201
|
Abstract
Cortical intermediate progenitors (IPs) comprise a secondary neuronal progenitor pool that arises from radial glia (RG). IPs are essential for generating the correct number of cortical neurons, but the factors that regulate the expansion and differentiation of IPs in the embryonic cortex are essentially unknown. In this study, we show that the Wnt-β-catenin pathway (canonical Wnt pathway) regulates IP differentiation into neurons. Upregulation of Wnt-β-catenin signaling by overexpression of Wnt3a in the neocortex induced early differentiation of IPs into neurons and the accumulation of these newly born neurons at the subventricular zone/intermediate zone border. Long-term overexpression of Wnt3a led to cortical dysplasia associated with the formation of large neuronal heterotopias. Conversely, downregulation of Wnt-β-catenin signaling with Dkk1 during mid and late stages of neurogenesis inhibited neuronal production. Consistent with previous reports, we show that Wnt-β-catenin signaling also promotes RG self-renewal. Thus, our findings show differential effects of the Wnt-β-catenin pathway on distinct groups of cortical neuronal progenitors: RG self-renewal and IP differentiation. Moreover, our findings suggest that dysregulation of Wnt signaling can lead to developmental defects similar to human cortical malformation disorders.
Collapse
|
202
|
Imura T, Wang X, Noda T, Sofroniew MV, Fushiki S. Adenomatous polyposis coli is essential for both neuronal differentiation and maintenance of adult neural stem cells in subventricular zone and hippocampus. Stem Cells 2011; 28:2053-2064. [PMID: 21089118 DOI: 10.1002/stem.524] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that not only inhibits the Wnt signaling pathway by promoting the degradation of β-catenin but also controls cell polarity, motility, and division. APC is abundantly expressed in the adult central nervous system, but its role in adult neurogenesis remains unknown. Using conditional deletion (or knockout) of APC (APC-CKO) from glial fibrillary acidic protein (GFAP)-expressing cells including adult neural stem cells (NSCs) in the subventricular zone and hippocampal dentate gyrus, we show that APC expression by these cells is a critical component of adult neurogenesis. Loss of APC function resulted in a marked reduction of GFAP-expressing NSC-derived new neurons, leading to the decreased volume of olfactory granule cell layer. Two distinct mechanisms account for impaired neurogenesis in APC-CKO mice. First, APC was highly expressed in migrating neuroblasts and APC deletion disturbed the differentiation from Mash1-expressing transient amplifying cells to neuroblasts with concomitant accumulation of β-catenin. As a result, migrating neuroblasts decreased, whereas Mash1-expressing dividing cells reciprocally increased in the olfactory bulb of APC-CKO mice. Second, APC deletion promoted an exhaustion of the adult germinal zone. Functional NSCs and their progeny progressively depleted with age. These findings demonstrate that APC expression plays a key role in regulating intracellular β-catenin level and neuronal differentiation of newly generated cells, as well as maintaining NSCs in the adult neurogenic niche. STEM CELLS 2010;28:2053-2064.
Collapse
Affiliation(s)
- Tetsuya Imura
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Xiaohong Wang
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tetsuo Noda
- Department of Cell Biology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
203
|
Chalasani K, Brewster RM. N-cadherin-mediated cell adhesion restricts cell proliferation in the dorsal neural tube. Mol Biol Cell 2011; 22:1505-15. [PMID: 21389116 PMCID: PMC3084673 DOI: 10.1091/mbc.e10-08-0675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neural progenitors are organized as a pseudostratified epithelium held together by adherens junctions (AJs), multiprotein complexes composed of cadherins and α- and β-catenin. Catenins are known to control neural progenitor division; however, it is not known whether they function in this capacity as cadherin binding partners, as there is little evidence that cadherins themselves regulate neural proliferation. We show here that zebrafish N-cadherin (N-cad) restricts cell proliferation in the dorsal region of the neural tube by regulating cell-cycle length. We further reveal that N-cad couples cell-cycle exit and differentiation, as a fraction of neurons are mitotic in N-cad mutants. Enhanced proliferation in N-cad mutants is mediated by ligand-independent activation of Hedgehog (Hh) signaling, possibly caused by defective ciliogenesis. Furthermore, depletion of Hh signaling results in the loss of junctional markers. We therefore propose that N-cad restricts the response of dorsal neural progenitors to Hh and that Hh signaling limits the range of its own activity by promoting AJ assembly. Taken together, these observations emphasize a key role for N-cad-mediated adhesion in controlling neural progenitor proliferation. In addition, these findings are the first to demonstrate a requirement for cadherins in synchronizing cell-cycle exit and differentiation and a reciprocal interaction between AJs and Hh signaling.
Collapse
Affiliation(s)
- Kavita Chalasani
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
204
|
Holowacz T, Huelsken J, Dufort D, van der Kooy D. Neural stem cells are increased after loss of β-catenin, but neural progenitors undergo cell death. Eur J Neurosci 2011; 33:1366-75. [DOI: 10.1111/j.1460-9568.2011.07632.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
205
|
Cardozo AJ, Gómez DE, Argibay PF. Transcriptional characterization of Wnt and Notch signaling pathways in neuronal differentiation of human adipose tissue-derived stem cells. J Mol Neurosci 2011; 44:186-94. [PMID: 21360053 DOI: 10.1007/s12031-011-9503-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/07/2011] [Indexed: 01/01/2023]
Abstract
Since the nervous system has limited self-repair capability, a great interest in using stem cells is generated to repair it. The adipose tissue is an abundant source of stem cells and previous reports have shown the differentiation of them in neuron-like cells when cultures are enriched with growth factors involved in neurogenesis. Regarding this, it could be thought that a functional parallelism between neurogenesis and neuronal differentiation of human adipose stem cells (hASCs) exists. For this reason, we investigated the putative involvement of Notch and Wnt pathways in neuronal differentiation of hASCs through real-time PCR. We found that both Wnt and Notch signaling are present in proliferating hASCs and that both cascades are downregulated when cells are differentiated to a neuronal phenotype. These results are in concordance with previous works where it was found that both pathways are involved in the maintenance of the proliferative state of stem cells, probably through inhibition of the expression of cell-fate-specific genes. These results could support the notion that hASCs differentiation into neuron-like cells represents a regulated process analogous to what occurs during neuronal differentiation of NSCs and could partially contribute to elucidate the molecular mechanisms involved in neuronal differentiation of adult human nonneural tissues.
Collapse
Affiliation(s)
- Alejandra Johana Cardozo
- Instituto de Ciencias Básicas y Medicina Experimental Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | |
Collapse
|
206
|
Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, Oliver G, Carroll TJ. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 2011; 138:1247-57. [PMID: 21350016 DOI: 10.1242/dev.057646] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mammalian kidney is composed of thousands of individual epithelial tubules known as nephrons. Deficits in nephron number are associated with myriad diseases ranging from complete organ failure to congenital hypertension. A balance between differentiation and maintenance of a mesenchymal progenitor cell population determines the final number of nephrons. How this balance is struck is poorly understood. Previous studies have suggested that Wnt9b/β-catenin signaling induced differentiation (mesenchymal-to-epithelial transition) in a subset of the progenitors but needed to be repressed in the remaining progenitors to keep them in the undifferentiated state. Here, we report that Wnt9b/β-catenin signaling is active in the progenitors and is required for their renewal/proliferation. Using a combination of approaches, we have revealed a mechanism through which cells receiving the same Wnt9b/β-catenin signal can respond in distinct ways (proliferate versus differentiate) depending on the cellular environment in which the signal is received. Interpretation of the signal is dependent, at least in part, on the activity of the transcription factor Six2. Six2-positive cells that receive the Wnt9b signal are maintained as progenitors whereas cells with reduced levels of Six2 are induced to differentiate by Wnt9b. Using this simple mechanism, the kidney is able to balance progenitor cell expansion and differentiation insuring proper nephron endowment. These findings provide novel insights into the molecular mechanisms that regulate progenitor cell differentiation during normal and pathological conditions.
