201
|
Chen C, Liu W, Wang L, Li J, Chen Y, Jin J, Kawan A, Zhang X. Pathological damage and immunomodulatory effects of zebrafish exposed to microcystin-LR. Toxicon 2016; 118:13-20. [PMID: 27085306 DOI: 10.1016/j.toxicon.2016.04.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
Abstract
Cyanobacterial blooms caused by water eutrophication have become a worldwide problem. Microcystins (MCs), especially microcystin-LR (MC-LR), released during cyanobacterial blooms exert great toxicity on fish and even lead to massive death. The present study mainly investigated the pathological damage and immune response of spleen, gut and gill in zebrafish exposed to MC-LR. Fish were exposed to 0, 1, 5 and 20 μg/L of MC-LR for 30 d. In zebrafish exposed to 5 and 20 μg/L MC-LR, edematous mitochondria, deformation of the nucleus and compaction of chromatin were observed in lymphocyte of spleen; frayed gut villi, exfoliation of epithelial cells and widespread cell lyses were observed in intestines; hyperemia in gill lamellae, epithelial tissue edema and uplift and lamellar fusion were observed in gill. Varied changed gene expression was observed in spleen, intestine and gill of zebrafish. The transcriptional levels of IFN-1 and IL-8 in spleen significantly up-regulated in 20 μg/L group, and the transcription of IL-1β and TNFα in spleen increased in 1 μg/L MC-LR treated fish. In addition, the mRNA levels of IFN-1, IL-1β, IL-8, TGF-β and TNF-α dramatically increased in intestine and gill in all MC-LR treated groups. The present studies indicated that MC-LR exposure caused marked pathological damage, however, fish could adjust actively the expression of innate immune-related genes to resist the tissue damage. Our findings provided strong evidence of the recovery potential of fish exposed to microcystins.
Collapse
Affiliation(s)
- Chuanyue Chen
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, PR China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, PR China
| | - Li Wang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, PR China
| | - Jian Li
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, PR China
| | - Yuanyuan Chen
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, PR China
| | - Jienan Jin
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, PR China
| | - Atufa Kawan
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, PR China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, PR China.
| |
Collapse
|
202
|
Klemenčič M, Dolinar M. Orthocaspase and toxin-antitoxin loci rubbing shoulders in the genome of Microcystis aeruginosa PCC 7806. Curr Genet 2016; 62:669-675. [PMID: 26968707 DOI: 10.1007/s00294-016-0582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Programmed cell death in multicellular organisms is a coordinated and precisely regulated process. On the other hand, in bacteria we have little clue about the network of interacting molecules that result in the death of a single cell within a population or the death of almost complete population, such as often observed in cyanobacterial blooms. With the recent discovery that orthocaspase MaOC1 of the cyanobacterium Microcystis aeruginosa is an active proteolytic enzyme, we have gained a possible hint about at least one step in the process, but the picture is far from complete. Interestingly, the genomic context of MaOC1 revealed the presence of multiple copies of genes that belong to toxin-antitoxin modules. It has been speculated that these also play a role in bacterial programmed cell death. The discovery of two components linked to cell death within the same genomic region could open new ways to deciphering the underlying mechanisms of cyanobacterial cell death.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
203
|
Li X, Cheng R, Shi H, Tang B, Xiao H, Zhao G. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:474-80. [PMID: 26619046 DOI: 10.1016/j.jhazmat.2015.11.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/29/2015] [Accepted: 11/09/2015] [Indexed: 05/22/2023]
Abstract
A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well.
Collapse
Affiliation(s)
- Xiuyan Li
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Ruojie Cheng
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Huijie Shi
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Bo Tang
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Hanshuang Xiao
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guohua Zhao
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
204
|
Fotiou T, Triantis TM, Kaloudis T, O'Shea KE, Dionysiou DD, Hiskia A. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2. WATER RESEARCH 2016; 90:52-61. [PMID: 26724439 DOI: 10.1016/j.watres.2015.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Visible light (VIS) photocatalysis has large potential as a sustainable water treatment process, however the reaction pathways and degradation processes of organic pollutants are not yet clearly defined. The presence of cyanobacteria cause water quality problems since several genera can produce potent cyanotoxins, harmful to human health. In addition, cyanobacteria produce taste and odor compounds, which pose serious aesthetic problems in drinking water. Although photocatalytic degradation of cyanotoxins and taste and odor compounds have been reported under UV-A light in the presence of TiO2, limited studies have been reported on their degradation pathways by VIS photocatalysis of these problematic compounds. The main objectives of this work were to study the VIS photocatalytic degradation process, define the reactive oxygen species (ROS) involved and elucidate the reaction mechanisms. We report carbon doped TiO2 (C-TiO2) under VIS leads to the slow degradation of cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), while taste and odor compounds, geosmin and 2-methylisoborneol, were not appreciably degraded. Further studies were carried-out employing several specific radical scavengers (potassium bromide, isopropyl alcohol, sodium azide, superoxide dismutase and catalase) and probes (coumarin) to assess the role of different ROS (hydroxyl radical OH, singlet oxygen (1)O2, superoxide radical anion [Formula: see text] ) in the degradation processes. Reaction pathways of MC-LR and CYN were defined through identification and monitoring of intermediates using liquid chromatography tandem mass spectrometry (LC-MS/MS) for VIS in comparison with UV-A photocatalytic treatment. The effects of scavengers and probes on the degradation process under VIS, as well as the differences in product distributions under VIS and UV-A, suggested that the main species in VIS photocatalysis is [Formula: see text] , with OH and (1)O2 playing minor roles in the degradation.
Collapse
Affiliation(s)
- Theodora Fotiou
- Laboratory of Catalytic - Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310, Agia Paraskevi, Athens, Greece
| | - Theodoros M Triantis
- Laboratory of Catalytic - Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310, Agia Paraskevi, Athens, Greece
| | - Triantafyllos Kaloudis
- Water Quality Department, Athens Water Supply and Sewerage Company (EYDAP SA), Oropou 156, 11146, Galatsi, Athens, Greece
| | - Kevin E O'Shea
- Department Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Anastasia Hiskia
- Laboratory of Catalytic - Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310, Agia Paraskevi, Athens, Greece.
| |
Collapse
|
205
|
Han J, Jeon BS, Park HD. Microcystin release and Microcystis cell damage mechanism by alum treatment with long-term and large dose as in-lake treatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:455-462. [PMID: 26865010 DOI: 10.1080/10934529.2015.1128708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Most of our previous studies reported aluminum causes no cell damage or lysis, and no subsequent toxin release in conventional treatment of drinking water or in the laboratory, on the contrary, we investigated the effect of long-term and large-dose alum treatment, because the environmental conditions in lakes and treatment plants are widely different. The microcosm experiments were designed to simulate the effect of adding alum under the similar conditions of common lakes and reservoirs, and the bottle experiments were conducted to examine the budget or dynamics of microcystin after adding alum. In precipitate analyses, we also confirm the release and dynamics of microcystin and the damage mechanisms of Microcystis cells under alum treatment. In microcosms treated with alum alone, the extracellular microcystin-LR (MC-LR) concentration increased to approximately 82% in 7 days. Similar results were obtained in bottle experiments. By plotting the concentration of released microcystin over time, we inferred that the extracellular MC-LR concentration exponentially rose toward an asymptotic maximum. Moreover, in scanning electron microscope images, some cells exhibited torn membranes with miniscule traces of aluminum hydroxide coating. We conclude that alum treatment, particularly at maximum dosage administered over long periods, seriously damages Microcystis cells and induces microcystin release. Therefore, long-term application of large alum doses is not recommended as an in-lake treatment.
