gut abnormalities. Physiologically, during depression episodes, centers of the sympathetic and parasympathetic nervous system couple together with neuroendocrine systems to alter the function of hypothalamic-pituitary-adrenal (HPA) axis and enteric nervous system (ENS), which in turn leads to onset of gastrointestinal tract (GIT) disorders. Consecutively, the ENS governs a broad spectrum of physiological activities of gut, such as visceral pain and motility. During the stages of emotional stress, hyperactivity of the HPA axis alters the ENS response to physiological and noxious stimuli. Consecutively, stress-induced flare, swelling, hyperalgesia and altered reflexes in gut eventually lead to GIT disorders. In summary, the current review provides prospective information about the role and mechanism of 5-HT4R-based therapeutics for the treatment of depressive disorder and possible consequences for the gut via brain-gut axis interactions. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan.
| | - Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Manoj Kumar Yadav
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba,1-1-1, Tennodai, Tsukuba, 305-8577, Ibaraki, Japan.
| |
Collapse
|
213
|
The blockade of corticotropin-releasing factor 1 receptor attenuates anxiety-related symptoms and hypothalamus-pituitary-adrenal axis reactivity in mice with mild traumatic brain injury. Behav Pharmacol 2020; 30:220-228. [PMID: 30883392 DOI: 10.1097/fbp.0000000000000450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies have shown that mild traumatic brain injury (mTBI) is associated with higher risk for anxiety-related disorders. Dysregulation in the hypothalamus-pituitary-adrenal (HPA) axis following mTBI has been proposed to be involved in the development of neurobehavioral abnormalities; however, the underlying mechanisms are largely unknown. The aim of this study was to determine whether the corticotropin-releasing-factor-1 (CRF-1) receptor is involved in the regulation of anxiety-related symptoms in a mouse model of mTBI. Animals with or without mTBI received intracerebroventricular injections of a CRF-1 receptor agonist (CRF; 0.01 nmol/mouse) or antagonist (antalarmin; 1 µg/mouse) for 5 days, and then the animals were subjected to anxiety tests (light-dark box and zero maze). The levels of adrenocorticotropic hormone and corticosterone, the most important markers of HPA axis, were also measured after behavioral tests. Our results indicated that mTBI-induced anxiety-related symptoms in mice through increased levels of adrenocorticotropic hormone and corticosterone, showing HPA axis hyperactivity. Interestingly, activation of CRF receptor by a subthreshold dose of CRF resulted in significant increases in anxiety-like behaviors and HPA axis response to stress, whereas blockade of CRF receptors by a subthreshold dose of antalarmin decreased anxiety-related symptoms and HPA axis response to stress in mTBI-induced mice. Collectively, these findings suggest that the CRF-1 receptor plays an important role in the regulation of anxiety-related behaviors following mTBI induction in mice and support the hypothesis that blockade of the CRF-1 receptor may be a promising therapeutic target for anxiety-related disorders in patients with TBI.
Collapse
|
214
|
Stress reactivity after traumatic brain injury: implications for comorbid post-traumatic stress disorder. Behav Pharmacol 2020; 30:115-121. [PMID: 30640181 DOI: 10.1097/fbp.0000000000000461] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most people have or will experience traumatic stress at some time over the lifespan, but only a subset of traumatized individuals develop post-traumatic stress disorder (PTSD). Clinical research supports high rates of traumatic brain injury (TBI)-PTSD comorbidity and demonstrates TBI as a significant predictor of the development of PTSD. Biological factors impacted following brain injury that may contribute to increased PTSD risk are unknown. Heightened stress reactivity and dysregulated hypothalamic-pituitary-adrenal (HPA) axis function are common to both TBI and PTSD, and affect amygdalar structure and function, which is implicated in PTSD. In this review, we summarize a growing body of literature that shows HPA axis dysregulation, as well as enhanced fear and amygdalar function after TBI. We present the hypothesis that altered stress reactivity as a result of brain injury impacts the amygdala and defense systems to be vulnerable to increased fear and PTSD development from traumatic stress. Identifying biological mechanisms that underlie this vulnerability, such as dysregulated HPA axis function, may lead to better targeted treatments and preventive measures to support psychological health after TBI.
Collapse
|
215
|
Kinlein SA, Karatsoreos IN. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front Neuroendocrinol 2020; 56:100819. [PMID: 31863788 PMCID: PMC7643247 DOI: 10.1016/j.yfrne.2019.100819] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Stress, primarily processed via the hypothalamic-pituitary-adrenal (HPA) axis, engages biological pathways throughout the brain and body which promote adaptation and survival to changing environmental demands. Adaptation to environmental challenges is compromised when these pathways are no longer functioning optimally. The physiological and behavioral mechanisms through which HPA axis function influences stress adaptation and resilience are not fully elucidated. Our understanding of stress biology and disease must take into account the complex interactions between the endocrine system, neural circuits, and behavioral coping strategies. In addition, further consideration must be taken concerning influences of other aspects of physiology, including the circadian clock which is critical for regulation of daily changes in HPA activity. While adding a layer of complexity, it also offers targets for intervention. Understanding the role of HPA function in mediating these diverse biological responses will lead to important insights about how to bolster successful stress adaptation and promote stress resilience.
Collapse
Affiliation(s)
- Scott A Kinlein
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
216
|
Lovelock DF, Deak T. Acute stress imposed during adolescence has minimal effects on hypothalamic-pituitary-adrenal (HPA) axis sensitivity in adulthood in female Sprague Dawley rats. Physiol Behav 2020; 213:112707. [PMID: 31634523 PMCID: PMC6885129 DOI: 10.1016/j.physbeh.2019.112707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
Adolescence is a developmental epoch marked by maturation of stress-responsive systems including the Hypothalamic-Pituitary-Adrenal (HPA) axis. Emerging evidence has found sex-specificity in the long term behavioral and neural effects of stressors experienced during this sensitive period, though most studies have utilized chronic stress exposures that span much of the adolescent period. Using Sprague-Dawley rats, we examined how a single exposure to inescapable footshock (80 shocks, 5 s, 1.0 mA, 90 s variable ITI) applied during early adolescence (PND 29-31) affected the corticosterone (CORT) response to a later restraint stress challenge in adulthood. We found that females, but not males, displayed a marginally enhanced CORT response when challenged with restraint in adulthood. To further probe intrinsic sensitivity of the HPA axis in adolescent stressed females, subsequent studies utilized exogenous CRH and ACTH challenges to probe sensitivity of the pituitary and adrenal glands respectively, demonstrating that neither gland appears to be sensitized to hormone challenge as a result of adolescent stress history in females. A final experiment examined negative feedback regulation of the HPA axis through systemic administration of dexamethasone, showing that corticosteroid receptor-mediated negative feedback mechanisms were also intact in females with a history of adolescent stress. Together, these findings report that intrinsic regulatory elements of the HPA axis are fully intact in females exposed to footshock in adolescence, and that adolescent exposure to footshock had appreciably modest long-lasting effects on HPA axis sensitivity. These findings are discussed within the general context of stress resilience and vulnerability.
Collapse
Affiliation(s)
- Dennis F Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
217
|
Xin Z, Gu S, Yi L, Li H, Wang F. Acute Exposure to the Cold Pressor Stress Impairs Working Memory Functions: An Electrophysiological Study. Front Psychiatry 2020; 11:544540. [PMID: 33329085 PMCID: PMC7719763 DOI: 10.3389/fpsyt.2020.544540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
The results of previous literature focusing on the effects of acute stress on human working memory (WM) are equivocal. The present study explored the effects of acute stress on human WM processing using event-related potential (ERP) techniques. Twenty-four healthy participants were submitted to stressful treatments and control treatment at different times. Cold pressor stress (CPS) was used as stressful treatment, while warm water was used as the control treatment before the WM task. Exposure to CPS was associated with a significant increase in blood pressure and salivary cortisol. After the 3-min resting period, systolic blood pressure (SBP) and diastolic blood pressure (DBP) for the CPS session significantly increased relative to the control treatment session (all p ≤ 0.01), and data also showed a significant increase of 20-min post-treatment cortisol concentration (p < 0.001) for CPS. Data from the CPS session showed significantly longer reaction times, lower accuracy, and WM capacity scores than that of the control treatment session. Interestingly, a difference between the two sessions was also found in N2pc and the late contralateral delay activity (late CDA) components. Specifically, although non-significant main effects of treatment were found for N2pc amplitudes, there was a significant interaction between treatments and stimuli conditions (processing load) [F (2,46) = 3.872, p = 0.028, η2 p = 0.14], which showed a pronounced trend toward equalization of N2pc amplitude across stimuli conditions during the CPS session clearly different from that of control treatment. As for amplitudes for late CDA, a nearly significant main effect of Treatment was found (p = 0.069). That is, the mean amplitude of the late CDA (-2.56 ± 0.27) for CPS treatment was slightly larger than that (-2.27 ± 0.22) for warm water treatment. To summarize, this study not only reported performance impairments in the WM task during CPS trials but also provided high temporal resolution evidence for the detrimental effects of acute stress on processes of information encoding and maintenance.