Collapse
Affiliation(s)
- Courtney M Karner
- Department of Internal Medicine (Nephrology) and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Cancer stem cells in head and neck cancer. Cancers (Basel) 2011; 3:415-27. [PMID: 24212622 PMCID: PMC3756369 DOI: 10.3390/cancers3010415] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 12/12/2022] Open
Abstract
Head and neck cancer (HNC) is the sixth most common malignancy world-wide, however the survival rate has not improved for the past 20 years. In recent years, the cancer stem cell (CSC) hypothesis has gained ground in several malignancies and there is mounting evidence suggesting CSCs mediate tumor resistance to chemotherapy and radiation therapy. However, the CSC theory is also challenged at least in certain types of cancer. Here we review the progress of CSC studies in HNC, which suggest that HNC conforms to the CSC model. The identified CSC markers and their tumor initiation properties provide a framework for the development of novel therapeutic strategies for HNC.
Collapse
|
208
|
Neural Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
209
|
Mukherjee A, Soyal SM, Li J, Ying Y, Szwarc MM, He B, Kommagani R, Hodgson MC, Hiremath M, Cowin P, Lydon JP. A mouse transgenic approach to induce β-catenin signaling in a temporally controlled manner. Transgenic Res 2010; 20:827-40. [PMID: 21120693 DOI: 10.1007/s11248-010-9466-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 11/15/2010] [Indexed: 01/06/2023]
Abstract
Although constitutive murine transgenic models have provided important insights into β-catenin signaling in tissue morphogenesis and tumorigenesis, these models are unable to express activated β-catenin in a temporally controlled manner. Therefore, to enable the induction (and subsequent de-induction) of β-catenin signaling during a predetermined time-period or developmental stage, we have generated and characterized a TETO-ΔN89β-catenin responder transgenic mouse. Crossed with the MTB transgenic effector mouse, which targets the expression of the reverse tetracycline transactivator (rtTA) to the mammary epithelium, we demonstrate that the stabilized (and activated) form of β-catenin (ΔN89β-catenin) is expressed only in the presence doxycycline-activated rtTA in the mammary epithelial compartment. Furthermore, we show that transgene-derived ΔN89β-catenin elicits significant mammary epithelial proliferation and precocious alveologenesis in the virgin doxycycline-treated MTB/TETO-ΔN89β-catenin bitransgenic. Remarkably, deinduction of TETO-ΔN89β-catenin transgene expression (through doxycycline withdrawal) results in the reversal of these morphological changes. Importantly, continued activation of the TETO-ΔN89β-catenin transgene results in palpable mammary tumors (within 7-9 months) in the doxycycline-treated virgin MTB/TETO-ΔN89β-catenin bigenic but not in the same bitransgenic without doxycycline administration. Collectively, these mammary epithelial responses to ΔN89β-catenin expression agree with previous reports using conventional transgenesis and therefore confirm that ΔN89β-catenin functions as expected in this doxycycline-responsive bigenic system. In sum, our mammary gland studies demonstrate "proof-of-principle" for using the TETO-ΔN89β-catenin transgenic responder to activate (and then de-activate) β-catenin signaling in any tissue of interest in a spatiotemporal specific fashion.
Collapse
Affiliation(s)
- Atish Mukherjee
- Department of Molecular and Cellular Biology, Room M733A, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Receptor tyrosine phosphatase PTPγ is a regulator of spinal cord neurogenesis. Mol Cell Neurosci 2010; 46:469-82. [PMID: 21112398 PMCID: PMC3038263 DOI: 10.1016/j.mcn.2010.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/12/2010] [Accepted: 11/17/2010] [Indexed: 12/12/2022] Open
Abstract
During spinal cord development the proliferation, migration and survival of neural progenitors and precursors is tightly controlled, generating the fine spatial organisation of the cord. In order to understand better the control of these processes, we have examined the function of an orphan receptor protein tyrosine phosphatase (RPTP) PTPγ, in the developing chick spinal cord. Widespread expression of PTPγ occurs post-embryonic day 3 in the early cord and is consistent with a potential role in either neurogenesis or neuronal maturation. Using gain-of-function and loss-of-function approaches in ovo, we show that PTPγ perturbation significantly reduces progenitor proliferation rates and neuronal precursor numbers, resulting in hypoplasia of the neuroepithelium. PTPγ gain-of-function causes widespread suppression of Wnt/β-catenin-driven TCF signalling. One potential target of PTPγ may therefore be β-catenin itself, since PTPγ can dephosphorylate it in vitro, but alternative targets are also likely. PTPγ loss-of-function is not sufficient to alter TCF signalling. Instead, loss-of-function leads to increased apoptosis and defective cell–cell adhesion in progenitors and precursors. Furthermore, motor neuron precursor migration is specifically defective. PTPγ therefore regulates neurogenesis during a window of spinal cord development, with molecular targets most likely related to Wnt/β-catenin signalling, cell survival and cell adhesion.
Collapse
|
211
|
Zhang L, Yang X, Yang S, Zhang J. The Wnt /β-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 2010; 33:1-8. [PMID: 21073552 DOI: 10.1111/j.1460-9568.2010.7483.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin signaling pathway plays an important role in neural development, β-catenin is a central component of the Wnt/β-catenin signaling pathway, which not only performs the function of transmitting information in the cytoplasm, but also translocates to the nucleus-activating target gene transcription. The target genes in neural tissues have not been fully revealed, but the effects of the Wnt/β-catenin signaling pathway in adult neurogenesis have been demonstrated by ongoing research, which are significative to the basic research and treatment of neuronal degeneration diseases. Here, we review key findings to show the characteristics of β-catenin and its pivotal nature in the Wnt/β-catenin signaling pathway in a number of molecular studies. We also review current literature on the role of β-catenin in adult neurogenesis, which consists of an active process encompassing the proliferation, migration, differentiation and final synaptogenesis.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Key Laboratory of Injuries,Variations and Regeneration of Nervous System, Tianjin, China
| | | | | | | |
Collapse
|
212
|
Abstract
AbstractWhen all the cells of a tube are identical, they are unlikely to control how many of them are present in the circumference. However, when the circumference is subdivided into at least two regions of different cells, the tube diameter can be controlled via the width of these regions. We present a model and computer simulations for the formation of a tube which starts as a cone-like protrusion from a flat sheet of cells. Cells can exist in two alternative states. Cells of one state need signalling from those of the other state in order to maintain their state. Hence the cells of the two states arrange in stripes. A pattern-forming system, which defines where in this field of cells a tube will start to form, causes the stripes to become small at that very site. When four stripes originate at that point, and when the angle between the two borders of the stripes (as measured from the centre of the field) is less than 90°, the tissue is forced to protrude in the form of a cone. This model may help to understand the morphogenesis proper of buds of Cnidaria and of tubes, such as that of insect legs and the neural tube of vertebrates.
Collapse
|
213
|
The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators. Adv Drug Deliv Rev 2010; 62:1149-55. [PMID: 20920541 DOI: 10.1016/j.addr.2010.09.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 01/09/2023]
Abstract
Wnt signaling pathways play divergent roles during development, normal homeostasis and disease. The responses that result from the activation of the pathway control both proliferation and differentiation. Tight regulation and controlled coordination of the Wnt signaling cascade is required to maintain the balance between proliferation and differentiation. The non-redundant roles of the coactivator proteins CBP and p300, within the context of Wnt signaling are discussed. We highlight their roles as integrators of the various inputs that a cell receives to elicit the correct and coordinated response. We propose that essentially all cellular information - i.e. from other signaling pathways, nutrient levels, etc. - is funneled down into a choice of coactivators usage, either CBP or p300, by their interacting partner beta-catenin (or catenin-like molecules in the absence of beta-catenin) to make the critical decision to either remain quiescent, or once entering cycle to proliferate without differentiation or to initiate the differentiation process.
