201
|
Smith RA, Walker RC, Levit SL, Tang C. Single-Step Self-Assembly and Physical Crosslinking of PEGylated Chitosan Nanoparticles by Tannic Acid. Polymers (Basel) 2019; 11:E749. [PMID: 31035564 PMCID: PMC6572363 DOI: 10.3390/polym11050749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
Chitosan-based nanoparticles are promising materials for potential biomedical applications. We used Flash NanoPrecipitation as a rapid, scalable, single-step method to achieve self-assembly of crosslinked chitosan nanoparticles. Self-assembly was driven by electrostatic interactions, hydrogen bonding, and hydrophobic interactions; tannic acid served to precipitate chitosan to seed nanoparticle formation and crosslink the chitosan to stabilize the resulting particles. The size of the nanoparticles can be tuned by varying formulation parameters including the total solids concentration and block copolymer to core mass ratio. We demonstrated that hydrophobic moieties can be incorporated into the nanoparticle using a lipophilic fluorescent dye as a model system.
Collapse
Affiliation(s)
- Raven A Smith
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284-3028, USA.
| | - Rebecca C Walker
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284-3028, USA.
| | - Shani L Levit
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284-3028, USA.
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284-3028, USA.
| |
Collapse
|
202
|
Ahmad O, Wang B, Ma K, Deng Y, Li M, Yang L, Yang Y, Zhao J, Cheng L, Zhou Q, Shang J. Lipid Modulating Anti-oxidant Stress Activity of Gastrodin on Nonalcoholic Fatty Liver Disease Larval Zebrafish Model. Int J Mol Sci 2019; 20:E1984. [PMID: 31018538 PMCID: PMC6515101 DOI: 10.3390/ijms20081984] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the world. However, there are still no drugs for NAFLD/NASH in the market. Gastrodin (GAS) is a bioactive compound that is extracted from Gastrodia elata, which is used as an active compound on nervous system diseases. Recent reports showed that GAS and Gastrodia elata possess anti-oxidant activity and lipid regulating effects, which makes us curious to reveal the anti-NAFLD effect of GAS. A high cholesterol diet (HCD) was used to induce a NAFLD larval zebrafish model, and the lipid regulation and anti-oxidant effects were tested on the model. Furthermore, qRT-PCR studied the underlying mechanism of GAS. To conclude, this study revealed a lipid regulation and anti-oxidant insights of GAS on NAFLD larval zebrafish model and provided a potential therapeutic compound for NAFLD treatment.
Collapse
Affiliation(s)
- Owais Ahmad
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Bing Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kejian Ma
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Yang Deng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Maoru Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Liping Yang
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Yuqi Yang
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Jingyun Zhao
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Lijun Cheng
- Zhao Tong University, Zhaotong 657000, China.
| | - Qinyang Zhou
- College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jing Shang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 211198, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
203
|
Peters-Didier J, Sewell MA. The role of the hyaline spheres in sea cucumber metamorphosis: lipid storage via transport cells in the blastocoel. EvoDevo 2019; 10:8. [PMID: 31007889 PMCID: PMC6458721 DOI: 10.1186/s13227-019-0119-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/16/2019] [Indexed: 01/01/2023] Open
Abstract
Background For echinoderms with feeding larvae, metamorphic and post-settlement success may be highly dependent on larval nutrition and the accumulation of energetic lipids from the diet. In contrast to the sea urchins, starfish and brittle stars within the Phylum Echinodermata, sea cucumber metamorphosis does not involve formation of a juvenile rudiment, but instead there is a rearrangement of the entire larval body. Successful metamorphosis in sea cucumbers is often associated with the presence in the late auricularia stage of an evolutionary novelty, the hyaline spheres (HS), which form in the base of the larval arms. Known since the 1850s the function of these HS has remained enigmatic—suggestions include assistance with flotation, as an organizer for ciliary band formation during metamorphosis and as a nutrient store for metamorphosis. Results Here using multiple methodologies (lipid mapping, resin-section light microscopy, lipid and fatty acid analyses) we show definitively that the HS are used to store neutral lipids that fuel the process of metamorphosis in Australostichopus mollis. Neutral lipids derived from the phytoplankton diet are transported by secondary mesenchyme cells (“lipid transporting cells”, LTC), likely as free fatty acids or lipoproteins, from the walls of the stomach and intestine through the blastocoel to the HS; here, they are converted to triacylglycerol with a higher saturated fatty acid content. During metamorphosis the HS decreased in size as the triacylglycerol was consumed and LTC again transported neutral lipids within the blastocoel. Conclusion The HS in A. mollis functions as a nutrient storage structure that separates lipid stores from the major morphogenic events that occur during the metamorphic transition from auricularia–doliolaria–pentactula (settled juvenile). The discovery of LTC within the blastocoel of sea cucumbers has implications for other invertebrate larvae with a gel-filled blastocoel and for our understanding of lipid use during metamorphosis in marine invertebrates.
Collapse
Affiliation(s)
- Josefina Peters-Didier
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Mary A Sewell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| |
Collapse
|
204
|
Wang H, Wu Y, Wang N, Yang L, Zhou Y. Effect of water content of high-amylose corn starch and glutinous rice starch combined with lipids on formation of starch–lipid complexes during deep-fat frying. Food Chem 2019; 278:515-522. [DOI: 10.1016/j.foodchem.2018.11.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/05/2018] [Accepted: 11/19/2018] [Indexed: 11/24/2022]
|
205
|
Ren H, Qiu XP, Shi Y, Yang P, Winnik FM. pH-Dependent Morphology and Photoresponse of Azopyridine-Terminated Poly( N-isopropylacrylamide) Nanoparticles in Water. Macromolecules 2019; 52:2939-2948. [PMID: 31496545 PMCID: PMC6727601 DOI: 10.1021/acs.macromol.9b00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/17/2019] [Indexed: 01/01/2023]
Abstract
![]()
A series of azopyridine-terminated
poly(N-isopropylacrylamide)s
(PNIPAM) (C12-PN-AzPy) (∼5000 < Mw < 20 000 g mol–1, polydispersity index
1.25 or less) were prepared by reversible addition–fragmentation
chain-transfer polymerization of NIPAM in the presence of a chain-transfer
agent that contains an AzPy group and an n-dodecyl
chain. In cold water, the polymers form nanoparticles (5.9 nm < Rh < 10.9 nm) that were characterized by light
scattering (LS), 1H NMR diffusion experiments, and high-resolution
transmission electron microscopy. We monitored the pH-dependent photoisomerization
of C12-PN-AzPy nanoparticles by steady-state and time-resolved UV–vis
absorption spectroscopy. Azopyridine is known to undergo a very fast
cis-to-trans thermal relaxation when the azopyridine nitrogen is quaternized
or bound to a hydrogen bond donor. The cis-to-trans thermal relaxation
of the AzPy chromophore in an acidic nanoparticle suspension is very
fast with a half-life τ = 2.3 ms at pH 3.0. It slows down slightly
for nanoparticles in neutral water (τ = 0.96 s, pH 7.0), and
it is very slow for AzPy-PNIPAM particles in alkaline medium (τ
> 3600 s, pH 10). The pH-dependent dynamics of the cis-to-trans
dark
relaxation, supported by Fourier transform infrared spectroscopy, 1H NMR spectroscopy, and LS analysis, suggest that in acidic
medium, the nanoparticles consist of a core of assembled C12 chains
surrounded by a shell of hydrated PNIPAM chains with the AzPy+ end groups preferentially located near the particle/water
interface. In neutral medium, the shell surrounding the core contains
AzPy groups H-bonded to the amide hydrogen of the PNIPAM chain repeat
units. At pH 10.0, the amide hydrogen binds preferentially to the
hydroxide anions. The AzPy groups reside preferentially in the vicinity
of the C12 core of the nanoparticles. The morphology of the nanoparticles
results from the competition between the segregation of the hydrophobic
and hydrophilic components and weak attractive interactions, such
as H-bonds between the AzPy groups and the amide hydrogen of the PNIPAM
repeat units.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xing-Ping Qiu
- Department of Chemistry, University of Montreal, CP 6128 Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | - Yan Shi
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Françoise M Winnik
- Laboratory of Polymer Chemistry, Department of Chemistry, University of Helsinki, PB 55, Helsinki FI00140 Finland.,International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
206
|
Arocena M, Landeira M, Di Paolo A, Silva A, Sotelo‐Silveira J, Fernández A, Alonso J. Using a variant of coverslip hypoxia to visualize tumor cell alterations at increasing distances from an oxygen source. J Cell Physiol 2019; 234:16671-16678. [DOI: 10.1002/jcp.28507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Miguel Arocena
- Sección Biología Celular, Facultad de Ciencias Universidad de la República Montevideo Uruguay
- Departamento de Genómica Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Cátedra de Bioquímica y Biofísica, Facultad de Odontología Universidad de la República Montevideo Uruguay
| | - Mercedes Landeira
- Sección Biología Celular, Facultad de Ciencias Universidad de la República Montevideo Uruguay
- Departamento de Genómica Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Andrés Di Paolo
- Departamento de Genómica Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Alejandro Silva
- Instituto de Física, Facultad de Ingeniería Universidad de la República Montevideo Uruguay
| | - José Sotelo‐Silveira
- Sección Biología Celular, Facultad de Ciencias Universidad de la República Montevideo Uruguay
- Departamento de Genómica Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Ariel Fernández
- Instituto de Física, Facultad de Ingeniería Universidad de la República Montevideo Uruguay
| | - Julia Alonso
- Instituto de Física, Facultad de Ingeniería Universidad de la República Montevideo Uruguay
| |
Collapse
|
207
|
Krause S, Vosch T. Stokes shift microscopy by excitation and emission imaging. OPTICS EXPRESS 2019; 27:8208-8220. [PMID: 31052643 DOI: 10.1364/oe.27.008208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
In this contribution, we present a new method, based on a tunable excitation laser source and a robust common path interferometer in the detection channel. Its purpose is to image spectral excitation and emission information on a monochrome complementary metal oxide semiconductor (CMOS) camera. This allows us to spatially obtain both excitation and emission spectra of the whole imaged area and create derived images such as red-green-blue (RGB), excitation and emission maxima, and Stokes shift images. Our presented method is a further development of hyperspectral imaging that usually is limited to recording spatially resolved emission spectra. Taking advantage of the full camera chip should speed up the acquisition versus line scan or pointwise hyperspectral imaging.
