201
|
Stark JM, Hu P, Pierce AJ, Moynahan ME, Ellis N, Jasin M. ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J Biol Chem 2002; 277:20185-94. [PMID: 11923292 DOI: 10.1074/jbc.m112132200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disruption of the gene encoding RAD51, the protein that catalyzes strand exchange during homologous recombination, leads to the accumulation of chromosome breaks and lethality in vertebrate cells. As RAD51 is implicated in BRCA1- and BRCA2-mediated tumor suppression as well as cellular viability, we have begun a functional analysis of a defined RAD51 mutation in mammalian cells. By using a dominant negative approach, we generated a mouse embryonic stem cell line that expresses an ATP hydrolysis-defective RAD51 protein, hRAD51-K133R, at comparable levels to the endogenous wild-type RAD51 protein, whose expression is retained in these cells. We found that these cells have increased sensitivity to the DNA-damaging agents mitomycin C and ionizing radiation and also exhibit a decreased rate of spontaneous sister-chromatid exchange. By using a reporter for the repair of a single chromosomal double-strand break, we also found that expression of the hRAD51-K133R protein specifically inhibits homology-directed double-strand break repair. Furthermore, expression of a BRC repeat from BRCA2, a peptide inhibitor of an early step necessary for strand exchange, exacerbates the inhibition of homology-directed repair in the hRAD51-K133R expressing cell line. Thus, ATP hydrolysis by RAD51 has a key role in various types of DNA repair in mammalian cells.
Collapse
Affiliation(s)
- Jeremy M Stark
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
202
|
Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 2002; 20:165-96. [PMID: 11861601 DOI: 10.1146/annurev.immunol.20.090501.112049] [Citation(s) in RCA: 464] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Class switch recombination (CSR) and somatic hypermutation (SHM) have been considered to be mediated by different molecular mechanisms because both target DNAs and DNA modification products are quite distinct. However, involvement of activation-induced cytidine deaminase (AID) in both CSR and SHM has revealed that the two genetic alteration mechanisms are surprisingly similar. Accumulating data led us to propose the following scenario: AID is likely to be an RNA editing enzyme that modifies an unknown pre-mRNA to generate mRNA encoding a nicking endonuclease specific to the stem-loop structure. Transcription of the S and V regions, which contain palindromic sequences, leads to transient denaturation, forming the stem-loop structure that is cleaved by the AID-regulated endonuclease. Cleaved single-strand tails will be processed by error-prone DNA polymerase-mediated gap-filling or exonuclease-mediated resection. Mismatched bases will be corrected or fixed by mismatch repair enzymes. CSR ends are then ligated by the NHEJ system while SHM nicks are repaired by another ligation system.
Collapse
Affiliation(s)
- Tasuku Honjo
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
203
|
van den Bosch M, Lohman PHM, Pastink A. DNA double-strand break repair by homologous recombination. Biol Chem 2002; 383:873-92. [PMID: 12222678 DOI: 10.1515/bc.2002.095] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The induction of double-strand breaks (DSBs) in DNA by exposure to DNA damaging agents, or as intermediates in normal cellular processes, constitutes a severe threat for the integrity of the genome. If not properly repaired, DSBs may result in chromosomal aberrations, which, in turn, can lead to cell death or to uncontrolled cell growth. To maintain the integrity of the genome, multiple pathways for the repair of DSBs have evolved during evolution: homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). HR has the potential to lead to accurate repair of DSBs, whereas NHEJ and SSA are essentially mutagenic. In yeast, DSBs are primarily repaired via high-fidelity repair of DSBs mediated by HR, whereas in higher eukaryotes, both HR and NHEJ are important. In this review, we focus on the functional conservation of HR from fungi to mammals and on the role of the individual proteins in this process.
Collapse
Affiliation(s)
- Michael van den Bosch
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, The Netherlands
| | | | | |
Collapse
|
204
|
Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A. Genomic instability in mice lacking histone H2AX. Science 2002; 296:922-7. [PMID: 11934988 PMCID: PMC4721576 DOI: 10.1126/science.1069398] [Citation(s) in RCA: 1033] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Higher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice. Although H2AX is not essential for irradiation-induced cell-cycle checkpoints, H2AX-/- mice were radiation sensitive, growth retarded, and immune deficient, and mutant males were infertile. These pleiotropic phenotypes were associated with chromosomal instability, repair defects, and impaired recruitment of Nbs1, 53bp1, and Brca1, but not Rad51, to irradiation-induced foci. Thus, H2AX is critical for facilitating the assembly of specific DNA-repair complexes on damaged DNA.