Collapse
|
214
|
Cui XP, Xing Y, Chen JM, Dong SW, Ying DJ, Yew DT. Wnt/beta-catenin is involved in the proliferation of hippocampal neural stem cells induced by hypoxia. Ir J Med Sci 2010; 180:387-93. [PMID: 20811817 DOI: 10.1007/s11845-010-0566-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIM Beta-catenin, as a major effector molecule in the canonical Wnt signaling pathway, could regulate adult neurogenesis. Here, the role of Wnt/β-catenin signaling pathway in the proliferation of hippocampal neural stem cells (NSCs) induced by hypoxia was investigated. METHODS The hippocampal NSCs of neonatal green fluorescent protein transgenic mice on day 0 were cultured in hypoxia (5% O(2)) and traditional O(2) (20% O(2)). The expression of β-catenin, p-GSK-3β, and cyclinD1 in NSCs was measured under hypoxia or traditional O(2) by western blotting. NSCs were electroporated with pTOPFLASH reporter in different conditions and the LEF/TCF-dependent luciferase activity was assayed. RESULTS Hypoxia increased the proliferation and reduced the apoptosis of hippocampal NSCs. NSCs proliferation was inhibited by transfecting with pAxin, whereas promoted by transfecting with pβ-catenin. CONCLUSION Hypoxia could enhance the proliferation of hippocampal NSCs and β-catenin contributed to this action.
Collapse
Affiliation(s)
- X-P Cui
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
215
|
Beta-catenin signaling negatively regulates intermediate progenitor population numbers in the developing cortex. PLoS One 2010; 5:e12376. [PMID: 20811503 PMCID: PMC2928265 DOI: 10.1371/journal.pone.0012376] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/25/2010] [Indexed: 11/19/2022] Open
Abstract
Intermediate progenitor cells constitute a second proliferative cell type in the developing mammalian cerebral cortex. Little is known about the factors that govern the production of intermediate progenitors. Although persistent expression of stabilized β-catenin was found to delay the maturation of radial glial progenitors into intermediate progenitors, the relationship between β-catenin signaling and intermediate progenitors remains poorly understood. Using a transgenic reporter mouse for Axin2, a direct target of Wnt/β-catenin signaling, we observed that β-catenin signaling is decreased in intermediate progenitor cells relative to radial glial progenitors. Conditional deletion of β-catenin from mouse cortical neural progenitors increased intermediate progenitor numbers, while conditional expression of stabilized β-catenin reduced the intermediate progenitor population. Together, these findings provide evidence that β-catenin signaling in radial progenitors negatively regulates intermediate progenitor cell number during cortical development.
Collapse
|
216
|
Lukaszewicz AI, McMillan MK, Kahn M. Small molecules and stem cells. Potency and lineage commitment: the new quest for the fountain of youth. J Med Chem 2010; 53:3439-53. [PMID: 20047330 DOI: 10.1021/jm901361d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Agnès I Lukaszewicz
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
217
|
Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010; 16:3153-62. [PMID: 20530697 DOI: 10.1158/1078-0432.ccr-09-2943] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Wnt signaling pathways have been conserved throughout evolution and regulate cell proliferation, morphology, motility, and fate during embryonic development. These pathways also play important roles throughout adult life to maintain homeostasis of tissues including skin, blood, intestine, and brain by regulating somatic stem cells and their niches. Aberrant regulation of the Wnt pathway leads to neoplastic proliferation in these same tissues. It has been suggested that Wnt signaling is also involved in the regulation of cancer stem cells (CSC), because there are many similarities in the signaling pathways that regulate normal adult stem cells and CSC. In this Perspective, we have focused on the Wnt/beta-catenin signaling pathway, which is the most intensively studied and best characterized Wnt signaling pathway. We provide an overview on the function of the Wnt/beta-catenin signaling pathway in CSC, and the possibility of the development of novel therapeutics to target this pathway.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
218
|
Chilov D, Sinjushina N, Saarimäki-Vire J, Taketo MM, Partanen J. beta-Catenin regulates intercellular signalling networks and cell-type specific transcription in the developing mouse midbrain-rhombomere 1 region. PLoS One 2010; 5:e10881. [PMID: 20532162 PMCID: PMC2880587 DOI: 10.1371/journal.pone.0010881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/01/2010] [Indexed: 12/29/2022] Open
Abstract
β-catenin is a multifunctional protein involved in both signalling by secreted factors of Wnt family and regulation of the cellular architecture. We show that β-catenin stabilization in mouse midbrain-rhombomere1 region leads to robust up-regulation of several Wnt signalling target genes, including Fgf8. Suggestive of direct transcriptional regulation of the Fgf8 gene, β-catenin stabilization resulted in Fgf8 up-regulation also in other tissues, specifically in the ventral limb ectoderm. Interestingly, stabilization of β-catenin rapidly caused down-regulation of the expression of Wnt1 itself, suggesting a negative feedback loop. The changes in signal molecule expression were concomitant with deregulation of anterior-posterior and dorso-ventral patterning. The transcriptional regulatory functions of β-catenin were confirmed by β-catenin loss-of-function experiments. Temporally controlled inactivation of β-catenin revealed a cell-autonomous role for β-catenin in the maintenance of cell-type specific gene expression in the progenitors of midbrain dopaminergic neurons. These results highlight the role of β-catenin in establishment of neuroectodermal signalling centers, promoting region-specific gene expression and regulation of cell fate determination.
Collapse
Affiliation(s)
- Dmitri Chilov
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Juha Partanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
219
|
Livnat I, Finkelshtein D, Ghosh I, Arai H, Reiner O. PAF-AH Catalytic Subunits Modulate the Wnt Pathway in Developing GABAergic Neurons. Front Cell Neurosci 2010; 4. [PMID: 20725507 PMCID: PMC2901149 DOI: 10.3389/fncel.2010.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 05/10/2010] [Indexed: 11/14/2022] Open
Abstract
Platelet-activating factor acetylhydrolase 1B (PAF-AH) inactivates the potent phospholipid platelet-activating factor (PAF) and is composed of two catalytic subunits (α1 and α2) and a dimeric regulatory subunit, LIS1. The function of the catalytic subunits in brain development remains unknown. Here we examined their effects on proliferation in the ganglionic eminences and tangential migration. In α1 and α2 catalytic subunits knockout mice we noticed an increase in the size of the ganglionic eminences resulting from increased proliferation of GABAergic neurons. Our results indicate that the catalytic subunits act as negative regulators of the Wnt signaling pathway. Overexpression of each of the PAF-AH catalytic subunits reduced the amount of nuclear beta-catenin and provoked a shift of this protein from the nucleus to the cytoplasm. In the double mutant mice, Wnt signaling increased in the ganglionic eminences and in the dorsal part of the cerebral cortex. In situ hybridization revealed increased and expanded expression of a downstream target of the Wnt pathway (Cyclin D1), and of upstream Wnt components (Tcf4, Tcf3 and Wnt7B). Furthermore, the interneurons in the cerebral cortex were more numerous and in a more advanced position. Transplantation assays revealed a non-cell autonomous component to this phenotype, which may be explained in part by increased and expanded expression of Sdf1 and Netrin-1. Our findings strongly suggest that PAF-AH catalytic subunits modulate the Wnt pathway in restricted areas of the developing cerebral cortex. We hypothesize that modulation of the Wnt pathway is the evolutionary conserved activity of the PAF-AH catalytic subunits.