Collapse
|
208
|
Kurtz SL, Lawson LB. Liposomes Enhance Dye Localization within the Mammary Ducts of Porcine Nipples. Mol Pharm 2019; 16:1703-1713. [DOI: 10.1021/acs.molpharmaceut.9b00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Samantha L. Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112 United States
- Bioinnovation Ph.D. Program, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118 United States
| | - Louise B. Lawson
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112 United States
| |
Collapse
|
209
|
Mottola M, Caruso B, Perillo MA. Langmuir films at the oil/water interface revisited. Sci Rep 2019; 9:2259. [PMID: 30783164 PMCID: PMC6381208 DOI: 10.1038/s41598-019-38674-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/07/2019] [Indexed: 11/09/2022] Open
Abstract
We studied monomolecular layers at the oil/water interface (O/Wint) in a Langmuir interfacial trough using egg-yolk phosphatidylcholine (EPC) (the model phospholipid) and Vaseline (VAS) as oil phase. The temporal dynamics in the surface pressure (π) evolution depended on the method (spreading/adsorption) used for monolayers preparation and reflected the different distribution of EPC between all the system compartments (bulk phases and interfaces). We distinguished between EPC located either stable at the interface or hopping between the interface and bulk phases. The size order of the apparent mean molecular area, at constant π, of EPC at different interfaces (EPCO/W > EPC/VAS0.02;A/W > EPCA/W), suggested that VAS molecules intercalated between the hydrocarbon chains of EPCO/W, at a molar fraction xVAS > 0.02. However, EPC/VAS0.02;A/W showed the highest compressional free energy. This leaded us to study the EPC/VAS0.02 mixture at A/W by Brewster Angle Microscopy (BAM), finding that upon compression VAS segregated over the monolayer, forming non-coalescent lenses (as predicted by the spreading coefficient S = −13 mN/m) that remained after decompression and whose height changed (increase/decrease) accompanied the compression/decompression cycle. At the O/Wint, while some VAS molecules remained at the interface up to the collapse, others squeezed out towards the VAS bulk phase with an energy requirement lower than towards the air.
Collapse
Affiliation(s)
- Milagro Mottola
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Depto. de Química, Cátedra de Química Biológica. Córdoba, Argentina. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba, Argentina.,CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT). Córdoba, Argentina. Av. Vélez Sarsfield 1611, 5016, Córdoba, Argentina
| | - Benjamín Caruso
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Depto. de Química, Cátedra de Química Biológica. Córdoba, Argentina. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba, Argentina.,CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT). Córdoba, Argentina. Av. Vélez Sarsfield 1611, 5016, Córdoba, Argentina
| | - Maria A Perillo
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Depto. de Química, Cátedra de Química Biológica. Córdoba, Argentina. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba, Argentina. .,CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT). Córdoba, Argentina. Av. Vélez Sarsfield 1611, 5016, Córdoba, Argentina.
| |
Collapse
|
210
|
Sundukova M, Prifti E, Bucci A, Kirillova K, Serrao J, Reymond L, Umebayashi M, Hovius R, Riezman H, Johnsson K, Heppenstall PA. A Chemogenetic Approach for the Optical Monitoring of Voltage in Neurons. Angew Chem Int Ed Engl 2019; 58:2341-2344. [PMID: 30569539 PMCID: PMC6391943 DOI: 10.1002/anie.201812967] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/16/2018] [Indexed: 01/11/2023]
Abstract
Optical monitoring of neuronal voltage using fluorescent indicators is a powerful approach for the interrogation of the cellular and molecular logic of the nervous system. Herein, a semisynthetic tethered voltage indicator (STeVI1) based upon nile red is described that displays voltage sensitivity when genetically targeted to neuronal membranes. This environmentally sensitive probe allows for wash-free imaging and faithfully detects supra- and sub-threshold activity in neurons.
Collapse
Affiliation(s)
- Mayya Sundukova
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Efthymia Prifti
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Annalisa Bucci
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Kseniia Kirillova
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Joana Serrao
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Luc Reymond
- Ecole Polytechnique Federale de LausanneISICNational Centre for Competence in Research (NCCR) in Chemical Biology1015LausanneSwitzerland
| | - Miwa Umebayashi
- University of GenevaDepartment of Biochemistry, National Centre for Competence in Research (NCCR) in Chemical Biology1211GenevaSwitzerland
| | - Ruud Hovius
- Ecole Polytechnique Federale de LausanneISICNational Centre for Competence in Research (NCCR) in Chemical Biology1015LausanneSwitzerland
| | - Howard Riezman
- University of GenevaDepartment of Biochemistry, National Centre for Competence in Research (NCCR) in Chemical Biology1211GenevaSwitzerland
| | - Kai Johnsson
- Department of Chemical BiologyMax Planck Institute for Medical Research69120HeidelbergGermany
- Ecole Polytechnique Federale de LausanneISICNational Centre for Competence in Research (NCCR) in Chemical Biology1015LausanneSwitzerland
| | - Paul A. Heppenstall
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| |
Collapse
|
211
|
Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Mol Pharm 2019; 16:1327-1339. [PMID: 30669846 DOI: 10.1021/acs.molpharmaceut.8b01261] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to probe the dissolution mechanisms of amorphous solid dispersions (ASDs) of a poorly water-soluble drug formulated with a hydrophilic polymer. Ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) were used as the model drug and polymer, respectively. ASDs with drug loadings (DLs) from 10 to 50 wt % were prepared by solvent evaporation. Surface-normalized dissolution experiments were carried out using Wood's intrinsic dissolution apparatus, and both drug and polymer release were quantified. ASDs at or below 25% DL showed rapid, complete, and congruent (i.e., simultaneous) release of the drug and polymer with dissolution rates similar to that of the polymer alone. The highest drug loading at which congruent release was observed is termed the limit of congruency (LoC) and occurred at 25% DL for RTV-PVPVA. The ASD with 30% DL showed an initial lag time, followed by a period of congruent release. At later times, the release of drug and polymer became incongruent with polymer releasing faster than drug. Higher DL ASDs (40 and 50%) showed slow release of both drug and polymer, whereby the drug release rate was similar to that of the neat amorphous drug. In cases where the release of the ASD components was congruent or close to congruent, the drug concentration exceeded the amorphous solubility, and liquid-liquid phase separation (LLPS) occurred with the formation of colloidal, drug-rich species. Solid state analyses of the ASD tablet surface by infrared spectroscopy and scanning electron microscopy revealed that the partially dissolved tablet surface remains smooth, and drug-polymer miscibility is retained at low DLs; whereas, at a very high DL, the surface is porous and enriched with amorphous drug. In concert, these observations suggest that ASD dissolution and drug release at low DLs is governed primarily by hydrophilic polymer; whereas, at high DLs, amorphous drug controls dissolution. Fluorescence microscopy images of thin ASD films suggested that ASDs at or below the LoC remain homogeneous even after exposure to water. In contrast ASDs with DL above LoC undergo, to various extents, water-induced amorphous-amorphous phase separation (AAPS) leading to demixing of the drug and polymer. Correlating the observations of the dissolution study with the solid state data suggest that the ASDs with DLs higher than the LoC undergo AAPS in the hydrating matrix on the surface of the dissolving solid during dissolution, leading to separation of drug and polymer, the formation of a drug-rich interface, and hence, incongruent and/or slow release of the components. In contrast, low DL ASDs dissolve before AAPS occurs. The competition between these two parallel and competing processes on the surface of ASD solids, i.e., dissolution and AAPS, thus dictates the overall release characteristics of the ASD formulations, which is one of the most important considerations in designing formulations with superior dissolution and absorption.
