201
|
Qiu N, Gao J, Liu Q, Wang J, Shen Y. Enzyme-Responsive Charge-Reversal Polymer-Mediated Effective Gene Therapy for Intraperitoneal Tumors. Biomacromolecules 2018; 19:2308-2319. [DOI: 10.1021/acs.biomac.8b00440] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nasha Qiu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jinqiang Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
202
|
Rascalou A, Lamartine J, Poydenot P, Demarne F, Bechetoille N. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light. J Dermatol Sci 2018; 91:S0923-1811(18)30213-5. [PMID: 29764717 DOI: 10.1016/j.jdermsci.2018.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. OBJECTIVE The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. METHODS The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. RESULTS We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. CONCLUSION Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders.
Collapse
Affiliation(s)
| | - Jérôme Lamartine
- CNRS UMR 5305/LBTI, 7 Passage du Vercors, FR-69367, Lyon, France
| | - Pauline Poydenot
- CYTOO, Minatec - BHT Bât. 52, 7 Parvis Louis Néel, FR-38040, Grenoble, France
| | | | | |
Collapse
|
203
|
Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704463. [PMID: 29315860 DOI: 10.1002/adma.201704463] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 05/22/2023]
Abstract
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Thomas Lee Moore
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
204
|
Viji Babu PK, Rianna C, Belge G, Mirastschijski U, Radmacher M. Mechanical and migratory properties of normal, scar, and Dupuytren's fibroblasts. J Mol Recognit 2018; 31:e2719. [PMID: 29701269 DOI: 10.1002/jmr.2719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/14/2018] [Indexed: 11/08/2022]
Abstract
Mechanical properties of myofibroblasts play a key role in Dupuytren's disease. Here, we used atomic force microscopy to measure the viscoelastic properties of 3 different types of human primary fibroblasts derived from a same patient: normal and scar dermal fibroblasts and palmar fascial fibroblasts from Dupuytren's nodules. Different stiffness hydrogels (soft ~1 kPa and stiff ~ 50 kPa) were used as cell culture matrix to mimic the mechanical properties of the natural tissues, and atomic force microscopy step response force curves were used to discriminate between elastic and viscous properties of cells. Since transforming growth factor-β1 (TGF-β1) is known to induce expression of α-smooth muscle actin positive stress fibers in myofibroblasts, we investigated the behavior of these fibroblasts before and after applying TGF-β1. Finally, we performed an in vitro cell motility test, the wound healing or scratch assay, to evaluate the migratory properties of these fibroblasts. We found that (1) Dupuytren's fibroblasts are stiffer than normal and scar fibroblasts, the elastic modulus E ranging from 4.4, 2.1, to 1.8 kPa, for Dupuytren's, normal and scar fibroblasts, respectively; (2) TGF-β1 enhances the level of α-smooth muscle actin expression and thus cell stiffness in Dupuytren's fibroblasts (E, ~6.2 kPa); (3) matrix stiffness influences cell mechanical properties most prominently in Dupuytren's fibroblasts; and (4) Dupuytren's fibroblasts migrate slower than the other fibroblasts by a factor of 3. Taking together, our results showed that mechanical and migratory properties of fibroblasts might help to discriminate between different pathological conditions, helping to identify and recognize specific cell phenotypes.
Collapse
Affiliation(s)
| | - Carmela Rianna
- Institute of Biophysics, University of Bremen, Bremen, Germany
| | - Gazanfer Belge
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Ursula Mirastschijski
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Klinikum Bremen-Mitte, and Wound Repair Unit, CBIB, University of Bremen, Bremen, Germany
| | | |
Collapse
|
205
|
Continuous hypergravity alters the cytoplasmic elasticity of MC3T3-E1 osteoblasts via actin filaments. J Biomech 2018. [DOI: 10.1016/j.jbiomech.2018.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
206
|
Wang J, Liu M, Shen Y, Sun J, Shao Z, Czajkowsky DM. Compressive Force Spectroscopy: From Living Cells to Single Proteins. Int J Mol Sci 2018; 19:E960. [PMID: 29570665 PMCID: PMC5979447 DOI: 10.3390/ijms19040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.
Collapse
Affiliation(s)
- Jiabin Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Meijun Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Daniel Mark Czajkowsky
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
207
|
Nakashima M, Watanabe M, Uchimaru K, Horie R. Trogocytosis of ligand-receptor complex and its intracellular transport in CD30 signalling. Biol Cell 2018; 110:109-124. [DOI: 10.1111/boc.201800002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Makoto Nakashima
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Laboratory of Tumor Cell Biology; Department of Computational Biology and Medical Sciences; Graduate School of Frontier Sciences; University of Tokyo; Minato-ku Tokyo 108-8639 Japan
| | - Mariko Watanabe
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Division of Hematology; Department of Laboratory Sciences; School of Allied Health Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology; Department of Computational Biology and Medical Sciences; Graduate School of Frontier Sciences; University of Tokyo; Minato-ku Tokyo 108-8639 Japan
| | - Ryouichi Horie
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Division of Hematology; Department of Laboratory Sciences; School of Allied Health Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0373 Japan
| |
Collapse
|
208
|
Kandel J, Picard M, Wallace DC, Eckmann DM. Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics. J R Soc Interface 2018; 14:rsif.2017.0071. [PMID: 28592659 DOI: 10.1098/rsif.2017.0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial and mechanical alterations in cells have both been shown to be hallmarks of human disease. However, little research has endeavoured to establish connections between these two essential features of cells in both functional and dysfunctional situations. In this work, we hypothesized that a specific genetic alteration in mitochondrial function known to cause human disease would trigger changes in cell mechanics. Using a previously characterized set of mitochondrial cybrid cell lines, we examined the relationship between heteroplasmy for the mitochondrial DNA (mtDNA) 3243A>G mutation, the cell cytoskeleton, and resulting cellular mechanical properties. We found that cells with increasing mitochondrial dysfunction markedly differed from one another in gene expression and protein production of various co-regulated cytoskeletal elements. The intracellular positioning and organization of actin also differed across cell lines. To explore the relationship between these changes and cell mechanics, we then measured cellular mechanical properties using atomic force microscopy and found that cell stiffness correlated with gene expression data for known determinants of cell mechanics, γ-actin, α-actinin and filamin A. This work points towards a mechanism linking mitochondrial genetics to single-cell mechanical properties. The transcriptional and structural regulation of cytoskeletal components by mitochondrial function may explain why energetic and mechanical alterations often coexist in clinical conditions.