Collapse
Affiliation(s)
- Jisun Han
- a Department of Mountain and Environmental Science , Graduate School of Science and Technology, Shinshu University , Matsumoto , Japan
| | - Bong-Seok Jeon
- a Department of Mountain and Environmental Science , Graduate School of Science and Technology, Shinshu University , Matsumoto , Japan
| | - Ho-Dong Park
- a Department of Mountain and Environmental Science , Graduate School of Science and Technology, Shinshu University , Matsumoto , Japan
| |
Collapse
|
206
|
Długosz M, Kwiecień A, Żmudzki P, Bober B, Krzek J, Bialczyk J, Nowakowska M, Szczubiałka K. A hybrid adsorbent/visible light photocatalyst for the abatement of microcystin-LR in water. Chem Commun (Camb) 2016; 51:7649-52. [PMID: 25846369 DOI: 10.1039/c5cc01520k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid adsorbent/photocatalyst was obtained and used for the removal of microcystin-LR, a potent toxin, from water via adsorption and photocatalyzed oxidation with singlet oxygen. The combined adsorption/photooxidation processes yielded a 500-fold decrease of the overall MC-LR concentration. The adsorbent/photocatalyst can be easily removed from the reaction system by sedimentation or centrifugation.
Collapse
Affiliation(s)
- M Długosz
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Adaptation of microcystin thiol derivatization for matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis. Toxicon 2016; 109:13-7. [DOI: 10.1016/j.toxicon.2015.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/28/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022]
|
208
|
Guo X, Chen L, Chen J, Xie P, Li S, He J, Li W, Fan H, Yu D, Zeng C. Quantitatively evaluating detoxification of the hepatotoxic microcystin-LR through the glutathione (GSH) pathway in SD rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19273-19284. [PMID: 26490924 DOI: 10.1007/s11356-015-5531-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Glutathione (GSH) plays crucial roles in antioxidant defense and detoxification metabolism of microcystin-LR (MC-LR). However, the detoxification process of MC-LR in mammals remains largely unknown. This paper, for the first time, quantitatively analyzes MC-LR and its GSH pathway metabolites (MC-LR-GSH and MC-LR-Cys) in the liver of Sprague-Dawley (SD) rat after MC-LR exposure. Rats received intraperitoneal (i.p.) injection of 0.25 and 0.5 lethal dose 50 (LD50) of MC-LR with or without pretreatment of buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH synthesis. The contents of MC-LR-GSH were relatively low during the experiment; however, the ratio of MC-LR-Cys to MC-LR reached as high as 6.65 in 0.5 LD50 group. These results demonstrated that MC-LR-GSH could be converted to MC-LR-Cys efficiently, and this metabolic rule was in agreement with the data of aquatic animals previously reported. MC-LR contents were much higher in BSO + MC-LR-treated groups than in the single MC-LR-treated groups. Moreover, the ratio of MC-LR-Cys to MC-LR decreased significantly after BSO pretreatment, suggesting that the depletion of GSH induced by BSO reduced the detoxification of MCs. Moreover, MC-LR remarkably induced liver damage, and the effects were more pronounced in BSO pretreatment groups. In conclusion, this study verifies the role of GSH in the detoxification of MC-LR and furthers our understanding of the biochemical mechanism for SD rats to counteract toxic cyanobacteria.
Collapse
Affiliation(s)
- Xiaochun Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Ping Xie
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Shangchun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Wei Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huihui Fan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Dezhao Yu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| |
Collapse
|
209
|
Liang H, Zhou W, Zhang Y, Qiao Q, Zhang X. Are fish fed with cyanobacteria safe, nutritious and delicious? A laboratory study. Sci Rep 2015; 5:15166. [PMID: 26470644 PMCID: PMC4608006 DOI: 10.1038/srep15166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022] Open
Abstract
Toxic cyanobacterial blooms, which produce cyclic heptapeptide toxins known as microcystins, are worldwide environmental problems. On the other hand, the cyanobacteria protein (30–50%) has been recommended as substitute protein for aquaculture. The present laboratory study verified the feasibility of cyanobacteria protein substitution and risk assessment. Goldfish were fed diets supplemented lyophilised cyanobacteria powder for 16 weeks with the various doses: 0% (control), 10%, 20%, 30% and 40%. Low doses (10% and 20%) promoted growth whereas high doses (30% and 40%) inhibited growth. In cyanobacteria treated fish, the proximate composition of ash, crude fat content and crude protein content decreased in 16 weeks; the saturated fatty acid (SFA) content significantly increased; the n-3 polyunsaturated fatty acid content, collagen content and muscle pH significantly decreased; cooking loss percents increased significantly. Muscle fiber diameter and myofibril length were negatively correlation. Additionally, flavour compounds (e.g., amino acids, nucleotides, organic acids and carnosine) changed significantly in the treated fish, and odour compounds geosmin and 2-methylisoborneol increased significantly. The estimated daily intake (EDI) of microcystins in muscle was close to or exceeded the World Health Organization (WHO) tolerable daily intake (TDI), representing a great health risk. Cyanobacterie is not feasible for protein sources use in aquaculture.
Collapse
Affiliation(s)
- Hualei Liang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Wenshan Zhou
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Yulei Zhang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Qin Qiao
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Xuezhen Zhang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| |
Collapse
|
210
|
Ikehara T, Nakashima J, Nakashima S, Yasumoto T. Different responses of primary normal human hepatocytes and human hepatoma cells toward cyanobacterial hepatotoxin microcystin-LR. Toxicon 2015; 105:4-9. [DOI: 10.1016/j.toxicon.2015.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
211
|
Liu M, Yu J, Ding X, Zhao G. Photoelectrochemical Aptasensor for the Sensitive Detection of Microcystin-LR Based on Graphene Functionalized Vertically-aligned TiO2Nanotubes. ELECTROANAL 2015. [DOI: 10.1002/elan.201500501] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
212
|
Contardo-Jara V, Kuehn S, Pflugmacher S. Single and combined exposure to MC-LR and BMAA confirm suitability of Aegagropila linnaei for use in green liver systems(®)-A case study with cyanobacterial toxins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:101-108. [PMID: 26037095 DOI: 10.1016/j.aquatox.2015.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
The filamentous green algae Aegagropila linnaei was tested for its uptake capacity of the cyanobacterial toxins microcystin-LR (MC-LR) and β-N-methylamino-l-alanine (BMAA) in order to approve the suitability of its use in the Green Liver System(®). Uptake into the algae and toxin reduction in the medium were analyzed by LC-MS/MS after static exposure for one week to 20μgL(-1) MC-LR, 80μgL(-1) BMAA, and 20μgL(-1) MC-LR together with 80μgL(-1) BMAA, respectively. BMAA was effectively removed by A. linnaei within 5 days compared to only around 35% removal of the initial exposure concentration in the case of MC-LR, independent of the application mode, in single or in a mixture. However, differences were found for BMAA amounts taken up into the tissue in that it was higher if applied in combination with MC-LR. Additionally, physiological responses such as the activity of biotransformation enzyme glutathione S-transferase (GST), antioxidant enzymes peroxidase (POD) and catalase (CAT) as well as the development of the reactive oxygen species hydrogen peroxide (H2O2) were compared between the different treatment groups in order to determine possible harmful effects of the toxin exposure on the algae. In contrast to the toxin exposure to a single toxin with no significant enzymatic response, exposure to the toxin mixture provoked an immediate increase in GST and CAT activity after one day as well as after longer exposure for one week, hinting on an enhanced need for prevention against exposure derived reactive oxygen species as well as putative biotransformation attempts in a mixture exposure scenario.