Collapse
Affiliation(s)
- Idit Livnat
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | |
Collapse
|
220
|
Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV, Paik JH, Zhang H, Xiao Y, Perry SR, Hu J, Vinjamoori A, Gan B, Sahin E, Chheda MG, Brennan C, Wang YA, Hahn WC, Chin L, DePinho RA. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell 2010; 17:497-509. [PMID: 20478531 PMCID: PMC2900858 DOI: 10.1016/j.ccr.2010.03.020] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/26/2010] [Accepted: 04/08/2010] [Indexed: 01/17/2023]
Abstract
A hallmark feature of glioblastoma is its strong self-renewal potential and immature differentiation state, which contributes to its plasticity and therapeutic resistance. Here, integrated genomic and biological analyses identified PLAGL2 as a potent protooncogene targeted for amplification/gain in malignant gliomas. Enhanced PLAGL2 expression strongly suppresses neural stem cell (NSC) and glioma-initiating cell differentiation while promoting their self-renewal capacity upon differentiation induction. Transcriptome analysis revealed that these differentiation-suppressive activities are attributable in part to PLAGL2 modulation of Wnt/beta-catenin signaling. Inhibition of Wnt signaling partially restores PLAGL2-expressing NSC differentiation capacity. The identification of PLAGL2 as a glioma oncogene highlights the importance of a growing class of cancer genes functioning to impart stem cell-like characteristics in malignant cells.
Collapse
Affiliation(s)
- Hongwu Zheng
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Haoqiang Ying
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Ruprecht Wiedemeyer
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Haiyan Yan
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Steven N. Quayle
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Elena V. Ivanova
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Ji-Hye Paik
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Hailei Zhang
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Yonghong Xiao
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Samuel R. Perry
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jian Hu
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Anant Vinjamoori
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Boyi Gan
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Ergun Sahin
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Milan G. Chheda
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Neuro-oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and M.I.T., Cambridge, MA
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Neurosurgery, Weill-Cornell Medical College, New York, NY
| | - Y. Alan Wang
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - William C. Hahn
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Broad Institute of Harvard and M.I.T., Cambridge, MA
| | - Lynda Chin
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Neuro-oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and M.I.T., Cambridge, MA
| | - Ronald A. DePinho
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- correspondence: , 617-632-6086 (office), 617-632-6069 (fax)
| |
Collapse
|
221
|
White BD, Nathe RJ, Maris DO, Nguyen NK, Goodson JM, Moon RT, Horner PJ. Beta-catenin signaling increases in proliferating NG2+ progenitors and astrocytes during post-traumatic gliogenesis in the adult brain. Stem Cells 2010; 28:297-307. [PMID: 19960516 DOI: 10.1002/stem.268] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wnt/beta-catenin signaling can influence the proliferation and differentiation of progenitor populations in the hippocampus and subventricular zone, known germinal centers in the adult mouse brain. It is not known whether beta-catenin signaling occurs in quiescent glial progenitors in cortex or spinal cord, nor is it known whether beta-catenin is involved in the activation of glial progenitor populations after injury. Using a beta-catenin reporter mouse (BATGAL mouse), we show that beta-catenin signaling occurs in NG2 chondroitin sulfate proteoglycan+ (NG2) progenitors in the cortex, in subcallosal zone (SCZ) progenitors, and in subependymal cells surrounding the central canal. Interestingly, cells with beta-catenin signaling increased in the cortex and SCZ following traumatic brain injury (TBI) but did not following spinal cord injury. Initially after TBI, beta-catenin signaling was predominantly increased in a subset of NG2+ progenitors in the cortex. One week following injury, the majority of beta-catenin signaling appeared in reactive astrocytes but not oligodendrocytes. Bromodeoxyuridine (BrdU) paradigms and Ki-67 staining showed that the increase in beta-catenin signaling occurred in newly born cells and was sustained after cell division. Dividing cells with beta-catenin signaling were initially NG2+; however, by four days after a single injection of BrdU, they were predominantly astrocytes. Infusing animals with the mitotic inhibitor cytosine arabinoside prevented the increase of beta-catenin signaling in the cortex, confirming that the majority of beta-catenin signaling after TBI occurs in newly born cells. These data argue for manipulating the Wnt/beta-catenin pathway after TBI as a way to modify post-traumatic gliogenesis.
Collapse
Affiliation(s)
- Bryan D White
- Program in Neurobiology and Behavior, University of Washington School of Medicine and Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Hu Q, Zhang L, Wen J, Wang S, Li M, Feng R, Yang X, Li L. The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells 2010; 28:279-86. [PMID: 19882665 DOI: 10.1002/stem.246] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcriptional factor Sox2 and epidermal growth factor receptor (Egfr)-mediated signaling are both required for self-renewal of neural precursor cells (NPCs). However, the mechanism by which these factors coordinately regulate this process is largely unknown. Here we show that Egfr-mediated signaling promotes Sox2 expression, which in turn binds to the Egfr promoter and directly upregulates Egfr expression. Knockdown of Sox2 by RNA interference downregulates Egfr expression and attenuates colony formation of NPCs, whereas overexpression of Sox2 elevates Egfr expression and promotes NPC self-renewal. Moreover, the effect of Sox2 on NPC self-renewal is completely inhibited by AG1478, a specific inhibitor for Egfr; it is also inhibited by LY294002 and U0126, selective antagonists for phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (Erk1/2), respectively. Collectively, we conclude that NPC self-renewal is enhanced through a novel cellular feedback loop with mutual regulation of Egfr and Sox2.
Collapse
Affiliation(s)
- Qikuan Hu
- Peking University Stem Cell Research Center and National Center for International Research, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Kim S, Lehtinen MK, Sessa A, Zappaterra MW, Cho SH, Gonzalez D, Boggan B, Austin CA, Wijnholds J, Gambello MJ, Malicki J, LaMantia AS, Broccoli V, Walsh CA. The apical complex couples cell fate and cell survival to cerebral cortical development. Neuron 2010; 66:69-84. [PMID: 20399730 DOI: 10.1016/j.neuron.2010.03.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2010] [Indexed: 01/05/2023]
Abstract
Cortical development depends upon tightly controlled cell fate and cell survival decisions that generate a functional neuronal population, but the coordination of these two processes is poorly understood. Here we show that conditional removal of a key apical complex protein, Pals1, causes premature withdrawal from the cell cycle, inducing excessive generation of early-born postmitotic neurons followed by surprisingly massive and rapid cell death, leading to the abrogation of virtually the entire cortical structure. Pals1 loss shows exquisite dosage sensitivity, so that heterozygote mutants show an intermediate phenotype on cell fate and cell death. Loss of Pals1 blocks essential cell survival signals, including the mammalian target of rapamycin (mTOR) pathway, while mTORC1 activation partially rescues Pals1 deficiency. These data highlight unexpected roles of the apical complex protein Pals1 in cell survival through interactions with mTOR signaling.
Collapse
Affiliation(s)
- Seonhee Kim
- Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center, Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
LEF1/beta-catenin complex regulates transcription of the Cav3.1 calcium channel gene (Cacna1g) in thalamic neurons of the adult brain. J Neurosci 2010; 30:4957-69. [PMID: 20371816 DOI: 10.1523/jneurosci.1425-09.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
beta-Catenin, together with LEF1/TCF transcription factors, activates genes involved in the proliferation and differentiation of neuronal precursor cells. In mature neurons, beta-catenin participates in dendritogenesis and synaptic function as a component of the cadherin cell adhesion complex. However, the transcriptional activity of beta-catenin in these cells remains elusive. In the present study, we found that in the adult mouse brain, beta-catenin and LEF1 accumulate in the nuclei of neurons specifically in the thalamus. The particular electrophysiological properties of thalamic neurons depend on T-type calcium channels. Cav3.1 is the predominant T-type channel subunit in the thalamus, and we hypothesized that the Cacna1g gene encoding Cav3.1 is a target of the LEF1/beta-catenin complex. We demonstrated that the expression of Cacna1g is high in the thalamus and is further increased in thalamic neurons treated in vitro with LiCl or WNT3A, activators of beta-catenin. Luciferase reporter assays confirmed that the Cacna1G promoter is activated by LEF1 and beta-catenin, and footprinting analysis revealed four LEF1 binding sites in the proximal region of this promoter. Chromatin immunoprecipitation demonstrated that the Cacna1g proximal promoter is occupied by beta-catenin in vivo in the thalamus, but not in the hippocampus. Moreover, WNT3A stimulation enhanced T-type current in cultured thalamic neurons. Together, our data indicate that the LEF1/beta-catenin complex regulates transcription of Cacna1g and uncover a novel function for beta-catenin in mature neurons. We propose that beta-catenin contributes to neuronal excitability not only by a local action at the synapse but also by activating gene expression in thalamic neurons.