Collapse
Affiliation(s)
- Judith Kandel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA .,Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
209
|
Actin-Dependent Nonlytic Rotavirus Exit and Infectious Virus Morphogenetic Pathway in Nonpolarized Cells. J Virol 2018; 92:JVI.02076-17. [PMID: 29263265 DOI: 10.1128/jvi.02076-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022] Open
Abstract
During the late stages of rotavirus morphogenesis, the surface proteins VP4 and VP7 are assembled onto the previously structured double-layered virus particles to yield a triple-layered, mature infectious virus. The current model for the assembly of the outer capsid is that it occurs within the lumen of the endoplasmic reticulum. However, it has been shown that VP4 and infectious virus associate with lipid rafts, suggesting that the final assembly of the rotavirus spike protein VP4 involves a post-endoplasmic reticulum event. In this work, we found that the actin inhibitor jasplakinolide blocks the cell egress of rotavirus from nonpolarized MA104 cells at early times of infection, when there is still no evidence of cell lysis. These findings contrast with the traditional assumption that rotavirus is released from nonpolarized cells by a nonspecific mechanism when the cell integrity is lost. Inspection of the virus present in the extracellular medium by use of density flotation gradients revealed that a fraction of the released virus is associated with low-density membranous structures. Furthermore, the intracellular localization of VP4, its interaction with lipid rafts, and its targeting to the cell surface were shown to be prevented by jasplakinolide, implying a role for actin in these processes. Finally, the VP4 present at the plasma membrane was shown to be incorporated into the extracellular infectious virus, suggesting the existence of a novel pathway for the assembly of the rotavirus spike protein.IMPORTANCE Rotavirus is a major etiological agent of infantile acute severe diarrhea. It is a nonenveloped virus formed by three concentric layers of protein. The early stages of rotavirus replication, including cell attachment and entry, synthesis and translation of viral mRNAs, replication of the genomic double-stranded RNA (dsRNA), and the assembly of double-layered viral particles, have been studied widely. However, the mechanisms involved in the later stages of infection, i.e., viral particle maturation and cell exit, are less well characterized. It has been assumed historically that rotavirus exits nonpolarized cells following cell lysis. In this work, we show that the virus exits cells by a nonlytic, actin-dependent mechanism, and most importantly, we describe that VP4, the spike protein of the virus, is present on the cell surface and is incorporated into mature, infectious virus, indicating a novel pathway for the assembly of this protein.
Collapse
|
210
|
Mollaeian K, Liu Y, Bi S, Ren J. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells. J Mech Behav Biomed Mater 2018; 78:65-73. [DOI: 10.1016/j.jmbbm.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
|
211
|
González-Cruz RD, Sadick JS, Fonseca VC, Darling EM. Nuclear Lamin Protein C Is Linked to Lineage-Specific, Whole-Cell Mechanical Properties. Cell Mol Bioeng 2018; 11:131-142. [PMID: 29755599 DOI: 10.1007/s12195-018-0518-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Lamin proteins confer nuclear integrity and relay external mechanical cues that drive changes in gene expression. However, the influence these lamins have on whole-cell mechanical properties is unknown. We hypothesized that protein expression of lamins A, B1, and C would depend on the integrity of the actin cytoskeleton and correlate with cellular elasticity and viscoelasticity. METHODS To test these hypotheses, we examined the protein expression of lamins A, B1, and C across five different cell lines with varied mechanical properties. Additionally, we treated representative "soft/stiff" cell types with cytochalasin D and LMNA siRNA to determine the effect of a more compliant whole-cell phenotype on lamin A, B1 and C protein expression. RESULTS A positive, linear correlation existed between lamin C protein expression and average cell moduli/apparent viscosity. Though moderate correlations existed between lamin A/B1 protein expression and whole-cell mechanical properties, they were statistically insignificant. Inhibition of actin polymerization, via cytochalasin D treatment, resulted in reduced cell elasticity, viscoelasticity, and lamin A and C protein expression in "stiff" MG-63 cells. In "soft" HEK-293T cells, this treatment reduced cell elasticity and viscoelasticity but did not affect lamin B1 or C protein expression. Additionally, LMNA siRNA treatment of MG-63 cells decreased whole-cell elasticity and viscoelasticity. CONCLUSION These findings suggest that lamin C protein expression is strongly associated with whole-cell mechanical properties and could potentially serve as a biomarker for mechanophenotype.
Collapse
Affiliation(s)
- Rafael D González-Cruz
- Center for Biomedical Engineering, Brown University, Providence, RI USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI USA
| | - Jessica S Sadick
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI USA
| | - Vera C Fonseca
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI USA
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI USA.,Department of Orthopaedics, Brown University, Providence, RI USA.,School of Engineering, Brown University, Providence, RI USA
| |
Collapse
|
212
|
Zemła J, Danilkiewicz J, Orzechowska B, Pabijan J, Seweryn S, Lekka M. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 2018; 73:115-124. [DOI: 10.1016/j.semcdb.2017.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/27/2022]
|
213
|
AFM contribution to unveil pro- and eukaryotic cell mechanical properties. Semin Cell Dev Biol 2018; 73:177-187. [DOI: 10.1016/j.semcdb.2017.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
|
214
|
Cao R, Xiao W, Wu X, Sun L, Pan F. Quantitative observations on cytoskeleton changes of osteocytes at different cell parts using digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:72-85. [PMID: 29359088 PMCID: PMC5772590 DOI: 10.1364/boe.9.000072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 05/10/2023]
Abstract
Cytoskeletons such as F-actin have different distributions in different cell parts and they are the cause of different degrees of cell collapse when the F-actin is disrupted. It is challenging to use conventional methods such as fluorescence microscopy and atomic force microscopy to conduct real-time and three-dimensional observations on the dynamic processes at different cell parts due to the slow measuring speed and the need for live-cell staining. In this study, the morphological variations of different bone cell parts caused by F-actin disruption are dynamically measured by using digital holographic microscopy (DHM). We separately analyze local parameters (cell height and cell width) and global parameters (cell projected area and cell volume) of cells to address variations of specific cell areas and quantify the changing process of the whole cell. We found significant differences in temporal variations of both local and global cell parameters between the cell body and cell process, which is consistent with the qualitative observation by fluorescence staining. Our study not only validates the unique ability of DHM to simultaneously investigate the dynamic process at different cell parts, but also provides sufficient experimental bases for exploring the mechanism for F-actin disruption.