Collapse
Affiliation(s)
- Valeska Contardo-Jara
- Technische Universität Berlin, Institute of Ecology, Department Ecological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Sandra Kuehn
- Technische Universität Berlin, Institute of Ecology, Department Ecological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Stephan Pflugmacher
- Technische Universität Berlin, Institute of Ecology, Department Ecological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| |
Collapse
|
213
|
Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon 2015; 101:92-100. [DOI: 10.1016/j.toxicon.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
|
214
|
Proteasome as a Molecular Target of Microcystin-LR. Toxins (Basel) 2015; 7:2221-31. [PMID: 26090622 PMCID: PMC4488699 DOI: 10.3390/toxins7062221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/27/2015] [Accepted: 06/12/2015] [Indexed: 11/17/2022] Open
Abstract
Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR.
Collapse
|
215
|
Grundler V, Faltermann S, Fent K, Gademann K. Preparation of Fluorescent Microcystin Derivatives by Direct Arginine Labelling and Their Biological Evaluation. Chembiochem 2015; 16:1657-62. [DOI: 10.1002/cbic.201500181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 11/09/2022]
|
216
|
Sinha A, Jana NR. Separation of Microcystin-LR by Cyclodextrin-Functionalized Magnetic Composite of Colloidal Graphene and Porous Silica. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9911-9919. [PMID: 25906257 DOI: 10.1021/acsami.5b02038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microcystin-LR belongs to the family of microcystins produced by cyanobacteria and known to be the most toxic of this family. Existence of cyanobacteria in water bodies leads to the contamination of drinking water with microcystin-LR and thus their separation is essential for an advanced water purification system. Here we report functional nanocomposite-based selective separation of microcystin-LR from contaminated water. We have synthesized cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica where the cyclodextrin component offers host-guest interaction with microcystin-LR and the magnetic component offers easier separation of microcystin-LR from water. High surface area and large extent of chemical functional groups offer high loading (up to 18 wt %) of cyclodextrin with these nanocomposites, and the dispersible form of the nanocomposite offers easier accessibility of cyclodextrin to microcystin-LR. We have shown that microcystin-LR separation efficiency is significantly enhanced after functionalization with cyclodextrin, and among all the tested cyclodextrins, γ-cyclodextrin offers the best performance. We have also found that graphene-based nanocomposite offers better performance over porous silica-based nanocomposite due to better accessibility of cyclodextrins for interaction with microcystin-LR. The proposed graphene-based functional nanocomposite is environment friendly, reusable, and applicable for advanced water purification.
Collapse
Affiliation(s)
- Arjyabaran Sinha
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R Jana
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
217
|
Ma J, Feng Y, Xie W, Li X. PP2A (PR65) in Silver Carp: cDNA Cloning and Expression Analysis. J Biochem Mol Toxicol 2015; 29:399-409. [DOI: 10.1002/jbt.21706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/07/2015] [Accepted: 03/01/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Junguo Ma
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 China
| | - Yiyi Feng
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 China
| | - Wenjie Xie
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 China
| | - Xiaoyu Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 China
| |
Collapse
|
218
|
Wu X, Yan Y, Wang P, Ni L, Gao J, Dai R. Effect of urea on growth and microcystins production of Microcystis aeruginosa. BIORESOURCE TECHNOLOGY 2015; 181:72-77. [PMID: 25638406 DOI: 10.1016/j.biortech.2015.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
The effects of urea on the growth and toxin content of Microcystis aeruginosa isolated from Dianchi Lake in China were investigated. Experiments were carried out in lab using (15)N isotopic technique to characterize urea-N biosynthesis to microcystins. High urea concentration (3.6 mmol-N L(-1)) would restrict the growth of M.aeruginosa and the production of microcystin-LR, while low urea concentration (0.4-1.4 mmol-N L(-1)) would promote the growth of M.aeruginosa and the production of microcystin-LR. The (15)N labeling experiment further demonstrated that there existed selectivity when M.aeruginosa assimilated urea to form its structure. The majority of M.aeruginosa assimilated 1 urea molecule at first which was biosynthesized into the Ala or Leu residue. On day 18, The m/z=1004 parent ion assimilated 9 (15)N except that the Mdha residue did not assimilate any urea-(15)N. The results give deeper insight to the biosynthesis of urea into microcystins.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yangwei Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Pinfei Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Lanqi Ni
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiayi Gao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
219
|
Zhang B, Liu Y, Li X. Alteration in the expression of cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11) in the liver of mouse induced by microcystin-LR. Toxins (Basel) 2015; 7:1102-15. [PMID: 25831226 PMCID: PMC4417957 DOI: 10.3390/toxins7041102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/21/2023] Open
Abstract
Microcystins (MCs) are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs) play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR) on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11) at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD) (CYP1A1) and erythromycin N-demthylase (ERND) (CYP3A11) activities and increased aniline hydroxylase (ANH) activity (CYP2E1) in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.
Collapse
Affiliation(s)
- Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
220
|
Ufelmann H, Schrenk D. Nodularin-triggered apoptosis and hyperphosphorylation of signaling proteins in cultured rat hepatocytes. Toxicol In Vitro 2015; 29:16-26. [DOI: 10.1016/j.tiv.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
|
221
|
Svirčev Z, Lujić J, Marinović Z, Drobac D, Tokodi N, Stojiljković B, Meriluoto J. Toxicopathology induced by microcystins and nodularin: a histopathological review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:125-167. [PMID: 26023756 DOI: 10.1080/10590501.2015.1003000] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyanobacteria are present in all aquatic ecosystems throughout the world. They are able to produce toxic secondary metabolites, and microcystins are those most frequently found. Research has displayed a negative influence of microcystins and closely related nodularin on fish, and various histopathological alterations have been observed in many organs of the exposed fish. The aim of this article is to summarize the present knowledge of the impact of microcystins and nodularin on the histology of fish. The observed negative effects of cyanotoxins indicate that cyanobacteria and their toxins are a relevant medical (due to irritation, acute poisoning, tumor promotion, and carcinogenesis), ecotoxicological, and economic problem that may affect both fish and fish consumers including humans.