Collapse
Affiliation(s)
- Zengyou Xin
- Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian, China.,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,School of Education Science, Minnan Normal University, Zhangzhou, China
| | - Simeng Gu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Department Medical Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Lei Yi
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China
| | - Hong Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,College of Psychology and Sociology, Shenzhen University, Shenzhen, China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
218
|
Heck AL, Thompson MK, Uht RM, Handa RJ. Sex-Dependent Mechanisms of Glucocorticoid Regulation of the Mouse Hypothalamic Corticotropin-Releasing Hormone Gene. Endocrinology 2020; 161:bqz012. [PMID: 31754709 PMCID: PMC7188085 DOI: 10.1210/endocr/bqz012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
To limit excessive glucocorticoid secretion following hypothalamic-pituitary-adrenal (HPA) axis stimulation, circulating glucocorticoids inhibit corticotropin-releasing hormone (CRH) expression in paraventricular nucleus (PVN) neurons. As HPA function differs between sexes and depends on circulating estradiol (E2) levels in females, we investigated sex/estrous stage-dependent glucocorticoid regulation of PVN Crh. Using NanoString nCounter technology, we first demonstrated that adrenalectomized (ADX'd) diestrous female (low E2), but not male or proestrous female (high E2), mice exhibited a robust decrease in PVN CRH mRNA following 2-day treatment with the glucocorticoid receptor (GR) agonist RU28362. Immunohistochemical analysis of PVN CRH neurons in Crh-IRES-Cre;Ai14 mice, where TdTomato fluorescence permanently tags CRH-expressing neurons, showed similarly abundant co-expression of GR-immunoreactivity in males, diestrous females, and proestrous females. However, we identified sex/estrous stage-related glucocorticoid regulation or expression of GR transcriptional coregulators. Out of 17 coregulator genes examined using nCounter multiplex analysis, mRNAs that were decreased by RU28362 in ADX'd mice in a sex/estrous stage-dependent fashion included: GR (males = diestrous females > proestrous females), signal transducer and activator of transcription 3 (STAT3) (males < diestrous = proestrous), and HDAC1 (males < diestrous > proestrous). Steroid receptor coactivator 3 (SRC-3), nuclear corepressor 1 (NCoR1), heterogeneous nuclear ribonucleoprotein U (hnrnpu), CREB binding protein (CBP) and CREB-regulated transcription coactivator 2 (CRTC2) mRNAs were lower in ADX'd diestrous and proestrous females versus males. Additionally, most PVN CRH neurons co-expressed methylated CpG binding protein 2 (MeCP2)-immunoreactivity in diestrous female and male Crh-IRES-Cre;Ai14 mice. Our findings collectively suggest that GR's sex-dependent regulation of PVN Crh may depend upon differences in the GR transcriptional machinery and an underlying influence of E2 levels in females.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Maranda K Thompson
- Department of Basic Medical Sciences, University of Arizona, Phoenix, Arizona
| | - Rosalie M Uht
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
219
|
Abstract
Suicidal behaviors have been associated with both heritable genetic variables and environmental risk factors. Epigenetic processes, such as DNA methylation, have important roles in mediating the effects of the environment on behavior. Dysregulation of these processes has been observed in many psychiatric disorders, and evidence suggests that they may also be involved in suicidal behaviors. Herein, we have summarized candidate gene and epigenome-wide studies which have investigated DNA methylation in relation to suicidal behaviors, as well as discussed some of the limitations of the field to date.
Collapse
Affiliation(s)
- Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada.
| |
Collapse
|
220
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
221
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
222
|
Carnevali L, Pattini E, Sgoifo A, Ottaviani C. Effects of prefrontal transcranial direct current stimulation on autonomic and neuroendocrine responses to psychosocial stress in healthy humans. Stress 2020; 23:26-36. [PMID: 31177885 DOI: 10.1080/10253890.2019.1625884] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prolonged or repeated activation of the stress response can have negative psychological and physical consequences. The prefrontal cortex (PFC) is thought to exert an inhibitory influence on the activity of autonomic and neuroendocrine stress response systems. In this study, we further investigated this hypothesis by increasing PFC excitability using transcranial direct current stimulation (tDCS). Healthy male participants were randomized to receive either anodal (excitatory) tDCS (n = 15) or sham stimulation (n = 15) over the left dorsolateral prefrontal cortex (DLPFC) immediately before and during the exposure to a psychosocial stress test. Autonomic (heart rate (HR) and its variability) and neuroendocrine (salivary cortisol) parameters were assessed. One single session of excitatory tDCS over the left DLPFC (i) reduced HR and favored a larger vagal prevalence prior to stress exposure, (ii) moderated stress-induced HR acceleration and sympathetic activation/vagal withdrawal, but (iii) had no effect on stress-induced cortisol release. However, anodal tDCS over the left DLPFC prevented stress-induced changes in the cortisol awakening response. Finally, participants receiving excitatory tDCS reported a reduction in their levels of state anxiety upon completion of the psychosocial stress test. In conclusion, this study provides first insights into the efficacy of one single session of excitatory tDCS over the left DLPFC in attenuating autonomic and neuroendocrine effects of psychosocial stress exposure. These findings might be indicative of the important role of the left DLPFC, which is a cortical target for noninvasive brain stimulation treatment of depression, for successful coping with stressful stimuli.
Collapse
Affiliation(s)
- Luca Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Elena Pattini
- Centro per la Cura, la Diagnosi e lo Studio dei Disturbi della Comunicazione e della Socializzazione, Ausl Parma, Parma, Italy
| | - Andrea Sgoifo
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
223
|
Pedersen WS, Kral TRA, Rosenkranz MA, Mumford JA, Davidson RJ. Increased BNST reactivity to affective images is associated with greater α-amylase response to social stress. Soc Cogn Affect Neurosci 2019; 14:1263-1272. [PMID: 31993663 PMCID: PMC7137719 DOI: 10.1093/scan/nsaa010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/18/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
While rodent research suggests that the bed nucleus of the stria terminalis (BNST) and centromedial amygdala (CM) coordinate the hormonal stress response, little is known about the BNST’s role in the human stress response. The human BNST responds to negatively valenced stimuli, which likely subserves its role in responding to threat. Thus, variation in BNST reactivity to negatively valenced stimuli may relate to differences in the stress response. We measured participants’ blood oxygenated level-dependent response to affective images and salivary cortisol and α-amylase (AA) levels in response to a subsequent Trier social stress test (TSST). Greater BNST activation to emotionally evocative images was associated with a larger TSST-evoked AA, but not cortisol response. This association remained after controlling for CM activation, which was not related to the cortisol or AA response. These results suggest that the BNST response to negatively valenced images subserves its role in coordinating the stress response, a BNST role in the stress response independent from the CM, and highlight the need for investigation of the conditions under which BNST activation predicts the cortisol response. Our findings are critical for the future study of mood and anxiety disorders, as dysregulation of the stress system plays a key role in their pathogenesis.