Collapse
Affiliation(s)
- Runyu Cao
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Wen Xiao
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Xintong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lianwen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Feng Pan
- Key Laboratory of Precision Opto-Mechatronics Technology of Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
215
|
Li Y, Zhang Z, Zhou X, Li R, Cheng Y, Shang B, Han Y, Liu B, Xie X. Histone Deacetylase 1 Inhibition Protects Against Hypoxia-Induced Swelling in H9c2 Cardiomyocytes Through Regulating Cell Stiffness. Circ J 2017; 82:192-202. [PMID: 28747611 DOI: 10.1253/circj.cj-17-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The process of cardiomyocyte swelling involves changes of biomechanical properties and profiles of cellular genes. Although many genes have been proved to regulate cell edema of cardiomyocyte, the mechanisms involved in this event, as well as the biomechanical properties of swelling cell, remain unknown. METHODS AND RESULTS Whether histone deacetylase 1 (HDAC1) inhibition protects against hypoxia-induced H9c2 cardiomyocyte swelling is examined in this study. Hypoxia-induced changes in the biomechanical properties and cytoskeletal structure that are relevant to cell swelling were also determined. H9c2 cells were treated under a chemical hypoxia situation (cobalt chloride) with HDAC1 inhibition (chemical inhibitor or siRNA) for 5 h, followed by in vitro biological and mechanical characterization. The results showed that expression of HDAC1 instead of HDAC4 was upregulated by chemical hypoxia. HDAC1 inhibition protects H9c2 cells against chemical hypoxia-induced hypoxic injury and cell swelling. HDAC1 inhibition improved cell viability, decreased lactate dehydrogenase leakage, cell apoptosis, malondialdehyde concentration, cell volume, and particles on the cell surface, and increased superoxide dismutase activity. Moreover, chemical hypoxia induced a decrease of Young's modulus, accompanied by alterations in the integrity of acetylated histone and organization of the cytoskeletal network. HDAC1 inhibition significantly reversed these processes. CONCLUSIONS Based on the ideal physical model, HDAC1 inhibition protects against hypoxia-induced swelling in H9c2 cardiomyocytes through enhancing cell stiffness. Overall, HDAC1 is a potential therapeutic target for myocardial edema.
Collapse
Affiliation(s)
- Yi Li
- The Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University
- Gansu Cardiovascular Institute
| | - Zhengyi Zhang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Xiangnan Zhou
- School of Physics and Information Engineering, Shanxi Normal University
| | - Rui Li
- School of Stomatology, Lanzhou University
| | - Yan Cheng
- Experimental Center, Northwest University for Nationalities
- Department of Biochemistry and Medical Genetics, University of Manitoba
| | - Bo Shang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Yu Han
- College of Life Science & Technology, Huazhong University of Science & Technology
| | - Bin Liu
- School of Stomatology, Lanzhou University
| | - Xiaodong Xie
- The Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University
- Gansu Cardiovascular Institute
| |
Collapse
|
216
|
Nyberg KD, Hu KH, Kleinman SH, Khismatullin DB, Butte MJ, Rowat AC. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties. Biophys J 2017; 113:1574-1584. [PMID: 28978449 DOI: 10.1016/j.bpj.2017.06.073] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/14/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
Advances in methods that determine cell mechanical phenotype, or mechanotype, have demonstrated the utility of biophysical markers in clinical and research applications ranging from cancer diagnosis to stem cell enrichment. Here, we introduce quantitative deformability cytometry (q-DC), a method for rapid, calibrated, single-cell mechanotyping. We track changes in cell shape as cells deform into microfluidic constrictions, and we calibrate the mechanical stresses using gel beads. We observe that time-dependent strain follows power-law rheology, enabling single-cell measurements of apparent elastic modulus, Ea, and power-law exponent, β. To validate our method, we mechanotype human promyelocytic leukemia (HL-60) cells and thereby confirm q-DC measurements of Ea = 0.53 ± 0.04 kPa. We also demonstrate that q-DC is sensitive to pharmacological perturbations of the cytoskeleton as well as differences in the mechanotype of human breast cancer cell lines (Ea = 2.1 ± 0.1 and 0.80 ± 0.19 kPa for MCF-7 and MDA-MB-231 cells). To establish an operational framework for q-DC, we investigate the effects of applied stress and cell/pore-size ratio on mechanotype measurements. We show that Ea increases with applied stress, which is consistent with stress stiffening behavior of cells. We also find that Ea increases for larger cell/pore-size ratios, even when the same applied stress is maintained; these results indicate strain stiffening and/or dependence of mechanotype on deformation depth. Taken together, the calibrated measurements enabled by q-DC should advance applications of cell mechanotype in basic research and clinical settings.
Collapse
Affiliation(s)
- Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, California
| | - Kenneth H Hu
- Department of Physics, Stanford University, Stanford, California
| | - Sara H Kleinman
- Department of Pediatrics, Stanford University, Stanford, California
| | | | - Manish J Butte
- Department of Pediatrics, University of California, Los Angeles, California; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, California; UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California; Broad Stem Cell Research Center, University of California, Los Angeles, California; Center for Biological Physics, University of California, Los Angeles, California.
| |
Collapse
|
217
|
An engineering insight into the relationship of selective cytoskeletal impairment and biomechanics of HeLa cells. Micron 2017; 102:88-96. [DOI: 10.1016/j.micron.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 10/24/2022]
|
218
|
Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter. Sci Rep 2017; 7:14188. [PMID: 29079766 PMCID: PMC5660205 DOI: 10.1038/s41598-017-13830-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023] Open
Abstract
It has long been known that neuronal axons are contractile. They actively maintain rest tension along the longitudinal direction both in vitro and in vivo. Here we show evidence that embryonic drosophila axons also actively maintain contractility/tension along the circumferential direction. We used confocal microscopy and spatial light interference microscopy to monitor axonal diameter along their length. We observed a decrease in diameter when microtubules are disrupted and an increase in diameter when actin filaments or myosin II are disrupted. Interestingly, active diameter reduction occurred consistently when axons were subjected to manipulations known to increase axial tension, suggesting that tension can be coupled in the axial and circumferential direction. This is further supported by the remarkably similar time constants for diameter reduction and rest tension increase of slackened axons. We infer that the actomyosin-driven circumferential contraction/hoop tension applies a squeezing force on the microtubule bundle of the axons. This hoop tension is balanced by the restoring force of the microtubule bundle. Therefore, axonal diameter increased when actin/myosin disrupting drugs relaxed the hoop tension and decreased when microtubule disrupting drug relaxed the restoring force. Circumferential tension thus can regulate axonal diameter and volume, as well as potentially microtubules alignment, inter-tubular spacing, and, by extension, axonal transport.