Collapse
Affiliation(s)
- Zorica Svirčev
- a Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad , Novi Sad , Serbia
| | | | | | | | | | | | | |
Collapse
|
222
|
Rong ZHU, Huan WANG, Dezhao YU, Cheng ZENG, Hong SHEN, Jun CHEN. Dynamic changes of microcystins and phytoplankton during the cyanobacterial bloom in Lake Erhai in 2013. ACTA ACUST UNITED AC 2015. [DOI: 10.18307/2015.0302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
223
|
Duffy FJ, Devocelle M, Shields DC. Computational approaches to developing short cyclic peptide modulators of protein-protein interactions. Methods Mol Biol 2015; 1268:241-71. [PMID: 25555728 DOI: 10.1007/978-1-4939-2285-7_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclic peptides are a promising class of bioactive molecules potentially capable of modulating "difficult" targets, such as protein-protein interactions. Cyclic peptides have long been used as therapeutics derived from natural product derivatives, but remain an underexplored class of compounds from the perspective of rational drug design, possibly due to the known weaknesses of peptide drugs in general. While cyclic peptides are non"druglike" by the accepted empirical rules, their unique structure may lend itself to both membrane permeability and proteolytic resistance-the main barriers to oral delivery. The constrained shape of cyclic peptides also lends itself better to virtual screening approaches, and new tools and successes in this area have been recently noted. An increasing number of strategies are available, both to generate and screen cyclic peptide libraries, and best practises and current successes are described within. This chapter will describe various computational strategies for virtual screening cyclic peptides, along with known implementations and applications. We will explore the generation and screening of diverse combinatorial virtual libraries, incorporating a range of cyclization strategies and structural modifications. More advanced approaches covered include evolutionary algorithms designed to aid in screening large structural libraries, machine learning approaches, and harnessing bioinformatics resources to bias cyclic peptide virtual libraries towards known bioactive structures.
Collapse
Affiliation(s)
- Fergal J Duffy
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
224
|
Encarnação T, Pais AA, Campos MG, Burrows HD. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Sci Prog 2015; 98:145-68. [PMID: 26288917 PMCID: PMC10365369 DOI: 10.3184/003685015x14298590596266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals.
Collapse
Affiliation(s)
- Telma Encarnação
- Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | |
Collapse
|
225
|
Zheng B, Bi JH, Dong HZ, Zhu JM, Liang HJ. Adsorption of Microcystin onto Polymer Covered Gold Chips by Quartz Crystal Microbalance-Dissipation Detection. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/06/739-744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
226
|
Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor. Anal Bioanal Chem 2014; 407:1303-12. [PMID: 25492092 DOI: 10.1007/s00216-014-8378-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/23/2014] [Accepted: 11/27/2014] [Indexed: 01/26/2023]
Abstract
Algal toxins can cause neurovirulence, hepatotoxicity, and cytotoxicity in humans through the consumption of contaminated water and food. In this work, we presented a novel aptasensor for the simultaneous detection of two algal toxins, microcysin-LR (MC-LR) and okadaic acid (OA). This system employed green and red upconversion nanoparticle (UCNP) luminescence as the donors and two quenchers (BHQ1 and BHQ3) as the corresponding acceptors. The two donor-acceptor couples were fabricated by hybridizing the aptamers with their corresponding complementary DNA. The results indicated that the green and red upconversion luminescence could be quenched by the quencher probes because of their highly overlapping spectrum. In the presence of MC-LR and OA, the aptamers preferred to bind to their corresponding analytes and de-hybridize with the complementary DNA. This effect became sufficiently large to prevent green and red luminescence quenching. Under the optimized experimental conditions, the relative luminescence intensity increased as the algal toxin concentrations increased, allowing for the quantification of MC-LR and OA. The relationships between the luminescence intensity and plotting logarithms of algal toxin concentrations were linear in the range from 0.1 to 50 ng mL(-1) for MC-LR and OA. As a practical application, this type of dual fluorescence resonance energy transfer (FRET) aptasensor was used to monitor the MC-LR and OA levels in naturally contaminated food samples such as fish and shrimps.
Collapse
|
227
|
Ziková A, Kopp R. Impacts of microcystin, a cyanobacterial toxin, on laboratory rodents in vivo. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200856050263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
228
|
Bittencourt-Oliveira MC, Hereman TC, Cordeiro-Araújo MK, Macedo-Silva I, Dias CT, Sasaki FFC, Moura AN. Phytotoxicity associated to microcystins: a review. BRAZ J BIOL 2014; 74:753-60. [PMID: 25627583 DOI: 10.1590/1519-6984.06213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/20/2013] [Indexed: 01/20/2023] Open
Abstract
Microcystins (MC) are the most studied toxins of cyanobacteria since they are widely distributed and account for several cases of human and animal poisoning, being potent inhibitors of the serine/threonine protein phosphatases 1 (PP1) and 2A (PP2A). The phosphatases PP1 and PP2A are also present in plants, which may also suffer adverse effects due to the inhibition of these enzymes. In aquatic plants, biomass reduction is usually observed after absorption of cyanotoxins, which can bioaccumulate in its tissues. In terrestrial plants, the effects caused by microcystins vary from inhibition to stimulation as the individuals develop from seedling to adult, and include reduction of protein phosphatases 1 and 2A, oxidative stress, decreased photosynthetic activity and even cell apoptosis, as well as bioaccumulation in plant tissues. Thus, the irrigation of crop plants by water contaminated with microcystins is not only an economic problem but becomes a public health issue because of the possibility of food contamination, and this route of exposure requires careful monitoring by the responsible authorities.
Collapse
Affiliation(s)
- M C Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil
| | - T C Hereman
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil
| | - M K Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil
| | - I Macedo-Silva
- Graduating Program on Biological Sciences, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - C T Dias
- Departament of Exact Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil
| | - F F C Sasaki
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil
| | - A N Moura
- Graduating Program on Botany, Rural and Federal University of Pernambuco - UFRPE, Recife, PE, Brazil
| |
Collapse
|
229
|
Sun Y, Zheng Q, Sun YT, Huang P, Guo ZL, Xu LH. Microcystin-LR induces protein phosphatase 2A alteration in a human liver cell line. ENVIRONMENTAL TOXICOLOGY 2014; 29:1236-1244. [PMID: 23436320 DOI: 10.1002/tox.21854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 01/09/2013] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
Microcystin-LR (MC-LR) is a potent inhibitor of protein phosphatases 1 and 2A, and has potent hepatotoxicity and tumor promotion activity. Numerous studies on MC-LR toxicity have been conducted in rat hepatocytes, but few studies of the effects of microcystins on human hepatocytes have been done. In this study, HL7702 cells (a human normal liver cell line) were incubated in MC-LR for 24 h. The existence of MC-LR in HL7702 cells was confirmed. Furthermore, PP2A activity and the alteration of PP2A subunits were assessed. The results show that PP2A activity decreased from the concentration of 1 μM MC-LR, showing a concentration-dependent decline, to about 34% at 10 μM MC-LR. This activity undergone opposite change with alternations of phosphorylated Y307-PP2A/C and PP2A/C subunit but showed same change with the alteration of the ratio of methylated L309-PP2A/C to PP2A/C. B55α, a regulatory subunit of PP2A, was slightly increases in cells treated with the highest concentration of MC-LR (10 μM), and colocalized increasedly with rearranged-microtubules after 1 μM MC-LR exposure. However, the proportion of early apoptotic cells did not show any change at various concentration of MC-LR for 24 h. To our knowledge, this is the first report showing MC-LR-induced alteration of PP2A phosphatase in human cultured hepatocytes, and the mechanism of action seems to be similar as described before in vitro. The alteration of PP2A and microtubule seems to be the early event induced by MC-LR exposure.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 310058 Hangzhou, China
| | | | | | | | | | | |
Collapse
|
230
|
Saito Y, Takano K, Kobayashi F, Kobayashi K, Park HD. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa. APPLIED OPTICS 2014; 53:7030-7036. [PMID: 25402791 DOI: 10.1364/ao.53.007030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
We developed a UV (355 nm) laser-induced fluorescence (LIF) lidar for monitoring the real-time status of blue-green algae. Since the fluorescence spectrum of blue-green algae excited by 355 nm showed the specific fluorescence at 650 nm, the lidar was designed to be able to detect the 650 nm fluorescence as a surveillance method for the algae. The usefulness was confirmed by observation at Lake Suwa over four years (2005-2008). The detection limit of the LIF lidar was 16.65 mg/L for the blue-green algae, which is the range of concentrations in the safe level set by the World Health Organization.
