201
|
Abstract
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein. RPA is conserved in all eukaryotes and is essential for DNA replication, DNA repair, and recombination. RPA also plays a role in coordinating DNA metabolism and the cellular response to DNA damage. Assays have been established for many of these reactions. This chapter provides an overview of the methods used for analyzing RPA-DNA interactions, RPA-protein interactions, and functional activities of RPA. Methods are also discussed for visualizing RPA in the cell and analyzing the effects of RPA function on cell cycle progression in mammalian cells.
Collapse
Affiliation(s)
- Sara K Binz
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | | | | | | |
Collapse
|
202
|
Garcia-Diaz M, Bebenek K, Gao G, Pedersen LC, London RE, Kunkel TA. Structure–function studies of DNA polymerase lambda. DNA Repair (Amst) 2005; 4:1358-67. [PMID: 16213194 DOI: 10.1016/j.dnarep.2005.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA polymerase lambda is a member of the X family of polymerases that is implicated in non-homologous end-joining of double-strand breaks in DNA and in base excision repair of DNA damage. To better understand the roles of DNA polymerase lambda in these repair pathways, here we review its structure and biochemical properties, with emphasis on its gap-filling polymerization activity, its dRP lyase activity and its unusual DNA synthetic (in)fidelity.
Collapse
Affiliation(s)
- Miguel Garcia-Diaz
- Laboratory of Structural Biology and Laboratory of Molecular Genetics NIEHS, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
203
|
Hung RJ, Hall J, Brennan P, Boffetta P. Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 2005; 162:925-42. [PMID: 16221808 DOI: 10.1093/aje/kwi318] [Citation(s) in RCA: 387] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic variations in DNA repair genes are thought to modulate DNA repair capacity and are suggested to be related to cancer risk. However, epidemiologic findings have been inconsistent. The authors conducted meta-analyses of associations between genes in the base excision repair pathway and cancer risk, focusing on three key genes: 8-oxoguanine DNA glycosylase (OGG1), apurinic/apyrimidinic endonuclease (APE1/APEX1), and x-ray repair cross-complementing group 1 (XRCC1). They found increased lung cancer risk among subjects carrying the OGG1 Cys/Cys genotype (odds ratio (OR) = 1.24, 95% confidence interval (CI): 1.01, 1.53), using 3,253 cases and 3,371 controls from seven studies; this is consistent with experimental evidence that this isoform exhibits decreased activity. They found a protective effect of the XRCC1 194Trp allele for tobacco-related cancers (OR = 0.86, 95% CI: 0.77, 0.95), using 4,895 cases and 5,977 controls from 16 studies; this is compatible with evidence of lower mutagen sensitivity for this allele. The XRCC1 399Gln/399Gln genotype was associated with increased risk of tobacco-related cancers among light smokers (OR = 1.38, 95% CI: 0.99, 1.94) but decreased risk among heavy smokers (OR = 0.71, 95% CI: 0.51, 0.99), suggesting effect modification by tobacco smoking. There was no association between cancer risk and the APE1/APEX1 Asp148Glu and XRCC1 Arg280His polymorphisms. Recommendations for future studies include pooling of individual data to facilitate evaluation of multigenic effects and detailed analysis of effect modification by environmental exposure.
Collapse
Affiliation(s)
- Rayjean J Hung
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France.
| | | | | | | |
Collapse
|
204
|
Kavli B, Andersen S, Otterlei M, Liabakk NB, Imai K, Fischer A, Durandy A, Krokan HE, Slupphaug G. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. ACTA ACUST UNITED AC 2005; 201:2011-21. [PMID: 15967827 PMCID: PMC2212036 DOI: 10.1084/jem.20050042] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The generation of high-affinity antibodies requires somatic hypermutation (SHM) and class switch recombination (CSR) at the immunoglobulin (Ig) locus. Both processes are triggered by activation-induced cytidine deaminase (AID) and require UNG-encoded uracil-DNA glycosylase. AID has been suggested to function as an mRNA editing deaminase or as a single-strand DNA deaminase. In the latter model, SHM may result from replicative incorporation of dAMP opposite U or from error-prone repair of U, whereas CSR may be triggered by strand breaks at abasic sites. Here, we demonstrate that extracts of UNG-proficient human B cell lines efficiently remove U from single-stranded DNA. In B cell lines from hyper-IgM patients carrying UNG mutations, the single-strand–specific uracil-DNA glycosylase, SMUG1, cannot complement this function. Moreover, the UNG mutations lead to increased accumulation of genomic uracil. One mutation results in an F251S substitution in the UNG catalytic domain. Although this UNG form was fully active and stable when expressed in Escherichia coli, it was mistargeted to mitochondria and degraded in mammalian cells. Our results may explain why SMUG1 cannot compensate the UNG2 deficiency in human B cells, and are fully consistent with the DNA deamination model that requires active nuclear UNG2. Based on our findings and recent information in the literature, we present an integrated model for the initiating steps in CSR.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Sugimoto T, Igawa E, Tanihigashi H, Matsubara M, Ide H, Ikeda S. Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage. DNA Repair (Amst) 2005; 4:1270-80. [PMID: 16076563 DOI: 10.1016/j.dnarep.2005.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/08/2005] [Accepted: 06/20/2005] [Indexed: 11/18/2022]
Abstract
Schizosaccharomyces pombe Nthpl, an ortholog of the endonuclease III family, is the sole bifunctional DNA glycosylase encoded in its genome. The enzyme removes oxidative pyrimidine and incises 3' to the apurinic/apyrimidinic (AP) site, leaving 3'-alpha,beta-unsaturated aldehyde. Analysis of nth1 cDNA revealed an intronless structure including 5'- and 3'-untranslated regions. An Nth1p-green fluorescent fusion protein was predominantly localized in the nuclei of yeast cells, indicating a nuclear function. Deletion of nth1 confirmed that Nth1p is responsible for the majority of activity for thymine glycol and AP site incision in the absence of metal ions, while nth1 mutants exhibit hypersensitivity to methylmethanesulfonate (MMS). Complementation of sensitivity by heterologous expression of various DNA glycosylases showed that the methyl-formamidopyrimidine (me-fapy) and/or AP sites are plausible substrates for Nth1p in repairing MMS damage. Apn2p, the major AP endonuclease in S. pombe, also greatly contributes to the repair of MMS damage. Deletion of nth1 from an apn2 mutant resulted in tolerance to MMS damage, indicating that Nth1p-induced 3'-blocks are responsible for MMS sensitivity in apn2 mutants. Overexpression of Apn2p in nth1 mutants failed to suppress MMS sensitivity. These results indicate that Nth1p, not Apn2p, primarily incises AP sites and that the resultant 3'-blocks are removed by the 3'-phosphodiesterase activity of Apn2p. Nth1p is dispensable for cell survival against low levels of oxidative stress, but wild-type yeast became more sensitive than the nth1 mutant at high levels. Overexpression of Nth1p in heavily damaged cells probably induced cell death via the formation of 3'-blocked single-strand breaks.
Collapse
Affiliation(s)
- Takanori Sugimoto
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan
| | | | | | | | | | | |
Collapse
|
206
|
Sturgis EM, Zhao C, Zheng R, Wei Q. Radiation Response Genotype and Risk of Differentiated Thyroid Cancer: A Case-Control Analysis. Laryngoscope 2005; 115:938-45. [PMID: 15933498 DOI: 10.1097/01.mlg.0000163765.88158.86] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Radiation is the only clear etiologic agent for differentiated thyroid cancer (DTC). Understanding the factors affecting sensitivity to gamma radiation and susceptibility to DTC will be critical to early detection and prevention of DTC. HYPOTHESIS Germline variants of double-strand break repair genes are markers of DTC risk. OBJECTIVE Determine the frequency of common single nucleotide polymorphisms of genes of the double-strand break repair pathway in patients with DTC and cancer-free controls. STUDY DESIGN Case-control study. METHODS This study included 134 patients with DTC, 79 patients with benign thyroid lesions, and 166 cancer-free control subjects. To avoid ethnic confounding, all subjects were non-Hispanic whites. Genotype analyses were performed on DNA isolated from peripheral blood lymphocytes. Multivariate logistic regression analyses were performed to estimate the risk of DTC associated with each variant genotype. RESULTS The XRCC3 18067T polymorphic allele was found significantly more commonly among the DTC cases than for the control subjects (P=.006). After multivariate adjustment, having the XRCC3 18067T allele was associated with an increased risk of DTC (adjusted odds ratio [OR] = 2.1; 95% confidence interval [CI] = 1.3 to 3.4; P = .004). In addition, there was a suggestion that the XRCC3 18067T polymorphic allele was more common among the patients with benign thyroid disease (P = .054), and the homozygous polymorphic genotype was associated with risk for benign thyroid disease (adjusted OR = 2.1; 95% CI = 0.9-4.9; P = .078). CONCLUSIONS In this case-control analysis, the XRCC3 18067T polymorphism is associated with DTC risk. However, such work needs confirmation in larger studies.