Collapse
|
219
|
Casti P, Mencattini A, Sammarco I, Velappa SJ, Magna G, Cricenti A, Luce M, Pietroiusti A, Lesci GI, Ferrucci L, Magrini A, Martinelli E, Di Natale C. Robust classification of biological samples in atomic force microscopy images via multiple filtering cooperation. Knowl Based Syst 2017. [DOI: 10.1016/j.knosys.2017.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
220
|
Cascione M, De Matteis V, Toma CC, Pellegrino P, Leporatti S, Rinaldi R. Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells. Exp Cell Res 2017; 360:303-309. [PMID: 28935466 DOI: 10.1016/j.yexcr.2017.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022]
Abstract
The EMT phenomenon is based on tumour progression. The cells lose their physiologic phenotype and assumed a mesenchymal phenotype characterized by an increased migratory capacity, invasiveness and high resistance to apoptosis. In this process, RHO family regulates the activation or suppression of ROCK (Rho-associated coiled-coil containing protein kinase) which in turn regulates the cytoskeleton dynamics. However, while the biochemical mechanisms are widely investigated, a comprehensive and careful estimation of biomechanical changes has not been extensively addressed. In this work, we used a strong ROCK inhibitor, Y-27632, to evaluate the effects of inhibition on living breast cancer epithelial cells by a biomechanical approach. Atomic Force Microscopy (AFM) was used to estimate changes of cellular elasticity, quantified by Young's modulus parameter. The morphometric alterations were analyzed by AFM topographies and Confocal Laser Scanning Microscopy (CLSM). Our study revealed a significant modification in the Young's modulus after treatment, especially as regards cytoskeletal region. Our evidences suggest that the use of Y-27632 enhanced the cell rigidity, preventing cell migration and arrested the metastasization process representing a potential powerful factor for cancer treatment.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari "Aldo Moro", c/o Policlinico Bari, Bari, Italy
| | - Valeria De Matteis
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Cristina Toma
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Paolo Pellegrino
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Polo di Nanotecnologia, c/o Campus Ecoteckne, Lecce, Italy.
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
221
|
Han B, Nia HT, Wang C, Chandrasekaran P, Li Q, Chery DR, Li H, Grodzinsky AJ, Han L. AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2033-2049. [PMID: 31423463 PMCID: PMC6697429 DOI: 10.1021/acsbiomaterials.7b00307] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our objective is to provide an in-depth review of the recent technical advances of atomic force microscopy (AFM)-based nanomechanical tests and their contribution to a better understanding and diagnosis of osteoarthritis (OA), as well as the repair of tissues undergoing degeneration during OA progression. We first summarize a range of technical approaches for AFM-based nanoindentation, including considerations in both experimental design and data analysis. We then provide a more detailed description of two recently developed modes of AFM-nanoindentation, a high-bandwidth nanorheometer system for studying poroviscoelasticity and an immunofluorescence-guided nanomechanical mapping technique for delineating the pericellular matrix (PCM) and territorial/interterritorial matrix (T/IT-ECM) of surrounding cells in connective tissues. Next, we summarize recent applications of these approaches to three aspects of joint-related healthcare and disease: cartilage aging and OA, developmental biology and OA pathogenesis in murine models, and nanomechanics of the meniscus. These studies were performed over a hierarchy of length scales, from the molecular, cellular to the whole tissue level. The advances described here have contributed greatly to advancing the fundamental knowledge base for improved understanding, detection, and treatment of OA.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hadi T. Nia
- Department of Radiation Oncology, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Daphney R. Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Li
- College of Architecture and the Built Environment, Philadelphia University, Philadelphia, Pennsylvania 19144, United States
| | - Alan J. Grodzinsky
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
222
|
Barata D, Spennati G, Correia C, Ribeiro N, Harink B, van Blitterswijk C, Habibovic P, van Rijt S. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology. Biomed Microdevices 2017; 19:81. [PMID: 28884359 PMCID: PMC5589786 DOI: 10.1007/s10544-017-0222-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.
Collapse
Affiliation(s)
- David Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Giulia Spennati
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Cristina Correia
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Nelson Ribeiro
- Instituto de Engenharia Mecânica, Laboratório Associado de Energia, Transportes e Aeronáutica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
223
|
Kang S, Badea A, Rubakhin SS, Sweedler JV, Rogers JA, Nuzzo RG. Quantitative Reflection Imaging for the Morphology and Dynamics of Live Aplysia californica Pedal Ganglion Neurons Cultured on Nanostructured Plasmonic Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8640-8650. [PMID: 28235182 PMCID: PMC5585034 DOI: 10.1021/acs.langmuir.6b04454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a reflection imaging system that consists of a plasmonic crystal, a common laboratory microscope, and band-pass filters for use in the quantitative imaging and in situ monitoring of live cells and their substrate interactions. Surface plasmon resonance (SPR) provides a highly sensitive method to monitor changes in physicochemical properties occurring at metal-dielectric interfaces. Polyelectrolyte thin films deposited using the layer-by-layer (LBL) self-assembly method provide a reference system for calibrating the reflection contrast changes that occur when the polyelectrolyte film thickness changes and provide insight into the optical responses that originate from the multiple plasmonic features supported by this imaging system. Finite-difference time-domain (FDTD) simulations of the optical responses measured experimentally from the polyelectrolyte reference system are used to provide a calibration of the optical system for subsequent use in quantitative studies investigating live cell dynamics in cultures supported on a plasmonic crystal substrate. Live Aplysia californica pedal ganglion neurons cultured in artificial seawater were used as a model system through which to explore the utility of this plasmonic imaging technique. Here, the morphology of cellular peripheral structures ≲80 nm in thickness were quantitatively analyzed, and the dynamics of their trypsin-induced surface detachment were visualized. These results illustrate the capacities of this system for use in investigations of the dynamics of ultrathin cellular structures within complex bioanalytical environments.
Collapse
Affiliation(s)
- Somi Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Adina Badea
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Stanislav S. Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - John A. Rogers
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Ralph G. Nuzzo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| |
Collapse
|
224
|
Lohrer MF, Hanna DM, Liu Y, Wang KH, Liu FT, Laurence TA, Liu GY. Applying Pattern Recognition to High-Resolution Images to Determine Cellular Signaling Status. IEEE Trans Nanobioscience 2017; 16:438-446. [PMID: 28644811 PMCID: PMC5633003 DOI: 10.1109/tnb.2017.2717871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two frequently used tools to acquire high- resolution images of cells are scanning electron microscopy (SEM) and atomic force microscopy (AFM). The former provides a nanometer resolution view of cellular features rapidly and with high throughput, while the latter enables visualizing hydrated and living cells. In current practice, these images are viewed by eye to determine cellular status, e.g., activated versus resting. Automatic and quantitative data analysis is lacking. This paper develops an algorithm of pattern recognition that works very effectively for AFM and SEM images. Using rat basophilic leukemia cells, our approach creates a support vector machine to automatically classify resting and activated cells. Ten-fold cross-validation with cells that are known to be activated or resting gives a good estimate of the generalized classification results. The pattern recognition of AFM images achieves 100% accuracy, while SEM reaches 95.4% for our images as well as images published in prior literature. This outcome suggests that our methodology could become an important and frequently used tool for researchers utilizing AFM and SEM for structural characterization as well as determining cellular signaling status and function.