Collapse
Affiliation(s)
- Walker S Pedersen
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53705-2280, USA
| | - Tammi R A Kral
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53705-2280, USA
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53705-2280, USA
| | - Jeanette A Mumford
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53705-2280, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53705-2280, USA
| |
Collapse
|
224
|
Neurochemical Characterization of Neurons Expressing Estrogen Receptor β in the Hypothalamic Nuclei of Rats Using in Situ Hybridization and Immunofluorescence. Int J Mol Sci 2019; 21:ijms21010115. [PMID: 31877966 PMCID: PMC6981915 DOI: 10.3390/ijms21010115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Estrogens play an essential role in multiple physiological functions in the brain, including reproductive neuroendocrine, learning and memory, and anxiety-related behaviors. To determine these estrogen functions, many studies have tried to characterize neurons expressing estrogen receptors known as ERα and ERβ. However, the characteristics of ERβ-expressing neurons in the rat brain still remain poorly understood compared to that of ERα-expressing neurons. The main aim of this study is to determine the neurochemical characteristics of ERβ-expressing neurons in the rat hypothalamus using RNAscope in situ hybridization (ISH) combined with immunofluorescence. Strong Esr2 signals were observed especially in the anteroventral periventricular nucleus (AVPV), bed nucleus of stria terminalis, hypothalamic paraventricular nucleus (PVN), supraoptic nucleus, and medial amygdala, as previously reported. RNAscope ISH with immunofluorescence revealed that more than half of kisspeptin neurons in female AVPV expressed Esr2, whereas few kisspeptin neurons were found to co-express Esr2 in the arcuate nucleus. In the PVN, we observed a high ratio of Esr2 co-expression in arginine-vasopressin neurons and a low ratio in oxytocin and corticotropin-releasing factor neurons. The detailed neurochemical characteristics of ERβ-expressing neurons identified in the current study can be very essential to understand the estrogen signaling via ERβ.
Collapse
|
225
|
Head GA, Jackson KL, Gueguen C. Potential Therapeutic Use of Neurosteroids for Hypertension. Front Physiol 2019; 10:1477. [PMID: 31920690 PMCID: PMC6920208 DOI: 10.3389/fphys.2019.01477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system (SNS) contribution to long-term setting of blood pressure (BP) and hence hypertension has been a continuing controversy over many decades. However, the contribution of increased sympathetic vasomotor tone to the heart, kidney, and blood vessels has been suggested as a major influence on the development of high BP which affects 30-40% of the population. This is relevant to hypertension associated with chronic stress, being overweight or obese as well to chronic kidney disease. Treatments that have attempted to block the peripheral aspects of the SNS contribution have included surgery to cut the sympathetic nerves as well as agents to block α- and β-adrenoceptors. Other treatments, such as centrally acting drugs like clonidine, rilmenidine, or moxonidine, activate receptors within the ventrolateral medulla to reduce the vasomotor tone overall but have side effects that limit their use. None of these treatments target the cause of the enhanced sympathetic tone. Recently we have identified an antihypertensive action of the neurosteroid allopregnanolone in a mouse model of neurogenic hypertension. Allopregnanolone is known to facilitate high-affinity extra-synaptic γ-aminobutyric acid A receptors (GABAAR) through allosteric modulation and transcriptional upregulation. The antihypertensive effect was specific for increased expression of δ subunits in the amygdala and hypothalamus. This focused review examines the possibility that neurosteroids may be a novel therapeutic approach to address the neurogenic contribution to hypertension. We discuss the causes and prevalence of neurogenic hypertension, current therapeutic approaches, and the applicability of using neurosteroids as antihypertensive therapy.
Collapse
Affiliation(s)
- Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
226
|
Constantinof A, Boureau L, Moisiadis VG, Kostaki A, Szyf M, Matthews SG. Prenatal Glucocorticoid Exposure Results in Changes in Gene Transcription and DNA Methylation in the Female Juvenile Guinea Pig Hippocampus Across Three Generations. Sci Rep 2019; 9:18211. [PMID: 31796763 PMCID: PMC6890750 DOI: 10.1038/s41598-019-54456-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Synthetic glucocorticoids (sGC) are administered to women at risk for pre-term delivery, to mature the fetal lung and decrease neonatal morbidity. sGC also profoundly affect the fetal brain. The hippocampus expresses high levels of glucocorticoid (GR) and mineralocorticoid receptor (MR), and its development is affected by elevated fetal glucocorticoid levels. Antenatal sGC results in neuroendocrine and behavioral changes that persist in three generations of female guinea pig offspring of the paternal lineage. We hypothesized that antenatal sGC results in transgenerational changes in gene expression that correlate with changes in DNA methylation. We used RNASeq and capture probe bisulfite sequencing to investigate the transcriptomic and epigenomic effects of antenatal sGC exposure in the hippocampus of three generations of juvenile female offspring from the paternal lineage. Antenatal sGC exposure (F0 pregnancy) resulted in generation-specific changes in hippocampal gene transcription and DNA methylation. Significant changes in individual CpG methylation occurred in RNApol II binding regions of small non-coding RNA (snRNA) genes, which implicates alternative splicing as a mechanism involved in transgenerational transmission of the effects of antenatal sGC. This study provides novel perspectives on the mechanisms involved in transgenerational transmission and highlights the importance of human studies to determine the longer-term effects of antenatal sGC on hippocampal-related function.
Collapse
Affiliation(s)
- Andrea Constantinof
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Lisa Boureau
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Vasilis G Moisiadis
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Department of Obstetrics and Gynecology, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G1X5, Canada.
| |
Collapse
|
227
|
Godar SC, Cadeddu R, Floris G, Mosher LJ, Mi Z, Jarmolowicz DP, Scheggi S, Walf AA, Koonce CJ, Frye CA, Muma NA, Bortolato M. The Steroidogenesis Inhibitor Finasteride Reduces the Response to Both Stressful and Rewarding Stimuli. Biomolecules 2019; 9:biom9110749. [PMID: 31752360 PMCID: PMC6920809 DOI: 10.3390/biom9110749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 01/15/2023] Open
Abstract
Finasteride (FIN) is the prototypical inhibitor of steroid 5α-reductase (5αR), the enzyme that catalyzes the rate-limiting step of the conversion of progesterone and testosterone into their main neuroactive metabolites. FIN is clinically approved for the treatment of benign prostatic hyperplasia and male baldness; while often well-tolerated, FIN has also been shown to cause or exacerbate psychological problems in vulnerable subjects. Evidence on the psychological effects of FIN, however, remains controversial, in view of inconsistent clinical reports. Here, we tested the effects of FIN in a battery of tests aimed at capturing complementary aspects of mood regulation and stress reactivity in rats. FIN reduced exploratory, incentive, prosocial, and risk-taking behavior; furthermore, it decreased stress coping, as revealed by increased immobility in the forced-swim test (FST). This last effect was also observed in female and orchiectomized male rats, suggesting that the mechanism of action of FIN does not primarily reflect changes in gonadal steroids. The effects of FIN on FST responses were associated with a dramatic decrease in corticotropin release hormone (CRH) mRNA and adrenocorticotropic hormone (ACTH) levels. These results suggest that FIN impairs stress reactivity and reduces behavioral activation and impulsive behavior by altering the function of the hypothalamus-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- Sean C. Godar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
| | - Laura J. Mosher
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
- Department of Pharmacology and Toxicology, School of Pharmacy; Lawrence, KS 66045, USA; (Z.M.); (N.A.M.)
| | - Zhen Mi
- Department of Pharmacology and Toxicology, School of Pharmacy; Lawrence, KS 66045, USA; (Z.M.); (N.A.M.)
| | - David P. Jarmolowicz
- Department of Applied Behavioral Science; University of Kansas, Lawrence, KS 66045, USA;
- Cofrin Logan Center for Addiction Research and Treatment; University of Kansas, Lawrence, KS 66045, USA
| | - Simona Scheggi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
| | - Alicia A. Walf
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Department of Psychology; The University at Albany-SUNY, Albany, NY 12222, USA; (C.J.K.); (C.A.F.)
| | - Carolyn J. Koonce
- Department of Psychology; The University at Albany-SUNY, Albany, NY 12222, USA; (C.J.K.); (C.A.F.)
| | - Cheryl A. Frye
- Department of Psychology; The University at Albany-SUNY, Albany, NY 12222, USA; (C.J.K.); (C.A.F.)