Collapse
Affiliation(s)
- Arkady Celeste
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Petersen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter J. Romanienko
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Hua Tang Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Bernardo Reina-San-Martin
- Laboratory of Molecular Immunology, The Rockefeller University, Howard Hughes Medical Institute, New York, NY 10021, USA
| | | | - Eric Meffre
- Laboratory of Molecular Immunology, The Rockefeller University, Howard Hughes Medical Institute, New York, NY 10021, USA
| | | | - Christophe Redon
- Laboratory of Molecular Pharmacology, NIH, Bethesda, MD 20892, USA
| | - Duane R. Pilch
- Laboratory of Molecular Pharmacology, NIH, Bethesda, MD 20892, USA
| | - Alexandru Olaru
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 13-01, Baltimore, MD 21201, USA
| | - Michael Eckhaus
- Veterinary Resources Program, National Center for Research Resources, NIH, Bethesda, MD 20892, USA
| | - R. Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, NIH, Frederick, MD 20892, USA
| | - Ferenc Livak
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 13-01, Baltimore, MD 21201, USA
| | - Katia Manova
- Molecular Cytology Core Facility and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, Howard Hughes Medical Institute, New York, NY 10021, USA
| | - Andre Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
205
|
Tanaka K, Kagawa W, Kinebuchi T, Kurumizaka H, Miyagawa K. Human Rad54B is a double-stranded DNA-dependent ATPase and has biochemical properties different from its structural homolog in yeast, Tid1/Rdh54. Nucleic Acids Res 2002; 30:1346-53. [PMID: 11884632 PMCID: PMC101365 DOI: 10.1093/nar/30.6.1346] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The RAD52 epistasis group genes are involved in homologous recombination, and they are conserved from yeast to humans. We have cloned a novel human gene, RAD54B, which is homologous to yeast and human RAD54. Human Rad54B (hRad54B) shares high homology with human Rad54 (hRad54) in the central region containing the helicase motifs characteristic of the SNF2/SWI2 family of proteins, but the N-terminal domain is less conserved. In yeast, another RAD54 homolog, TID1/RDH54, plays a role in recombination. Tid1/Rdh54 interacts with yeast Rad51 and a meiosis-specific Rad51 homolog, Dmc1. The N-terminal domain of hRad54B shares homology with that of Tid1/Rdh54, suggesting that Rad54B may be the human counterpart of Tid1/Rdh54. We purified the hRad54 and hRad54B proteins from baculovirus-infected insect cells and examined their biochemical properties. hRad54B, like hRad54, is a DNA-binding protein and hydrolyzes ATP in the presence of double-stranded DNA, though its rate of ATP hydrolysis is lower than that of hRad54. Human Rad51 interacts with hRad54 and enhances its ATPase activity. In contrast, neither human Rad51 nor Dmc1 directly interacts with hRad54B. Although hRad54B is the putative counterpart of Tid1/Rdh54, our findings suggest that hRad54B behaves differently from Tid1/Rdh54.
Collapse
Affiliation(s)
- Kozo Tanaka
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | |
Collapse
|
206
|
van den Bosch M, Zonneveld JBM, Vreeken K, de Vries FAT, Lohman PHM, Pastink A. Differential expression and requirements for Schizosaccharomyces pombe RAD52 homologs in DNA repair and recombination. Nucleic Acids Res 2002; 30:1316-24. [PMID: 11884628 PMCID: PMC101351 DOI: 10.1093/nar/30.6.1316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In fission yeast two RAD52 homologs have been identified, rad22A(+) and rad22B(+). Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B(+) in mitotically dividing cells is very low in comparison with rad22A(+) but is strongly enhanced after induction of meiosis, in contrast to rad22A(+). Rad22B mutant cells are not hypersensitive to DNA-damaging agents (X-rays, UV and cisplatin) and display normal levels of recombination. In these respects the Schizosaccharomyces pombe rad22B mutant resembles the weak phenotype of vertebrate cells deficient for RAD52. Mutation of rad22A(+) leads to severe sensitivity to DNA-damaging agents and to defects in recombination. In a rad22Arad22B double mutant a further increase in sensitivity to DNA-damaging agents and additional mitotic recombination defects were observed. The data presented here indicate that Rad22A and Rad22B have overlapping roles in repair and recombination, although specialized functions for each protein cannot be excluded.
Collapse
Affiliation(s)
- Michael van den Bosch
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
207
|
Karanjawala ZE, Murphy N, Hinton DR, Hsieh CL, Lieber MR. Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in DNA double-strand break repair mutants. Curr Biol 2002; 12:397-402. [PMID: 11882291 DOI: 10.1016/s0960-9822(02)00684-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.