Collapse
Affiliation(s)
- Michael F. Lohrer
- Department of Electrical and Computer Engineering, Oakland University, Rochester MI 48309, USA
| | - Darrin M. Hanna
- Department of Electrical and Computer Engineering, Oakland University, Rochester MI 48309, USA
| | - Yang Liu
- Department of chemistry, University of California, Davis, CA 95616 USA
| | - Kang-Hsin Wang
- Department of chemistry, University of California, Davis, CA 95616 USA
| | - Fu-Tong Liu
- Department of Dermatology, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Gang-Yu Liu
- Department of chemistry, University of California, Davis, CA 95616 USA
| |
Collapse
|
225
|
Ferencz C, Guigas G, Veres A, Neumann B, Stemmann O, Weiss M. In Vitro Reconstitution of the Endoplasmic Reticulum. ACTA ACUST UNITED AC 2017; 76:11.22.1-11.22.16. [DOI: 10.1002/cpcb.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Csilla‐Maria Ferencz
- Department of Experimental Physics I, University of Bayreuth Bayreuth Germany
- Current address: Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio‐Systems Potsdam Germany
| | - Gernot Guigas
- Department of Experimental Physics I, University of Bayreuth Bayreuth Germany
- Current address: Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Andreas Veres
- Department of Experimental Physics I, University of Bayreuth Bayreuth Germany
| | | | - Olaf Stemmann
- Department of Genetics, University of Bayreuth Bayreuth Germany
| | - Matthias Weiss
- Department of Experimental Physics I, University of Bayreuth Bayreuth Germany
| |
Collapse
|
226
|
Garcia PD, Guerrero CR, Garcia R. Time-resolved nanomechanics of a single cell under the depolymerization of the cytoskeleton. NANOSCALE 2017; 9:12051-12059. [PMID: 28795733 DOI: 10.1039/c7nr03419a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single cell stiffness measurements consider cells as passive and elastic materials which react instantaneously to an external force. This approximation is at odds with the complex structure of the cell which includes solid and liquid components. Here we develop a force microscopy method to measure the time and frequency dependencies of the elastic modulus, the viscosity coefficient, the loss modulus and the relaxation time of a single live cell. These parameters have different time and frequency dependencies. At low modulation frequencies (0.2-4 Hz), the elastic modulus remains unchanged; the loss modulus increases while the viscosity and the relaxation time decrease. We have followed the evolution of a fibroblast cell subjected to the depolymerization of its F-actin cytoskeleton. The elastic modulus, the loss modulus and the viscous coefficient decrease with the exposure time to the depolymerization drug while the relaxation time increases. The latter effect reflects that the changes in the elastic response happen at a higher rate than those affecting the viscous flow. The observed behavior is compatible with a cell mechanical response described by the poroelastic model.
Collapse
Affiliation(s)
- Pablo D Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| | - Carlos R Guerrero
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
227
|
Zapotoczny B, Szafranska K, Owczarczyk K, Kus E, Chlopicki S, Szymonski M. Atomic Force Microscopy Reveals the Dynamic Morphology of Fenestrations in Live Liver Sinusoidal Endothelial Cells. Sci Rep 2017; 7:7994. [PMID: 28801568 PMCID: PMC5554186 DOI: 10.1038/s41598-017-08555-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Here, we report an atomic force microscopy (AFM)-based imaging method for resolving the fine nanostructures (e.g., fenestrations) in the membranes of live primary murine liver sinusoidal endothelial cells (LSECs). From data on topographical and nanomechanical properties of the selected cell areas collected within 1 min, we traced the dynamic rearrangement of the cell actin cytoskeleton connected with the formation or closing of cell fenestrations, both in non-stimulated LSECs as well as in response to cytochalasin B and antimycin A. In conclusion, AFM-based imaging permitted the near real-time measurements of dynamic changes in fenestrations in live LSECs.
Collapse
Affiliation(s)
- B Zapotoczny
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland.
| | - K Szafranska
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, JCET, Jagiellonian University, Krakow, Poland
| | - K Owczarczyk
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - E Kus
- Jagiellonian Centre for Experimental Therapeutics, JCET, Jagiellonian University, Krakow, Poland
| | - S Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, JCET, Jagiellonian University, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University, Medical College, Krakow, Poland
| | - M Szymonski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| |
Collapse
|
228
|
Stires JC, Latz MI. Contribution of the cytoskeleton to mechanosensitivity reported by dinoflagellate bioluminescence. Cytoskeleton (Hoboken) 2017; 75:12-21. [PMID: 28771965 DOI: 10.1002/cm.21392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
The cytoskeleton is crucial to cell mechanics and sensing the extracellular physical environment. The objective of this study was to examine the role of the cortical cytoskeleton in mechanosensitivity in a unicellular protist, the marine dinoflagellate Lingulodinium polyedra, using its intrinsic bioluminescence as a rapid reporter of mechanotransduction. Pharmacological treatments resolved effects due to immediate cytoskeleton disruption from those due to cytoskeletal remodeling during the light to dark phase transition. The cytoskeleton was visualized by confocal laser scanning microscopy of immunohistochemically labeled microtubules and phalloidin labeled F-actin, and mechanosensitivity assessed based on the bioluminescence response to mechanical stimulation measured during the dark phase. Latrunculin B treatment after the transition from the light to dark phase resulted in some disruption of cortical F-actin, no observed effect on the cortical microtubules, and partial inhibition of the bioluminescence response. Treatment with oryzalin, which depolarizes microtubules, completely disrupted the microtubule network and cortical F-actin, and partially inhibited bioluminescence. These results demonstrate that cells retain some mechanosensitivity despite a disrupted cytoskeleton; link mechanosensitivity to intact F-actin; show a close connection between F-actin and microtubules comprising the cortical cytoskeleton; confirm a strong contribution of the actin cytoskeleton to the translocation of scintillons, vesicles containing the luminescent chemistry; and support the role of the actin cytoskeleton in the association of scintillons with the vacuole membrane.
Collapse
Affiliation(s)
- J C Stires
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92039
| | - M I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92039
| |
Collapse
|
229
|
Strbkova L, Zicha D, Vesely P, Chmelik R. Automated classification of cell morphology by coherence-controlled holographic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 28836416 DOI: 10.1117/1.jbo.22.8.086008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.