Collapse
|
231
|
Chang J, Chen ZL, Wang Z, Shen JM, Chen Q, Kang J, Yang L, Liu XW, Nie CX. Ozonation degradation of microcystin-LR in aqueous solution: intermediates, byproducts and pathways. WATER RESEARCH 2014; 63:52-61. [PMID: 24981743 DOI: 10.1016/j.watres.2014.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
The intermediates and byproducts formed during the ozonation of microcystin-LR (MC-LR, m/z = 995.5) and the probable degradation pathway were investigated at different initial molar ratios of ozone to MC-LR ([O3]0/[MC-LR]0). Seven reaction intermediates with m/z ≥ 795.4 were observed by LC/MS, and four of them (m/z = 815.4, 827.3, 853.3 and 855.3) have not been previously reported. Meanwhile, six aldehyde-based byproducts with molecular weights of 30-160 were detected for the first time. Intermediates structures demonstrated that ozone reacted with two sites of MC-LR: the diene bonds in the Adda side chain and the Mdha amino acid in the cyclic structure. The fragment from the Adda side chain oxidative cleavage could be further oxidized to an aldehyde with a molecular weight of 160 at low [O3]0/[MC-LR]0. Meanwhile, the polypeptide structure of MC-LR was difficult to be further oxidized, unless [O3]0/[MC-LR]0 > 10. After further oxidation of the intermediates, five other aldehyde-based byproducts were detected by GC/MS: formaldehyde, acetaldehyde, isovaleraldehyde, glyoxal and methylglyoxal. Formaldehyde, isovaleraldehyde and methylglyoxal were the dominant species. The yields of the aldehydes varied greatly, depending on the value of [O3]0/[MC-LR]0.
Collapse
Affiliation(s)
- Jing Chang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-lin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-min Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Qian Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-wei Liu
- Institute of Municipal Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Chang-xin Nie
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
232
|
Shamsollahi HR, Alimohammadi M, Nabizadeh R, Nazmara S, Mahvi AH. Measurement of microcystin -LR in water samples using improved HPLC method. Glob J Health Sci 2014; 7:66-70. [PMID: 25716387 PMCID: PMC4796383 DOI: 10.5539/gjhs.v7n2p66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 12/07/2022] Open
Abstract
Microcystins are a group of toxic compounds produced by freshwater cyanobacteria and cause diseases. World Health Organization has recommended a concentration of 1 µg/l for Microcystin-LR (MC-LR) in potable water as guideline value. The high performance liquid chromatography (HPLC) followed by C18 analytical column and ultra violet detector for detection of MC-LR. In this regard, 5 different concentrations of MC-LR solutions were injected into HPLC. MC-LR was detected in 5.33 minute retention time and Calibration curve was achieved with R(2) = 0.988. Detection limit for this method was obtained by using acetonitrile solutions (32% and 55%) as a gradient run and a high silanol activity column equal to 0.02 µg /mL. Despite no acidic organic modifier being used in the mixture of solvents, the sensitivity of this method was appropriate for detection of MC-LR. Because of short retention time, reduction in number of solvents and high resolution and suitable sensitivity, this method is affordable and is fast for detection and determination of MC-LR in potable water.
Collapse
|
233
|
Ziková A, Palíková M, Mareš J, Navrátil S, Kopp R. Impacts of dietary cyanobacteria on fish. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201058040277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
234
|
Bieczynski F, De Anna JS, Pirez M, Brena BM, Villanueva SSM, Luquet CM. Cellular transport of microcystin-LR in rainbow trout (Oncorhynchus mykiss) across the intestinal wall: possible involvement of multidrug resistance-associated proteins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:97-106. [PMID: 24865614 DOI: 10.1016/j.aquatox.2014.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/12/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
We studied Abcc mediated-transport in middle and posterior intestine of the rainbow trout, Oncorhynchus mykiss. Luminal and serosal transport were evaluated in everted and non-everted intestinal sacs, respectively, incubated with 1-chloro-2,4-dinitrobenzene (CDNB; 200 μM). CDNB enters the cells and is conjugated with glutathione via glutathione S-transferase (GST) to form 2,4-dinitrophenyl-S-glutathione (DNP-SG), a known Abcc substrate. DNP-SG concentration in the bath was recorded every 10 min, in order to calculate the mass-specific transport rate. For evaluating the possible involvement of Abcc proteins in microcystin-LR (MCLR) transport, 1.135 μM MCLR was added to the bath or inside the sacs, in everted or non-everted preparations, respectively. Both luminal and serosal DNP-SG efflux were significantly inhibited by MCLR. A concentration-response curve obtained using strips from middle intestine yielded an IC50 value of 1.33 μM MCLR. The Abcc inhibitor, MK571 produced concentration-dependent inhibition of DNP-SG similar to that produced by MCLR. Since competition of MCLR and CDNB as GST substrates could bias the DNP-SG transport results, we evaluated the effects of MCLR on calcein efflux, which does not depend on GST activity. We applied the non-fluorescent, cell-permeant compound calcein-AM (0.25 μM) to middle intestinal strips and recorded the efflux of its hydrolysis product, the fluorescent Abcc substrate calcein. 2.27 μM MCLR and 3 μM MK571 inhibited calcein efflux (17.39 and 20.2%, respectively). Finally, MCLR interaction with Abcc transporters was evaluated by measuring its toxic intracellular effects. Middle intestinal segments were incubated in saline solution with 1.135 μM MCLR (MC1), 2.27 μM MCLR (MC2), 3 μM MK571 (MK) or 1.135 μM MCLR+3 μM MK571 (MC1/MK). After 1h, GSH concentration, protein phosphatase 1 and 2A (PP1, PP2A) and GST activities were measured in each segment. MC1did not produce significant effect while MC1/MK and MC2 significantly inhibited PP1and PP2A in similar proportions (34-49%). MK alone significantly increased PP2A activity (40%) with no effect in any other variable. GST activity and GSH concentration were not affected by any treatment. Concentration-response curves for MCLR (1.135 to 13.62 μM) alone or plus 3 or 6 μM MK571 were obtained using PP1 activity as response variable. The IC50 values were 1.0, 0.52, and 0.37 μM, respectively. Our results suggest that O. mykiss enterocytes are capable of eliminating MCLR by GST-mediated conjugation and luminal excretion through an Abcc-like apical transporter. This mechanism would prevent toxic effects and reduce the toxin uptake into the blood, which is likely mediated by basolateral Abccs.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina.
| | - Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina
| | - Macarena Pirez
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Av. A. Navarro 3051, piso 2, 11600 Montevideo, Uruguay
| | - Beatríz M Brena
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Av. A. Navarro 3051, piso 2, 11600 Montevideo, Uruguay
| | - Silvina S M Villanueva
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Santa Fe, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina
| |
Collapse
|
235
|
Garibo D, Flores C, Cetó X, Prieto-Simón B, Del Valle M, Caixach J, Diogène J, Campàs M. Inhibition equivalency factors for microcystin variants in recombinant and wild-type protein phosphatase 1 and 2A assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10652-60. [PMID: 24870287 DOI: 10.1007/s11356-014-3065-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/20/2014] [Indexed: 05/21/2023]
Abstract
In this work, protein phosphatase inhibition assays (PPIAs) have been used to evaluate the performance of recombinant PP1 and recombinant and wild-type PP2As. The enzymes have been compared using microcystins-LR (MC-LR) as a model cyanotoxin. Whereas PP2ARec provides a limit of detection (LOD) of 3.1 μg/L, PP1Rec and PP2AWild provide LODs of 0.6 and 0.5 μg/L, respectively, lower than the guideline value proposed by the World Health Organization (1 μg/L). The inhibitory potencies of seven MC variants (-LR, -RR, -dmLR, -YR, -LY, -LW and -LF) have been evaluated, resulting on 50 % inhibition coefficient (IC50) values ranging from 1.4 to 359.3 μg/L depending on the MC variant and the PP. The PPIAs have been applied to the determination of MC equivalent contents in a natural cyanobacterial bloom and an artificially contaminated sample, with multi-MC profiles. The inhibition equivalency factors (IEFs) have been applied to the individual MC quantifications determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the estimated MC-LR equivalent content has been compared to PPIA results. PPIAs have demonstrated to be applicable as MC screening tools for environmental applications and to protect human and animal health.
Collapse
Affiliation(s)
- Diana Garibo
- IRTA, Carretera de Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Mohamed ZA, Hashem M, Alamri SA. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride. Toxicon 2014; 86:51-8. [DOI: 10.1016/j.toxicon.2014.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/06/2014] [Accepted: 05/07/2014] [Indexed: 11/26/2022]
|
237
|
Eissa S, Ng A, Siaj M, Zourob M. Label-free voltammetric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes. Anal Chem 2014; 86:7551-7. [PMID: 25011536 DOI: 10.1021/ac501335k] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of successful biosensing platforms is highly dependent upon the biorecognition properties of the recognition receptor and the sensitivity of the transducer of the binding signal. The integration of the high affinity and specificity of DNA aptamers with the unique properties of the carbon nanomaterial graphene offers an excellent avenue for sensitive and selective biosensing architectures. In this work, a highly sensitive and selective aptasensor which utilizes an unlabeled DNA aptamer assembled on a graphene electrode for microcystin-LR detection was developed. A facile strategy was used for the aptasensor fabrication on the basis of the noncovalent assembly of DNA aptamer on graphene-modified screen printed carbon electrodes. Assembly of the DNA aptamer on the graphene-modified electrodes caused a marked drop in the square wave voltammetric reduction signal of the [Fe(CN)6](4-/3-) redox couple. The presence of microcystin-LR, on the other hand, caused a dose-responsive increase in peak current, allowing the quantification of microcystin-LR through the measurement of peak current change. Under optimal conditions, the detection limit of the developed aptasensor was 1.9 pM in buffer, a concentration much lower than those offered by previously reported biosensors for microcystin-LR. The developed aptasensor also exhibited excellent selectivity for microcystin-LR with no detectable cross-reactivity to okadaic acid, microcystin-LA, and microcystin-YR. Moreover, the proposed aptasensor has been applied for the analysis of spiked tap water and fish samples showing good recovery percentages. This novel, simple, high-performance, and low-cost detection platform would facilitate the routine monitoring of microcystin-LR in real samples.
Collapse
Affiliation(s)
- Shimaa Eissa
- Institut National de la Recherche Scientifique, Centre - Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel Boulet, Varennes, Québec J3X 1S2, Canada
| | | | | | | |
Collapse
|
238
|
Jia J, Luo W, Lu Y, Giesy JP. Bioaccumulation of microcystins (MCs) in four fish species from Lake Taihu, China: assessment of risks to humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:224-232. [PMID: 24784747 DOI: 10.1016/j.scitotenv.2014.04.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Microcystins (MCs) are the toxic products of harmful algal blooms and they accumulate in fish. The accumulation of MCs in fish living in different trophic levels from different parts of Lake Taihu was determined. This information was then used to evaluate the risks posed by the MCs in fish to human health. The concentrations of three MCs, MC-LR, MC-YR and MC-RR, were quantified in the following four fish species: silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis), crucian carp (Carassius auratus) and common carp (Cyprinus carpio), using high performance liquid chromatography interfaced with tandem (triple quadrupole) mass spectrometry. The mean concentrations of MCs in the muscle, the kidney, the intestinal wall and the heart were significantly different among the four fishes except in the liver. C. carpio contained the highest mean concentration of MCs in the muscle (31.7 ± 12.1 ng/g, dry mass (dm)), whereas C. auratus had the highest mean concentrations of MCs in the liver (45.4 ± 44.5 ng/g, dm), kidney (114 ± 51.1 ng/g, dm), intestinal wall (2.04 × 10(3)± 4.43 × 10(3)ng/g, dm) and heart (59.5 ± 26.7 ng/g, dm). The mean concentration of MCs in the intestinal walls of the fish species was significantly higher than in other organs (p<0.01). The fish from Meiliang Bay had significantly higher concentrations of MCs than those from the centre, west or south banks of the lake (p<0.01). The body lengths and masses of the fish were negatively correlated with the concentrations of MCs in the kidney (p<0.05) and heart (p<0.01). The average daily intake (ADI) of MCs in the muscle of all fishes exceeded the provisional tolerable daily intake (TDI) set by World Health Organization. The estimated daily intakes of MCs in 55.6% of the muscle samples exceeded the TDI. The MCs in the tissues of the fish from Lake Taihu pose potential risks to the health of humans who consume these four fish species.
Collapse
Affiliation(s)
- Junmei Jia
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Wei Luo
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yonglong Lu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Canada; Department of Zoology, National Food Safety and Toxicology Center and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
239
|
Han W, Clarke W, Pratt S. Composting of waste algae: a review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:1148-55. [PMID: 24602833 DOI: 10.1016/j.wasman.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.