Collapse
Affiliation(s)
- Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.
| | | | | | | |
Collapse
|
207
|
Rinne ML, He Y, Pachkowski BF, Nakamura J, Kelley MR. N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing non-toxic 7-methylguanine adducts. Nucleic Acids Res 2005; 33:2859-67. [PMID: 15905475 PMCID: PMC1131935 DOI: 10.1093/nar/gki601] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies indicate that overexpression of N-methylpurine DNA glycosylase (MPG) dramatically sensitizes cells to alkylating agent-induced cytotoxicity. We recently demonstrated that this sensitivity is preceded by an increased production of AP sites and strand breaks, confirming that overexpression of MPG disrupts normal base excision repair and causes cell death through overproduction of toxic repair intermediates. Here we establish through site-directed mutagenesis that MPG-induced sensitivity to alkylation is dependent on enzyme glycosylase activity. However, in contrast to the sensitivity seen to heterogeneous alkylating agents, MPG overexpression generates no cellular sensitivity to MeOSO2(CH2)2-lexitropsin, an alkylator which exclusively induces 3-meA lesions. Indeed, MPG overexpression has been shown to increase the toxicity of alkylating agents that produce 7-meG adducts, and here we demonstrate that MPG-overexpressing cells have dramatically increased removal of 7-meG from their DNA. These data suggest that the mechanism of MPG-induced cytotoxicity involves the conversion of non-toxic 7-meG lesions into highly toxic repair intermediates. This study establishes a mechanism by which a benign DNA modification can be made toxic through the overexpression of an otherwise well-tolerated gene product, and the application of this principle could lead to improved chemotherapeutic strategies that reduce the peripheral toxicity of alkylating agents.
Collapse
Affiliation(s)
- M. L. Rinne
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Y. He
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - B. F. Pachkowski
- Department of Environmental Sciences and Engineering, School of Public Health, University of North CarolinaChapel Hill, NC 27599, USA
| | - J. Nakamura
- Department of Environmental Sciences and Engineering, School of Public Health, University of North CarolinaChapel Hill, NC 27599, USA
| | - M. R. Kelley
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
- To whom correspondence should be addressed. Tel: +1 317 274 2755; Fax: +1 317 278 9298;
| |
Collapse
|
208
|
Braithwaite EK, Prasad R, Shock DD, Hou EW, Beard WA, Wilson SH. DNA Polymerase λ Mediates a Back-up Base Excision Repair Activity in Extracts of Mouse Embryonic Fibroblasts. J Biol Chem 2005; 280:18469-75. [PMID: 15749700 DOI: 10.1074/jbc.m411864200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian DNA polymerase (pol) lambda is a member of the X-family of DNA polymerases and has striking enzymatic and structural similarities to mammalian DNA pol beta. Because pol beta provides two important enzymatic activities for base excision repair (BER), we examined whether pol lambda might also contribute to BER. We used extracts from mouse embryonic fibroblasts representing wild-type and null genotypes for pol beta and pol lambda. In combination with neutralizing antibodies against pol beta and pol lambda, our results show a BER deficiency in the pol lambda -/- cell extract compared with extract from isogenic wild-type cells. In addition, the pol lambda antibody strongly reduced in vitro BER in the pol beta -/- cell extract. These data indicate that pol lambda is able to contribute to BER in mouse fibroblast cell extract.
Collapse
Affiliation(s)
- Elena K Braithwaite
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
209
|
Hung RJ, Brennan P, Canzian F, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Chabrier A, Borel S, Hall J, Boffetta P. Large-Scale Investigation of Base Excision Repair Genetic Polymorphisms and Lung Cancer Risk in a Multicenter Study. ACTA ACUST UNITED AC 2005; 97:567-76. [PMID: 15840879 DOI: 10.1093/jnci/dji101] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Base excision repair (BER) is a highly conserved essential mechanism for maintaining genome integrity. We examined associations among four well-characterized polymorphisms of BER genes (OGG1 Ser326Cys, XRCC1 Arg194Trp, XRCC1 Arg280His, and XRCC1 Arg399Gln) and lung cancer risk. METHODS A total of 2188 patients with lung cancer and 2198 control subjects without lung cancer recruited at 15 centers in six Eastern European countries from February 1998 to October 2002 provided DNA samples for genotype analysis. Genetic polymorphisms were analyzed by the fluorescence 5' exonuclease and Amplifluor assays. Unconditional multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). We estimated the false-positive reporting probability (FPRP) for our results by incorporating a range of prior probabilities that specific polymorphisms are associated with lung cancer risk. All statistical tests were two-sided. RESULTS The overall odds ratio for lung cancer among those with the OGG1 Cys/Cys genotype compared with those with the OGG1 Ser/Ser genotype was 1.34 (95% CI = 0.95 to 1.88); the association was most prominent for adenocarcinoma risk (OR = 1.66, 95% CI = 1.04 to 2.66). Overall, the XRCC1 polymorphisms were not associated with the risk of lung cancer. However, the XRCC1 Arg194Trp and Arg280His variants were each associated with a reduced risk of lung cancer among subjects in the highest quartile of pack-years of smoking compared with common allele homozygotes (ORs of 0.65 [95% CI = 0.46 to 0.93] and 0.56 [95% CI = 0.36 to 0.86], respectively). The associations between the OGG1 Cys/Cys genotype and adenocarcinoma risk and between XRCC1 Arg194Trp polymorphism and lung cancer risk among heavy smokers remained robust given prior probabilities of 25% (FPRP = 0.238) and 10% (FPRP = 0.276), respectively. CONCLUSIONS Our results do not support a major independent role of BER gene polymorphisms in lung cancer risk. However, we cannot exclude the possibility that the OGG1 Ser326Cys and XRCC1 Arg194Trp polymorphisms play minor roles in lung carcinogenesis.
Collapse
Affiliation(s)
- Rayjean J Hung
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Bobola MS, Emond MJ, Blank A, Meade EH, Kolstoe DD, Berger MS, Rostomily RC, Silbergeld DL, Spence AM, Silber JR. Apurinic endonuclease activity in adult gliomas and time to tumor progression after alkylating agent-based chemotherapy and after radiotherapy. Clin Cancer Res 2005; 10:7875-83. [PMID: 15585620 DOI: 10.1158/1078-0432.ccr-04-1161] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Apurinic/apyrimidinic endonuclease (Ap endo) is a key DNA repair enzyme that cleaves DNA at cytotoxic abasic sites caused by alkylating agents and radiation. We have observed that human glioma cells deficient in Ap endo activity are hypersensitive to clinically used alkylators (Silber et al., Clin Cancer Res 2002;8:3008.). Here we examine the association of glioma Ap endo activity with clinical response after alkylating agent-based chemotherapy or after radiotherapy. EXPERIMENTAL DESIGN Cox proportional hazards regression models were used to analyze the relationship of Ap endo activity with time to tumor progression (TTP). RESULTS In a univariate model with Ap endo activity entered as a continuous variable, the hazard ratio (HR) for progression after alkylator therapy in 30 grade III gliomas increased by a factor of 1.061 for every 0.01 increase in activity (P = 0.013). Adjusting for age, gender, extent of resection, and prior treatment strengthened slightly the association (HR = 1.094; P = 0.003). Similarly, the HR for progression after radiotherapy in 44 grade II and III tumors increased by a factor of 1.069 (P = 0.008). Adjusting for the aforementioned variables had little effect on the association. In contrast, we observed no association between activity and TTP in grade IV gliomas after either alkylator therapy in 34 tumors or radiotherapy in 26 tumors. CONCLUSIONS Our data suggest that Ap endo activity mediates resistance to alkylating agents and radiation and may be a useful predictor of progression after adjuvant therapy in a subset of gliomas.
Collapse
Affiliation(s)
- Michael S Bobola
- Department of Neurological Surgery, University of Washington, 1959 N.E Pacific Street, Seattle, WA 98195-6470, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Xia L, Zheng L, Lee HW, Bates SE, Federico L, Shen B, O'Connor TR. Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. J Mol Biol 2005; 346:1259-74. [PMID: 15713479 DOI: 10.1016/j.jmb.2005.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/29/2004] [Accepted: 01/05/2005] [Indexed: 01/26/2023]
Abstract
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.
Collapse
Affiliation(s)
- Liqun Xia
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Muheim-Lenz R, Buterin T, Marra G, Naegeli H. Short-patch correction of C/C mismatches in human cells. Nucleic Acids Res 2004; 32:6696-705. [PMID: 15613598 PMCID: PMC545458 DOI: 10.1093/nar/gkh990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We examined whether the human nucleotide excision repair complex, which is specialized on the removal of bulky DNA adducts, also displays a correcting activity on base mismatches. The cytosine/cytosine (C/C) lesion was used as a model substrate to monitor the correction of base mismatches in human cells. Fibroblasts with different repair capabilities were transfected with shuttle vectors that contain a site-directed C/C mismatch in the replication origin, accompanied by an additional C/C mismatch in one of the flanking sequences that are not essential for replication. Analysis of the vector progeny obtained from these doubly modified substrates revealed that C/C mismatches were eliminated before DNA synthesis not only in the repair-proficient background, but also when the target cells carried a genetic defect in long-patch mismatch repair, in nucleotide excision repair, or when both pathways were deleted. Furthermore, cells deficient for long-patch mismatch repair as well as a cell line that combines mismatch and nucleotide excision repair defects were able to correct multiple C/C mispairs, placed at distances of 21-44 nt, in an independent manner, such that the removal of each lesion led to individual repair patches. These results support the existence of a concurrent short-patch mechanism that rectifies C/C mismatches.