Collapse
Affiliation(s)
- Lenka Strbkova
- Brno University of Technology, Central European Institute of Technology, Brno, Czech Republic
| | - Daniel Zicha
- Brno University of Technology, Central European Institute of Technology, Brno, Czech Republic
| | - Pavel Vesely
- Brno University of Technology, Central European Institute of Technology, Brno, Czech Republic
| | - Radim Chmelik
- Brno University of Technology, Institute of Physical Engineering, Faculty of Mechanical Engineering,, Czech Republic
| |
Collapse
|
230
|
Golfier S, Rosendahl P, Mietke A, Herbig M, Guck J, Otto O. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications. Cytoskeleton (Hoboken) 2017; 74:283-296. [PMID: 28445605 PMCID: PMC5601209 DOI: 10.1002/cm.21369] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
Abstract
The mechanical fingerprint of cells is inherently linked to the structure of the cytoskeleton and can serve as a label‐free marker for cell homeostasis or pathologic states. How cytoskeletal composition affects the physical response of cells to external loads has been intensively studied with a spectrum of techniques, yet quantitative and statistically powerful investigations in the form of titration assays are hampered by the low throughput of most available methods. In this study, we employ real‐time deformability cytometry (RT‐DC), a novel microfluidic tool to examine the effects of biochemically modified F‐actin and microtubule stability and nuclear chromatin structure on cell deformation in a human leukemia cell line (HL60). The high throughput of our method facilitates extensive titration assays that allow for significance assessment of the observed effects and extraction of half‐maximal concentrations for most of the applied reagents. We quantitatively show that integrity of the F‐actin cortex and microtubule network dominate cell deformation on millisecond timescales probed with RT‐DC. Drug‐induced alterations in the nuclear chromatin structure were not found to consistently affect cell deformation. The sensitivity of the high‐throughput cell mechanical measurements to the cytoskeletal modifications we present in this study opens up new possibilities for label‐free dose‐response assays of cytoskeletal modifications.
Collapse
Affiliation(s)
- Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alexander Mietke
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,ZIK HIKE, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
231
|
Holguin SY, Anderson CF, Thadhani NN, Prausnitz MR. Role of cytoskeletal mechanics and cell membrane fluidity in the intracellular delivery of molecules mediated by laser‐activated carbon nanoparticles. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stefany Y. Holguin
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia 30332
| | - Caleb F. Anderson
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia 30332
| | - Naresh N. Thadhani
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia 30332
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia 30332
| |
Collapse
|
232
|
Brückner BR, Nöding H, Janshoff A. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments. Biophys J 2017; 112:724-735. [PMID: 28256232 PMCID: PMC5340129 DOI: 10.1016/j.bpj.2016.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/01/2016] [Accepted: 12/15/2016] [Indexed: 01/04/2023] Open
Abstract
The local mechanical properties of cells are frequently probed by force indentation experiments carried out with an atomic force microscope. Application of common contact models provides a single parameter, the Young’s modulus, to describe the elastic properties of cells. The viscoelastic response of cells, however, is generally measured in separate microrheological experiments that provide complex shear moduli as a function of time or frequency. Here, we present a straightforward way to obtain rheological properties of cells from regular force distance curves collected in typical force indentation measurements. The method allows us to record the stress-strain relationship as well as changes in the weak power law of the viscoelastic moduli. We derive an analytical function based on the elastic-viscoelastic correspondence principle applied to Hertzian contact mechanics to model both indentation and retraction curves. Rheological properties are described by standard viscoelastic models and the paradigmatic weak power law found to interpret the viscoelastic properties of living cells best. We compare our method with atomic force microscopy-based active oscillatory microrheology and show that the method to determine the power law coefficient is robust against drift and largely independent of the indentation depth and indenter geometry. Cells were subject to Cytochalasin D treatment to provoke a drastic change in the power law coefficient and to demonstrate the feasibility of the approach to capture rheological changes extremely fast and precisely. The method is easily adaptable to different indenter geometries and acquires viscoelastic data with high spatiotemporal resolution.
Collapse
Affiliation(s)
| | - Helen Nöding
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Göttingen, Germany.
| |
Collapse
|
233
|
Cartagena-Rivera AX, Logue JS, Waterman CM, Chadwick RS. Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy. Biophys J 2017; 110:2528-2539. [PMID: 27276270 PMCID: PMC4906360 DOI: 10.1016/j.bpj.2016.04.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/29/2016] [Accepted: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
The organization of filamentous actin and myosin II molecular motor contractility is known to modify the mechanical properties of the cell cortical actomyosin cytoskeleton. Here we describe a novel method, to our knowledge, for using force spectroscopy approach curves with tipless cantilevers to determine the actomyosin cortical tension, elastic modulus, and intracellular pressure of nonadherent cells. We validated the method by measuring the surface tension of water in oil microdrops deposited on a glass surface. We extracted an average tension of T ∼ 20.25 nN/μm, which agrees with macroscopic experimental methods. We then measured cortical mechanical properties in nonadherent human foreskin fibroblasts and THP-1 human monocytes before and after pharmacological perturbations of actomyosin activity. Our results show that myosin II activity and actin polymerization increase cortex tension and intracellular pressure, whereas branched actin networks decreased them. Interestingly, myosin II activity stiffens the cortex and branched actin networks soften it, but actin polymerization has no effect on cortex stiffness. Our method is capable of detecting changes in cell mechanical properties in response to perturbations of the cytoskeleton, allowing characterization with physically relevant parameters. Altogether, this simple method should be of broad application for deciphering the molecular regulation of cell cortical mechanical properties.
Collapse
Affiliation(s)
- Alexander X Cartagena-Rivera
- Laboratory of Cellular Biology, Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeremy S Logue
- Laboratory of Cellular Biology, Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Richard S Chadwick
- Laboratory of Cellular Biology, Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
234
|
Li M, Liu L, Xi N, Wang Y. Atomic force microscopy studies on cellular elastic and viscoelastic properties. SCIENCE CHINA-LIFE SCIENCES 2017; 61:57-67. [DOI: 10.1007/s11427-016-9041-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/07/2017] [Indexed: 01/03/2023]
|
235
|
Choi H, Choi EH, Kim KS. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma. Microsc Res Tech 2017. [PMID: 28640537 DOI: 10.1002/jemt.22902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes.