Collapse
|
225
|
Kuwahara A, Hirabayashi Y, Knoepfler PS, Taketo MM, Sakai J, Kodama T, Gotoh Y. Wnt signaling and its downstream target N-myc regulate basal progenitors in the developing neocortex. Development 2010; 137:1035-44. [PMID: 20215343 DOI: 10.1242/dev.046417] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Basal progenitors (also called non-surface dividing or intermediate progenitors) have been proposed to regulate the number of neurons during neocortical development through expanding cells committed to a neuronal fate, although the signals that govern this population have remained largely unknown. Here, we show that N-myc mediates the functions of Wnt signaling in promoting neuronal fate commitment and proliferation of neural precursor cells in vitro. Wnt signaling and N-myc also contribute to the production of basal progenitors in vivo. Expression of a stabilized form of beta-catenin, a component of the Wnt signaling pathway, or of N-myc increased the numbers of neocortical basal progenitors, whereas conditional deletion of the N-myc gene reduced these and, as a likely consequence, the number of neocortical neurons. These results reveal that Wnt signaling via N-myc is crucial for the control of neuron number in the developing neocortex.
Collapse
Affiliation(s)
- Atsushi Kuwahara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
226
|
Miller RK, McCrea PD. Wnt to build a tube: contributions of Wnt signaling to epithelial tubulogenesis. Dev Dyn 2010; 239:77-93. [PMID: 19681164 DOI: 10.1002/dvdy.22059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial tubes are crucial to the function of organ systems including the cardiovascular system, pulmonary system, gastrointestinal tract, reproductive organ systems, excretory system, and auditory system. Using a variety of animal model systems, recent studies have substantiated the role of Wnt signaling via the canonical/beta-catenin-mediated trajectory, the non-canonical Wnt trajectories, or both, in forming epithelial tubular tissues. This review focuses on the involvement of the Wnt pathways in the induction, specification, proliferation, and morphogenesis involved in tubulogenesis within tissues including the lungs, kidneys, ears, mammary glands, gut, and heart. The ultimate goal is to describe the developmental processes forming the various tubulogenic organ systems to determine the relationships between these processes.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
227
|
Ulloa F, Martí E. Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 2010; 239:69-76. [PMID: 19681160 DOI: 10.1002/dvdy.22058] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The spinal cord has been used as a model to dissect the mechanisms that govern the patterning of tissues during animal development, since the principles that rule the dorso-ventral patterning of the neural tube are applicable to other systems. Signals that determine the dorso-ventral axis of the spinal cord include Sonic hedgehog (Shh), acting as a bona fide morphogenetic signal to determine ventral progenitor identities, and members of the Bmp and the Wnt families, acting in the dorsal neural tube. Although Wnts have been initially recognized as important in proliferation of neural progenitor cells, their role in the dorso-ventral patterning has been controversial. In this review, we discuss recent reports that show an important contribution of the Wnt canonical pathway in dorso-ventral pattern formation. These data allow building a model by which the ventralizing activity of Shh is antagonized by Wnt activity through the expression of Gli3, a potent inhibitor of the Shh pathway. Therefore, antagonistic interactions between canonical Wnt, promoting dorsal identities, and Shh pathways, inducing ventral ones, would define the dorso-ventral patterning of the developing central nervous system.
Collapse
Affiliation(s)
- Fausto Ulloa
- Institute for Research in Biomedicine, Parc Cientific de Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
228
|
Wang HX, Li TY, Kidder GM. WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol Reprod 2010; 82:865-75. [PMID: 20107203 DOI: 10.1095/biolreprod.109.080903] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WNTs are secreted extracellular signaling molecules that transduce their signals by binding to G protein-coupled receptors of the frizzled (FZD) family. They control diverse developmental processes, such as cell fate specification, cell proliferation, cell differentiation, and apoptosis. Although WNT signaling has been shown to be essential for development of the ovary, its mechanistic role in folliculogenesis within the adult ovary has not been studied extensively. Therefore, the objective of this study was to investigate the regulation and function of WNT2 signaling in mouse granulosa cells. Immunostaining identified WNT2 as being expressed in granulosa cells throughout folliculogenesis, but with varying signal strength: in sequential sections, WNT2 immunoreactivity was strongest in healthy antral follicles but weak in atretic follicles. Knockdown of WNT2 expression using transfected short interfering RNA decreased DNA synthesis in granulosa cells, whereas WNT2 overexpression using a recombinant viral vector enhanced it. WNT2 knockdown led to accumulation of glycogen synthase kinase-3beta (GSK3B) in the cytoplasm but reduced the expression of beta-catenin. Conversely, WNT2 overexpression reduced the expression of GSK3B in the cytoplasm and induced beta-catenin translocation from the membrane into the nucleus. Beta-catenin knockdown also inhibited DNA synthesis in granulosa cells and neutralized the effect of WNT2 overexpression. WNT2/beta-catenin signaling had a slight effect on the apoptosis of granulosa cells. Taken together, the data indicate that WNT2 regulates beta-catenin localization in granulosa cells, and WNT2/beta-catenin signaling contributes to regulating their proliferation.
Collapse
Affiliation(s)
- Hong-Xing Wang
- Departments of Physiology and Pharmacology, Obstetrics and Gynecology, and Pediatrics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
229
|
Epibranchial ganglia orchestrate the development of the cranial neurogenic crest. Proc Natl Acad Sci U S A 2010; 107:2066-71. [PMID: 20133851 DOI: 10.1073/pnas.0910213107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The wiring of the nervous system arises from extensive directional migration of neuronal cell bodies and growth of processes that, somehow, end up forming functional circuits. Thus far, this feat of biological engineering appears to rely on sequences of pathfinding decisions upon local cues, each with little relationship to the anatomical and physiological outcome. Here, we uncover a straightforward cellular mechanism for circuit building whereby a neuronal type directs the development of its future partners. We show that visceral afferents of the head (that innervate taste buds) provide a scaffold for the establishment of visceral efferents (that innervate salivatory glands and blood vessels). In embryological terms, sensory neurons derived from an epibranchial placode--that we show to develop largely independently from the neural crest--guide the directional outgrowth of hindbrain visceral motoneurons and control the formation of neural crest-derived parasympathetic ganglia.
Collapse
|
230
|
Trazzi S, Steger M, Mitrugno VM, Bartesaghi R, Ciani E. CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3beta/beta-catenin signaling. J Biol Chem 2010; 285:10098-10109. [PMID: 20083607 DOI: 10.1074/jbc.m109.043711] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system is involved in the regulation of many physiological effects in the central and peripheral nervous system. Recent findings have demonstrated the presence of a functional endocannabinoid system within neuronal progenitors located in the hippocampus and ventricular/subventricular zone that participates in the regulation of cell proliferation. It is presently unknown whether the endocannabinoid system exerts a widespread effect on neuronal precursors from different neurogenic regions, and very little is known about the signaling by which it regulates neuronal precursor proliferation. Herein, we demonstrate the presence of cannabinoid CB(1) receptors in granule cell precursors (GCPs) during early cerebellar development. Activation of CB(1) receptors by HU-210 promoted GCP proliferation in vitro, an effect that was prevented by a selective CB(1) antagonist. Accordingly, in vivo experiments showed that GCP proliferation was increased by chronic HU-210 treatment and that in CB(1)-deficient mice cell proliferation was significantly lower than in wild-type littermates, indicating that the endocannabinoid system is physiologically involved in regulation of GCP proliferation. The pro-proliferative effect of cannabinoids in GCPs was mediated through the CB(1)/AKT/glycogen synthase kinase-3beta/beta-catenin pathway. Involvement of this pathway was also observed in cultures of neuronal precursors from the subventricular zone, suggesting that this pathway may be a general mechanism by which endocannabinoids regulate proliferation of neuronal precursors. These observations suggest that endocannabinoids constitute a new family of lipid signaling cues that may exert a widespread effect on neuronal precursor proliferation during brain development.