- Department of Biological Sciences; The University at Albany-SUNY, Albany, NY 12222, USA
- Center for Neuroscience, The University at Albany-SUNY, Albany, NY 12222, USA
- Comprehensive Neuropsychological Services, Albany, NY 12203, USA
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, School of Pharmacy; Lawrence, KS 66045, USA; (Z.M.); (N.A.M.)
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
- Correspondence:
| |
Collapse
|
228
|
Daviu N, Bruchas MR, Moghaddam B, Sandi C, Beyeler A. Neurobiological links between stress and anxiety. Neurobiol Stress 2019; 11:100191. [PMID: 31467945 PMCID: PMC6712367 DOI: 10.1016/j.ynstr.2019.100191] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
Stress and anxiety have intertwined behavioral and neural underpinnings. These commonalities are critical for understanding each state, as well as their mutual interactions. Grasping the mechanisms underlying this bidirectional relationship will have major clinical implications for managing a wide range of psychopathologies. After briefly defining key concepts for the study of stress and anxiety in pre-clinical models, we present circuit, as well as cellular and molecular mechanisms involved in either or both stress and anxiety. First, we review studies on divergent circuits of the basolateral amygdala (BLA) underlying emotional valence processing and anxiety-like behaviors, and how norepinephrine inputs from the locus coeruleus (LC) to the BLA are responsible for acute-stress induced anxiety. We then describe recent studies revealing a new role for mitochondrial function within the nucleus accumbens (NAc), defining individual trait anxiety in rodents, and participating in the link between stress and anxiety. Next, we report findings on the impact of anxiety on reward encoding through alteration of circuit dynamic synchronicity. Finally, we present work unravelling a new role for hypothalamic corticotropin-releasing hormone (CRH) neurons in controlling anxiety-like and stress-induce behaviors. Altogether, the research reviewed here reveals circuits sharing subcortical nodes and underlying the processing of both stress and anxiety. Understanding the neural overlap between these two psychobiological states, might provide alternative strategies to manage disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Nuria Daviu
- Hotchkiss Brain Institute. Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Michael R. Bruchas
- Department of Anesthesiology and Pain Medicine. Center for Neurobiology of Addiction, Pain, and Emotion. University of Washington. 1959 NE Pacific Street, J-wing Health Sciences. Seattle, WA 98195, USA
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH, 1015, Lausanne, Switzerland
| | - Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000 Bordeaux, France
| |
Collapse
|
229
|
Chang J, Yu R. Hippocampal connectivity in the aftermath of acute social stress. Neurobiol Stress 2019; 11:100195. [PMID: 31832509 PMCID: PMC6889252 DOI: 10.1016/j.ynstr.2019.100195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is a core brain region that responds to stress. Previous studies have found a dysconnectivity between hippocampus and other brain regions under acute and chronic stress. However, whether and how acute social stress influences the directed connectivity patterns from and to the hippocampus remains unclear. In this study, using a within-subject design and Granger causal analysis (GCA), we investigated the alterations of resting state effective connectivity from and to hippocampal subregions after an acute social stressor (the Trier Social Stress Test). Participants were engaged in stress and control conditions spaced approximately one month apart. Our findings showed that stress altered the information flows in the thalamus-hippocampus-insula/midbrain circuit. The changes in this circuit could also predict with high accuracy the stress and control conditions at the subject level. These hippocampus-related brain networks have been documented to be involved in emotional information processing and storage, as well as habitual responses. We speculate that alterations of the effective connectivity between these brain regions may be associated with the registering and encoding of threatening stimuli under stress. Our investigation of hippocampal functional connectivity at a subregional level may help elucidate the functional neurobiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Jingjing Chang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- Department of Psychology, National University of Singapore, Singapore
| |
Collapse
|
230
|
Berner LA, Brown TA, Lavender JM, Lopez E, Wierenga CE, Kaye WH. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Mol Cell Endocrinol 2019; 497:110320. [PMID: 30395874 PMCID: PMC6497565 DOI: 10.1016/j.mce.2018.10.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/14/2022]
Abstract
The pathophysiology of anorexia nervosa (AN) and bulimia nervosa (BN) are still poorly understood, but psychobiological models have proposed a key role for disturbances in the neuroendocrines that signal hunger and satiety and maintain energy homeostasis. Mounting evidence suggests that many neuroendocrines involved in the regulation of homeostasis and body weight also play integral roles in food reward valuation and learning via their interactions with the mesolimbic dopamine system. Neuroimaging data have associated altered brain reward responses in this system with the dietary restriction and binge eating and purging characteristic of AN and BN. Thus, neuroendocrine dysfunction may contribute to or perpetuate eating disorder symptoms via effects on reward circuitry. This narrative review focuses on reward-related neuroendocrines that are altered in eating disorder populations, including peptide YY, insulin, stress and gonadal hormones, and orexins. We provide an overview of the animal and human literature implicating these neuroendocrines in dopaminergic reward processes and discuss their potential relevance to eating disorder symptomatology and treatment.
Collapse
Affiliation(s)
- Laura A Berner
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States.
| | - Tiffany A Brown
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Jason M Lavender
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Emily Lopez
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Christina E Wierenga
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Walter H Kaye
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| |
Collapse
|
231
|
Dagnino-Subiabre A. Stress and Western diets increase vulnerability to neuropsychiatric disorders: A common mechanism. Nutr Neurosci 2019; 24:624-634. [PMID: 31524571 DOI: 10.1080/1028415x.2019.1661651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In modern lifestyle, stress and Western diets are two major environmental risk factors involved in the etiology of neuropsychiatric disorders. Lifelong interactions between stress, Western diets, and how they can affect brain physiology, remain unknown. A possible relation between dietary long chain polyunsaturated fatty acids (PUFA), endocannabinoids, and stress is proposed. This review suggests that both Western diets and negative stress or distress increase n-6/n-3 PUFA ratio in the phospholipids of the plasma membrane in neurons, allowing an over-activation of the endocannabinoid system in the limbic areas that control emotions. As a consequence, an excitatory/inhibitory imbalance is induced, which may affect the ability to synchronize brain areas involved in the control of stress responses. These alterations increase vulnerability to neuropsychiatric disorders. Accordingly, dietary intake of n-3 PUFA would counter the effects of stress on the brain of stressed subjects. In conclusion, this article proposes that PUFA, endocannabinoids, and stress form a unique system which is self-regulated in limbic areas which in turn controls the effects of stress on the brain throughout a lifetime.
Collapse
Affiliation(s)
- Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Center for Neurobiology and Integrative Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
232
|
do Nascimento EB, Dierschnabel AL, de Macêdo Medeiros A, Suchecki D, Silva RH, Ribeiro AM. Memory impairment induced by different types of prolonged stress is dependent on the phase of the estrous cycle in female rats. Horm Behav 2019; 115:104563. [PMID: 31377100 DOI: 10.1016/j.yhbeh.2019.104563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
A growing body of evidence demonstrates that estrogen and corticosterone (CORT) impact on cognition and emotion. On the one hand, ovarian hormones may have beneficial effects on several neurophysiological processes, including memory. On the other hand, chronic exposure to stressful conditions has negative effects on brain structures related to learning and memory. In the present study, we used the plus-maze discriminative avoidance task (PMDAT) to evaluate the influence of endogenous variations of sex hormones and exposure to different types of prolonged stressors on learning, memory, anxiety-like behavior and locomotion. Female Wistar rats were submitted to seven consecutive days of restraint stress (4 h/day), overcrowding (18 h/day) or social isolation (18 h/day) and tested in different phases of the estrous cycle. The main results showed that: (1) neither stress conditions nor estrous cycle modified PMDAT acquisition; (2) restraint stress and social isolation induced memory impairments; (3) this impairment was observed particularly in females in metestrus/diestrus; (4) stressed females in estrus displayed less risk assessment behavior, suggesting reduced anxiety-like behavior; (5) restraint stress and social isolation, but not overcrowding, elevated corticosterone levels. Taken together, our findings suggest that the phase of the estrous cycle is an important modulatory factor of the cognitive processing disrupted by stress in female rats. Negative effects were observed in metestrus/diestrus, indicating that the peak of sex hormones may protect females against stress-induced memory impairment.