Collapse
Affiliation(s)
- Anura S Indulkar
- Drug Product Development, Research and Development , AbbVie Inc. , North Chicago , Illinois 60064 , United States.,Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Xiaochun Lou
- Drug Product Development, Research and Development , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Geoff G Z Zhang
- Drug Product Development, Research and Development , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
212
|
Ray A, Das S, Chattopadhyay N. Aggregation of Nile Red in Water: Prevention through Encapsulation in β-Cyclodextrin. ACS OMEGA 2019; 4:15-24. [PMID: 31459307 PMCID: PMC6649296 DOI: 10.1021/acsomega.8b02503] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 05/28/2023]
Abstract
The present work, based on various spectroscopic investigations, vividly demonstrates the self-association of Nile red (NR) in aqueous medium. The rapid decrease in the absorbance as well as emission of NR in water bears the signature of the aggregation process. Appearance of a new blue-shifted absorption band in addition to the original one and a drastic decrease in the emission intensity imply that the aggregation is of H-type. Poor solubility of NR in water, hydrophobic interaction, and the planar structure of the dye are ascribed to favor the formation of the aggregate in the aqueous medium. Absorption-based kinetic studies reveal the aggregation process to be second order, thereby establishing the aggregate to be a dimer. Similar kinetic profiles of the absorbance of NR in the presence and absence of light confirm that the aggregation process is not photoassisted. The presence of an isosbestic point in the absorbance spectra and an isoemissive point in the time-resolved area normalized emission spectra bears the evidence of equilibrium between the dimeric and the monomeric species of NR in the ground state as well as in the photoexcited state. Encapsulation of the monomer of NR within the hydrophobic cavity of β-cyclodextrin is demonstrated to prevent the aggregation process.
Collapse
|
213
|
Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, Lim D, Joklik J, Cicero JM, Ellis JD, Hawthorne D, vanEngelsdorp D. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc Natl Acad Sci U S A 2019; 116:1792-1801. [PMID: 30647116 PMCID: PMC6358713 DOI: 10.1073/pnas.1818371116] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The parasitic mite Varroa destructor is the greatest single driver of the global honey bee health decline. Better understanding of the association of this parasite and its host is critical to developing sustainable management practices. Our work shows that this parasite is not consuming hemolymph, as has been the accepted view, but damages host bees by consuming fat body, a tissue roughly analogous to the mammalian liver. Both hemolymph and fat body in honey bees were marked with fluorescent biostains. The fluorescence profile in the guts of mites allowed to feed on these bees was very different from that of the hemolymph of the host bee but consistently matched the fluorescence profile unique to the fat body. Via transmission electron microscopy, we observed externally digested fat body tissue in the wounds of parasitized bees. Mites in their reproductive phase were then fed a diet composed of one or both tissues. Mites fed hemolymph showed fitness metrics no different from the starved control. Mites fed fat body survived longer and produced more eggs than those fed hemolymph, suggesting that fat body is integral to their diet when feeding on brood as well. Collectively, these findings strongly suggest that Varroa are exploiting the fat body as their primary source of sustenance: a tissue integral to proper immune function, pesticide detoxification, overwinter survival, and several other essential processes in healthy bees. These findings underscore a need to revisit our understanding of this parasite and its impacts, both direct and indirect, on honey bee health.
Collapse
Affiliation(s)
- Samuel D Ramsey
- Department of Entomology, University of Maryland, College Park, MD 20742;
| | - Ronald Ochoa
- Agricultural Research Service, Systematic Entomology Laboratory, United States Department of Agriculture, Beltsville, MD 20705
| | - Gary Bauchan
- Agricultural Research Service, Soybean Genomics & Improvement Laboratory, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Connor Gulbronson
- Agricultural Research Service, Floral and Nursery Plant Research Unit, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Joseph D Mowery
- Agricultural Research Service, Soybean Genomics & Improvement Laboratory, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Allen Cohen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - David Lim
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Judith Joklik
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Joseph M Cicero
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611
| | - David Hawthorne
- Department of Entomology, University of Maryland, College Park, MD 20742
| | | |
Collapse
|
214
|
Sundukova M, Prifti E, Bucci A, Kirillova K, Serrao J, Reymond L, Umebayashi M, Hovius R, Riezman H, Johnsson K, Heppenstall PA. A Chemogenetic Approach for the Optical Monitoring of Voltage in Neurons. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mayya Sundukova
- Molecular Medicine Partnership Unit (MMPU); 69117 Heidelberg Germany
- Epigenetics and Neurobiology Unit; EMBL Rome; via Ramarini 32 Monterotondo Italy
| | - Efthymia Prifti
- Molecular Medicine Partnership Unit (MMPU); 69117 Heidelberg Germany
- Epigenetics and Neurobiology Unit; EMBL Rome; via Ramarini 32 Monterotondo Italy
| | - Annalisa Bucci
- Molecular Medicine Partnership Unit (MMPU); 69117 Heidelberg Germany
- Epigenetics and Neurobiology Unit; EMBL Rome; via Ramarini 32 Monterotondo Italy
| | - Kseniia Kirillova
- Molecular Medicine Partnership Unit (MMPU); 69117 Heidelberg Germany
- Epigenetics and Neurobiology Unit; EMBL Rome; via Ramarini 32 Monterotondo Italy
| | - Joana Serrao
- Molecular Medicine Partnership Unit (MMPU); 69117 Heidelberg Germany
- Epigenetics and Neurobiology Unit; EMBL Rome; via Ramarini 32 Monterotondo Italy
| | - Luc Reymond
- Ecole Polytechnique Federale de Lausanne; ISIC; National Centre for Competence in Research (NCCR) in Chemical Biology; 1015 Lausanne Switzerland
| | - Miwa Umebayashi
- University of Geneva; Department of Biochemistry, National Centre for Competence in Research (NCCR) in Chemical Biology; 1211 Geneva Switzerland
| | - Ruud Hovius
- Ecole Polytechnique Federale de Lausanne; ISIC; National Centre for Competence in Research (NCCR) in Chemical Biology; 1015 Lausanne Switzerland
| | - Howard Riezman
- University of Geneva; Department of Biochemistry, National Centre for Competence in Research (NCCR) in Chemical Biology; 1211 Geneva Switzerland
| | - Kai Johnsson
- Department of Chemical Biology; Max Planck Institute for Medical Research; 69120 Heidelberg Germany
- Ecole Polytechnique Federale de Lausanne; ISIC; National Centre for Competence in Research (NCCR) in Chemical Biology; 1015 Lausanne Switzerland
| | - Paul A. Heppenstall
- Molecular Medicine Partnership Unit (MMPU); 69117 Heidelberg Germany
- Epigenetics and Neurobiology Unit; EMBL Rome; via Ramarini 32 Monterotondo Italy
| |
Collapse
|
215
|
Yuan C, Chakraborty S, Chitta KK, Subramanian S, Lim TE, Han W, Bhanu Prakash KN, Sugii S. Fast Adipogenesis Tracking System (FATS)-a robust, high-throughput, automation-ready adipogenesis quantification technique. Stem Cell Res Ther 2019; 10:38. [PMID: 30670100 PMCID: PMC6341617 DOI: 10.1186/s13287-019-1141-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Adipogenesis is essential in in vitro experimentation to assess differentiation capability of stem cells, and therefore, its accurate measurement is important. Quantitative analysis of adipogenic levels, however, is challenging and often susceptible to errors due to non-specific reading or manual estimation by observers. To this end, we developed a novel adipocyte quantification algorithm, named Fast Adipogenesis Tracking System (FATS), based on computer vision libraries. The FATS algorithm is versatile and capable of accurately detecting and quantifying percentage of cells undergoing adipogenic and browning differentiation even under difficult conditions such as the presence of large cell clumps or high cell densities. The algorithm was tested on various cell lines including 3T3-L1 cells, adipose-derived mesenchymal stem cells (ASCs), and induced pluripotent stem cell (iPSC)-derived cells. The FATS algorithm is particularly useful for adipogenic measurement of embryoid bodies derived from pluripotent stem cells and was capable of accurately distinguishing adipogenic cells from false-positive stains. We then demonstrate the effectiveness of the FATS algorithm for screening of nuclear receptor ligands that affect adipogenesis in the high-throughput manner. Together, the FATS offer a universal and automated image-based method to quantify adipocyte differentiation of different cell lines in both standard and high-throughput workflows.