Collapse
Affiliation(s)
- Stefania Trazzi
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna
| | - Martin Steger
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna
| | - Valentina Maria Mitrugno
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna
| | - Renata Bartesaghi
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna
| | - Elisabetta Ciani
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna; Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| |
Collapse
|
231
|
Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 2010; 29:14836-46. [PMID: 19940179 DOI: 10.1523/jneurosci.2623-09.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The retrotrapezoid nucleus (RTN) is a group of neurons in the rostral medulla, defined here as Phox2b-, Vglut2-, neurokinin1 receptor-, and Atoh1-expressing cells in the parafacial region, which have been proposed to function both as generators of respiratory rhythm and as central respiratory chemoreceptors. The present study was undertaken to assess these two putative functions using genetic tools. We generated two conditional Phox2b mutations, which target different subsets of Phox2b-expressing cells, but have in common a massive depletion of RTN neurons. In both conditional mutants as well as in the previously described Phox2b(27Ala) mutants, in which the RTN is also compromised, the respiratory-like rhythmic activity normally seen in the parafacial region of fetal brainstem preparations was completely abrogated. Rhythmic motor bursts were recorded from the phrenic nerve roots in the mutants, but their frequency was markedly reduced. Both the rhythmic activity in the RTN region and the phrenic nerve discharges responded to a low pH challenge in control, but not in the mutant embryos. Together, our results provide genetic evidence for the essential role of the Phox2b-expressing RTN neurons both in establishing a normal respiratory rhythm before birth and in providing chemosensory drive.
Collapse
|
232
|
Chopra DP, Dombkowski AA, Stemmer PM, Parker GC. Intestinal epithelial cells in vitro. Stem Cells Dev 2010; 19:131-42. [PMID: 19580443 PMCID: PMC3136723 DOI: 10.1089/scd.2009.0109] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/06/2009] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the biology of stem cells has resulted in significant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the difficulty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progenitor cells into the various intestinal lineages. Several short-term organ/organoid and epithelial cell culture models have been described. There is a dearth of long-term epithelial and/or stem cell cultures of intestine. With an expanding role of stem cells in the treatment of degenerative disorders, there is a critical need for additional efforts to develop in vitro models of stem/progenitor epithelial cells of intestine. The objective of this review is to recapitulate the current status of technologies and knowledge for in vitro propagation of intestinal epithelial cells, markers of the intestinal stem cells, and gene and protein expression profiles of the intestinal cellular differentiation.
Collapse
Affiliation(s)
- Dharam P. Chopra
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Alan A. Dombkowski
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Graham C. Parker
- Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan
| |
Collapse
|
233
|
Zhang C, Zhang Z, Shu H, Liu S, Song Y, Qiu K, Yang H. The modulatory effects of bHLH transcription factors with the Wnt/beta-catenin pathway on differentiation of neural progenitor cells derived from neonatal mouse anterior subventricular zone. Brain Res 2009; 1315:1-10. [PMID: 20018178 DOI: 10.1016/j.brainres.2009.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 12/23/2022]
Abstract
The subventricular zone (SVZ) located adjacent to the lateral ventricles is the major site where neural progenitor cells (NPCs) are concentrated in the adult brain. NPCs in the anterior subventricular zone (SVZa) generate neuronal precursors and migrate along a highly localized pathway--the rostral migratory stream (RMS) to the olfactory bulb (OB), where they differentiate into interneurons. To investigate the modulatory effects of basic helix-loop-helix (bHLH) transcription factors on differentiation from SVZa NPCs, we firstly examined the distribution of bHLH family members (Mash1, Id2, and Hes1) in cultured mouse SVZa NPCs and evaluated their regulatory effects on differentiation by transfection with Mash1, Id2, or Hes1 eukaryotic expression plasmid. Furthermore, we assessed the effects of bHLH transcription factors on the expression of downstream molecules of the Wnt/beta-catenin pathway, beta-catenin and (Glycogen synthase kinase-3beta). Our results demonstrated that Mash1, Id2, Hes1 were all widely expressed in in vitro progenies from mouse SVZa NPCs. Analyses of SVZa NPCs transfected with eukaryotic expression plasmids showed that Mash1 promoted neuronal differentiation from SVZa NPCs, while Id2 and Hes1 repressed neuronal differentiation. In addition, we found that Id2 and Hes1 simulated expression of beta-catenin and GSK-3beta, while Mash1 inhibited their expression. Our results suggest that the classic bHLH transcription factors, Mash1, Id2 and Hes1, play important roles in the regulation of differentiation from SVZa NPCs. This modulation is possibly mediated by a coordination of bHLH and Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- ChunQing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing 400037, China
| | | | | | | | | | | | | |
Collapse
|
234
|
Lin CC, Chou CH, Howng SL, Hsu CY, Hwang CC, Wang C, Hsu CM, Hong YR. GSKIP, an inhibitor of GSK3β, mediates the N-cadherin/β-catenin pool in the differentiation of SH-SY5Y cells. J Cell Biochem 2009; 108:1325-36. [DOI: 10.1002/jcb.22362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
235
|
Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 2009; 12:31-40; sup pp 1-9. [PMID: 20010817 DOI: 10.1038/ncb2001] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/06/2009] [Indexed: 01/04/2023]
Abstract
The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.
Collapse
|
236
|
Beta-catenin signaling levels in progenitors influence the laminar cell fates of projection neurons. J Neurosci 2009; 29:13710-9. [PMID: 19864583 DOI: 10.1523/jneurosci.3022-09.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying the timing of the laminar fate decisions during cortical neurogenesis remain poorly understood. Here we show that beta-catenin signaling in cortical neural precursors can regulate the laminar fate of their daughters. In ventricular zone neural precursors, beta-catenin signaling is higher when deep-layer neurons are being generated and lower when upper-layer neurons are being generated. Overactivation of beta-catenin in cortical precursors midway through corticogenesis increased the relative production of deep-layer neurons, while inhibition of signaling increased the relative production of upper-layer neurons. Furthermore, in late-gestation upper-layer precursors, overactive beta-catenin signaling was able to partially restore production of deep-layer neurons. These observations suggest that increased beta-catenin signaling can reset the timing of cortical precursors to promote the production of deep-layer neurons, while inhibition of beta-catenin signaling advances the timing to promote upper-layer production.
Collapse
|
237
|
Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 2009; 5:279-89. [PMID: 19733540 DOI: 10.1016/j.stem.2009.06.017] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 05/20/2009] [Accepted: 06/16/2009] [Indexed: 12/17/2022]
Abstract
Epidermal integrity is a complex process established during embryogenesis and maintained throughout the organism lifespan by epithelial stem cells. Although Wnt regulates normal epithelial stem cell renewal, aberrant Wnt signaling can contribute to cancerous growth. Here, we explored the consequences of persistent expressing Wnt1 in an epidermal compartment that includes the epithelial stem cells. Surprisingly, Wnt caused the rapid growth of the hair follicles, but this was followed by epithelial cell senescence, disappearance of the epidermal stem cell compartment, and progressive hair loss. Although Wnt1 induced the activation of beta-catenin and the mTOR pathway, both hair follicle hyperproliferation and stem cell exhaustion were strictly dependent on mTOR function. These findings suggest that whereas activation of beta-catenin contributes to tumor growth, epithelial stem cells may be endowed with a protective mechanism that results in cell senescence upon the persistent stimulation of proliferative pathways that activate mTOR, ultimately suppressing tumor formation.