Collapse
Affiliation(s)
- Regula Muheim-Lenz
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
213
|
Meyers M, Wagner MW, Mazurek A, Schmutte C, Fishel R, Boothman DA. DNA mismatch repair-dependent response to fluoropyrimidine-generated damage. J Biol Chem 2004; 280:5516-26. [PMID: 15611052 DOI: 10.1074/jbc.m412105200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies from our laboratory indicated that expression of the MLH1 DNA mismatch repair (MMR) gene was necessary to restore cytotoxicity and an efficient G(2) arrest in HCT116 human colon cancer cells, as well as Mlh1(-/-) murine embryonic fibroblasts, after treatment with 5-fluoro-2'-deoxyuridine (FdUrd). Here, we show that an identical phenomenon occurred when expression of MSH2, the other major MMR gene, was restored in HEC59 human endometrial carcinoma cells or was present in adenovirus E1A-immortalized Msh2(+/+) (compared with isogenic Msh2(-/-)) murine embryonic stem cells. Because MMR status had little effect on cellular responses (i.e. G(2) arrest and lethality) to the thymidylate synthase inhibitor, Tomudex, and a greater level of [(3)H]FdUrd incorporation into DNA was found in MMR-deficient cells, we concluded that the differential FdUrd cytotoxicity between MMR-competent and MMR-deficient cells was mediated at the level of DNA incorporation. Analyses of ATPase activation suggested that the hMSH2-hMSH6 heterodimer only recognized FdUrd moieties (as the base 5-fluorouracil (FU) in DNA) when mispaired with guanine, but not paired with adenine. Furthermore, analyses of incorporated FdUrd using methyl-CpG-binding domain 4 glycosylase indicated that there was more misincorporated FU:Gua in the DNA of MMR-deficient HCT116 cells. Our data provide the first demonstration that MMR specifically detects FU:Gua (in the first round of DNA replication), signaling a sustained G(2) arrest and lethality.
Collapse
Affiliation(s)
- Mark Meyers
- Department of Radiation Oncology and Case Comprehensive Cancer Center, Laboratory of Molecular Stress Responses, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
214
|
Fan W, Wu X. DNA polymerase lambda can elongate on DNA substrates mimicking non-homologous end joining and interact with XRCC4-ligase IV complex. Biochem Biophys Res Commun 2004; 323:1328-33. [PMID: 15451442 DOI: 10.1016/j.bbrc.2004.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Indexed: 11/25/2022]
Abstract
Non-homologous end joining (NHEJ) is one of two pathways responsible for the repair of double-strand breaks in eukaryotic cells. The mechanism involves the alignment of broken DNA ends with minimal homology, fill in of short gaps by DNA polymerase(s), and ligation by XRCC4-DNA ligase IV complex. The gap-filling polymerase has not yet been positively identified, but recent biochemical studies have implicated DNA polymerase lambda (pol lambda), a novel DNA polymerase that has been assigned to the pol X family, in this process. Here we demonstrate that purified pol lambda can efficiently catalyze gap-filling synthesis on DNA substrates mimicking NHEJ. By designing two truncated forms of pol lambda, we also show that the unique proline-rich region in pol lambda plays a role in limiting strand displacement synthesis, a feature that may help its participation in in vivo NHEJ. Moreover, pol lambda interacts with XRCC4-DNA ligase IV via its N-terminal BRCT domain and the interaction stimulates the DNA synthesis activity of pol lambda. Taken together, these data strongly support that pol lambda functions in DNA polymerization events during NHEJ.
Collapse
Affiliation(s)
- Wei Fan
- Department of Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | |
Collapse
|
215
|
Garry S, Nesslany F, Aliouat E, Haguenoer JM, Marzin D. Hematite (Fe2O3) acts by oxydative stress and potentiates benzo[a]pyrene genotoxicity. Mutat Res 2004; 563:117-29. [PMID: 15364278 DOI: 10.1016/j.mrgentox.2004.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 05/18/2004] [Accepted: 06/25/2004] [Indexed: 10/26/2022]
Abstract
Since epidemiological studies have implicated the co-exposition of iron oxides and polycyclic aromatic hydrocarbons as potential etiological factors involved in the excess of mortality from lung cancer in miners, experimental studies have been performed to investigate the role of iron on benzo[a]pyrene (B[a]P)-induced lung pathogenesis. We demonstrated previously that in vivo damage was higher when B[a]P was coated onto hematite than when B[a]P was administered alone. In order to determine the role of (i) different cell types and (ii) adsorption of hematite in this potentiation, in vitro studies were developed. The Comet assay was first used to measure DNA damage in four isolated cell types from Sprague-Dawley rats at 1, 2, 4, 8 and 24h after in vitro treatment with hematite (Fe2O3) or B[a]P or B[a]P coated onto hematite. For the two treatments with B[a]P, no damage was observed in alveolar macrophages, but significant increases in damage were seen in lymphocytes, hepatocytes and lung cells (where the effects of B[a]P coated onto hematite were stronger than those of B[a]P alone). In a second part of the study, the Comet assay was conducted with lung cells to measure the in vitro effect of (i) the coating and (ii) the role of the physical properties of Fe2O3. A statistically significant increase in damage was observed for the coating of B[a]P onto Fe2O3 compared (i) with their simple addition and (ii) with the coating of B[a]P onto graphite used as an inert compound. This study showed that (i) Fe2O3/B[a]P acts essentially in lung cells, (ii) the coating is a primordial step and (iii) the physical properties of Fe2O3 play a very minor role, which suggests another mechanism of action to explain the higher toxicity. Hence, our data may contribute to explain the excess of mortality in epidemiological studies and overall why exposures to B[a]P coated onto Fe2O3 resulted in higher toxicity in rodents compared to exposure to B[a]P alone.
Collapse
Affiliation(s)
- Sébastien Garry
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1, rue du Pr. Calmette BP 245, 59019 Lille Cedex, France
| | | | | | | | | |
Collapse
|
216
|
Peña-Diaz J, Akbari M, Sundheim O, Farez-Vidal ME, Andersen S, Sneve R, Gonzalez-Pacanowska D, Krokan HE, Slupphaug G. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. J Mol Biol 2004; 342:787-99. [PMID: 15342237 DOI: 10.1016/j.jmb.2004.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 11/23/2022]
Abstract
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Instituto de Parasitologia y Biomedicina "Lopez Neyra", Consejo Superior de Investigaciones Cientificas, C/Ventanilla 11, 18001 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Rinne M, Caldwell D, Kelley MR. Transient adenoviral N-methylpurine DNA glycosylase overexpression imparts chemotherapeutic sensitivity to human breast cancer cells. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.955.3.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
In an effort to improve the efficacy of cancer chemotherapy by intervening into the cellular responses to chemotherapeutic change, we have used adenoviral overexpression of N-methylpurine DNA glycosylase (MPG or ANPG/AAG) in breast cancer cells to study its ability to imbalance base excision repair (BER) and sensitize cancer cells to alkylating agents. Our results show that MPG-overexpressing cells are significantly more sensitive to the alkylating agents methyl methanesulfonate, N-methyl-N′-nitro-N-nitrosoguanidine, methylnitrosourea, dimethyl sulfate, and the clinical chemotherapeutic temozolomide. Sensitivity is further increased through coadministration of the BER inhibitor methoxyamine, which covalently binds abasic or apurinic/apyrimidinic (AP) sites and makes them refractory to subsequent repair. Methoxyamine reduction of cell survival is significantly greater in cells overexpressing MPG than in control cells, suggesting a heightened production of AP sites that, if made persistent, results in increased cellular toxicity. We further explored the mechanism of MPG-induced sensitivity and found that sensitivity was associated with a significant increase in the number of AP sites and/or single-strand breaks in overexpressing cells, confirming a MPG-driven accumulation of toxic BER intermediates. These data establish transient MPG overexpression as a potential therapeutic approach for increasing cellular sensitivity to alkylating agent chemotherapy.
Collapse
Affiliation(s)
- Mikael Rinne
- 1Department of Pediatrics, Herman B. Wells Center for Pediatric Research and
| | - David Caldwell
- 1Department of Pediatrics, Herman B. Wells Center for Pediatric Research and
| | - Mark R. Kelley
- 1Department of Pediatrics, Herman B. Wells Center for Pediatric Research and
- 2Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
218
|
Binz SK, Sheehan AM, Wold MS. Replication Protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst) 2004; 3:1015-24. [PMID: 15279788 DOI: 10.1016/j.dnarep.2004.03.028] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.