Collapse
Affiliation(s)
- Chengxiang Yuan
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Smarajit Chakraborty
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Krishna Kanth Chitta
- Signal and Image Processing Group, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Subha Subramanian
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Tau En Lim
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - K N Bhanu Prakash
- Signal and Image Processing Group, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore
| | - Shigeki Sugii
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
216
|
He H, Liu B, Wang M, Vachet RW, Thayumanavan S. Sequential Nucleophilic "Click" Reactions for Functional Amphiphilic Homopolymers. Polym Chem 2019; 10:187-193. [PMID: 31447949 PMCID: PMC6707748 DOI: 10.1039/c8py01341a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic homopolymers with high densities of functional groups are synthetically challenging. Thiol-yne nucleophilic click reactions have been investigated to introduce multiple functional groups in polymers with high density. An electron deficient alkyne group bearing methacrylate monomer was polymerized using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Subsequently, the electron deficient alkyne group on polymer side chain was readily reacted with a thiol reagent using triethylamine (TEA) as the organocatalyst. This reaction was found to be very efficient under mild conditions. The resultant homopolymer bearing thiol vinyl ether functional groups could perform a second thiol addition with a stronger base, such as triazabicyclodecene (TBD), to prepare multifunctional homopolymers. This stepwise addition process was monitored by 1H NMR as well as gel permeation chromatography. The fidelity of this method was demonstrated by attaching four different functionalities, including both hydrophobic and hydrophilic moieties. Furthermore, these dual functionalized polymers bearing dithio-acetal groups are sensitive to reactive oxygen species (ROS), which compromises the host-guest properties of the assembly in response to this stimulus. The ROS responsive polymers reported here may have potential use in therapeutic delivery.
Collapse
Affiliation(s)
- Huan He
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Bin Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Meizhe Wang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
217
|
Spahn C, Grimm JB, Lavis LD, Lampe M, Heilemann M. Whole-Cell, 3D, and Multicolor STED Imaging with Exchangeable Fluorophores. NANO LETTERS 2019; 19:500-505. [PMID: 30525682 DOI: 10.1021/acs.nanolett.8b04385] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate stimulated emission depletion (STED) microscopy of whole bacterial and eukaryotic cells using fluorogenic labels that reversibly bind to their target structure. A constant exchange of labels guarantees the removal of photobleached fluorophores and their replacement by intact fluorophores, thereby circumventing bleaching-related limitations of STED super-resolution imaging. We achieve a constant labeling density and demonstrate a fluorescence signal for long and theoretically unlimited acquisition times. Using this concept, we demonstrate whole-cell, 3D, multicolor, and live-cell STED microscopy.
Collapse
Affiliation(s)
- Christoph Spahn
- Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany
| | - Jonathan B Grimm
- Janelia Research Campus , Howard Hughes Medical Institute , 19700 Helix Drive , Ashburn , Virginia 20147 , United States
| | - Luke D Lavis
- Janelia Research Campus , Howard Hughes Medical Institute , 19700 Helix Drive , Ashburn , Virginia 20147 , United States
| | - Marko Lampe
- Advanced Light Microscopy Facility , European Molecular Biology Laboratory , Meyerhofstr. 1 , 69117 Heidelberg , Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany
| |
Collapse
|
218
|
Veloso SRS, Magalhães CAB, Rodrigues ARO, Vilaça H, Queiroz MJRP, Martins JA, Coutinho PJG, Ferreira PMT, Castanheira EMS. Novel dehydropeptide-based magnetogels containing manganese ferrite nanoparticles as antitumor drug nanocarriers. Phys Chem Chem Phys 2019; 21:10377-10390. [DOI: 10.1039/c9cp00352e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Novel peptide-based magnetogels, containing MnFe2O4 nanoparticles of 20 nm size, were developed and successfully tested as nanocarriers for antitumor drugs.
Collapse
Affiliation(s)
| | | | | | - H. Vilaça
- Centro de Química (CQ-UM)
- Universidade do Minho
- 4710-057 Braga
- Portugal
| | | | - J. A. Martins
- Centro de Química (CQ-UM)
- Universidade do Minho
- 4710-057 Braga
- Portugal
| | | | | | | |
Collapse
|
219
|
Co-delivery of siRNA and etoposide to cancer cells using an MDEA esterquat based drug delivery system. Eur J Pharm Sci 2019; 127:142-150. [DOI: 10.1016/j.ejps.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022]
|
220
|
Bildirici I, Schaiff WT, Chen B, Morizane M, Oh SY, O’Brien M, Sonnenberg-Hirche C, Chu T, Barak Y, Nelson DM, Sadovsky Y. PLIN2 Is Essential for Trophoblastic Lipid Droplet Accumulation and Cell Survival During Hypoxia. Endocrinology 2018; 159:3937-3949. [PMID: 30351430 PMCID: PMC6240902 DOI: 10.1210/en.2018-00752] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Trophoblast hypoxia and injury, key components of placental dysfunction, are associated with fetal growth restriction and other complications of pregnancy. Accumulation of lipid droplets has been found in hypoxic nonplacental cells. Unique to pregnancy, lipid accumulation in the placenta might perturb lipid transport to the fetus. We tested the hypothesis that hypoxia leads to accumulation of lipid droplets in human trophoblasts and that trophoblastic PLIN proteins play a key role in this process. We found that hypoxia promotes the accumulation of lipid droplets in primary human trophoblasts. A similar accretion of lipid droplets was found in placental villi in vivo from pregnancies complicated by fetal growth restriction. In both situations, these changes were associated with an increased level of cellular triglycerides. Exposure of trophoblasts to hypoxia led to reduced fatty acid efflux and oxidation with no change in fatty acid uptake or synthesis. We further found that hypoxia markedly stimulated PLIN2 mRNA synthesis and protein expression, which colocalized to lipid droplets. Knockdown of PLIN2, but not PLIN3, enhanced trophoblast apoptotic death, and overexpression of PLIN2 promoted cell viability. Collectively, our data indicate that hypoxia enhances trophoblastic lipid retention in the form of lipid droplets and that PLIN2 plays a key role in this process and in trophoblast defense against apoptotic death. These findings also imply that this protective mechanism may lead to diminished trafficking of lipids to the developing fetus.
Collapse
Affiliation(s)
- Ibrahim Bildirici
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri
| | - W Timothy Schaiff
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri
| | - Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri
| | - Mayumi Morizane
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Soo-Young Oh
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew O’Brien
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Tianjiao Chu
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yaacov Barak
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - D Michael Nelson
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence: Yoel Sadovsky, MD, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, Pennsylvania 15213. E-mail:
| |
Collapse
|
221
|
Li M, Ma J, Ahmad O, Cao Y, Wang B, He Q, Li J, Yin H, Zhang Y, He J, Shang J. Lipid-modulate activity of Cichorium glandulosum Boiss. et Huet polysaccharide in nonalcoholic fatty liver disease larval zebrafish model. J Pharmacol Sci 2018; 138:257-262. [DOI: 10.1016/j.jphs.2018.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023] Open
|
222
|
Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. J Control Release 2018; 292:172-182. [PMID: 30408553 DOI: 10.1016/j.jconrel.2018.11.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022]
Abstract
Enzalutamide is a fast crystallizing, hydrophobic compound that has solubility limited absorption in vivo. Given the low aqueous solubility of this compound, it was of interest to evaluate amorphous formulations in vitro and in vivo. Amorphous solid dispersions (ASD) of enzalutamide were prepared with the hydrophilic polymers, hydroxypropyl methylcellulose acetate succinate (HPMCAS) and copovidone (PVPVA). A side-by-side diffusion cell was developed as an in vitro characterization tool to discriminate enzalutamide ASDs based upon the solute thermodynamic activity achieved during dissolution and its impact on the subsequent membrane transport rates, phase behavior, and drug speciation. The same formulations were then tested in vivo in rats using oral dosing of ASD suspensions. Different levels of plasma exposure were observed between the ASDs, which could be correlated to the phase behaviors of the ASDs following dissolution. Unsurprisingly, ASDs that underwent crystallization show lower plasma exposures. However, differences were also observed between ASDs that dissolved to form nanosized amorphous drug aggregates versus those that dissolved to yield only supersaturated solutions, with the former outperforming the latter in terms of the plasma exposure. These observations highlight the importance of thoroughly understanding the phase behavior of an amorphous formulation following dissolution and the need to discriminate between different types of precipitation, specifically crystallization versus glass liquid phase separation to form nanosized amorphous aggregates.