Collapse
Affiliation(s)
- Wei Han
- School of Chemical Engineering, University of Queensland, Queensland, Australia
| | - William Clarke
- School of Chemical Engineering, University of Queensland, Queensland, Australia; School of Civil Engineering, University of Queensland, Queensland, Australia
| | - Steven Pratt
- School of Chemical Engineering, University of Queensland, Queensland, Australia.
| |
Collapse
|
240
|
Ye R, Shan K, Gao H, Zhang R, Xiong W, Wang Y, Qian X. Spatio-temporal distribution patterns in environmental factors, chlorophyll-a and microcystins in a large shallow lake, Lake Taihu, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:5155-69. [PMID: 24830449 PMCID: PMC4053903 DOI: 10.3390/ijerph110505155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 11/16/2022]
Abstract
The spatio-temporal distribution of environmental factors, chlorophyll-a (Chl-a), and microcystins (MCs) in a shallow lake, Lake Taihu (China), were investigated from 2009 to 2011 on a monthly basis at nine sampling stations. The annual mean concentration ranges of total nitrogen (TN), total phosphorus (TP), Chl-a, MC-LR and MC-RR were 0.17–10.53 mg/L, 0.027–0.581 mg/L, 0.10–129.75 µg/L, 0.013–2.019 µg/L and 0.002–0.794 µg/L, respectively. The average TN, ammonium (NH4+) and TP concentrations in Meiliang Bay decreased from 3.54 to 2.26 mg/L, 0.63 to 0.31 mg/L and 0.150 to 0.124 mg/L, respectively, when compared with values from 2006–2008, indicating that water quality has improved in severe cyanobacterial bloom areas in recent years. Additionally, the distribution of MCs was northern lake areas > western lake areas > central lake areas > macrophyte-dominated areas. Correlation analysis revealed that nutrients were the most important variable accounting for the variation of extracellular MC-LR concentration in heavy cyanobacterial bloom areas of Lake Taihu. During the study period, the maximum MCs concentration reached 2.75 ± 0.27 μg/L in the bloom period in the northern lake areas, which is more than two times the safety limit of 1 μg/L MCs required for drinking water. However, microcystins decreased gradually as the water quality improved from 2009 to 2011, indicating that the risk of MCs exposure was slightly decreased in Lake Taihu.
Collapse
Affiliation(s)
- Rui Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Kun Shan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Hailong Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Ruibin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Wen Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yulei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
241
|
Manubolu M, Madawala SRP, Dutta PC, Malmlöf K. In vitro biodegradation of cyanotoxins in the rumen fluid of cattle. BMC Vet Res 2014; 10:110. [PMID: 24885733 PMCID: PMC4018535 DOI: 10.1186/1746-6148-10-110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In countries around the Baltic Sea grazing ruminants have access to and drink, surface water from lakes, rivers and in several coastal regions. The water quality of these naturally occurring reservoirs affects performance and health of livestock. In the Baltic Sea both microcystin (MC) and nodularin (NOD) occurs as cyclic peptides and have hepatotoxic effects. Although cattle obviously have died after consuming contaminated water very little information is available as to how susceptible ruminants are to the toxins produced by cyanobacteria. The critical question as to whether the rumen microflora might constitute a protective shield is unresolved. For this reason our aim is to investigate a possible degradation rate of these toxins in rumen. RESULTS The ability of rumen microorganisms to degrade certain important cyanotoxins (MC-LR, YR, RR and NOD) was studied in vitro by incubating with rumen fluid at three different concentrations (0.05, 0.5 and 5 μg/mL) for 3 h. The degradation efficiencies were determined by LC-MS (ESI) positive mode. Degradation was observed in the following order MC-RR 36%, NOD 35%, MC-RR 25% and MC-LR 8.9% at lower concentrations within 3 h. However, average degradation was observed at concentration of 0.5 μg/mL. No degradation was observed in higher concentrations for entire 3 h. The present results reveal that the degradation was both dose and time dependent. CONCLUSIONS In conclusion the present results suggest that the rumen microbial flora may protect ruminants from being intoxicated by Cyanotoxins.
Collapse
Affiliation(s)
- Manjunath Manubolu
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, SLU, Box 7011 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
242
|
Wood JD, Franklin RB, Garman G, McIninch S, Porter AJ, Bukaveckas PA. Exposure to the cyanotoxin microcystin arising from interspecific differences in feeding habits among fish and shellfish in the James River Estuary, Virginia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5194-5202. [PMID: 24694322 DOI: 10.1021/es403491k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cyanotoxin, microcystin (MC), is known to accumulate in the tissues of diverse aquatic biota although factors influencing exposure, such as feeding habits and seasonal patterns in toxin production, are poorly known. We analyzed seasonal variation in the MC content of primary and secondary consumers, and used dietary analysis (gut contents and stable isotopes) to improve understanding of cyanotoxin transport in food webs. Periods of elevated toxin concentration were associated with peaks in the abundance of genes specific to Microcystis and MC toxin production (mcyD). Peak toxin levels in consumer tissues coincided with peak MC concentrations in seston. However, toxins in tissues persisted in overwintering populations suggesting that potential health impacts may not be limited to bloom periods. Interspecific differences in tissue MC concentrations were related to feeding habits and organic matter sources as pelagic fishes ingested a greater proportion of algae in their diet, which resulted in greater MC content in liver and muscle tissues. Sediments contained a greater proportion of allochthonous (terrestrial) organic matter and lower concentrations of MC, resulting in lower toxin concentrations among benthic detritivores. Among shellfish, the benthic suspension feeder Rangia cuneata (wedge clam) showed seasonal avoidance of toxin ingestion due to low feeding rates during periods of elevated MC. Among predators, adult Blue Catfish had low MC concentrations, whereas Blue Crabs exhibited high levels of MC in both muscle and viscera.