Collapse
Affiliation(s)
- Ezequiel Batista do Nascimento
- Health Science Center, Universidade Federal do Sul da Bahia, Teixeira de Freitas, BA, Brazil; Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aline Lima Dierschnabel
- Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - André de Macêdo Medeiros
- Laboratory of Behavioral Neuroscience, Department of Pharmacology, Universidade Federal de São Paulo, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, SP, Brazil
| | - Regina Helena Silva
- Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
233
|
Egan AE, Seemiller LR, Packard AEB, Solomon MB, Ulrich-Lai YM. Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Horm Behav 2019; 115:104557. [PMID: 31310760 PMCID: PMC6765440 DOI: 10.1016/j.yhbeh.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
Abstract
Eating tasty foods dampens responses to stress - an idea reflected in the colloquial term 'comfort foods'. To study the neurobiological mechanisms by which palatable foods provide stress relief, we previously characterized a limited sucrose intake (LSI) paradigm in which male rats are given twice-daily access to 4 ml of 30% sucrose solution (vs. water as a control), and subsequently have reduced hypothalamic-pituitary-adrenocortical (HPA) axis responsivity and anxiety-related behaviors. Notably, women may be more prone to 'comfort feeding' than men, and this may vary across the menstrual cycle, suggesting the potential for important sex and estrous cycle differences. In support of this idea, LSI reduces HPA axis responses in female rats during the proestrus/estrus (P/E), as opposed to the diestrus 1/diestrus 2 (D1/D2) estrous cycle stage. However, the effect of LSI on anxiety-related behaviors in females remains unknown. Here we show that LSI reduced stress-related behaviors in female rats in the elevated plus-maze and restraint tests, but not in the open field test, though only during P/E. LSI also decreased the HPA axis stress response primarily during P/E, consistent with prior findings. Finally, cFos immunolabeling (a marker of neuronal activation) revealed that LSI increased post-restraint cFos in the central amygdala medial subdivision (CeM) and the bed nucleus of the stria terminalis posterior subnuclei (BSTp) exclusively during P/E. These results suggest that in female rats, palatable food reduces both behavioral and neuroendocrine stress responses in an estrous cycle-dependent manner, and the CeM and BSTp are implicated as potential mediators of these effects.
Collapse
Affiliation(s)
- Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Laurel R Seemiller
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| |
Collapse
|
234
|
Linz R, Puhlmann LMC, Apostolakou F, Mantzou E, Papassotiriou I, Chrousos GP, Engert V, Singer T. Acute psychosocial stress increases serum BDNF levels: an antagonistic relation to cortisol but no group differences after mental training. Neuropsychopharmacology 2019; 44:1797-1804. [PMID: 30991416 PMCID: PMC6785147 DOI: 10.1038/s41386-019-0391-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an essential facilitator of neuronal plasticity. By counteracting the adverse effects of excessive stress-induced glucocorticoid signaling, BDNF has been implicated as a resilience factor to psychopathology caused by chronic stress. Insights into the effects of acute stress on peripheral BDNF levels in humans are inconclusive. The short-term interplay between BDNF and cortisol in response to acute psychosocial stress remains unexplored. Furthermore, it is unknown whether mental training that is effective at reducing cortisol reactivity can also influence BDNF during acute stress. In the current study, we investigated serum BDNF levels during an acute psychosocial stress paradigm, the Trier Social Stress Test (TSST), in 301 healthy participants (178 women, mean age = 40.65) recruited as part of the ReSource Project, a large-scale mental training study consisting of three distinct 3-month training modules. Using a cross-sectional study design, we first examined the relationship between BDNF and salivary cortisol in a control group with no mental training. Subsequent analyses focused on differences in BDNF stress levels between control and mental training groups. We show that serum BDNF is indeed stress-sensitive, characterized by a significant post-stress increase and subsequent decline to recovery. While respective increases in BDNF and cortisol were not associated, we found two indications for an antagonistic relationship. Higher BDNF peaks after stress were associated with steeper cortisol recovery. On the other hand, the magnitude of the cortisol stress response was linked to steeper BDNF recovery after stress. BDNF levels were not modulated by any of the mental training modules. Providing novel evidence for the dynamics of BDNF and cortisol during acute stress, our findings may further inform research on the physiological mechanisms involved in stress chronification and the associated health risks.
Collapse
Affiliation(s)
- R Linz
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - L M C Puhlmann
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - F Apostolakou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - E Mantzou
- First Department of Pediatrics, School of Medicine, University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - I Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - G P Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - V Engert
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - T Singer
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| |
Collapse
|
235
|
Emmerson MG, Spencer KA, Brown GR. Social experience during adolescence in female rats increases 50 kHz ultrasonic vocalizations in adulthood, without affecting anxiety-like behavior. Dev Psychobiol 2019; 62:212-223. [PMID: 31429082 DOI: 10.1002/dev.21906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 01/28/2023]
Abstract
Adolescents are highly motivated to engage in social interactions, and researchers have hypothesized that positive social relationships during adolescence can have long term, beneficial effects on stress reactivity and mental well-being. Studies of laboratory rodents provide the opportunity to investigate the relationship between early social experiences and later behavioral and physiological responses to stressors. In this study, female Lister-hooded rats (N = 12 per group) were either (a) provided with short, daily encounters (10 min/day) with a novel partner during mid-adolescence (postnatal day 34-45; "social experience," SE, subjects) or (b) underwent the same protocol with a familiar cagemate during mid-adolescence ("control experience," CE, subjects), or (c) were left undisturbed in the home cage (non-handled "control," C, subjects). When tested in adulthood, the groups did not differ in behavioral responses to novel environments (elevated plus maze, open field, and light-dark box) or in behavioral and physiological (urinary corticosterone) responses to novel social partners. However, SE females emitted significantly more 50 kHz ultrasonic vocalizations than control subjects both before and after social separation from a familiar social partner, which is consistent with previous findings in male rats. Thus, enhanced adolescent social experience appears to have long-term effects on vocal communication and could potentially modulate adult social relationships.
Collapse
Affiliation(s)
| | - Karen A Spencer
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Gillian R Brown
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
236
|
Rogers-Carter MM, Christianson JP. An insular view of the social decision-making network. Neurosci Biobehav Rev 2019; 103:119-132. [PMID: 31194999 PMCID: PMC6699879 DOI: 10.1016/j.neubiorev.2019.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Social animals must detect, evaluate and respond to the emotional states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate social information with environmental and internal factors to select behavioral responses to others via a process call social decision-making. The Social Decision Making Network (SDMN) is a system of brain structures and neurochemicals that are conserved across species (mammals, reptiles, amphibians, birds) that are the proximal mediators of most social behaviors. However, how sensory information reaches the SDMN to shape behavioral responses during a social encounter is not well known. Here we review the empirical data that demonstrate the necessity of sensory systems in detecting social stimuli, as well as the anatomical connectivity of sensory systems with each node of the SDMN. We conclude that the insular cortex is positioned to link integrated social sensory cues to this network to produce flexible and appropriate behavioral responses to socioemotional cues.