Collapse
Affiliation(s)
- Rogerio M Castilho
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
238
|
Stepniak E, Radice GL, Vasioukhin V. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb Perspect Biol 2009; 1:a002949. [PMID: 20066120 PMCID: PMC2773643 DOI: 10.1101/cshperspect.a002949] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Properly regulated intercellular adhesion is critical for normal development of all metazoan organisms. Adherens junctions play an especially prominent role in development because they link the adhesive function of cadherin-catenin protein complexes to the dynamic forces of the actin cytoskeleton, which helps to orchestrate a spatially confined and very dynamic assembly of intercellular connections. Intriguingly, in addition to maintaining intercellular adhesion, cadherin-catenin proteins are linked to several major developmental signaling pathways crucial for normal morphogenesis. In this article we will highlight the key genetic studies that uncovered the role of cadherin-catenin proteins in vertebrate development and discuss the potential role of these proteins as molecular biosensors of external cellular microenvironment that may spatially confine signaling molecules and polarity cues to orchestrate cellular behavior throughout the complex process of normal morphogenesis.
Collapse
Affiliation(s)
- Ewa Stepniak
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109
| | - Glenn L. Radice
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109
- Department of Pathology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
239
|
Ahmed S, Gan HT, Lam CS, Poonepalli A, Ramasamy S, Tay Y, Tham M, Yu YH. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh Migr 2009; 3:412-24. [PMID: 19535895 DOI: 10.4161/cam.3.4.8803] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The central nervous system (CNS) is a large network of interconnecting and intercommunicating cells that form functional circuits. Disease and injury of the CNS are prominent features of the healthcare landscape. There is an urgent unmet need to generate therapeutic solutions for CNS disease/injury. To increase our understanding of the CNS we need to generate cellular models that are experimentally tractable. Neural stem cells (NSCs), cells that generate the CNS during embryonic development, have been identified and propagated in vitro. To develop NSCs as a cellular model for the CNS we need to understand more about their genetics and cell biology. In particular, we need to define the mechanisms of self-renewal, proliferation and differentiation--i.e. NSC behavior. The analysis of pluripotency of embryonic stem cells through mapping regulatory networks of transcription factors has proven to be a powerful approach to understanding embryonic development. Here, we discuss the role of transcription factors in NSC behavior.
Collapse
Affiliation(s)
- Sohail Ahmed
- Institute of Medical Biology, Immunos, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Alvarez-Medina R, Le Dreau G, Ros M, Martí E. Hedgehog activation is required upstream of Wnt signalling to control neural progenitor proliferation. Development 2009; 136:3301-9. [PMID: 19736325 DOI: 10.1242/dev.041772] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The canonical Wnt and sonic hedgehog (Shh) pathways have been independently linked to cell proliferation in a variety of tissues and systems. However, interaction of these signals in the control of cell cycle progression has not been studied. Here, we demonstrate that in the developing vertebrate nervous system these pathways genetically interact to control progression of the G1 phase of the cell cycle. By in vivo loss-of-function experiments, we demonstrate the absolute requirement of an upstream Shh activity for the regulation of Tcf3/4 expression. In the absence of Tcf3/4, the canonical Wnt pathway cannot activate target gene expression, including that of cyclin D1, and the cell cycle is necessarily arrested at G1. In addition to the control of G1 progression, Shh activity controls the G2 phase through the regulation of cyclin E, cyclin A and cyclin B expression, and this is achieved independently of Wnt. Thus, in neural progenitors, cell cycle progression is co-ordinately regulated by Wnt and Shh activities.
Collapse
Affiliation(s)
- Roberto Alvarez-Medina
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, C/Baldiri i Reixac 21, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
241
|
Revet I, Huizenga G, Koster J, Volckmann R, van Sluis P, Versteeg R, Geerts D. MSX1 induces the Wnt pathway antagonist genes DKK1, DKK2, DKK3, and SFRP1 in neuroblastoma cells, but does not block Wnt3 and Wnt5A signalling to DVL3. Cancer Lett 2009; 289:195-207. [PMID: 19815336 DOI: 10.1016/j.canlet.2009.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 11/15/2022]
Abstract
Neuroblastoma is the most common extra-cranial solid childhood cancer; it arises from neural crest-derived cells of the sympathetic nervous system. The anomalous regulation of embryonic developmental pathways like Delta-Notch and Wnt has been implicated in aberrant cell growth and differentiation in many (childhood) tumours. We have previously found regulation of Delta-Notch pathway genes by the MSX1 neural crest development gene in a neuroblastoma cell line, and significant correlations between these genes in neuroblastic tumours. However, a clear role for the Wnt pathway in neuroblastic tumours has not yet been determined. We now analyze the complete spectrum of genes regulated by inducible expression of MSX1 in the SJNB8 neuroblastoma cell line using Affymetrix expression profiling. We show that MSX1 induces the expression of four different Wnt pathway inhibitor genes: Dickkopf 1-3 (DKK1-3) and secreted frizzled-related protein 1 (SFRP1), and provide evidence that high expression of two of these genes correlates with good prognosis. We were able to demonstrate that both the canonical Wnt3 and the alternative Wnt5A ligands are highly expressed in neuroblastic tumours and cell lines, and specifically activate the DVL3 Wnt co-receptor protein in SJNB8 neuroblastoma cells. These results suggest involvement of MSX1 in Wnt signalling and demonstrate activity of the more upstream Wnt pathway in neuroblastic cells.
Collapse
Affiliation(s)
- Ingrid Revet
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
242
|
GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci 2009; 12:1390-7. [PMID: 19801986 DOI: 10.1038/nn.2408] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/01/2009] [Indexed: 12/11/2022]
Abstract
The development of the brain requires the exquisite coordination of progenitor proliferation and differentiation to achieve complex circuit assembly. It has been suggested that glycogen synthase kinase 3 (GSK-3) acts as an integrating molecule for multiple proliferation and differentiation signals because of its essential role in the RTK, Wnt and Shh signaling pathways. We created conditional mutations that deleted both the alpha and beta forms of GSK-3 in mouse neural progenitors. GSK-3 deletion resulted in massive hyperproliferation of neural progenitors along the entire neuraxis. Generation of both intermediate neural progenitors and postmitotic neurons was markedly suppressed. These effects were associated with the dysregulation of beta-catenin, Sonic Hedgehog, Notch and fibroblast growth factor signaling. Our results indicate that GSK-3 signaling is an essential mediator of homeostatic controls that regulate neural progenitors during mammalian brain development.
Collapse
|
243
|
Yan Y, Sabharwal P, Rao M, Sockanathan S. The antioxidant enzyme Prdx1 controls neuronal differentiation by thiol-redox-dependent activation of GDE2. Cell 2009; 138:1209-21. [PMID: 19766572 DOI: 10.1016/j.cell.2009.06.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 04/23/2009] [Accepted: 06/23/2009] [Indexed: 11/28/2022]
Abstract
The six-transmembrane protein GDE2 controls the onset and progression of spinal motor neuron differentiation through extracellular glycerophosphodiester phosphodiesterase metabolism. Although this process is likely to be tightly regulated, the relevant mechanisms that modulate its activity are unknown. Here we show that the antioxidant scavenger peroxiredoxin1 (Prdx1) interacts with GDE2, and that loss of Prdx1 causes motor neuron deficits analogous to GDE2 ablation. Prdx1 cooperates with GDE2 to drive motor neuron differentiation, and this synergy requires Prdx1 thiol-dependent catalysis. Prdx1 activates GDE2 through reduction of an intramolecular disulfide bond that bridges its intracellular N- and C-terminal domains. GDE2 variants incapable of disulfide bond formation acquire independence from Prdx1 and are potent inducers of motor neuron differentiation. These findings define Prdx1 as a pivotal regulator of GDE2 activity and suggest roles for coupled thiol-redox-dependent cascades in controlling neuronal differentiation in the spinal cord.