Collapse
Affiliation(s)
- Sara K Binz
- Department of Biochemistry, University of Iowa Carver College of Medicine, 3107 MERF, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
219
|
Kino K, Shimizu Y, Sugasawa K, Sugiyama H, Hanaoka F. Nucleotide excision repair of 5-formyluracil in vitro is enhanced by the presence of mismatched bases. Biochemistry 2004; 43:2682-7. [PMID: 15005603 DOI: 10.1021/bi0361416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Formyluracil (fU) is a major thymine lesion produced by reactive oxygen radicals and photosensitized oxidation. Although this residue is a potentially mutagenic lesion and is removed by several base excision repair enzymes, it is unknown whether fU is the substrate of nucleotide excision repair (NER). Here, we analyzed the binding specificity of XPC-HR23B, which initiates NER, and cell-free NER activity on fU opposite four different bases. The result of the gel mobility shift assay showed that XPC-HR23B binds the fU-containing substrates in the following order: fU:C >> fU:T > fU:G > fU:A. Furthermore, in the presence of XPC-HR23B, the dual incision activity was the same as the order of the binding affinity of XPC-HR23B to fU. Therefore, it is concluded that even fU, regarded as a shape mimic of thymine, can be recognized as a substrate of NER incision, and the efficiency depends on instability of the base pair.
Collapse
Affiliation(s)
- Katsuhito Kino
- Cellular Physiology Laboratory, RIKEN, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
220
|
Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, Tomkinson AE, Izumi T, Prasad R, Wilson SH, Mitra S, Hazra TK. AP Endonuclease-Independent DNA Base Excision Repair in Human Cells. Mol Cell 2004; 15:209-20. [PMID: 15260972 DOI: 10.1016/j.molcel.2004.06.003] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 05/12/2004] [Accepted: 05/12/2004] [Indexed: 11/19/2022]
Abstract
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1 and NEIL2, unlike the previously characterized OGG1 and NTH1, generate DNA strand breaks with 3' phosphate termini. Here we show that in mammalian cells, removal of the 3' phosphate is dependent on polynucleotide kinase (PNK), and not APE. NEIL1 stably interacts with other BER proteins, DNA polymerase beta (pol beta) and DNA ligase IIIalpha. The complex of NEIL1, pol beta, and DNA ligase IIIalpha together with PNK suggests coordination of NEIL1-initiated repair. That NEIL1/PNK could also repair the products of other DNA glycosylases suggests a broad role for this APE-independent BER pathway in mammals.
Collapse
Affiliation(s)
- Lee Wiederhold
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Endres M, Biniszkiewicz D, Sobol RW, Harms C, Ahmadi M, Lipski A, Katchanov J, Mergenthaler P, Dirnagl U, Wilson SH, Meisel A, Jaenisch R. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest 2004. [DOI: 10.1172/jci200420926] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
222
|
Endres M, Biniszkiewicz D, Sobol RW, Harms C, Ahmadi M, Lipski A, Katchanov J, Mergenthaler P, Dirnagl U, Wilson SH, Meisel A, Jaenisch R. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest 2004; 113:1711-21. [PMID: 15199406 PMCID: PMC420508 DOI: 10.1172/jci20926] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 04/14/2004] [Indexed: 11/17/2022] Open
Abstract
Uracil-DNA glycosylase (UNG) is involved in base excision repair of aberrant uracil residues in nuclear and mitochondrial DNA. Ung knockout mice generated by gene targeting are viable, fertile, and phenotypically normal and have regular mutation rates. However, when exposed to a nitric oxide donor, Ung(-/-) fibroblasts show an increase in the uracil/cytosine ratio in the genome and augmented cell death. After combined oxygen-glucose deprivation, Ung(-/-) primary cortical neurons have increased vulnerability to cell death, which is associated with early mitochondrial dysfunction. In vivo, UNG expression and activity are low in brains of naive WT mice but increase significantly after reversible middle cerebral artery occlusion and reperfusion. Moreover, major increases in infarct size are observed in Ung(-/-) mice compared with littermate control mice. In conclusion, our results provide compelling evidence that UNG is of major importance for tissue repair after brain ischemia.
Collapse
Affiliation(s)
- Matthias Endres
- Department of Neurology, Charité, Humboldt University of Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Li L, Berger SH, Wyatt MD. Involvement of base excision repair in response to therapy targeted at thymidylate synthase. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.747.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Thymidylate synthase (TS) is an important target of several classes of chemotherapeutic agents. Although the precise mechanism of cytotoxicity in thymidylate deprivation remains obscure, uracil misincorporation and DNA strand breaks are recognized as important events during thymidylate deprivation. Base excision repair (BER) plays a primary role in removing damaged or modified bases from the genome, including uracil. Because of uracil misincorporation, BER is hypothesized to play a role in the cellular response to thymidylate deprivation. In this study, we used murine embryo fibroblasts wild-type or homozygous null for DNA polymerase β (β-pol), which plays a central role in BER. We found that, compared with wild-type, β-pol null cells were resistant to the toxic effects of raltitrexed (Tomudex, ZD1694), a folate inhibitor of TS. There was little difference in TS levels or in TS-ligand complex formation between the cell lines. Furthermore, cells deficient in XRCC1, a scaffold protein for the final steps of BER, were also modestly resistant to raltitrexed compared with XRCC1-proficient cells. Cell cycle analysis revealed that the responses of the wild-type and β-pol null cells were similar during drug exposure. However, following drug removal, the β-pol null cells appeared to resume cell cycle progression more rapidly than the wild-type cells. The results suggest that BER plays a role in modulating the toxic effects of TS inhibitors, and that this role occurs during recovery from TS inhibition.
Collapse
Affiliation(s)
- Li Li
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Sondra H. Berger
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Michael D. Wyatt
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
224
|
Rusyn I, Asakura S, Pachkowski B, Bradford BU, Denissenko MF, Peters JM, Holland SM, Reddy JK, Cunningham ML, Swenberg JA. Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res 2004; 64:1050-7. [PMID: 14871837 DOI: 10.1158/0008-5472.can-03-3027] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidative stress to DNA is recognized as one of the mechanisms for the carcinogenic effects of some environmental agents. Numerous studies have been conducted in an attempt to document the fact that chemical carcinogens that are thought to induce production of oxidants also cause the formation of oxidative DNA lesions. Although many DNA adducts continue to be useful biomarkers of dose/effect, changes in gene expression have been proposed to be a practical novel tool for studying the role of chemically induced oxidative DNA damage. Here, we hypothesized that expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemically induced chronic oxidative stress. To test this hypothesis, mice were treated with a known rodent carcinogen and peroxisome proliferator, WY-14,643 (500 ppm, 1 month). A number of end points that are commonly used to assess oxidative DNA damage were considered. Our data demonstrate that no difference in 8-oxoguanine, the number of abasic sites, or single strand breaks can be detected in genomic DNA from livers of control or WY-treated animals. However, a concordant marked induction of genes specific for the long-patch base excision DNA repair, a predominant pathway that removes oxidized DNA lesions in vivo, was observed in livers of WY-treated mice. Kupffer cell NADPH oxidase, and peroxisomes in parenchymal cells have been proposed as the potential sources of peroxisome proliferator-induced oxidants. The analysis of expression of base excision DNA repair genes was used to assess whether this biomarker of oxidative stress can be used to determine the source of oxidants. The data suggest that DNA-damaging oxidants are generated by enzymes that are induced after activation of peroxisome proliferator activator receptor alpha, such as those involved in lipid metabolism in peroxisomes, and are not the result of activation of NADPH oxidase in Kupffer cells. We conclude that expression of base excision DNA repair genes is a sensitive in vivo biomarker for chemically induced oxidative stress to DNA that can be successfully used for the identification of the molecular source of radicals responsible for DNA damage in vivo.
Collapse
Affiliation(s)
- Ivan Rusyn
- Laboratory of Environmental Genomics, Department of Environmental Sciences and Engineering, University of North Carolina School of Public Health, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Postel EH. Multiple biochemical activities of NM23/NDP kinase in gene regulation. J Bioenerg Biomembr 2004. [PMID: 12848339 DOI: 10.1023/a: 1023485505621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
NM23/NDPk proteins play critical roles in cancer and development; however, our understanding of the underlying biochemical mechanisms is still limited. This large family of highly conserved proteins are known to participate in many events related to DNA metabolism, including nucleotide binding and nucleoside triphosphate synthesis, DNA binding and transcription, and cleavage of DNA strands via covalent protein-DNA complexes. The chemistry of the DNA-cleavage reaction of NM23-H2/NDPk is characteristic of DNA repair enzymes. Both the DNA cleavage and the NDPk reactions are conserved between E. coli and the human enzymes, and several conserved amino acid side chains involved in catalysis are shared by these reactions. It is proposed here that NM23/NDP kinases are important regulators of gene expression during development and cancer via previously unrecognized roles in DNA repair and recombination, and via previously unrecognized pathways and mechanisms of genetic control.