Collapse
Affiliation(s)
- Joseph D Wood
- Department of Biology and Center for Environmental Studies Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | | | | | | | | | | |
Collapse
|
243
|
DU HL, FU XW, WEN YP, QIU ZJ, XIONG LM, HONG NZ, YANG YH. A Label-free Immunosensor for Microcystins-LR Based on Graphene and Gold Nanocage. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(13)60730-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
244
|
Devlin S, Meneely JP, Greer B, Campbell K, Vasconcelos V, Elliott CT. Production of a broad specificity antibody for the development and validation of an optical SPR screening method for free and intracellular microcystins and nodularin in cyanobacteria cultures. Talanta 2014; 122:8-15. [DOI: 10.1016/j.talanta.2013.12.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/23/2013] [Accepted: 12/28/2013] [Indexed: 11/28/2022]
|
245
|
Zhang H, Wu Y, Fang W, Wang D. Regulatory effect of quercetin on hazardous microcystin-LR-induced apoptosis of Carassius auratus lymphocytes in vitro. FISH & SHELLFISH IMMUNOLOGY 2014; 37:278-285. [PMID: 24594009 DOI: 10.1016/j.fsi.2014.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/05/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Microcystins (MCs) are secondary metabolites produced by cyanobacteria. Oxidative stress is considered the major cytotoxic mechanism of microcystin-LR (MCLR). Quercetin (QE) is a flavonoid that can eliminate reactive oxygen species (ROS) and elicit anti-inflammatory and anti-apoptotic effects. This study determined the regulatory effect of QE on the cytotoxicity and oxidative stress of Carassius auratus lymphocytes induced by 1 μg/L MCLR in vitro after 24 h. MCLR-mediated cytotoxicity and ROS formation in fish lymphocytes were suppressed by QE in a concentration-dependent manner. In addition, QE enhanced the endogenous antioxidant defense system and the Bax/Bcl-2 ratio to protect fish lymphocytes against oxidative stress and apoptosis induced by MCLR. Glutathione levels and catalase activities increased by approximately 3.9- and 2-fold, respectively, in the QE treatment group (1000 μg/L) compared with the MCLR treatment group. The percentage of apoptosis in the only MCLR treatment group was 59% whereas that in the control group was 23%. The percentage of apoptosis in the high-dose QE treatment group (1000 μg/L) was 29%, lower by nearly half compared with the only MCLR treatment group. QE (1000 μg/L) effectively inhibited the expression of caspase-3 protein by nearly 43% compared with the only MCLR treatment group. The results obtained clearly indicate that QE can effectively prevent MCLR-induced immunotoxicity by eliminating oxidative stress and blocking the mitochondrial apoptotic pathway in fish lymphocytes.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China.
| | - Yingzhu Wu
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Wendi Fang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Dandan Wang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| |
Collapse
|
246
|
Niedermeyer THJ, Daily A, Swiatecka-Hagenbruch M, Moscow JA. Selectivity and potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells. PLoS One 2014; 9:e91476. [PMID: 24614281 PMCID: PMC3948918 DOI: 10.1371/journal.pone.0091476] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
Microcystins are potent phosphatase inhibitors and cellular toxins. They require active transport by OATP1B1 and OATP1B3 transporters for uptake into human cells, and the high expression of these transporters in the liver accounts for their selective hepatic toxicity. Several human tumors have been shown to have high levels of expression of OATP1B3 but not OATP1B1, the main transporter in liver cells. We hypothesized that microcystin variants could be isolated that are transported preferentially by OATP1B3 relative to OATP1B1 to advance as anticancer agents with clinically tolerable hepatic toxicity. Microcystin variants have been isolated and tested for cytotoxicity in cancer cells stably transfected with OATP1B1 and OATP1B3 transporters. Microcystin variants with cytotoxic OATP1B1/OATP1B3 IC50 ratios that ranged between 0.2 and 32 were found, representing a 150-fold range in transporter selectivity. As microcystin structure has a significant impact on transporter selectivity, it is potentially possible to develop analogs with even more pronounced OATP1B3 selectivity and thus enable their development as anticancer drugs.
Collapse
Affiliation(s)
- Timo H. J. Niedermeyer
- Cyano Biotech GmbH, Berlin, Germany
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Abigail Daily
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Jeffrey A. Moscow
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
247
|
Smutná M, Babica P, Jarque S, Hilscherová K, Maršálek B, Haeba M, Bláha L. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins. Toxicon 2014; 79:11-8. [DOI: 10.1016/j.toxicon.2013.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/17/2013] [Accepted: 12/30/2013] [Indexed: 11/28/2022]
|
248
|
Roegner AF, Puschner B. Aggregate culture: A more accurate predictor of microcystin toxicity for risk assessment. Toxicon 2014; 83:1-14. [PMID: 24593965 DOI: 10.1016/j.toxicon.2014.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Aggregate or spheroid culture has emerged as a more biologically relevant method for screening pharmaceutical compounds and understanding exact mechanism of action. Here in, the aggregate approach applied to the freshwater toxins, microcystins, further unearths exact mechanism(s) of toxicity and provides a markedly improved in vitro predictor of toxicity. Microcystins result in acute intoxication by binding covalently to protein phosphatase 1/2A, resulting in hepatocellular necrosis, hemorrhaging and death. Hepatocellular uptake by organic anion transporting polypeptides (OATPs), in addition to other intracellular sequelae, is considered essential for toxicity. In aggregate HepG2, expression of OAT1B1 and OATP1B3 significantly increased relative to monolayer culture. Uptake of two fluorescently labeled substrates significantly increased in aggregates compared with monolayer, confirmed by inhibition of uptake with known competitive substrates. Increased reaction oxygen species (ROS) production occurred following a three-hour exposure of microcystin LR at concentrations from 100 nM to 100 μM, with reversal by ROS scavengers, in contrast with no response in monolayers. These results suggest monolayer culture inadequately predict intracellular effects of microcystins and support evidence that aggregate culture more closely approximates in vivo form and function. The approach results in more reliable prediction of microcystin toxicity in vitro.
Collapse
Affiliation(s)
- Amber F Roegner
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California, Davis, CA 95616, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California, Davis, CA 95616, USA.
| |
Collapse
|
249
|
Azevedo CC, Azevedo J, Osório H, Vasconcelos V, Campos A. Early physiological and biochemical responses of rice seedlings to low concentration of microcystin-LR. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:107-121. [PMID: 24323250 DOI: 10.1007/s10646-013-1156-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2013] [Indexed: 06/03/2023]
Abstract
Microcystin-leucine and arginine (microcystin-LR) is a cyanotoxin produced by cyanobacteria like Microcystis aeruginosa, and it's considered a threat to water quality, agriculture, and human health. Rice (Oryza sativa) is a plant of great importance in human food consumption and economy, with extensive use around the world. It is therefore important to assess the possible effects of using water contaminated with microcystin-LR to irrigate rice crops, in order to ensure a safe, high quality product to consumers. In this study, 12 and 20-day-old plants were exposed during 2 or 7 days to a M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations, 0.26-78 μg/L. Fresh and dry weight of roots and leaves, chlorophyll fluorescence, glutathione S-transferase and glutathione peroxidase activities, and protein identification by mass spectrometry through two-dimensional gel electrophoresis from root and leaf tissues, were evaluated in order to gauge the plant's physiological condition and biochemical response after toxin exposure. Results obtained from plant biomass, chlorophyll fluorescence, and enzyme activity assays showed no significant differences between control and treatment groups. However, proteomics data indicates that plants respond to M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations by changing their metabolism, responding differently to different toxin concentrations. Biological processes most affected were related to protein folding and stress response, protein biosynthesis, cell signalling and gene expression regulation, and energy and carbohydrate metabolism which may denote a toxic effect induced by M. aeruginosa extract and microcystin-LR. The implications of the metabolic alterations in plant physiology and growth require further elucidation.
Collapse
Affiliation(s)
- Catarina C Azevedo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | | | | | | | | |
Collapse
|
250
|
Li Y, Ma J, Fang Q, Li X. c-fosandc-junExpression in the Liver of Silver Carp and the Effect of Microcystins. J Biochem Mol Toxicol 2014; 28:157-66. [DOI: 10.1002/jbt.21548] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/06/2013] [Accepted: 12/19/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanyuan Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Junguo Ma
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Qian Fang
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Xiaoyu Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|