Collapse
Affiliation(s)
- Morgan M Rogers-Carter
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - John P Christianson
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
237
|
Pandey GN, Rizavi HS, Bhaumik R, Ren X. Increased protein and mRNA expression of corticotropin-releasing factor (CRF), decreased CRF receptors and CRF binding protein in specific postmortem brain areas of teenage suicide subjects. Psychoneuroendocrinology 2019; 106:233-243. [PMID: 31005044 PMCID: PMC7061258 DOI: 10.1016/j.psyneuen.2019.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/07/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Overactivity of hypothalamic-pituitary-adrenal (HPA) axis function has been implicated in depression and suicidal behavior. This is based on the observation of an abnormal dexamethasone (DEX) and DEX-adrenocorticotropic hormone (ACTH) test in patients with depression and suicidal behavior. Recently, some studies have also found abnormalities of glucocorticoid receptors (GR), mineralocorticoid receptors (MR), corticotropin releasing factor (CRF), CRF receptors (CRF-R) and CRF binding protein (CRF-BP) in depressed and suicidal patients. Some investigators have also observed increased levels of CRF in the cerebrospinal fluid (CSF) and altered levels of MR, GR and CRF in the postmortem brain of depressed and suicidal subjects. We have earlier reported decreased protein and mRNA expression of GR and GILZ, a chaperone protein, in the postmortem brain of teenage suicide subjects. We have further studied CRF and its receptors in different areas of the postmortem brain of suicide subjects, i.e., the prefrontal cortex (PFC), hippocampus (HIPPO), subiculum and amygdala (AMY) from teenage suicide subjects. The CRF and its receptors were determined in the PFC (Brodmann area 9), HIPPO, subiculum and different amygdaloid nuclei from 24 normal control subjects and 24 teenage suicide subjects. Protein expression of CRF, its receptors and CRF-BP was determined by immunolabeling using the Western blot technique and mRNA expression was determined by real-time PCR (qPCR) technique. We found that the mRNA levels of CRF were significantly increased in the PFC, in the central amygdaloid nucleus (CeAMY) and in the subiculum. mRNA levels of CRF-R1 and CRF-BP were significantly decreased in the PFC. We did not find any changes in the HIPPO of any of the CRF components we studied. When we compared the protein expression of CRF components we found that CRF was significantly increased and CRF-R1, CRF-R2 and CRF-BP significantly decreased in the PFC. On the other hand, there were no changes in the protein expression of CRF components in the HIPPO. Our results in the postmortem brain suggest that, as found by clinical studies in the CSF, there are significant alterations of CRF and its receptors in the postmortem brain of teenage suicide subjects. These alterations of CRF and its components were region-specific, as changes were not generally observed in the HIPPO.
Collapse
Affiliation(s)
- Ghanshyam N. Pandey
- Corresponding Author: Ghanshyam N. Pandey, Ph.D., University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA, Phone (312) 413-4540, Fax: (312) 413-4547,
| | | | | | | |
Collapse
|
238
|
Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci 2019; 13:345. [PMID: 31417365 PMCID: PMC6682652 DOI: 10.3389/fncel.2019.00345] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
239
|
Wang D, Xu B, Wang J, Wang H, Guo J, Ji H, Li S, Wu R, Yang H, Lian S. Response of the maternal hypothalamus to cold stress during late pregnancy in rats. Brain Res 2019; 1722:146354. [PMID: 31356783 DOI: 10.1016/j.brainres.2019.146354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Maternal stress is a key risk factor in the development of offspring. We previously identified prenatal cold stress-induced anxiety-like behavior reduced in the offspring of rats along with negative feedback regulation from the maternal hippocampus on the hypothalamic-pituitary-adrenal (HPA) axis during prenatal cold stress. However, the precise function of the maternal hypothalamus response to cold stress during late pregnancy in rats has not yet been determined. Therefore, we examined proteins in the hypothalamus that respond to aldosterone, neurodevelopment, inflammation and apoptosis. Our results show that prenatal cold stress induced the expression of mineralocorticoid receptors (MR) and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), suggesting prenatal cold stress may promote the elevation of aldosterone levels in the hypothalamus. Remarkably, increased expression of brain derived neurotrophic factor (BDNF) helped to replenish intracellular peptidergic stores and ensure homeostatic balance during prenatal cold stress. Furthermore, prenatal cold stress reduced the expression of c-Fos via STAT3 and ERK1/2 pathways in the hypothalamus. Moreover, prenatal cold stress induced NF-κB phosphorylation at Ser536, then promoted the expression of inducible nitric oxide synthase (iNOS) and induced an apoptosis-related protein response. Together, this study confirms that changes in the maternal hypothalamus during cold stress in late pregnancy are directly reflective of the response of the HPA to cold stress and demonstrates how the hypothalamus coordinates cold stress. We suggest mechanisms which might explain how these states might be linked with an abnormal stress response.
Collapse
Affiliation(s)
- Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
240
|
Atrooz F, Liu H, Salim S. Stress, psychiatric disorders, molecular targets, and more. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:77-105. [PMID: 31601407 DOI: 10.1016/bs.pmbts.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mental health is central to normal health outcomes. A widely accepted theory is that chronic persistent stress during adulthood as well as during early life triggers onset of neuropsychiatric ailments. However, questions related to how that occurs, and why are some individuals resistant to stress while others are not, remain unanswered. An integrated, multisystemic stress response involving neuroinflammatory, neuroendocrine, epigenetic and metabolic cascades have been suggested to have causative links. Several theories have been proposed over the years to conceptualize this link including the cytokine hypothesis, the endocrine hypothesis, the oxidative stress hypothesis and the oxido-neuroinflammation hypothesis. The data discussed in this review describes potential biochemical basis of the link between stress, and stress-induced neuronal, behavioral and emotional deficits, providing insights into potentially novel drug targets.
Collapse
Affiliation(s)
- Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Hesong Liu
- Baylor College of Medicine, Houston, TX, United States
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.
| |
Collapse
|
241
|
Richter A, Krämer B, Diekhof EK, Gruber O. Resilience to adversity is associated with increased activity and connectivity in the VTA and hippocampus. Neuroimage Clin 2019; 23:101920. [PMID: 31491818 PMCID: PMC6617249 DOI: 10.1016/j.nicl.2019.101920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/30/2019] [Indexed: 11/18/2022]
Abstract
Accumulating evidence suggests altered function of the mesolimbic reward system resulting from exposure to early adversity. The present study investigated the combined long-term impact of adversity until young adulthood on neuronal reward processing and its interaction with individual resilience processes. In this functional magnetic resonance imaging study, 97 healthy young adults performed a reward-based decision-making task. Adversity as well as resilience were assessed retrospectively using the validated childhood trauma questionnaire, trauma history questionnaire and a resilience scale. Subjects with high adversity load showed reduced reward-related bottom-up activation in the ventral striatum (VS), ventral tegmental area (VTA) and hippocampus (HP) as compared to the low adversity group. However, high resilience traits in individuals with high adversity load were associated with an increased activation in the VTA and HP, indicating a possible resilience-related protective mechanism. Moreover, when comparing groups with high to low adversity, psychophysiological interaction analyses highlighted an increased negative functional coupling between VS and VTA as well as between VS and anteroventral prefrontal cortex (avPFC) during reward acceptance, and an impaired top-down control of the VS by the avPFC during reward rejection. In turn, combination of high adversity and high resilience traits was associated with an improved functional coupling between VTA, VS and HP. Thereby, the present findings identify neural mechanisms mediating interacting effects of adversity and resilience, which could be targeted by early intervention and prevention.