Collapse
Affiliation(s)
- Zarir E Karanjawala
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles 90089-9176, USA
| | | | | | | | | |
Collapse
|
208
|
Abstract
The nitrogen mustards are an important class of DNA cross-linking agents, which are utilized in the treatment of many types of cancer. Unfortunately, resistance often develops in the treatment of patients and the tumor either never responds to or becomes refractory to these agents. Resistance to the nitrogen mustards in murine and human tumor cells has been reported to be secondary to alterations in (i) the transport of these agents, (ii) their reactivity, (iii) apoptosis and (iv) altered DNA repair activity. In the present review, we will discuss the role of DNA repair in nitrogen mustard resistance in cancer. The nitrogen mustards' lethality is based on the induction of DNA interstrand cross-links (ICLs). Two DNA repair pathways are known to be involved in removal of ICLs: non-homologous DNA end-joining (NHEJ) and Rad51-related homologous recombinational repair (HRR). The reports discussed here lead us to hypothesize that low NHEJ activity defines a hypersensitive state, while high NHEJ activity, along with increased HRR activity, contributes to the resistant state in chronic lymphocytic leukemia. Studies on human epithelial tumor cell lines suggest that HRR rather than NHEJ plays a role in nitrogen mustard sensitivity.
Collapse
Affiliation(s)
- Lawrence Panasci
- Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.
| | | | | | | |
Collapse
|
209
|
Libby BJ, De La Fuente R, O'Brien MJ, Wigglesworth K, Cobb J, Inselman A, Eaker S, Handel MA, Eppig JJ, Schimenti JC. The mouse meiotic mutation mei1 disrupts chromosome synapsis with sexually dimorphic consequences for meiotic progression. Dev Biol 2002; 242:174-87. [PMID: 11820814 DOI: 10.1006/dbio.2001.0535] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
mei1 (meiosis defective 1) is the first meiotic mutation in mice derived by phenotype-driven mutagenesis. It was isolated by using a novel technology in which embryonic stem (ES) cells were chemically mutagenized and used to generate families of mice that were screened for infertility. We report here that mei1/mei1 spermatocytes arrest at the zygotene stage of meiosis I, exhibiting failure of homologous chromosomes to properly synapse. Notably, RAD51 failed to associate with meiotic chromosomes in mutant spermatocytes, despite evidence for the presence of chromosomal breaks. Transcription of genes that are markers for the leptotene and zygotene stages, but not genes that are markers for the pachytene stage, was observed. mei1/mei1 females are sterile, and their oocytes also show severe synapsis defects. Nevertheless, unlike arrested spermatocytes, a small number of mutant oocytes proved capable of progressing to metaphase I and attempting the first meiotic division. However, their chromosomes were unpaired and were not organized properly at the metaphase plate or along the spindle fibers during segregation. mei1 was genetically mapped to chromosome (Chr) 15 in an interval that is syntenic to human Chr 22q13. This region, which has been completely sequenced, contains no known homologs of genes specifically required for meiosis in model organisms. Thus, mei1 may be a novel meiotic gene.
Collapse
Affiliation(s)
- Brian J Libby
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Yáñez RJ, Porter ACG. Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. Nucleic Acids Res 2002; 30:740-8. [PMID: 11809887 PMCID: PMC100286 DOI: 10.1093/nar/30.3.740] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Overexpression of the RAD52 epistasis group of gene products is a convenient way to investigate their in vivo roles in homologous recombination (HR) and DNA repair. Overexpression has the further attraction that any associated stimulation of HR may facilitate gene-targeting applications. Rad51p or Rad52p overexpression in mammalian cells have previously been shown to enhance some forms of HR and resistance to ionising radiation, but the effects of Rad52p overexpression on gene targeting have not been tested. Here we show that Rad52p overexpression inhibits gene targeting while stimulating extrachromosomal HR. We also find that Rad52p overexpression affects cell-cycle distribution, impairs cell survival and is lost during extensive passaging. Therefore, we suggest that excess Rad52p can inhibit the essential RAD51-dependent pathways of HR most likely to be responsible for gene targeting, while at the same time stimulating the RAD51-independent pathway thought to be responsible for extrachromosomal HR. The data also argue against Rad52p overexpression as a means of promoting gene targeting, and highlight the limitations of using a single HR assay to assess the overall status of HR.