Collapse
|
223
|
Wang S, Ha Y, Huang X, Chin B, Sim W, Chen R. A New Strategy for Intestinal Drug Delivery via pH-Responsive and Membrane-Active Nanogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36622-36627. [PMID: 30300550 DOI: 10.1021/acsami.8b15661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oral administration of hydrophobic and poorly intestinal epithelium-permeable drugs is a significant challenge. Herein, we report a new strategy to overcome this problem by using novel, pH-responsive, and membrane-active nanogels as drug carriers. Prepared by simple physical cross-linking of amphiphilic pseudopeptidic polymers with pH-controlled membrane-activity, the size and hydrophobicity-hydrophilicity balance of the nanogels could be well-tuned. Furthermore, the amphiphilic nanogels could release hydrophobic payloads and destabilize cell membranes at duodenum and jejunum pH 5.0-6.0, which suggests their great potential for intestinal drug delivery.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Youlim Ha
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Xiaozhen Huang
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Benjamin Chin
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Wen Sim
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| |
Collapse
|
224
|
Kumarn S, Churinthorn N, Nimpaiboon A, Sriring M, Ho CC, Takahara A, Sakdapipanich J. Investigating the Mechanistic and Structural Role of Lipid Hydrolysis in the Stabilization of Ammonia-Preserved Hevea Rubber Latex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12730-12738. [PMID: 30335388 DOI: 10.1021/acs.langmuir.8b02321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The stabilization mechanism of natural rubber (NR) latex from Hevea brasiliensis was studied to investigate the components involved in base-catalyzed ester hydrolysis, namely, hydrolyzable lipids, ammonia, and the products responsible for the desired phenomenon observed in ammonia-preserved NR latex. Latex stability is generally thought to come from a rubber particle (RP) dispersion in the serum, which is encouraged by negatively charged species distributed on the RP surface. The mechanical stability time (MST) and zeta potential were measured to monitor field latices preserved in high (FNR-HA) and low ammonia (FNR-LA) contents as well as that with the ester-containing components removed (saponified NR) at different storage times. Amounts of carboxylates of free fatty acids (FFAs), which were released by the transformation and also hypothesized to be responsible for the like-charge repulsion of RPs, were measured as the higher fatty acid (HFA) number and corroborated by confocal laser scanning microscopy (CLSM) both qualitatively and quantitatively. The lipids and their FFA products interact differently with Nile red, which is a lipid-selective and polarity-sensitive fluorophore, and consequently re-emit characteristically. The results were confirmed by conventional ester content determination utilizing different solvent extraction systems to reveal that the lipids hydrolyzed to provide negatively charged fatty acid species were mainly the polar lipids (glycolipids and phospholipids) at the RP membrane but not those directly linked to the rubber molecule and, to a certain extent, those suspended in the serum. From new findings disclosed herein together with those already reported, a new model for the Hevea rubber particle in the latex form is proposed.
Collapse
Affiliation(s)
- Sirirat Kumarn
- Institute of Molecular Biosciences , Mahidol University , 25/25 Phuttamonthon 4 Road , Salaya , Nakhon Pathom 73170 , Thailand
| | - Nut Churinthorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Mahidol University , Phayathai, Bangkok 10400 , Thailand
| | - Adun Nimpaiboon
- Rubber Technology Research Centre (RTEC), Faculty of Science , Mahidol University , Salaya , Nakhon Pathom 73170 , Thailand
| | - Manus Sriring
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Mahidol University , Phayathai, Bangkok 10400 , Thailand
| | - Chee-Cheong Ho
- Universiti Tunku Abdul Rahman, Sungai Long Campus , Chera 43000 , Kajang , Selangor Malaysia
| | - Atsushi Takahara
- Graduate School of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Jitladda Sakdapipanich
- Institute of Molecular Biosciences , Mahidol University , 25/25 Phuttamonthon 4 Road , Salaya , Nakhon Pathom 73170 , Thailand
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Mahidol University , Phayathai, Bangkok 10400 , Thailand
| |
Collapse
|
225
|
Nile red-doped fluorescent semiconducting polymer dots as a highly sensitive hydrophobicity probe: protein conformational changes detection and plasma membrane imaging. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1531-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
226
|
Cardoso BD, Rio ISR, Rodrigues ARO, Fernandes FCT, Almeida BG, Pires A, Pereira AM, Araújo JP, Castanheira EMS, Coutinho PJG. Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181017. [PMID: 30473847 PMCID: PMC6227978 DOI: 10.1098/rsos.181017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/13/2018] [Indexed: 05/24/2023]
Abstract
Magnesium ferrite nanoparticles, with diameters around 25 nm, were synthesized by coprecipitation method. The magnetic properties indicate a superparamagnetic behaviour, with a maximum magnetization of 16.2 emu g-1, a coercive field of 22.1 Oe and a blocking temperature of 183.2 K. These MgFe2O4 nanoparticles were used to produce aqueous and solid magnetoliposomes, with sizes below 130 nm. The potential drug curcumin was successfully incorporated in these nanosystems, with high encapsulation efficiencies (above 89%). Interaction by fusion between both types of drug-loaded magnetoliposomes (with or without PEGylation) and models of biological membranes was demonstrated, using FRET or fluorescence quenching assays. These results point to future applications of magnetoliposomes containing MgFe2O4 nanoparticles in cancer therapy, allowing combined magnetic hyperthermia and chemotherapy.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Irina S. R. Rio
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Rita O. Rodrigues
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - B. G. Almeida
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - A. Pires
- IFIMUP/IN - Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto, Portugal
| | - A. M. Pereira
- IFIMUP/IN - Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto, Portugal
| | - J. P. Araújo
- IFIMUP/IN - Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto, Portugal
| | | | - Paulo J. G. Coutinho
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
227
|
Hauke S, Keutler K, Phapale P, Yushchenko DA, Schultz C. Endogenous Fatty Acids Are Essential Signaling Factors of Pancreatic β-Cells and Insulin Secretion. Diabetes 2018; 67:1986-1998. [PMID: 29748290 DOI: 10.2337/db17-1215] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022]
Abstract
The secretion of insulin from β-cells depends on extracellular factors, in particular glucose and other small molecules, some of which act on G-protein-coupled receptors. Fatty acids (FAs) have been discussed as exogenous secretagogues of insulin for decades, especially after the FA receptor GPR40 (G-protein-coupled receptor 40) was discovered. However, the role of FAs as endogenous signaling factors has not been investigated until now. In the present work, we demonstrate that lowering endogenous FA levels in β-cell medium by stringent washing or by the application of FA-free (FAF) BSA immediately reduced glucose-induced oscillations of cytosolic Ca2+ ([Ca2+]i oscillations) in MIN6 cells and mouse primary β-cells, as well as insulin secretion. Mass spectrometry confirmed BSA-mediated removal of FAs, with palmitic, stearic, oleic, and elaidic acid being the most abundant species. [Ca2+]i oscillations in MIN6 cells recovered when BSA was replaced by buffer or as FA levels in the supernatant were restored. This was achieved by recombinant lipase-mediated FA liberation from membrane lipids, by the addition of FA-preloaded FAF-BSA, or by the photolysis of cell-impermeant caged FAs. Our combined data support the hypothesis of FAs as essential endogenous signaling factors for β-cell activity and insulin secretion.
Collapse
Affiliation(s)
- Sebastian Hauke
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kaya Keutler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR
| | - Prasad Phapale
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, Prague, Czech Republic
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
228
|
Abstract
Molecular motors are Nature's solution for (supra)molecular transport and muscle functioning and are involved in most forms of directional motion at the cellular level. Their synthetic counterparts have also found a myriad of applications, ranging from molecular machines and smart materials to catalysis and anion transport. Although light-driven rotary molecular motors are likely to be suitable for use in an artificial cell, as well as in bionanotechnology, thus far they are not readily applied under physiological conditions. This results mainly from their inherently aromatic core structure, which makes them insoluble in aqueous solution. Here, the study of the dynamic behavior of these motors in biologically relevant media is described. Two molecular motors were equipped with solubilizing substituents and studied in aqueous solutions. Additionally, the behavior of a previously reported molecular motor was studied in micelles, as a model system for the biologically relevant confined environment. Design principles were established for molecular motors in these media, and insights are given into pH-dependent behavior. The work presented herein may provide a basis for the application of the remarkable properties of molecular motors in more advanced biohybrid systems.