Collapse
Affiliation(s)
- Edith H Postel
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08546-5414, USA.
| |
Collapse
|
226
|
Affiliation(s)
- Oliver Fleck
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353 Copenhagen K, Denmark.
| | | |
Collapse
|
227
|
Abstract
High-resolution structural studies of protein-DNA complexes have proven to be an invaluable means of understanding the diverse functions of proteins that manage the genome. Most of the structures determined to date represent proteins bound noncovalently to various DNA sequences or structures. Although noncovalent complexation is often adequate to study the structures of proteins that have robust, specific interactions with DNA, it is poorly suited to the study of transient intermediates in enzyme-catalyzed DNA processing reactions or of complexes that exist in multiple equilibrating forms. In recent years, strategies developed for the covalent trapping of protein-DNA complexes have begun to show promise as a window into an otherwise inaccessible world of structure.
Collapse
Affiliation(s)
- Gregory L Verdine
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
228
|
Parker AR, O'Meally RN, Sahin F, Su GH, Racke FK, Nelson WG, DeWeese TL, Eshleman JR. Defective human MutY phosphorylation exists in colorectal cancer cell lines with wild-type MutY alleles. J Biol Chem 2003; 278:47937-45. [PMID: 12966098 DOI: 10.1074/jbc.m306598200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Oxidative DNA damage can generate a variety of cytotoxic DNA lesions such as 8-oxoguanine (8-oxoG), which is one of the most mutagenic bases formed from oxidation of genomic DNA because 8-oxoG can readily mispair with either cytosine or adenine. If unrepaired, further replication of A.8-oxoG mispairs results in C:G to A:T transversions, a form of genomic instability. We reported previously that repair of A.8-oxoG mispairs was defective and that 8-oxoG levels were elevated in several microsatellite stable human colorectal cancer cell lines lacking MutY mutations (human MutY homolog gene, hmyh, MYH MutY homolog protein). In this report, we provide biochemical evidence that the defective repair of A.8-oxoG may be due, at least in part, to defective phosphorylation of the MutY protein in these cell lines. In MutY-defective cell extracts, but not extracts with functional MutY, A.8-oxoG repair was increased by incubation with protein kinases A and C (PKA and PKC) and caesin kinase II. Treatment of these defective cells, but not cells with functional MutY, with phorbol-12-myristate-13-acetate also increased the cellular A.8-oxoG repair activity and decreased the elevated 8-oxoG levels. We show that MutY is serine-phosphorylated in vitro by the action of PKC and in the MutY-defective cells by phorbol-12-myristate-13-acetate but that MutY is already phosphorylated at baseline in proficient cell lines. Finally, using antibody-isolated MutY protein, we show that MutY can be directly phosphorylated by PKC that directly increases the level of MutY catalyzed A.8-oxoG repair.
Collapse
Affiliation(s)
- Antony R Parker
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Meyers M, Hwang A, Wagner MW, Bruening AJ, Veigl ML, Sedwick WD, Boothman DA. A role for DNA mismatch repair in sensing and responding to fluoropyrimidine damage. Oncogene 2003; 22:7376-88. [PMID: 14576845 DOI: 10.1038/sj.onc.1206941] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phenomenon of damage tolerance, whereby cells incur DNA lesions that are nonlethal, largely ignored, but highly mutagenic, appears to play a key role in carcinogenesis. Typically, these lesions are generated by alkylation of DNA or incorporation of base analogues. This tolerance is usually a result of the loss of specific DNA repair processes, most often DNA mismatch repair (MMR). The availability of genetically matched MMR-deficient and -corrected cell systems allows dissection of the consequences of this unrepaired damage in carcinogenesis as well as the elucidation of cell cycle checkpoint responses and cell death consequences. Recent data indicate that MMR plays an important role in detecting damage caused by fluorinated pyrimidines (FPs) and represents a repair system that is probably not the primary system for detecting damage caused by these agents, but may be an important system for correcting key mutagenic lesions that could initiate carcinogenesis. In fact, clinical studies have shown that there is no benefit of FP-based adjuvant chemotherapy in colon cancer patients exhibiting microsatellite instability, a hallmark of MMR deficiency. MMR-mediated damage tolerance and futile cycle repair processes are discussed, as well as possible strategies using FPs to exploit these systems for improved anticancer therapy.
Collapse
Affiliation(s)
- Mark Meyers
- Laboratory of Molecular Stress Responses, Department of Radiation Oncology, Case Western Reserve University, Biomedical Research Building 326-East, 2109 Adelbert Road, Cleveland, OH 44106-4942, USA
| | | | | | | | | | | | | |
Collapse
|
230
|
Courtemanche C, Huang AC, Elson-Schwab I, Kerry N, Ng BY, Ames BN. Folate deficiency and ionizing radiation cause DNA breaks in primary human lymphocytes: a comparison. FASEB J 2003; 18:209-11. [PMID: 14597554 DOI: 10.1096/fj.03-0382fje] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DNA double-strand breaks, the most serious DNA lesion caused by ionizing radiation, are also caused by several vitamin or mineral deficiencies, such as for folate. Primary human lymphocytes were either irradiated or cultured at different levels of folate deficiency to assess cell proliferation, apoptosis, cell cycle, DNA breaks, and changes in gene expression. Both radiation and folate deficiency decreased cell proliferation and induced DNA breaks, apoptosis, and cell cycle arrest. Levels of folate deficiency commonly found resulted in effects similar to those caused by 1 Gy of radiation, a relatively high dose. Though both radiation and folate deficiency caused DNA breaks, they affected the expression of different genes. Radiation activated excision and DNA double-strand break repair genes and repressed mitochondrially encoded genes. Folate deficiency activated base and nucleotide excision repair genes and repressed folate-related genes. No DNA double-strand break repair gene was activated by folate deficiency. These findings suggest that a diet poor in folate may pose a risk of DNA damage comparable to that of a relatively high dose of radiation. Our results also suggest that research on biological effects of low-dose radiation should take into account the nutritional status of the subjects, because folate deficiency could confound the effects of low-dose radiation.
Collapse
Affiliation(s)
- Chantal Courtemanche
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
231
|
Meadows KL, Song B, Doetsch PW. Characterization of AP lyase activities of Saccharomyces cerevisiae Ntg1p and Ntg2p: implications for biological function. Nucleic Acids Res 2003; 31:5560-7. [PMID: 14500818 PMCID: PMC206450 DOI: 10.1093/nar/gkg749] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Saccharomyces cerevisiae possesses two Escherichia coli endonuclease III homologs, NTG1 and NTG2, whose gene products function in the base excision repair pathway and initiate removal of a variety of oxidized pyrimidines from DNA. Although the glycosylase activity of these proteins has been well studied, the in vivo importance of the AP lyase activity has not been determined. Previous genetic studies have suggested that the AP lyase activities of Ntg1p and Ntg2p may be major contributors in the initial processing of abasic sites. We conducted a biochemical characterization of the AP lyase activities of Ntg1p and Ntg2p via a series of kinetic experiments. Such studies were designed to determine if Ntg1p and Ntg2p prefer specific bases located opposite abasic sites and whether these lesions are processed with a catalytic efficiency similar to Apn1p, the major hydrolytic AP endonuclease of yeast. Our results indicate that Ntg1p and Ntg2p are equally effective in processing four types of abasic site-containing substrates. Certain abasic site substrates were processed with greater catalytic efficiency than others, a situation similar to Apn1p processing of such substrates. These biochemical studies strongly support an important biological role for Ntg1p and Ntg2p in the initial processing of abasic sites and maintenance of genomic stability.
Collapse
Affiliation(s)
- Kellen L Meadows
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
232
|
Garry S, Nesslany F, Aliouat E, Haguenoer JM, Marzin D. Hematite (Fe(2)O(3)) enhances benzo[a]pyrene genotoxicity in endotracheally treated rat, as determined by Comet Assay. Mutat Res 2003; 538:19-29. [PMID: 12834751 DOI: 10.1016/s1383-5718(03)00082-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since epidemiological studies have firmly implied the co-exposition between iron oxides and polycyclic aromatic hydrocarbons (PAH) as potential etiological factor involved in the excess of mortality by lung cancer in miners, experimental studies have been performed to investigate the role of iron particles on benzo[a]pyrene (B[a]P)-induced lung pathogenesis. In the present study, the alkaline single-cell gel electrophoresis (SCGE; Comet Assay) was used to measure DNA single-strand breaks in four cell types (alveolar macrophages, lung cells, peripheral lymphocytes and hepatocytes) of OFA Sprague-Dawley rats 24h after endotracheal administration of a single dose of an iron oxide (hematite; Fe(2)O(3)) (0.75mg) or B[a]P (0.75mg) or B[a]P (0.75mg) coated onto hematite particles (0.75mg). No damage was observed in cell from the four investigated organs in rats treated with iron oxide alone, while a statistically significant increase in DNA damage was observed compared with control animals in all tested cell types of rats treated with B[a]P alone or in association with hematite. The highest levels of damage were observed in lung cells and peripheral lymphocytes; the levels of damage in alveolar macrophages and hepatocytes were increased, but to a lesser extent compared with the first two cell types. The main finding was to notice a statistically significant increase of the damage in all organs of rats treated with B[a]P coated onto hematite (approximately two-fold increases; P<0.001), versus B[a]P alone. The current study shows that iron particles increase the genotoxic properties of B[a]P in the respiratory tract of endotracheally treated OFA Sprague-Dawley rats. Hence, our data may contribute to explain the excess mortality by lung cancer in epidemiological studies and overall why exposures to B[a]P coated onto Fe(2)O(3) particles resulted in higher toxicity in rodents compared with exposure to B[a]P alone.