Collapse
Affiliation(s)
- Hyeongwon Choi
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea.,Lutronic R&D Center, 219, Sowon-ro, Deogyang-gu, Goyang-si, Gyeonggi-do, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea.,Program of Medical Engineering, Kyung Hee University, Seoul, Korea
| |
Collapse
|
236
|
Li Y, Chen J, Liu Y, Zhang W, He W, Xu H, Liu L, Ma E. Nanoscale quantification of the biophysical characterization of combretastatin A-4-treated tumor cells using atomic force microscopy. PLoS One 2017. [PMID: 28628642 PMCID: PMC5476243 DOI: 10.1371/journal.pone.0179115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As an inhibitor of microtubule assembly, combretastatin A-4 (CA-4)-induced biological responses in tumor cells have been well known, but the corresponding changes in nano-biophysical properties were not investigated given the lack of an ideal tool. Using AFM technique, we investigated the alteration of nano-biophysical properties when CA-4-treated tumor cells underwent the different biological processes, including cell cycle arrest, apoptosis and autophagy. We found that CA-4-resistant cells were rougher with the presence of characteristic “ridges”, indicating that the development of “ridge” structure may be a determinant of the sensitivity of cells to CA-4 compounds. CA-4 induced G2/M arrest and apoptosis in sensitive cells but triggered anti-apoptotic autophagy in resistant cells. CA-4 treatment caused an increase in stiffness in both sensitive and resistant cells. However, these cells exhibited different changes in cell surface roughness. CA-4 decreased Ra and Rq values in sensitive cells but increased these values in resistant cells. The reorganization of F-actin might contribute to the different changes of nano-biophysical properties in CA-4-sensitive and–resistant cells. Our results suggest that cellular nano-biophysical properties, such as “ridges”, roughness and stiffness, could be applied as potential biomarkers for evaluating CA-4 compounds, and knowledge regarding how biological alterations cause changes in cellular nano-biophysical properties is helpful to develop a new high-resolution screening tool for anti-tumor agents.
Collapse
Affiliation(s)
- Yanchun Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, China Academy of Sciences, Shenyang, China
| | - Jv Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yutong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Weige Zhang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenhui He
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanying Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, China Academy of Sciences, Shenyang, China
| | - Enlong Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail:
| |
Collapse
|
237
|
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2017; 16:523-540. [PMID: 28613180 DOI: 10.1109/tnb.2017.2714462] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Collapse
|
238
|
Schierbaum N, Rheinlaender J, Schäffer TE. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells. Acta Biomater 2017; 55:239-248. [PMID: 28396292 DOI: 10.1016/j.actbio.2017.04.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023]
Abstract
Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. STATEMENT OF SIGNIFICANCE We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium.
Collapse
Affiliation(s)
- Nicolas Schierbaum
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
239
|
Katti DR, Katti KS. Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: A 3D finite element modeling study. J Mech Behav Biomed Mater 2017; 76:125-134. [PMID: 28571747 DOI: 10.1016/j.jmbbm.2017.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
Abstract
A robust computational model of a cancer cell is presented using finite element modeling. The model accurately captures nuances of the various components of the cellular substructure. The role of degradation of cytoskeleton on overall elastic properties of the cancer cell is reported. The motivation for degraded cancer cellular substructure, the cytoskeleton is the observation that the innate mechanics of cytoskeleton is disrupted by various anti-cancer drugs as therapeutic treatments for the destruction of the cancer tumors. We report a significant influence on the degradation of the cytoskeleton on the mechanics of cancer cell. Further, a simulations based study is reported where we evaluate mechanical properties of the cancer cell attached to a variety of substrates. The loading of the cancer cell is less influenced by nature of the substrate, but low modulus substrates such as osteoblasts and hydrogels indicate a significant change in unloading behavior and also the plastic deformation. Overall, softer substrates such as osteoblasts and other bone cells result in a much altered unloading response as well as significant plastic deformation. These substrates are relevant to metastasis wherein certain type of cancers such as prostate and breast cancer cells migrate to the bone and colonize through mesenchymal to epithelial transition. The modeling study presented here is an important first step in the development of strong predictive methodologies for cancer progression.
Collapse
Affiliation(s)
- Dinesh R Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| | - Kalpana S Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
240
|
Efremov YM, Wang WH, Hardy SD, Geahlen RL, Raman A. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves. Sci Rep 2017; 7:1541. [PMID: 28484282 PMCID: PMC5431511 DOI: 10.1038/s41598-017-01784-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/04/2017] [Indexed: 01/12/2023] Open
Abstract
Force-displacement (F-Z) curves are the most commonly used Atomic Force Microscopy (AFM) mode to measure the local, nanoscale elastic properties of soft materials like living cells. Yet a theoretical framework has been lacking that allows the post-processing of F-Z data to extract their viscoelastic constitutive parameters. Here, we propose a new method to extract nanoscale viscoelastic properties of soft samples like living cells and hydrogels directly from conventional AFM F-Z experiments, thereby creating a common platform for the analysis of cell elastic and viscoelastic properties with arbitrary linear constitutive relations. The method based on the elastic-viscoelastic correspondence principle was validated using finite element (FE) simulations and by comparison with the existed AFM techniques on living cells and hydrogels. The method also allows a discrimination of which viscoelastic relaxation model, for example, standard linear solid (SLS) or power-law rheology (PLR), best suits the experimental data. The method was used to extract the viscoelastic properties of benign and cancerous cell lines (NIH 3T3 fibroblasts, NMuMG epithelial, MDA-MB-231 and MCF-7 breast cancer cells). Finally, we studied the changes in viscoelastic properties related to tumorigenesis including TGF-β induced epithelial-to-mesenchymal transition on NMuMG cells and Syk expression induced phenotype changes in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Wen-Horng Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Shana D Hardy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA. .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
241
|
Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ. Imaging modes of atomic force microscopy for application in molecular and cell biology. NATURE NANOTECHNOLOGY 2017; 12:295-307. [PMID: 28383040 DOI: 10.1038/nnano.2017.45] [Citation(s) in RCA: 534] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/23/2017] [Indexed: 05/22/2023]
Abstract
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Toshio Ando
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Alsteens
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - David Martinez-Martin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christoph Gerber
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 80, 4057 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| |
Collapse
|
242
|
Gache V, Gomes ER, Cadot B. Microtubule motors involved in nuclear movement during skeletal muscle differentiation. Mol Biol Cell 2017; 28:865-874. [PMID: 28179457 PMCID: PMC5385935 DOI: 10.1091/mbc.e16-06-0405] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Nuclear mispositioning in muscle is often associated with muscular diseases, but little is known about the mechanisms governing nuclear motion in these cells. A screen is presented for molecular motors involved in moving nuclei during myofiber differentiation. Nuclear positioning is a determining event in several cellular processes, such as fertilization, cell migration, and cell differentiation. The structure and function of muscle cells, which contain hundreds of nuclei, have been shown to rely in part on proper nuclear positioning. Remarkably, in the course of muscle differentiation, nuclear movements along the myotube axis might represent the event required for the even positioning of nuclei in the mature myofiber. Here we analyze nuclear behavior, time in motion, speed, and alignment during myotube differentiation and temporal interference of cytoskeletal microtubule-related motors. Using specific inhibitors, we find that nuclear movement and alignment are microtubule dependent, with 19 microtubule motor proteins implicated in at least one nuclear behavior. We further focus on Kif1c, Kif5b, kif9, kif21b, and Kif1a, which affect nuclear alignment. These results emphasize the different roles of molecular motors in particular mechanisms.