Collapse
Affiliation(s)
- Anouk S Lubbe
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Christian Böhmer
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Filippo Tosi
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Wiktor Szymanski
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Department of Radiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Ben L Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
229
|
Rajankar MP, Ravindranathan S, Rajamohanan PR, Raghunathan A. Absolute quantitation of poly(R)-3-hydroxybutyric acid using spectrofluorometry in recombinant Escherichia coli. Biol Methods Protoc 2018; 3:bpy007. [PMID: 32161801 PMCID: PMC6994081 DOI: 10.1093/biomethods/bpy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 11/12/2022] Open
Abstract
Poly(R)-3-hydroxybutyric acid (PHB) is a biodegradable natural polymer produced by microorganisms and plants under nitrogen deprivation and physiological stress. Metabolic engineering and synthetic biology approaches are underway to develop strains that can produce PHB and its co-polymers. One of the major limitations to the scaling and success of strain development for biosynthesis of PHB is the absence of fast, accurate, quantitative and scalable methods to estimate PHB in polymer producing cells. In this study, a Nile red-based spectrofluorometric method is developed for absolute quantitation of PHB in recombinant Escherichia coli. The method is a modification of an existing Nile red-based method currently only used for relative quantitation. The two added steps of sonication and ethanol extraction increase the dynamic range of the assay and limit of detection/quantitation. Sonication of PHB standards provides uniform distribution of surface area to volume ratios. This ensures reproducibility and accuracy (lower %relative error) of quantitative staining of granules by Nile red even in a higher dynamic concentration range of 125–1000 µg/ml. Ethanolic extraction of the PHB bound Nile red allows higher recovery and accurate absolute quantitation. To reproduce high recovery and ensure accuracy and precision of the analytical method directly using cells, a protein digestion step was added. This accounted for fluorescence from over-expressed protein and resulted in screening of nonproducers of PHB amongst samples. Thus, the method developed is rapid, accurate, and reproducible, requires low sample volumes and processing compared to other conventional methods. This method is scalable to other PHA’s and diverse plastics.
Collapse
Affiliation(s)
- Mayooreshwar P Rajankar
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | - Sapna Ravindranathan
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | - P R Rajamohanan
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | - Anu Raghunathan
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
- Correspondence address. Chemical Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India. Tel: +91-20-2590-3067; Fax: +91-20-2590-2615; E-mail:
| |
Collapse
|
230
|
Schwarz KRL, Botigelli RC, Del Collado M, Cavallari de Castro F, Fernandes H, Paschoal DM, Leal CLV. Effects of fetal calf serum on cGMP pathway and oocyte lipid metabolism in vitro. Reprod Fertil Dev 2018; 29:1593-1601. [PMID: 27554265 DOI: 10.1071/rd15512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/28/2016] [Indexed: 12/27/2022] Open
Abstract
Intracellular levels of cyclic nucleotides, such as cGMP, are involved in the regulation of adipocyte lipolysis. Cumulus-oocyte complexes (COCs) express enzymes that both synthesise (guanylate cyclase) and degrade (phosphodiesterase (PDE) 5A) cGMP. Because serum interferes with lipid metabolism, its effects on the cGMP pathway and lipid content in bovine COCs were examined. COCs were matured in medium containing fetal calf serum (FCS; 2% or 10%) or 0.4% bovine serum albumin (BSA; control). At both 2% and 10%, FCS decreased cGMP levels in COCs compared with BSA (0.64 and 1.04 vs 9.46 fmol per COC respectively; P<0.05) and decreased transcript levels of guanylate cyclase 1, soluble, beta 3 (GUCY1B3), whereas PDE5A levels were increased. FCS also affected the expression of genes related to lipolysis, increasing relative expression of perilipin 2 (PLIN2) and carnitine palmitoyltransferase 1B (CPT1B) in cumulus cells. Effects of FCS and cGMP on the lipid content of oocytes and embryos were evaluated by Nile red staining. COCs were matured with 10% FCS, FCS+10-5 M sildenafil (SDF), a PDE5 inhibitor, or 0.4% BSA. The lipid content was increased in oocytes matured in FCS compared with BSA (fluorescence intensity 20.1 vs 17.61 respectively; P<0.05), whereas the lipid content in oocytes matured in FCS+SDF (fluorescence intensity 16.33) was similar to that in the BSA-treated group (P>0.05). In addition, lipid content was higher in embryos from oocytes matured with FCS than BSA (fluorescence intensity 31.12 vs 22.31 respectively; P<0.05), but was increased even further in the FCS+SDF-treated group (fluorescence intensity 40.35; P<0.05), possibly due to a compensatory mechanism during embryo culture without SDF for the reduction in lipid content during IVM. The present study provides, for the first time, evidence that the cGMP pathway may be involved in lipid metabolism in bovine COCs and that this pathway is affected by FCS.
Collapse
Affiliation(s)
- Kátia R L Schwarz
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga - SP, CEP 13635-900,Brazil
| | - Ramon Cesar Botigelli
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Road. Domingos Sartori, 21500, Botucatu - SP, CEP 18618-689, Brazil
| | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga - SP, CEP 13635-900,Brazil
| | - Fernanda Cavallari de Castro
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga - SP, CEP 13635-900,Brazil
| | - Hugo Fernandes
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga - SP, CEP 13635-900,Brazil
| | - Daniela M Paschoal
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga - SP, CEP 13635-900,Brazil
| | - Cláudia Lima Verde Leal
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga - SP, CEP 13635-900,Brazil
| |
Collapse
|
231
|
Kurtz SL, Lawson LB. Determination of permeation pathways of hydrophilic or hydrophobic dyes through the mammary papilla. Int J Pharm 2018; 545:10-18. [DOI: 10.1016/j.ijpharm.2018.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 11/30/2022]
|
232
|
Wang J, Guo X, Li L, Qiu H, Zhang Z, Wang Y, Sun G. Application of the Fluorescent Dye BODIPY in the Study of Lipid Dynamics of the Rice Blast Fungus Magnaporthe oryzae. Molecules 2018; 23:E1594. [PMID: 29966327 PMCID: PMC6099410 DOI: 10.3390/molecules23071594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/23/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022] Open
Abstract
Rice blast is one of the most serious diseases affecting rice yield which is caused by Magnaporthe oryzae, a model organism for studies on plant pathogenic fungi. Lipids stored in M. oryzae cells have been shown to be crucial for the development of appressorium turgor and the ability of the pathogen to cause infection. Nile red staining is a common method to study lipid dynamics in phytopathogenic fungi. However, the disadvantages of this dye include its wide spectrum, poor water solubility, and susceptibility to quenching. Boron dipyrromethene (BODIPY) is a new type of fluorescent dye that has a different emission wavelength to that of Nile red as well as many desirable spectral and chemical properties. In this study, we used BODIPY to stain the lipids in M. oryzae cells to seek a possible substitute to Nile red in the study of lipid dynamics in plant pathogenic fungi. Our data showed that through simple and routine procedures, BODIPY was able to distinctly label lipids in the cells of mycelia and conidia. The positions of lipids labeled by BODIPY were essentially identical to those labeled by Nile red, but with more clear fluorescence labelling, lower background, and higher specificity. The use of BODIPY to stain germinating M. oryzae conidia allowed the lipid dynamics to be clearly tracked during this process. We also achieved double and multiple fluorescent staining conidia by combining BODIPY with the red fluorescent protein mCherry and other fluorescent dyes, such as Calcofluor white and DAPI, in conidia, mycelia, and sexual structures of M. oryzae. These results indicate that BODIPY is an ideal fluorescent dye for staining fungal lipids and provide a method for the study of the lipid dynamics and lipid metabolism in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaoyu Guo
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ling Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agricultural and Food Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China.
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
233
|
Angrish MM, McQueen CA, Cohen-Hubal E, Bruno M, Ge Y, Chorley BN. Editor's Highlight: Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Hepatic Steatosis. Toxicol Sci 2018; 159:159-169. [PMID: 28903485 DOI: 10.1093/toxsci/kfx121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Risk assessors use liver endpoints in rodent toxicology studies to assess the safety of chemical exposures. Yet, rodent endpoints may not accurately reflect human responses. For this reason and others, human-based invitro models are being developed and anchored to adverse outcome pathways to better predict adverse human health outcomes. Here, a networked adverse outcome pathway-guided selection of biology-based assays for lipid uptake, lipid efflux, fatty acid oxidation, and lipid accumulation were developed. These assays were evaluated in a metabolically competent human hepatocyte cell model (HepaRG) exposed to compounds known to cause steatosis (amiodarone, cyclosporine A, and T0901317) or activate lipid metabolism pathways (troglitazone, Wyeth-14,643, and 22(R)-hydroxycholesterol). All of the chemicals activated at least one assay, however, only T0901317 and cyclosporin A dose-dependently increased lipid accumulation. T0901317 and cyclosporin A increased fatty acid uptake, decreased lipid efflux (inferred from apolipoprotein B100 levels), and increased fatty acid synthase protein levels. Using this biologically-based evaluation of key events regulating hepatic lipid levels, we demonstrated dysregulation of compensatory pathways that normally balance hepatic lipid levels. This approach may provide biological plausibility and data needed to increase confidence in linking invitro-based measurements to chemical effects on adverse human health outcomes.