Collapse
Affiliation(s)
- Sébastien Garry
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, France
| | | | | | | | | |
Collapse
|
233
|
Elder RT, Zhu X, Priet S, Chen M, Yu M, Navarro JM, Sire J, Zhao Y. A fission yeast homologue of the human uracil-DNA-glycosylase and their roles in causing DNA damage after overexpression. Biochem Biophys Res Commun 2003; 306:693-700. [PMID: 12810074 DOI: 10.1016/s0006-291x(03)01036-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A functional homologue (ung1) of the human uracil-DNA-glycosylase (UNG) gene was characterized from fission yeast (Schizosaccharomyces pombe). The ung1 gene is highly conserved and encodes a protein with uracil-DNA-glycosylase activity similar to human UNG. The Ung1 protein localizes predominantly to the nucleus, suggesting that it is more similar to the nuclear form (UNG2) than the mitochondrial form (UNG1) of human UNG. Even though deletion of ung1 does not cause any obvious defects, overexpression of ung1 increases the mutation frequency. Overexpression of ung1 or human UNG2 induces a DNA checkpoint-dependent cell cycle delay and causes cell death which is enhanced when the checkpoints are inactive. In addition, the steady-state level of AP (apurinic/apyrimidinic) sites increases after ung1 overexpression, indicating that AP sites are likely to be the DNA damage caused by overexpression. Analysis of mutant ung indicates that catalytic activity is not required for the effects of overexpression, but that binding of Ung1 or UNG2 to AP sites may be important.
Collapse
Affiliation(s)
- Robert T Elder
- Children's Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Shen GP, Galick H, Inoue M, Wallace SS. Decline of nuclear and mitochondrial oxidative base excision repair activity in late passage human diploid fibroblasts. DNA Repair (Amst) 2003; 2:673-93. [PMID: 12767347 DOI: 10.1016/s1568-7864(03)00006-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are numerous studies documenting the increase of oxidative DNA damage in the nuclei and mitochondria of senescing cells as well as in tissues of aging animals. Here, we show that in IMR 90 human diploid fibroblasts, DNA repair activity is robust in both nuclear and mitochondrial extracts, however, the levels of activity differed against the three substrates tested. In extracts, cleavage of the 8-oxoguanine substrate, and to a lesser extent the dihydrouracil-containing substrate, occurred in a concerted reaction between the DNA glycosylases and the second enzyme in the reaction, hAPE. Cleavage of both the furan and the dihydrouracil-containing substrates was unchanged when nuclear extracts from early and late passage cells were compared. However, cleavage of the 8-oxoguanine substrate was substantially reduced in the nuclear extracts from late passage cells and significantly reduced transcription from the hOGG1 gene was observed. When mitochondrial extracts were examined, activity on all three substrates was significantly reduced, with the reduction in hAPE activity being the most marked. The reduction in cleavage of the furan substrate was not simply due to inactive mitochondrial AP endonuclease but a substantially reduced amount of hAPE protein; transcription from the hAPE gene was also reduced. Confocal microscopic analysis confirmed that hAPE was present in the mitochondria of early passage cells but greatly reduced in the mitochondria of late passage cells. Cytoplasmic extracts from late passage fibroblasts also showed reduced activity with all three substrates suggesting that the residual hAPE, and activities that recognized dihydrouracil, were preferentially targeted to the nuclei. Taken together the data support the concept that the increase in oxidative damage in the mitochondrial DNA of senescing cells and tissues from aging animals is due to reduced base excision repair activity.
Collapse
Affiliation(s)
- Guang-Ping Shen
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0068, USA
| | | | | | | |
Collapse
|
235
|
Affiliation(s)
- David Murray
- Department of Oncology, University of Alberta, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
236
|
Novel epimerization of aromatic C-nucleosides with electron-withdrawing substituents with trifluoroacetic acid–benzenesulfonic acid using mild conditions. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)00848-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
237
|
Wu P, Qiu C, Sohail A, Zhang X, Bhagwat AS, Cheng X. Mismatch repair in methylated DNA. Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4. J Biol Chem 2003; 278:5285-91. [PMID: 12456671 PMCID: PMC2764232 DOI: 10.1074/jbc.m210884200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MBD4 is a member of the methyl-CpG-binding protein family. It contains two DNA binding domains, an amino-proximal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific glycosylase domain. Limited in vitro proteolysis of mouse MBD4 yields two stable fragments: a 139-residue fragment including the MBD, and the other 155-residue fragment including the glycosylase domain. Here we show that the latter fragment is active as a glycosylase on a DNA duplex containing a G:T mismatch within a CpG sequence context. The crystal structure confirmed the C-terminal domain is a member of the helix-hairpin-helix DNA glycosylase superfamily. The MBD4 active site is situated in a cleft that likely orients and binds DNA. Modeling studies suggest the mismatched target nucleotide will be flipped out into the active site where candidate residues for catalysis and substrate specificity are present.
Collapse
Affiliation(s)
- Peiying Wu
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Chen Qiu
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Anjum Sohail
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489
| | - Xing Zhang
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Ashok S. Bhagwat
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322
- To whom correspondence should be addressed: Dept. of Biochemistry, Emory University, 1510 Clifton Rd., Atlanta, GA 30322. Tel.: 404-727-8491; Fax: 404-727-3746; E-mail:
| |
Collapse
|
238
|
Abstract
NM23/NDPk proteins play critical roles in cancer and development; however, our understanding of the underlying biochemical mechanisms is still limited. This large family of highly conserved proteins are known to participate in many events related to DNA metabolism, including nucleotide binding and nucleoside triphosphate synthesis, DNA binding and transcription, and cleavage of DNA strands via covalent protein-DNA complexes. The chemistry of the DNA-cleavage reaction of NM23-H2/NDPk is characteristic of DNA repair enzymes. Both the DNA cleavage and the NDPk reactions are conserved between E. coli and the human enzymes, and several conserved amino acid side chains involved in catalysis are shared by these reactions. It is proposed here that NM23/NDP kinases are important regulators of gene expression during development and cancer via previously unrecognized roles in DNA repair and recombination, and via previously unrecognized pathways and mechanisms of genetic control.
Collapse
Affiliation(s)
- Edith H Postel
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08546-5414, USA.
| |
Collapse
|
239
|
Garry S, Nesslany F, Aliouat E, Haguenoer JM, Marzin D. Assessment of genotoxic effect of benzo[a]pyrene in endotracheally treated rat using the comet assay. Mutat Res 2003; 534:33-43. [PMID: 12504753 DOI: 10.1016/s1383-5718(02)00252-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although benzo[a]pyrene (B[a]P) is a well-known genotoxic agent, little is known about the extent of DNA effects induced by B[a]P in rat tissues after pulmonary exposure. The alkaline single-cell gel electrophoresis (comet assay) was used to measure DNA single-strand breaks in alveolar macrophages, lung cells, peripheral lymphocytes and hepatocytes of OFA Sprague-Dawley rats exposed to a single dose of B[a]P by endotracheal administration. Statistically significant damage was observed in all organs tested after 3, 24 and 48h of pulmonary exposure to 3mg of B[a]P per animal, with a time-dependent relationship. The maximum damage was observed in the four cell types 24h after exposure. The higher level of damage was observed both in lung cells and peripheral lymphocytes; in alveolar macrophages and hepatocytes the level of damage was increased, but at a lower level than in the two other cell types. Furthermore, B[a]P demonstrated a clear dose-related genotoxic activity in the lung cells when tested at doses of 0.75, 1.5 and 3mg. The current study shows that B[a]P caused DNA single-strand breaks in the respiratory tract of endotracheally treated OFA Sprague-Dawley rats. The study also suggests that pulmonary exposure to B[a]P can induce a high level of DNA damage in peripheral lymphocytes. The clear relationship between lung exposure to B[a]P and consequences observed in lymphocytes suggests that the comet assay in peripheral lymphocytes can be used as a sensitive marker in human monitoring studies.