Collapse
Affiliation(s)
- Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany; Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany; Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany
| | - Esther K Diekhof
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany; Neuroendocrinology Unit, Institute of Zoology, Department of Biology, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany; Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany
| |
Collapse
|
242
|
Heck AL, Handa RJ. Androgens Drive Sex Biases in Hypothalamic Corticotropin-Releasing Hormone Gene Expression After Adrenalectomy of Mice. Endocrinology 2019; 160:1757-1770. [PMID: 31074799 PMCID: PMC6594463 DOI: 10.1210/en.2019-00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
Although prominent sex differences exist in the hypothalamic-pituitary-adrenal axis's response to stressors, few studies of its regulation in the hypothalamic paraventricular nucleus (PVN) have compared both male and female subjects. In this study, we sought to explore sex differences in the acute regulation of PVN neuropeptide expression following glucocorticoid (GC) removal and the underlying role of gonadal hormones. We first examined the effects of short-term adrenalectomy (ADX) on PVN Crh and arginine vasopressin (Avp) expression in mice using in situ hybridization. ADX increased PVN AVP mRNA levels in both sexes. In contrast, PVN CRH mRNA was increased by 2 days after ADX in males only. Both sexes showed increases in CRH mRNA after 4 days. To determine if gonadal hormones contributed to this sex bias, we examined adrenalectomized (ADX'd) and gonadectomized (GDX'd) mice with or without gonadal hormone replacement. Unlike the pattern in intact animals, 2 days following ADX/gonadectomy, CRH mRNA levels did not increase in either sex. When males were given DHT propionate, CRH mRNA levels increased in ADX'd/GDX'd males similar to those observed following ADX alone. To determine a potential mechanism, we examined the coexpression of androgen receptor (AR) immunoreactivity and CRH neurons. Abundant colocalization was found in the anteroventral bed nucleus of the stria terminalis but not the PVN. Thus, our findings reveal a sex difference in PVN Crh expression following the removal of GC-negative feedback that may depend on indirect AR actions in males.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Correspondence: Robert J. Handa, PhD, Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado 80523. E-mail:
| |
Collapse
|
243
|
Marín-Blasco I, Muñoz-Abellán C, Andero R, Nadal R, Armario A. Neuronal Activation After Prolonged Immobilization: Do the Same or Different Neurons Respond to a Novel Stressor? Cereb Cortex 2019; 28:1233-1244. [PMID: 28203747 DOI: 10.1093/cercor/bhx035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 12/24/2022] Open
Abstract
Despite extensive research on the impact of emotional stressors on brain function using immediate-early genes (e.g., c-fos), there are still important questions that remain unanswered such as the reason for the progressive decline of c-fos expression in response to prolonged stress and the neuronal populations activated by different stressors. This study tackles these 2 questions by evaluating c-fos expression in response to 2 different emotional stressors applied sequentially, and performing a fluorescent double labeling of c-Fos protein and c-fos mRNA on stress-related brain areas. Results were complemented with the assessment of the hypothalamic-pituitary-adrenal axis activation. We showed that the progressive decline of c-fos expression could be related to 2 differing mechanisms involving either transcriptional repression or changes in stimulatory inputs. Moreover, the neuronal populations that respond to the different stressors appear to be predominantly separated in high-level processing areas (e.g., medial prefrontal cortex). However, in low-hierarchy areas (e.g., paraventricular nucleus of the hypothalamus) neuronal populations appear to respond unspecifically. The data suggest that the distinct physiological and behavioral consequences of emotional stressors, and their implication in the development of psychopathologies, are likely to be closely associated with neuronal populations specifically activated by each stressor.
Collapse
Affiliation(s)
- Ignacio Marín-Blasco
- Institut de Neurociències, CIBERSAM and Red de Transtornos Adictivos (RTA), Unitat de Fisiologia Animal (Facultat de Biociéncies), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristina Muñoz-Abellán
- Institut de Neurociències, CIBERSAM and Red de Transtornos Adictivos (RTA), Unitat de Fisiologia Animal (Facultat de Biociéncies), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Raül Andero
- Institut de Neurociències, CIBERSAM and Red de Transtornos Adictivos (RTA), Unitat de Fisiologia Animal (Facultat de Biociéncies), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.,Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, CIBERSAM and Red de Transtornos Adictivos (RTA), Unitat de Fisiologia Animal (Facultat de Biociéncies), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, CIBERSAM and Red de Transtornos Adictivos (RTA), Unitat de Fisiologia Animal (Facultat de Biociéncies), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
244
|
Gądek-Michalska A, Tadeusz J, Bugajski A, Bugajski J. Chronic Isolation Stress Affects Subsequent Crowding Stress-Induced Brain Nitric Oxide Synthase (NOS) Isoforms and Hypothalamic-Pituitary-Adrenal (HPA) Axis Responses. Neurotox Res 2019; 36:523-539. [PMID: 31209786 PMCID: PMC6745034 DOI: 10.1007/s12640-019-00067-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
The nitric oxide (NO) pathway in the brain is involved in response to psychosocial stressors. The aim of this study was to elucidate the role of nNOS and iNOS in the prefrontal cortex (PFC), hippocampus (HIP), and hypothalamus (HYPO) during social isolation stress (IS), social crowding stress (CS), and a combined IS + CS. In the PFC, 3 days of CS increased iNOS but not nNOS protein level. In the HIP and HYPO, the levels of nNOS and iNOS significantly increased after 3 days of CS. In the PFC, IS alone (11 days) enhanced iNOS protein level following 3 days of CS and increased nNOS level in the HIP and HYPO after 14 days of CS. By contrast, in the HIP, IS abolished the subsequent CS-induced increase in nNOS in the HIP and strongly elevated iNOS level after 7 days of CS. In the HYPO, prior IS inhibited nNOS protein level induced by subsequent CS for 3 days, but increased nNOS protein level after longer exposure times to CS. Isolation stress strongly upregulated plasma interleukin-1β (IL-1β) and adrenocorticotropic hormone (ACTH) levels while corticosterone (CORT) level declined. We show that the modulatory action of the NO pathway and ACTH/CORT adaptation to chronic social isolation stress is dependent on the brain structure and nature and duration of the stressor. Our results indicate that isolation is a robust natural stressor in social animals; it enhances the NO pathway in the PFC and abolishes subsequent social CS-induced NOS responses in the HIP and HYPO.
Collapse
Affiliation(s)
- Anna Gądek-Michalska
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland.
| | - Joanna Tadeusz
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121, Kraków, Poland
| | - Jan Bugajski
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| |
Collapse
|
245
|
Peli A, Grandis A, Tassinari M, Famigli Bergamini P, Tagliavia C, Roccaro M, Bombardi C. Environment and Behavior: Neurochemical Effects of Different Diets in the Calf Brain. Animals (Basel) 2019; 9:E358. [PMID: 31207977 PMCID: PMC6617313 DOI: 10.3390/ani9060358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
Calves reared for the production of white veal are subjected to stressful events due to the type of liquid diet they receive. Stress responses are mediated by three main stress-responsive cerebral regions: the prefrontal cortex, the paraventricular nucleus of the hypothalamus, and the nucleus of the solitary tract of the brainstem. In the present study, we have investigated the effects of different diets on these brain regions of ruminants using immunohistochemical methods. In this study, 15 calves were used and kept in group housing systems of five calves each. They were fed with three different diets: a control diet, a milk diet, and a weaned diet. Brain sections were immunostained to evaluate the distribution of neuronal nitric oxide synthase and myelin oligodendrocyte glycoprotein immunoreactivity in the prefrontal cortex; the expression of oxytocin in the paraventricular nucleus; and the presence of c-Fos in the A2 group of the nucleus of the solitary tract. The main results obtained indicate that in weaned diet group the oxytocin activity is lower than in control diet and milk diet groups. In addition, weaning appears to stimulate myelination in the prefrontal cortex. In summary, this study supports the importance of maintaining a nutritional lifestyle similar to that occurring in natural conditions.
Collapse
Affiliation(s)
- Angelo Peli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Marco Tassinari
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Paolo Famigli Bergamini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Mariana Roccaro
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| |
Collapse
|
246
|
Klampfl SM, Bosch OJ. When mothers neglect their offspring: an activated CRF system in the BNST is detrimental for maternal behavior. Arch Womens Ment Health 2019; 22:409-415. [PMID: 30078057 DOI: 10.1007/s00737-018-0897-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/26/2018] [Indexed: 01/25/2023]
Abstract
Becoming a mother is an intense experience that not only changes a woman's life but is also paralleled by multiple central adaptations. These changes evolve before parturition and continue to persist into lactation, thereby ensuring the full commitment of the mother to care for the newborns. Most of our knowledge on these adaptations that drive the peripartum brain come from rodent animal models. On one side, it is known that maternal behavior is initiated and maternal mood is stabilized by an upregulation of the pro-maternal neuropeptide systems' activity of oxytocin and arginine-vasopressin. On the other side, signaling of the rather anti-maternal corticotropin-releasing factor system triggers maternal neglect and increases maternal anxiety. Here, we discuss how the corticotropin-releasing factor system based in the limbic bed nucleus of the stria terminalis negatively affects maternal behavior and maternal mood. Moreover, we apply microdialysis and acute pharmacological interventions to demonstrate how the corticotropin-releasing factor system potentially interacts with the pro-maternal oxytocin system in the posterior bed nucleus of the stria terminalis to trigger certain aspects of maternal behavior.