Collapse
Affiliation(s)
- Ye Yan
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
244
|
Stage- and area-specific control of stem cells in the developing nervous system. Curr Opin Genet Dev 2009; 19:454-60. [DOI: 10.1016/j.gde.2009.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/23/2009] [Accepted: 08/07/2009] [Indexed: 12/18/2022]
|
245
|
Lee MY, Lim HW, Lee SH, Han HJ. Smad, PI3K/Akt, and Wnt-Dependent Signaling Pathways Are Involved in BMP-4-Induced ESC Self-Renewal. Stem Cells 2009; 27:1858-68. [DOI: 10.1002/stem.124] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
246
|
Wang X, Lee JE, Dorsky RI. Identification of Wnt-responsive cells in the zebrafish hypothalamus. Zebrafish 2009; 6:49-58. [PMID: 19374548 DOI: 10.1089/zeb.2008.0570] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In all vertebrate brains, there is a period of widespread embryonic neurogenesis followed by specific regional neurogenesis that continues into adult stages. The Wnt signaling pathway, which is essential for numerous developmental processes, has also been suggested to be involved in neurogenesis. To help investigate the exact roles of canonical Wnt signaling in neurogenesis, here we examine the identity of Wnt-responsive cells in the zebrafish hypothalamus. This tissue is a useful diencephalic neurogenesis model containing evolutionarily conserved populations of neurons. We first performed in situ hybridization to show the expression patterns of Tcf family members and a canonical Wnt signaling reporter in the 50 hpf embryonic hypothalamus and larval/adult hypothalamus. We then used immunohistochemistry to identify the cell types of Wnt-responsive and Lef1-positive cells in both 50 hpf embryonic and adult hypothalamus. Our results indicate that Wnt-responsive cells in the hypothalamus are likely to be both mitotic progenitors and postmitotic precursors at embryonic stages, but only precursors at the adult stage. These data suggest that canonical Wnt signaling may be functionally required for maintenance of neural progenitor and precursor pools in the embryo, and for ongoing neurogenesis in the adult zebrafish.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
247
|
Abstract
The Wnt family of secreted ligands act through many receptors to stimulate distinct intracellular signalling pathways in embryonic development, in adults and in disease processes. Binding of Wnt to the Frizzled family of receptors and to low density lipoprotein receptor-related protein 5 (LRP5) or LRP6 co-receptors stimulates the intracellular Wnt-beta-catenin signalling pathway, which regulates beta-cateninstability and context-dependent transcription. This signalling pathway controls many processes, such as cell fate determination, cell proliferation and self-renewal of stem and progenitor cells. Intriguingly, the transmembrane receptor Tyr kinases Ror2 and Ryk, as well as Frizzledreceptors that act independently of LRP5 or LRP6, function as receptors for Wnt and activate beta-catenin-independent pathways. This leads to changes in cell movement and polarity and to the antagonism of the beta-catenin pathway.
Collapse
Affiliation(s)
- Stephane Angers
- Leslie Dan Faculty of Pharmacy and the Department of Biochemistry, University of Toronto, Ontario, M5S 3M2, Canada.
| | | |
Collapse
|
248
|
Chang H, Guillou F, Taketo MM, Behringer RR. Overactive beta-catenin signaling causes testicular sertoli cell tumor development in the mouse. Biol Reprod 2009; 81:842-9. [PMID: 19553598 DOI: 10.1095/biolreprod.109.077446] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Overactive WNT/beta-catenin signaling has been found in many forms of cancer in human patients. Mouse models with mutations in different components of the WNT/beta-catenin signaling pathway have been generated to mimic tumorigenesis in humans. Mice with mutations that result in overactive WNT/beta-catenin signaling developed tumors in some tissues, such as digestive tract, skin, and ovary, but they failed to develop tumors in other tissues, such as mammary gland, liver, kidney, and primordial germ cells. To investigate whether overactive beta-catenin signaling is capable of inducing Sertoli cell tumorigenesis in testes, we generated Ctnnb1(tm1Mmt/+);Tg(AMH-cre)1Flor male mice that express a constitutively active form of beta-catenin specifically in Sertoli cells. No tumors were observed at 4 mo of age, but 70% of the mutant males developed Sertoli cell tumors at 8 mo of age. At 1 yr of age, more than 90% of the mutant males developed tumors. No instances of extratesticular spread of the tumors were found in the mutant mice. These studies show a causal link between overactive WNT/beta-catenin signaling and Sertoli cell tumor development and provide a novel mouse model for the study of Sertoli cell tumor biology.
Collapse
Affiliation(s)
- Hao Chang
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | | | | | | |
Collapse
|
249
|
Kunke D, Bryja V, Mygland L, Arenas E, Krauss S. Inhibition of canonical Wnt signaling promotes gliogenesis in P0-NSCs. Biochem Biophys Res Commun 2009; 386:628-33. [PMID: 19545542 DOI: 10.1016/j.bbrc.2009.06.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/13/2009] [Indexed: 01/29/2023]
Abstract
Wnt signaling plays an essential role in the development of mammalian central nervous system. We investigated the impact of activation/inhibition of the Wnt signaling pathway on neuronal/glial differentiation in neurospheres derived from neonatal mouse forebrains. For short term alterations, neurospheres were stimulated with recombinant Wnt-3a, Wnt-5a and the Wnt inhibitor Dickkopf-1 (Dkk1). Furthermore, neurospheres were transduced with retroviral vectors encoding Wnt-3a, Wnt-7a and their inhibitors Dkk1 and soluble Frizzled related protein-5 (sFRP5). Long-term activation of Wnt pathway by Wnt-7a or by treatment with GSK3 inhibitors promoted a moderate increase of the neuronal differentiation and blocked gliogenesis. In contrast, Wnt pathway inhibition in neurospheres, induced by retroviral overexpression of either Dkk1 or sFRP5, robustly increased the gliogenesis at the expense of neurogenesis. In summary, our data demonstrate that activation or inhibition of Wnt/beta-catenin signaling in neurospheres regulates neuronal and glial differentiation, respectively. Thus, our results suggest that Wnt signaling may also contribute to regulate these processes in the neonatal brain.
Collapse
Affiliation(s)
- David Kunke
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet, 0027 Oslo, Norway.
| | | | | | | | | |
Collapse
|
250
|
Abstract
The neuronal loss associated with Alzheimer's disease (AD) affects areas of the brain that are vital to cognition. Although recent studies have shown that new neurons can be generated from progenitor cells in the neocortices of healthy adults, the neurogenic potential of the stem/progenitor cells of AD patients is not known. To answer this question, we compared the properties of glial progenitor cells (GPCs) from the cortices of healthy control (HC) and AD subjects. The GPCs from AD brain samples displayed reduced renewal capability and reduced neurogenesis compared with GPCs from HC brains. To investigate the mechanisms underlying this difference, we compared beta-catenin signaling proteins in GPCs from AD versus HC subjects and studied the effect of amyloid beta peptide (Abeta, a hallmark of AD pathology) on GPCs. Interestingly, GPCs from AD patients exhibited elevated levels of glycogen synthase kinase 3beta (GSK-3beta, an enzyme known to phosphorylate beta-catenin), accompanied by an increase in phosphorylated beta-catenin and a decrease in nonphosphorylated beta-catenin compared with HC counterparts. Furthermore. we found that Abeta treatment impaired the ability of GPCs from HC subjects to generate new neurons and caused changes in beta-catenin signaling proteins similar to those observed in GPCs from AD patients. Similar results were observed in GPCs isolated from AD transgenic mice. These results suggest that Abeta-induced interruption of beta-catenin signaling may contribute to the impairment of neurogenesis in AD progenitor cells.
Collapse
|