Collapse
Affiliation(s)
- Sébastien Garry
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, Lille, France
| | | | | | | | | |
Collapse
|
240
|
Shimizu Y, Iwai S, Hanaoka F, Sugasawa K. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J 2003; 22:164-73. [PMID: 12505994 PMCID: PMC140069 DOI: 10.1093/emboj/cdg016] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The XPC-HR23B complex recognizes various helix-distorting lesions in DNA and initiates global genome nucleotide excision repair. Here we describe a novel functional interaction between XPC-HR23B and thymine DNA glycosylase (TDG), which initiates base excision repair (BER) of G/T mismatches generated by spontaneous deamination of 5-methylcytosine. XPC-HR23B stimulated TDG activity by promoting the release of TDG from abasic sites that result from the excision of mismatched T bases. In the presence of AP endonuclease (APE), XPC-HR23B had an additive effect on the enzymatic turnover of TDG without significantly inhibiting the subsequent action of APE. Our observations suggest that XPC-HR23B may participate in BER of G/T mismatches, thereby contributing to the suppression of spontaneous mutations that may be one of the contributory factors for the promotion of carcinogenesis in xeroderma pigmentosum genetic complementation group C patients.
Collapse
Affiliation(s)
- Yuichiro Shimizu
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN and CREST, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871 and Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Corresponding author e-mail:
| | - Shigenori Iwai
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN and CREST, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871 and Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Corresponding author e-mail:
| | - Fumio Hanaoka
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN and CREST, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871 and Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Corresponding author e-mail:
| | - Kaoru Sugasawa
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN and CREST, Japan Science and Technology Corporation, 2-1 Hirosawa, Wako, Saitama 351-0198, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871 and Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Corresponding author e-mail:
| |
Collapse
|
241
|
Chen D, Minami M, Henshall DC, Meller R, Kisby G, Simon RP. Upregulation of mitochondrial base-excision repair capability within rat brain after brief ischemia. J Cereb Blood Flow Metab 2003; 23:88-98. [PMID: 12500094 DOI: 10.1097/01.wcb.0000039286.37737.19] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The mechanism by which brief episodes of cerebral ischemia confer protection (tolerance) against subsequent prolonged ischemic challenges remains unclear, but may involve upregulation of cell injury repair capability. The mitochondrion is a key site for the regulation of cell death pathways, and damage to mitochondrial genes has been linked to a number of neurologic diseases and aging. Therefore, the authors examined the response of the DNA base excision repair (BER) pathway in rat brain mitochondria after either brief (tolerance-inducing) or prolonged (injury-producing) focal cerebral ischemia. Brief (30-minute) middle cerebral artery occlusion (MCAO) induced mild oxidative mitochondrial DNA damage and initiated a prolonged (up to 72-hour) activation above control levels of the principal enzymes of the mitochondrial BER pathway, including uracil DNA glycosylase, apurinic/apyrimidinic (AP) endonuclease, DNA polymerase-gamma, and DNA ligase. In contrast, prolonged (100-minute MCAO) ischemia induced more substantial mitochondrial oxidative DNA damage whereas elevation of BER activity was transient (approximately 1 hour), declining to less than control levels over the course of 4 to 72 hours. These data reveal the differences in BER capacity after brief or prolonged ischemia, which may contribute to the neuron's ability to resist subsequent ischemic insults.
Collapse
Affiliation(s)
- Dexi Chen
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Oregon Health Sciences University, Portland 97232, USA
| | | | | | | | | | | |
Collapse
|
242
|
Ranalli TA, Tom S, Bambara RA. AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. J Biol Chem 2002; 277:41715-24. [PMID: 12200445 DOI: 10.1074/jbc.m207207200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Base loss is common in cellular DNA, resulting from spontaneous degradation and enzymatic removal of damaged bases. Apurinic/apyrimidinic (AP) endonucleases recognize and cleave abasic (AP) sites during base excision repair (BER). APE1 (REF1, HAP1) is the predominant AP endonuclease in mammalian cells. Here we analyzed the influences of APE1 on the human BER pathway. Specifically, APE1 enhanced the enzymatic activity of both flap endonuclease1 (FEN1) and DNA ligase I. FEN1 was stimulated on all tested substrates, regardless of flap length. Interestingly, we have found that APE1 can also inhibit the activities of both enzymes on substrates with a tetrahydrofuran (THF) residue on the 5'-downstream primer of a nick, simulating a reduced abasic site. However once the THF residue was displaced at least a single nucleotide, stimulation of FEN1 activity by APE1 resumes. Stimulation of DNA ligase I required the traditional nicked substrate. Furthermore, APE1 was able to enhance overall product formation in reconstitution of BER steps involving FEN1 cleavage followed by ligation. Overall, APE1 both stimulated downstream components of BER and prevented a futile cleavage and ligation cycle, indicating a far-reaching role in BER.
Collapse
Affiliation(s)
- Tamara A Ranalli
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642
| | | | | |
Collapse
|
243
|
Frossi B, Tell G, Spessotto P, Colombatti A, Vitale G, Pucillo C. H(2)O(2) induces translocation of APE/Ref-1 to mitochondria in the Raji B-cell line. J Cell Physiol 2002; 193:180-6. [PMID: 12384995 DOI: 10.1002/jcp.10159] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reactive oxygen species (ROS) are generated as by-products of respiration and are used as signal transducing intermediates in out-in signaling pathways. ROS are also generated during inflammatory responses and it has been shown that hydrogen peroxide may trigger activation of B-lymphocytes, similar to cross-linking of surface immunoglobulins. On the other hand, both exogenous and endogenous generated ROS are a major source of nuclear and mitochondrial DNA (mtDNA) damage. The base excision repair (BER) enzyme APE/Ref-1 normally repairs small nuclear DNA lesion such as oxidized or alkylated bases. It is not clear though whether DNA repair mechanisms able to abolish oxidative damage from nuclear DNA are present into mitochondria too. Here we show by confocal microscopy and Western blot analysis that in the B-lymphocyte Raji cell line a fraction of APE/Ref-1 rapidly re-localizes into mitochondria following H(2)O(2) activation. Targeting of APE/Ref-1 to mitochondria is not associated with cytochrome-c loss or apoptosis induction. These findings indicate that the APE/Ref-1 translocates to mitochondria in response to oxidative stress and thereby it might exert a protective function.
Collapse
Affiliation(s)
- Barbara Frossi
- Immunology Section, Department of Biomedical Sciences and Technologies, University of Udine, Udine, Italy
| | | | | | | | | | | |
Collapse
|
244
|
Sohail A, Hayes CS, Divvela P, Setlow P, Bhagwat AS. Protection of DNA by alpha/beta-type small, acid-soluble proteins from Bacillus subtilis spores against cytosine deamination. Biochemistry 2002; 41:11325-30. [PMID: 12234173 DOI: 10.1021/bi026332t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spores of Bacillus subtilis contain high levels of proteins, termed alpha/beta-type small, acid-soluble proteins (SASP), that protect the spore's DNA against different types of DNA damage. We tested one such protein, SspC, and two of its variants for their ability to protect plasmid DNA against hydrolytic deamination of cytosine to uracil. If unrepaired, such damage to DNA causes C to T mutations. We found that one SspC variant, SspC(Delta 11-D13K), protected DNA against cytosine deamination at two different temperatures (45 and 70 degrees C) and pH values (5.2 and 7.9), reducing the rate of deamination by as much as 10-fold. At 70 degrees C, pH 7.9, the wild-type SspC and its variant, SspC(Delta 11), provided little protection against deamination but were effective in protecting DNA at 45 degrees C, pH 7.9. Parallel studies of the abilities of these proteins to protect DNA against restriction digestion revealed that there was a good correlation between the abilities of the proteins to protect against restriction endonucleases and reductions in cytosine deaminations. These results show that the binding of SspC variants to DNA can prevent attack on DNA bases by water and suggest a new general mechanism by which DNA-binding proteins in cells may be able to protect chromosomes from endogenous and exogenous reactive chemicals by excluding them from the vicinity of DNA.
Collapse
Affiliation(s)
- Anjum Sohail
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
245
|
Ulbert S, Cross M, Boorstein RJ, Teebor GW, Borst P. Expression of the human DNA glycosylase hSMUG1 in Trypanosoma brucei causes DNA damage and interferes with J biosynthesis. Nucleic Acids Res 2002; 30:3919-26. [PMID: 12235375 PMCID: PMC137116 DOI: 10.1093/nar/gkf533] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In kinetoplastid flagellates such as Trypanosoma brucei, a small percentage of the thymine residues in the nuclear DNA is replaced by the modified base beta-D-glucosyl-hydroxymethyluracil (J), mostly in repetitive sequences like the telomeric GGGTTA repeats. In addition, traces of 5-hydroxymethyluracil (HOMeUra) are present. Previous work has suggested that J is synthesised in two steps via HOMedU as an intermediate, but as J synthesising enzymes have not yet been identified, the biosynthetic pathway remains unclear. To test a model in which HOMeUra functions as a precursor of J, we introduced an inducible gene for the human DNA glycosylase hSMUG1 into bloodstream form T.brucei. In higher eukaryotes SMUG1 excises HOMeUra as part of the base excision repair system. We show that expression of the gene in T.brucei leads to massive DNA damage in J-modified sequences and results in cell cycle arrest and, eventually, death. hSMUG1 also reduces the J content of the trypanosome DNA. This work supports the idea that HOMeUra is a precursor of J, freely accessible to a DNA glycosylase.