Collapse
Affiliation(s)
- Michelle M Angrish
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Charlene A McQueen
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Elaine Cohen-Hubal
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Maribel Bruno
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Yue Ge
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Brian N Chorley
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
234
|
Mishra R, Mushtaq Z, Regar R, Mallik B, Kumar V, Sankar J. Selective Imaging of Lipids in Adipocytes
by Using an Imidazolyl Derivative of Perylene Bisimide. Chembiochem 2018; 19:1386-1390. [DOI: 10.1002/cbic.201800134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Ruchika Mishra
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Zeeshan Mushtaq
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Ramprasad Regar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Bhagaban Mallik
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Vimlesh Kumar
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Jeyaraman Sankar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| |
Collapse
|
235
|
Pham-Hoang BN, Romero-Guido C, Phan-Thi H, Waché Y. Strategies to improve carotene entry into cells of Yarrowia lipolytica in a goal of encapsulation. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
236
|
Xiang L, Wojcik M, Kenny SJ, Yan R, Moon S, Li W, Xu K. Optical characterization of surface adlayers and their compositional demixing at the nanoscale. Nat Commun 2018; 9:1435. [PMID: 29650981 PMCID: PMC5897338 DOI: 10.1038/s41467-018-03820-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
Under ambient conditions, the behavior of a solid surface is often dominated by a molecularly thin adsorbed layer (adlayer) of small molecules. Here we develop an optical approach to unveil the nanoscale structure and composition of small-molecule adlayers on glass surfaces through spectrally resolved super-resolution microscopy. By recording the images and emission spectra of millions of individual solvatochromic molecules that turn fluorescent in the adlayer phase, we obtain ~30 nm spatial resolution and achieve concurrent measurement of local polarity. This allows us to establish that the adlayer dimensionality gradually increases through a sequence of 0D (nanodroplets), 1D (nano-lines), and 2D (films) for liquids of increasing polarity. Moreover, we find that in adlayers, a solution of two miscible liquids spontaneously demixes into nanodroplets of different compositions that correlate strongly with droplet size and location. We thus reveal unexpectedly rich structural and compositional behaviors of surface adlayers at the nanoscale. Characterization of adsorbed molecular layers on surfaces is the key to wide-ranging applications, but elucidating the structure and composition of such adlayers remains challenging. Here the authors develop an approach to unveil the nanoscale structure and composition of adlayers through spectrally resolved super-resolution microscopy.
Collapse
Affiliation(s)
- Limin Xiang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Michal Wojcik
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
237
|
Durst A, Wensing M, Berrocal E. Light sheet fluorescence microscopic imaging for the primary breakup of diesel and gasoline sprays with real-world fuels. APPLIED OPTICS 2018; 57:2704-2714. [PMID: 29714263 DOI: 10.1364/ao.57.002704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
This paper describes the adaptation of the laser-induced fluorescence measurement technique for the investigation of the primary breakup of modern diesel and gasoline direct injection sprays. To investigate the primary breakup, a microscopic technique is required, and with the help of special tracer dyes, a high fluorescence signal can be achieved in the visible range of the electromagnetic spectrum, resulting in good image quality with a nonintensified camera. Besides the optimization of the optical setup for the microscopic field of view, different tracer dyes are compared, and their solubility and fluorescence are tested in the desired surrogate and real-world fuels. As a tracer, the phenoxazine dye Nile Red was found to provide sufficient solubility in alkanes as well as suitable emission and excitation spectrum for the use of the second-harmonic frequency of a Nd:YAG laser (532 nm). The good quantum efficiency delivered by Nile Red also meant that single-shot images clearly showing spray structures in regions measuring up to 3 mm by 3 mm around the nozzle outlet could be recorded. Compared to relatively easy shadowgraph techniques and complex and costly x-ray synchrotron measurements, light sheet fluorescence microscopic imaging is not overly complex yet delivers excellent data on spray structures as well as qualitative fuel distribution.
Collapse
|
238
|
Patil Y, Bilalis P, Polymeropoulos G, Almahdali S, Hadjichristidis N, Rodionov V. A Novel Poly(vinylidene fluoride)-Based 4-Miktoarm Star Terpolymer: Synthesis and Self-Assembly. Mol Pharm 2018. [DOI: 10.1021/acs.molpharmaceut.8b00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yogesh Patil
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Panayiotis Bilalis
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - George Polymeropoulos
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sarah Almahdali
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Valentin Rodionov
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
239
|
Hong SH, Patel T, Ip S, Garg S, Oh JK. Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3316-3325. [PMID: 29485889 DOI: 10.1021/acs.langmuir.8b00338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlling the size and narrow size distribution of polymer-based nanocarriers for targeted drug delivery is an important parameter that significantly influences their colloidal stability, biodistribution, and targeting ability. Herein, we report a high-throughput microfluidic process to fabricate colloidally stable aqueous nanoparticulate colloids with tunable sizes at 50-150 nm and narrow size distribution. The nanoparticulates are designed with different molecular weight polyesters having both ester bonds (responsive to esterase) and sulfide linkages (to oxidative reaction) on the backbones, thus exhibiting dual esterase/oxidation responses, causing the destabilization of the nanoparticulates to lead to the controlled release of encapsulated therapeutics. The systematic investigation on both microfluidic and formulation parameters enables to control their properties as allowing for decreasing nanoparticulate sizes as well as improving colloidal stability and cytotoxicity. Further to such control over smaller size and narrow size distribution, dual stimuli-responsive degradation and excellent cellular uptake could suggest that the microfluidic nanoparticulates stabilized with polymeric stabilizers could offer the versatility toward dual smart drug delivery exhibiting enhanced release kinetics.
Collapse
Affiliation(s)
- Sung Hwa Hong
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| | - Twinkal Patel
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| | - Shell Ip
- Precision NanoSystems, Vancouver , BC , Canada V6T 1Z3
| | - Shyam Garg
- Precision NanoSystems, Vancouver , BC , Canada V6T 1Z3
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| |
Collapse
|
240
|
Pogmore AR, Seistrup KH, Strahl H. The Gram-positive model organism Bacillus subtilis does not form microscopically detectable cardiolipin-specific lipid domains. MICROBIOLOGY-SGM 2018; 164:475-482. [PMID: 29504925 DOI: 10.1099/mic.0.000639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rather than being homogenous diffusion-dominated structures, biological membranes can exhibit areas with distinct composition and characteristics, commonly termed as lipid domains. Arguably the most comprehensively studied examples in bacteria are domains formed by cardiolipin, which have been functionally linked to protein targeting, the cell division process and the mode of action of membrane-targeting antimicrobials. Cardiolipin domains were originally identified in the Gram-negative model organism Escherichia coli based on preferential staining by the fluorescent membrane dye nonylacridine orange (NAO), and later reported to also exist in other Gram-negative and -positive bacteria. Recently, the lipid-specificity of NAO has been questioned based on studies conducted in E. coli. This prompted us to reanalyse cardiolipin domains in the Gram-positive model organism Bacillus subtilis. Here we show that logarithmically growing B. subtilis does not form microscopically detectable cardiolipin-specific lipid domains, and that NAO is not a specific stain for cardiolipin in this organism.
Collapse
Affiliation(s)
- Alex-Rose Pogmore
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kenneth H Seistrup
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
241
|
Cox D, Whiten DR, Brown JWP, Horrocks MH, San Gil R, Dobson CM, Klenerman D, van Oijen AM, Ecroyd H. The small heat shock protein Hsp27 binds α-synuclein fibrils, preventing elongation and cytotoxicity. J Biol Chem 2018; 293:4486-4497. [PMID: 29382725 DOI: 10.1074/jbc.m117.813865] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/21/2018] [Indexed: 11/06/2022] Open
Abstract
Proteostasis, or protein homeostasis, encompasses the maintenance of the conformational and functional integrity of the proteome and involves an integrated network of cellular pathways. Molecular chaperones, such as the small heat shock proteins (sHsps), are key elements of the proteostasis network that have crucial roles in inhibiting the aggregation of misfolded proteins. Failure of the proteostasis network can lead to the accumulation of misfolded proteins into intracellular and extracellular deposits. Deposits containing fibrillar forms of α-synuclein (α-syn) are characteristic of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. Here we show that the sHsp Hsp27 (HSPB1) binds to α-syn fibrils, inhibiting fibril growth by preventing elongation. Using total internal reflection fluorescence (TIRF)-based imaging methods, we show that Hsp27 binds along the surface of α-syn fibrils, decreasing their hydrophobicity. Binding of Hsp27 also inhibits cytotoxicity of α-syn fibrils. Our results demonstrate that the ability of sHsps, such as Hsp27, to bind fibrils represents an important mechanism through which they may mitigate cellular toxicity associated with aberrant protein aggregation. Fibril binding may represent a generic mechanism by which chaperone-active sHsps interact with aggregation-prone proteins, highlighting the potential to target sHsp activity to prevent or disrupt the onset and progression of α-syn aggregation associated with α-synucleinopathies.