Collapse
Affiliation(s)
- Stefanie M Klampfl
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
| |
Collapse
|
247
|
Chauveau F, De Job E, Poly-Thomasson B, Cavroy R, Thomasson J, Fromage D, Beracochea D. Procognitive impact of ciproxifan (a histaminergic H 3 receptor antagonist) on contextual memory retrieval after acute stress. CNS Neurosci Ther 2019; 25:832-841. [PMID: 31094061 PMCID: PMC6630007 DOI: 10.1111/cns.13113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
AIM Although cognitive deficits commonly co-occur with stress-related emotional disorders, effect of procognitive drugs such as histaminergic H3 receptor antagonists are scarcely studied on memory retrieval in stress condition. METHODS Experiment 1. Memory of two successive spatial discriminations (D1 then D2) 24 hours after learning was studied in a four-hole board in mice. H3 receptor antagonist ciproxifan (ip 3 mg/kg) and acute stress (three electric footshocks; 0.9 mA; 15 ms) were administered 30 and 15 minutes respectively before memory retrieval test. Fos immunostaining was performed to evaluate the neural activity of several brain areas. Experiment 2. Effects of ciproxifan and acute stress were evaluated on anxiety-like behavior in the elevated plus maze and glucocorticoid activity using plasma corticosterone assay. RESULTS Experiment 1. Ciproxifan increased memory retrieval of D2 in nonstress condition and of D1 in stress one. Ciproxifan mitigated the stress-induced increase of Fos expression in the prelimbic and infralimbic cortex, the central and basolateral amygdala and the CA1 of dorsal hippocampus. Experiment 2. Ciproxifan dampened the stress-induced anxiety-like behavior and plasma corticosterone increase. CONCLUSION Ciproxifan improved contextual memory retrieval both in stress and nonstress conditions without exacerbating behavioral and endocrine responses to stress. Overall, these data suggest potential usefulness of H3 receptor antagonists as cognitive enhancer both in nonstress and stress conditions.
Collapse
Affiliation(s)
- Frédéric Chauveau
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Elodie De Job
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Betty Poly-Thomasson
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Raphaël Cavroy
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Julien Thomasson
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Dominique Fromage
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Daniel Beracochea
- INCIA (Institut de Neurosciences Cognitives et Intégratives d'Aquitaine), UMR CNRS 5287, Université de Bordeaux, Pessac, France
| |
Collapse
|
248
|
Rincel M, Olier M, Minni A, Monchaux de Oliveira C, Matime Y, Gaultier E, Grit I, Helbling JC, Costa AM, Lépinay A, Moisan MP, Layé S, Ferrier L, Parnet P, Theodorou V, Darnaudéry M. Pharmacological restoration of gut barrier function in stressed neonates partially reverses long-term alterations associated with maternal separation. Psychopharmacology (Berl) 2019; 236:1583-1596. [PMID: 31147734 DOI: 10.1007/s00213-019-05252-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
RATIONALE Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS). OBJECTIVES The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS. METHODS Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed. RESULTS ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward-seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood. CONCLUSIONS Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain-gut axis communication in a context of stress.
Collapse
Affiliation(s)
- Marion Rincel
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Maïwenn Olier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Amandine Minni
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | | | - Yann Matime
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Eric Gaultier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Isabelle Grit
- UMR 1280, Institut des maladies de l'appareil digestif, PhAN, INRA, University of Nantes, Nantes, France
| | | | - Anna Maria Costa
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Amandine Lépinay
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Sophie Layé
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Laurent Ferrier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Patricia Parnet
- UMR 1280, Institut des maladies de l'appareil digestif, PhAN, INRA, University of Nantes, Nantes, France
| | - Vassilia Theodorou
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Muriel Darnaudéry
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France.
| |
Collapse
|
249
|
Candemir E, Post A, Dischinger US, Palme R, Slattery DA, O'Leary A, Reif A. Limited effects of early life manipulations on sex-specific gene expression and behavior in adulthood. Behav Brain Res 2019; 369:111927. [PMID: 31034851 DOI: 10.1016/j.bbr.2019.111927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Exposure to childhood adversity is associated with increased vulnerability to stress-related disorders in adulthood which has been replicated in rodent stress models, whereas environmental enrichment has been suggested to have beneficial effects. However, the exact neurobiological mechanisms underlying these environment influences on adult brain and behavior are not well understood. Therefore, we investigated the long-term effects of maternal separation (MS) or environmental enrichment (EE) in male and female CD1 mice. We found clear sex-specific effects, but limited influence of environmental manipulations, on adult behavior, fecal corticosterone metabolite (FCM) levels and stress- and plasticity related gene expression in discrete brain regions. In detail, adult females displayed higher locomotor activity and FCM levels compared to males and EE resulted in attenuation in both measures, but only in females. There were no sex- or postnatal manipulation-dependent differences in anxiety-related behaviors in either sex. Gene expression analyses revealed that adult males showed higher Fkbp5 mRNA levels in hippocampus, hypothalamus and raphe nuclei, and higher hippocampal Nos1 levels. Interestingly, MS elevated Nos1 levels in hippocampus but reduced Fkbp5 expression in hypothalamus of males. Finally, we also found higher Maoa expression in the hypothalamus of adult females, however no differences were observed in the expression levels of Bdnf, Crhr1, Nr3c1 and Htr1a. Our findings further contribute to sex-dependent differences in behavior, corticosterone and gene expression and reveal that the effects of postnatal manipulations on these parameters in outbred CD1 mice are limited.
Collapse
Affiliation(s)
- Esin Candemir
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Antonia Post
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
| | - Ulrich Severin Dischinger
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Neuropsychopharmacology, Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
250
|
Pouwels S, Van Genderen ME, Kreeftenberg HG, Ribeiro R, Parmar C, Topal B, Celik A, Ugale S. Utility of the cold pressor test to predict future cardiovascular events. Expert Rev Cardiovasc Ther 2019; 17:305-318. [PMID: 30916592 DOI: 10.1080/14779072.2019.1598262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The cold pressor test (CPT) is a common and extensively validated test, which induces systemic stress involving immersion of an individual's hand in ice water (normally temperature between 0 and 5 degrees Celsius) for a period of time. CPT has been used in various fields, like examining effects of stress on memory, decision-making, pain and cardiovascular health. Areas covered: In terms of cardiovascular health, current research is mainly interested in predicting the occurrence of cardiovascular (CV) events. The objective of this review is to give an overview of the history and methodology of the CPT, and clinical utility in possibly predicting CV events in CAD and other atherosclerotic diseases. Secondly, we will discuss possible future applications of the CPT in clinical care. Expert opinion: An important issue to address is the fact that the physiology of the CPT is not fully understood at this moment. As pointed out multiple mechanisms might be responsible for contributing to either coronary vasodilatation or coronary vasoconstriction. Regarding the physiological mechanism of the CPT and its effect on the measurements of the carotid artery reactivity even less is known.
Collapse
Affiliation(s)
- Sjaak Pouwels
- a Department of Surgery , Franciscus Gasthuis & Vlietland , Rotterdam/Schiedam , The Netherlands
| | - Michel E Van Genderen
- b Department of Internal Medicine , Franciscus Gasthuis & Vlietland , Rotterdam/Schiedam , The Netherlands
| | - Herman G Kreeftenberg
- c Department of Internal Medicine , Catharina Hospital , Eindhoven , The Netherlands.,d Department of Intensive Care Medicine , Catharina Hospital , Eindhoven , The Netherlands
| | - Rui Ribeiro
- e Metabolic Patient Multidisciplinary Centre , Clínica de Santo António , Lisbon , Portugal
| | - Chetan Parmar
- f Department of Surgery , Whittington Hospital , London , UK
| | - Besir Topal
- g Department of Cardiothoracic Surgery , OLVG , Amsterdam , The Netherlands
| | - Alper Celik
- h Department of metabolic surgery , Metabolic Surgery Clinic , Istanbul , Turkey
| | - Surendra Ugale
- i Department of Surgery , Virinchi Hospitals , Hyderbad , India
| |
Collapse
|