Collapse
Affiliation(s)
- V Gache
- Center of Research in Myology, INSERM UPMC UMR974, Centre National de la Recherche Scientifique, FRE3617, 75013 Paris, France
| | - E R Gomes
- Center of Research in Myology, INSERM UPMC UMR974, Centre National de la Recherche Scientifique, FRE3617, 75013 Paris, France .,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - B Cadot
- Center of Research in Myology, INSERM UPMC UMR974, Centre National de la Recherche Scientifique, FRE3617, 75013 Paris, France
| |
Collapse
|
243
|
The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes. Int J Med Microbiol 2017; 307:116-125. [DOI: 10.1016/j.ijmm.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 11/20/2022] Open
|
244
|
Ayala YA, Pontes B, Hissa B, Monteiro ACM, Farina M, Moura-Neto V, Viana NB, Nussenzveig HM. Effects of cytoskeletal drugs on actin cortex elasticity. Exp Cell Res 2017; 351:173-181. [DOI: 10.1016/j.yexcr.2016.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
|
245
|
Sigley J, Jarzen J, Scarpinato K, Guthold M, Pu T, Nelli D, Low J, Bonin K. Diffusion and Binding of Mismatch Repair Protein, MSH2, in Breast Cancer Cells at Different Stages of Neoplastic Transformation. PLoS One 2017; 12:e0170414. [PMID: 28125613 PMCID: PMC5268495 DOI: 10.1371/journal.pone.0170414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14-24 μm2/s for EGFP and 3-7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the onset of cancer.
Collapse
Affiliation(s)
- Justin Sigley
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - John Jarzen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Karin Scarpinato
- OVPR, University of Miami, Miami, Florida, United States of America
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Tracey Pu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Daniel Nelli
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Josiah Low
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
246
|
The selective cytotoxicity of DSF-Cu attributes to the biomechanical properties and cytoskeleton rearrangements in the normal and cancerous nasopharyngeal epithelial cells. Int J Biochem Cell Biol 2017; 84:96-108. [PMID: 28111334 DOI: 10.1016/j.biocel.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022]
Abstract
Cancer initiation and progression follow complex changes of cellular architecture and biomechanical property. Cancer cells with more submissive (or "softer") than their healthy counterparts attributed to the reorganization of the complex cytoskeleton structure, may be considered as a potential anti-tumor therapeutic target. In this study, atomic force microscopy (AFM) was carried out to detect the topographical and biophysical changes of nasopharyngeal carcinoma CNE-2Z cells and normal nasopharyngeal epithelial cells NP69-SV40T by treating the Disulfiram chelated with Cu2+ (DSF-Cu). DSF-Cu induced the apoptotic population, ROS production and decreased the NF-κB-p65 expression of CNE-2Z cells, which was much higher than those of NP69-SV40T cells. DSF-Cu caused the obvious changes of cell morphology and membrane ultrastructure in CNE-2Z cells. The roughness decreased and stiffness increased significantly in CNE-2Z cells, which correlated with the rearrangement of intracellular F-actin, FLNa and α-tubulin structures in CNE-2Z cells. And the adhesion force of CNE-2Z cells was also increased accompanied with the increased E-cadherin expression. However, these results could not be observed in the NP69-SV40T cells even the concentration of DSF reached up to 400nM. Finally, the detection of cell wound scratch assay confirmed DSF-Cu could inhibit the migration of CNE-2Z cells, but no effect on NP69-SV40T cells. These findings demonstrated the selective cytotoxicity of DSF-Cu in CNE-2Z cells may attribute to the different mechanical properties and cytoskeleton rearrangement from the normal nasopharyngeal epithelial cells.
Collapse
|
247
|
Li J, Mao H, Kawazoe N, Chen G. Insight into the interactions between nanoparticles and cells. Biomater Sci 2017; 5:173-189. [DOI: 10.1039/c6bm00714g] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the latest advances in nanoparticle (NP)–cell interactions. The influence of NP size, shape, shell structure, surface chemistry and protein corona formation on cellular uptake and cytotoxicity is highlighted in detail. Their impact on other cellular responses such as cell proliferation, differentiation and cellular mechanics is also discussed.
Collapse
Affiliation(s)
- Jingchao Li
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Hongli Mao
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Naoki Kawazoe
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| |
Collapse
|
248
|
Abstract
Thirty years after their invention by Arthur Ashkin and colleagues at Bell Labs in 1986 [1], optical tweezers (or traps) have become a versatile tool to address numerous biological problems. Put simply, an optical trap is a highly focused laser beam that is capable of holding and applying forces to micron-sized dielectric objects. However, their development over the last few decades has converted these tools from boutique instruments into highly versatile instruments of molecular biophysics. This introductory chapter intends to give a brief overview of the field, highlight some important scientific achievements, and demonstrate why optical traps have become a powerful tool in the biological sciences. We introduce a typical optical setup, describe the basic theoretical concepts of how trapping forces arise, and present the quantitative position and force measurement techniques that are most widely used today.
Collapse
|
249
|
von Bilderling C, Caldarola M, Masip ME, Bragas AV, Pietrasanta LI. Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:013703. [PMID: 28147641 DOI: 10.1063/1.4973664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.
Collapse
Affiliation(s)
- Catalina von Bilderling
- Centro de Microscopías Avanzadas and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Caldarola
- Laboratorio de Electrónica Cuántica, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín E Masip
- Laboratorio de Electrónica Cuántica, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Lía I Pietrasanta
- Centro de Microscopías Avanzadas and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
250
|
Yun X, Tang M, Yang Z, Wilksch JJ, Xiu P, Gao H, Zhang F, Wang H. Interrogation of drug effects on HeLa cells by exploiting new AFM mechanical biomarkers. RSC Adv 2017. [DOI: 10.1039/c7ra06233h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New AFM mechanical biomarkers including cell brush length, adhesion work and the factor of viscosity are discovered for drug assays.
Collapse
Affiliation(s)
- Xiaoling Yun
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
| | - Mingjie Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| | - Zhongbo Yang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| | - Jonathan J. Wilksch
- Department of Microbiology and Immunology
- University of Melbourne
- Parkville
- Australia
| | - Peng Xiu
- Department of Engineering Mechanics
- Soft Matter Research Center
- Zhejiang University
- Hangzhou 310027
- China
| | - Haiyang Gao
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
- Department of Biomedical Engineering
| | - Feng Zhang
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - Huabin Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| |
Collapse
|