Collapse
Affiliation(s)
- Dezerae Cox
- From the Illawarra Health and Medical Research Institute and.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Daniel R Whiten
- From the Illawarra Health and Medical Research Institute and.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - James W P Brown
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - Mathew H Horrocks
- From the Illawarra Health and Medical Research Institute and.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - Rebecca San Gil
- From the Illawarra Health and Medical Research Institute and.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - Antoine M van Oijen
- From the Illawarra Health and Medical Research Institute and.,School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Heath Ecroyd
- From the Illawarra Health and Medical Research Institute and .,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
242
|
Sameni S, Malacrida L, Tan Z, Digman MA. Alteration in Fluidity of Cell Plasma Membrane in Huntington Disease Revealed by Spectral Phasor Analysis. Sci Rep 2018; 8:734. [PMID: 29335600 PMCID: PMC5768877 DOI: 10.1038/s41598-018-19160-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Huntington disease (HD) is a late-onset genetic neurodegenerative disorder caused by expansion of cytosine-adenine-guanine (CAG) trinucleotide in the exon 1 of the gene encoding the polyglutamine (polyQ). It has been shown that protein degradation and lipid metabolism is altered in HD. In many neurodegenerative disorders, impaired lipid homeostasis is one of the early events in the disease onset. Yet, little is known about how mutant huntingtin may affect phospholipids membrane fluidity. Here, we investigated how membrane fluidity in the living cells (differentiated PC12 and HEK293 cell lines) are affected using a hyperspectral imaging of widely used probes, LAURDAN. Using phasor approach, we characterized the fluorescence of LAURDAN that is sensitive to the polarity of the immediate environment. LAURDAN is affected by the physical order of phospholipids (lipid order) and reports the membrane fluidity. We also validated our results using a different fluorescent membrane probe, Nile Red (NR). The plasma membrane in the cells expressing expanded polyQ shows a shift toward increased membrane fluidity revealed by both LAURDAN and NR spectral phasors. This finding brings a new perspective in the understanding of the early stages of HD that can be used as a target for drug screening.
Collapse
Affiliation(s)
- Sara Sameni
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Leonel Malacrida
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Departamento de Fisiopatología, Hospital de Clinicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Zhiqun Tan
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, USA
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
243
|
Harchouni S, Field B, Menand B. AC-202, a highly effective fluorophore for the visualization of lipid droplets in green algae and diatoms. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:120. [PMID: 29713379 PMCID: PMC5913787 DOI: 10.1186/s13068-018-1117-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/12/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Lipid-specific live cell dyes are an important tool for the study of algal lipid metabolism, the monitoring of lipid production, and the identification of algal strains with high lipid yields. Nile Red and BODIPY have emerged as the principal dyes for these purposes. However, they suffer from a number of shortcomings including for specificity, penetration, interference from chlorophyll autofluorescence, and incompatibility with widely used genetically encoded reporters in the green and blue regions of the spectrum such as the green fluorescent protein and the red fluorescent protein. RESULTS We tested a new blue fluorescent dye, AC-202, in both the green algae Chlamydomonas reinhardtii and the pennate diatom Phaeodactylum tricornutum. We show that AC-202 is effective in both algae and that after minimal sample preparation, it can label lipid droplets induced by nitrogen starvation or by inhibitors of the TOR (target of rapamycin) kinase. We found that AC-202 benefits from a low background signal and is therefore more sensitive than BODIPY for semiquantitative in vivo fluorescence measurements. Finally, a co-staining experiment indicated that AC-202 can be used for multicolor imaging in combination with both red and green fluorophores. CONCLUSIONS AC-202 is an alternative and highly effective fluorophore for algal research that resolves drawbacks encountered with other neutral lipid dyes. AC-202 can be used to rapidly and sensitively visualize lipid droplets, and will contribute to the identification of metabolic and signaling pathways involved in lipid droplet formation, monitoring lipid production, and in the development of screens for algal strains suitable for biofuel production.
Collapse
Affiliation(s)
- Seddik Harchouni
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| |
Collapse
|
244
|
Li N, Sancak Y, Frasor J, Atilla-Gokcumen GE. A Protective Role for Triacylglycerols during Apoptosis. Biochemistry 2017; 57:72-80. [PMID: 29188717 DOI: 10.1021/acs.biochem.7b00975] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Triacylglycerols (TAGs) are one of the major constituents of the glycerolipid family. Their main role in cells is to store excess fatty acids, and they are mostly found within lipid droplets. TAGs contain acyl chains that vary in length and degree of unsaturation, resulting in hundreds of chemically distinct species. We have previously reported that TAGs containing polyunsaturated fatty acyl chains (PUFA-TAGs) accumulate via activation of diacylglycerol acyltransferases during apoptosis. In this work, we show that accumulation of PUFA-TAGs is a general phenomenon during this process. We further show that the accumulated PUFA-TAGs are stored in lipid droplets. Because membrane-residing PUFA phospholipids can undergo oxidation and form reactive species under increased levels of oxidative stress, we hypothesized that incorporation of PUFAs into PUFA-TAGs and their localization within lipid droplets during apoptosis limit the toxicity during this process. Indeed, exogenous delivery of a polyunsaturated fatty acid resulted in a profound accumulation of PUFA phospholipids and rendered cells more sensitive to oxidative stress, causing reduced viability. Overall, our results support the concept that activation of TAG biosynthesis protects cells from lipid peroxide-induced membrane damage under increased levels of oxidative stress during apoptosis. As such, targeting triacylglycerol biosynthesis in cancer cells might represent a new approach to promoting cell death during apoptosis.
Collapse
Affiliation(s)
- Nasi Li
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) , Buffalo, New York 14260, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington , Seattle, Washington 98195, United States
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago , Chicago, Illinois 60612, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) , Buffalo, New York 14260, United States
| |
Collapse
|
245
|
Affiliation(s)
- Raju Bej
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road; Kolkata 700032 India
| | - Jayita Sarkar
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road; Kolkata 700032 India
| | - Suhrit Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road; Kolkata 700032 India
| |
Collapse
|
246
|
Rodrigues ARO, Mendes PM, Silva PM, Machado V, Almeida BG, Araújo J, Queiroz MJR, Castanheira EM, Coutinho PJ. Solid and aqueous magnetoliposomes as nanocarriers for a new potential drug active against breast cancer. Colloids Surf B Biointerfaces 2017; 158:460-468. [DOI: 10.1016/j.colsurfb.2017.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023]
|
247
|
Grimm J, Brown TA, Tkachuk AN, Lavis LD. General Synthetic Method for Si-Fluoresceins and Si-Rhodamines. ACS CENTRAL SCIENCE 2017; 3:975-985. [PMID: 28979939 PMCID: PMC5620978 DOI: 10.1021/acscentsci.7b00247] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 05/24/2023]
Abstract
The century-old fluoresceins and rhodamines persist as flexible scaffolds for fluorescent and fluorogenic compounds. Extensive exploration of these xanthene dyes has yielded general structure-activity relationships where the development of new probes is limited only by imagination and organic chemistry. In particular, replacement of the xanthene oxygen with silicon has resulted in new red-shifted Si-fluoresceins and Si-rhodamines, whose high brightness and photostability enable advanced imaging experiments. Nevertheless, efforts to tune the chemical and spectral properties of these dyes have been hindered by difficult synthetic routes. Here, we report a general strategy for the efficient preparation of Si-fluoresceins and Si-rhodamines from readily synthesized bis(2-bromophenyl)silane intermediates. These dibromides undergo metal/bromide exchange to give bis-aryllithium or bis(aryl Grignard) intermediates, which can then add to anhydride or ester electrophiles to afford a variety of Si-xanthenes. This strategy enabled efficient (3-5 step) syntheses of known and novel Si-fluoresceins, Si-rhodamines, and related dye structures. In particular, we discovered that previously inaccessible tetrafluorination of the bottom aryl ring of the Si-rhodamines resulted in dyes with improved visible absorbance in solution, and a convenient derivatization through fluoride-thiol substitution. This modular, divergent synthetic method will expand the palette of accessible xanthenoid dyes across the visible spectrum, thereby pushing further the frontiers of biological imaging.
Collapse
|
248
|
Purohit HS, Taylor LS. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution. Pharm Res 2017; 34:2842-2861. [PMID: 28956218 DOI: 10.1007/s11095-017-2265-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs). METHODS RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10-50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations. RESULTS All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution. CONCLUSIONS RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution and were helpful in elucidating the mechanism of generation of amorphous nanodroplets.
Collapse
Affiliation(s)
- Hitesh S Purohit
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
249
|
Kim I, Jin SM, Han EH, Ko E, Ahn M, Bang WY, Bang JK, Lee E. Structure-Dependent Antimicrobial Theranostic Functions of Self-Assembled Short Peptide Nanoagents. Biomacromolecules 2017; 18:3600-3610. [DOI: 10.1021/acs.biomac.7b00951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Inhye Kim
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seon-Mi Jin
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Immunotherapy
Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Eunhee Ko
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - MiJa Ahn
- Anticancer
Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Woo-Young Bang
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Kyu Bang
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Eunji Lee
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
250
|
De novo transcriptomic and metabolomic analysis of docosahexaenoic acid (DHA)-producing Crypthecodinium cohnii during fed-batch fermentation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|