Collapse
Affiliation(s)
- Sebastian Ulbert
- Department of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
246
|
Shatilla A, Ramotar D. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease. Biochem J 2002; 365:547-53. [PMID: 11966472 PMCID: PMC1222696 DOI: 10.1042/bj20020375] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2002] [Revised: 04/17/2002] [Accepted: 04/19/2002] [Indexed: 01/26/2023]
Abstract
DNA bases continuously undergo modifications in response to endogenous reactions such as oxidation, alkylation or deamination. The modified bases are primarily removed by DNA glycosylases, which cleave the N-glycosylic bond linking the base to the sugar, to generate an apurinic/apyrimidinic (AP) site, and this latter lesion is highly mutagenic. Previously, no study has demonstrated the processing of these lesions in the nematode Caenorhabditis elegans. Herein, we report the existence of uracil-DNA glycosylase and AP endonuclease activities in extracts derived from embryos of C. elegans. These enzyme activities were monitored using a defined 5'-end (32)P-labelled 42-bp synthetic oligonucleotide substrate bearing a single uracil residue opposite guanine at position 21. The embryonic extract rapidly cleaved the substrate in a time-dependent manner to produce a 20-mer product. The extract did not excise adenine or thymine opposite guanine, although uracil opposite either adenine or thymine was processed. Addition of the highly specific inhibitor of uracil-DNA glycosylase produced by Bacillus subtilis to the extract prevented the formation of the 20-mer product, indicating that removal of uracil is catalysed by uracil-DNA glycosylase. The data suggest that the 20-mer product was generated by a sequential reaction, i.e., removal of the uracil base followed by 5'-cleavage of the AP site. Further analysis revealed that product formation was dependent upon the presence of Mg(2+), suggesting that cleavage of the AP site, following uracil excision, is carried out by a Mg(2+)-dependent AP endonuclease. It would appear that these activities correspond to the first two steps of a putative base-excision-repair pathway in C. elegans.
Collapse
Affiliation(s)
- Andrea Shatilla
- University of Montreal, Maisonneuve-Rosemont Hospital, Guy-Bernier Research Centre, 5415 de l'Assomption, Montreal, Quebec, Canada H1T 2M4
| | | |
Collapse
|
247
|
Sunesen M, Stevnsner T, Brosh RM, Dianov GL, Bohr VA. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Oncogene 2002; 21:3571-8. [PMID: 12032859 DOI: 10.1038/sj.onc.1205443] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Revised: 02/11/2002] [Accepted: 02/21/2002] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome (CS) is an autosomal recessive human disease characterized by UV-sensitivity as well as neurological and developmental abnormalities. Two complementation groups have been established, designated CS-A and CS-B. Traditionally, CSA and CSB have been ascribed a function in the transcription-coupled repair (TCR) pathway of nucleotide excision repair (NER) that efficiently removes bulky lesions from the transcribed strand of RNA polymerase II transcribed genes. To assess the role of the CSB protein in the repair of the highly mutagenic base lesion 7,8-dihydro-8-oxoguanine (8-oxoG), we have investigated the removal of this lesion using an in vitro incision approach with cell extracts as well as an in vivo approach with a modified protocol of the gene-specific repair assay, which allows the measurement of base lesion repair in intragenomic sequences. Our results demonstrate that the integrity of the CSB protein is pivotal for processes leading to incision at the site of 8-oxoG and that the global genome repair (GGR) of this lesion requires a functional CSB gene product in vivo.
Collapse
Affiliation(s)
- Morten Sunesen
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
248
|
Hays H, Berdis AJ. Manganese substantially alters the dynamics of translesion DNA synthesis. Biochemistry 2002; 41:4771-8. [PMID: 11939771 DOI: 10.1021/bi0120648] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of metal ion substitution on the dynamics of translesion DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase was quantitatively evaluated through steady-state and transient kinetic techniques. Substitution of Mn(2+) for Mg(2+) enhances the steady-state rate of dNMP misinsertion opposite an abasic site by 11-34-fold. At the molecular level, the enhancement in translesion DNA synthesis reflects a substantial increase in the rate of the conformational change preceding phosphoryl transfer for all dNTPs that were tested. This is best illustrated by the biphasic pre-steady-state time course of dAMP insertion opposite an abasic site which indicates that a step after chemistry is rate-limiting for steady-state enzyme turnover. Furthermore, the k(pol) value of 40 s(-1) measured under single-turnover reaction conditions is 20-fold greater than the k(cat) value of 2 s(-1) measured for steady-state enzyme turnover. Finally, the low elemental effect ( approximately 2.4-fold reduction in k(pol)) measured by substituting the alpha-thiotriphosphate analogue for dATP further argues that chemistry is not rate-limiting. In contrast to the biphasic insertion of dAMP, pre-steady-state time courses for the insertion of dCMP, dGMP, or dTMP opposite an abasic site were linear. Nearly identical k(pol) values ( approximately 1 s(-1)) were measured for the insertion of dCMP, dGMP, and dTMP opposite the abasic site using single-turnover conditions. However, the large elemental effects of 27 and 70 measured by substituting the alpha-thiotriphosphate analogues for dCTP and dGTP, respectively, suggest that phosphoryl transfer may be the rate-limiting step for their insertion opposite the abasic site. Various models are discussed in an attempt to explain the effect of metal ion substitution on the dynamics of translesion DNA replication.
Collapse
Affiliation(s)
- Heather Hays
- Department of Chemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
249
|
García-Díaz M, Bebenek K, Sabariegos R, Domínguez O, Rodríguez J, Kirchhoff T, García-Palomero E, Picher AJ, Juárez R, Ruiz JF, Kunkel TA, Blanco L. DNA polymerase lambda, a novel DNA repair enzyme in human cells. J Biol Chem 2002; 277:13184-91. [PMID: 11821417 DOI: 10.1074/jbc.m111601200] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase lambda (pol lambda) is a novel family X DNA polymerase that has been suggested to play a role in meiotic recombination and DNA repair. The recent demonstration of an intrinsic 5'-deoxyribose-5-phosphate lyase activity in pol lambda supports a function of this enzyme in base excision repair. However, the biochemical properties of the polymerization activity of this enzyme are still largely unknown. We have cloned and purified human pol lambda to homogeneity in a soluble and active form, and we present here a biochemical description of its polymerization features. In support of a role in DNA repair, pol lambda inserts nucleotides in a DNA template-dependent manner and is processive in small gaps containing a 5'-phosphate group. These properties, together with its nucleotide insertion fidelity parameters and lack of proofreading activity, indicate that pol lambda is a novel beta-like DNA polymerase. However, the high affinity of pol lambda for dNTPs (37-fold over pol beta) is consistent with its possible involvement in DNA transactions occurring under low cellular levels of dNTPs. This suggests that, despite their similarities, pol beta and pol lambda have nonredundant in vivo functions.
Collapse
Affiliation(s)
- Miguel García-Díaz
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
Unpaired and mispaired bases in DNA can arise by replication errors, spontaneous or induced base modifications, and during recombination. The major pathway for correction of mismatches arising during replication is the MutHLS pathway of Escherichia coli and related pathways in other organisms. MutS initiates repair by binding to the mismatch, and activates together with MutL the MutH endonuclease, which incises at hemimethylated dam sites and thereby mediates strand discrimination. Multiple MutS and MutL homologues exist in eukaryotes, which play different roles in the mismatch repair (MMR) pathway or in recombination. No MutH homologues have been identified in eukaryotes, suggesting that strand discrimination is different to E. coli. Repair can be initiated by the heterodimers MSH2-MSH6 (MutSalpha) and MSH2-MSH3 (MutSbeta). Interestingly, MSH3 (and thus MutSbeta) is missing in some genomes, as for example in Drosophila, or is present as in Schizosaccharomyces pombe but appears to play no role in MMR. MLH1-PMS1 (MutLalpha) is the major MutL homologous heterodimer. Again some, but not all, eukaryotes have additional MutL homologues, which all form a heterodimer with MLH1 and which play a minor role in MMR. Additional factors with a possible function in eukaryotic MMR are PCNA, EXO1, and the DNA polymerases delta and epsilon. MMR-independent pathways or factors that can process some types of mismatches in DNA are nucleotide-excision repair (NER), some base excision repair (BER) glycosylases, and the flap endonuclease FEN-1. A pathway has been identified in Saccharomyces cerevisiae and human that corrects loops with about 16 to several hundreds of unpaired nucleotides. Such large loops cannot be processed by MMR.
Collapse
Affiliation(s)
- Thomas M Marti
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|