Collapse
Affiliation(s)
- Rafael J Yáñez
- Gene Targeting Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
211
|
Miyagawa K, Tsuruga T, Kinomura A, Usui K, Katsura M, Tashiro S, Mishima H, Tanaka K. A role for RAD54B in homologous recombination in human cells. EMBO J 2002; 21:175-80. [PMID: 11782437 PMCID: PMC125815 DOI: 10.1093/emboj/21.1.175] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Revised: 11/19/2001] [Accepted: 11/19/2001] [Indexed: 12/29/2022] Open
Abstract
In human somatic cells, homologous recombination is a rare event. To facilitate the targeted modification of the genome for research and gene therapy applications, efforts should be directed toward understanding the molecular mechanisms of homologous recombination in human cells. Although human genes homologous to members of the RAD52 epistasis group in yeast have been identified, no genes have been demonstrated to play a role in homologous recombination in human cells. Here, we report that RAD54B plays a critical role in targeted integration in human cells. Inactivation of RAD54B in a colon cancer cell line resulted in severe reduction of targeted integration frequency. Sensitivity to DNA-damaging agents and sister-chromatid exchange were not affected in RAD54B-deficient cells. Parts of these phenotypes were similar to those of Saccharomyces cerevisiae tid1/rdh54 mutants, suggesting that RAD54B may be a human homolog of TID1/RDH54. In yeast, TID1/RDH54 acts in the recombinational repair pathway via roles partially overlapping those of RAD54. Our findings provide the first genetic evidence that the mitotic recombination pathway is functionally conserved from yeast to humans.
Collapse
Affiliation(s)
- Kiyoshi Miyagawa
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Department of Ophthalmology and Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan Corresponding author e-mail:
| | - Takanori Tsuruga
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Department of Ophthalmology and Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan Corresponding author e-mail:
| | - Aiko Kinomura
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Department of Ophthalmology and Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan Corresponding author e-mail:
| | - Kiyomi Usui
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Department of Ophthalmology and Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan Corresponding author e-mail:
| | - Mari Katsura
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Department of Ophthalmology and Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan Corresponding author e-mail:
| | - Satoshi Tashiro
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Department of Ophthalmology and Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan Corresponding author e-mail:
| | - Hiromu Mishima
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Department of Ophthalmology and Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan Corresponding author e-mail:
| | - Kozo Tanaka
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Department of Ophthalmology and Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan Corresponding author e-mail:
| |
Collapse
|
212
|
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous clones. Over the last decade, many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here, we discuss homologous recombination as another mechanism that can result in a loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.
Collapse
Affiliation(s)
| | - Robert H. Schiestl
- Department of Pathology, UCLA Medical School, Los Angeles, CA 90095, USA
| |
Collapse
|
213
|
Kim YC, Koh JT, Shin BA, Ahn KY, Choi BK, Kim CG, Kim KK. An antisense construct of full-length human RAD50 cDNA confers sensitivity to ionizing radiation and alkylating agents on human cell lines. Radiat Res 2002; 157:19-25. [PMID: 11754637 DOI: 10.1667/0033-7587(2002)157[0019:aacofl]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In Saccharomyces cerevisiae, Rad50 is reported to participate in the repair of double-stranded DNA breaks, and most rad50 mutants are unable to repair gamma-ray-induced DNA damage. In this study, we examined whether human RAD50 is involved in the repair of DNA damage induced by gamma radiation, radiomimetic alkylating agents, or UVB radiation in cultured human cells. Because homozygous null RAD50 mutant cells could not be isolated, human 293 embryonic kidney cells and A431 epithelial tumor cells were transfected with antisense RAD50 cDNA to obtain viable cell lines which expressed reduced RAD50. Selected individual clones were subjected to PCR-Southern and Western blot analyses to confirm the integrity of the antisense RAD50 construct and the reduced RAD50 expression levels. The cells engineered to express reduced RAD50 levels showed significantly increased sensitivity to gamma radiation, mitomycin C and methylmethane sulfonate compared with control cells that were transfected with the vector alone. However, there were no differences in viability of cells with reduced RAD50 levels and control cells treated with UVB radiation. These results indicate that human RAD50 is involved in the repair of DNA damage induced by gamma radiation and alkylating agents in mammalian cells and suggest the possible application of antisense RAD50 cDNA transfection as a radiation sensitizer in radiation oncology.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Diagnostic Radiology, Chosun University Hospital, Kwangju 501-759, South Korea
| | | | | | | | | | | | | |
Collapse
|
214
|
Vinson RK, Hales BF. Expression of base excision, mismatch, and recombination repair genes in the organogenesis-stage rat conceptus and effects of exposure to a genotoxic teratogen, 4-hydroperoxycyclophosphamide. TERATOLOGY 2001; 64:283-91. [PMID: 11754170 DOI: 10.1002/tera.1083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND DNA repair capability may influence the outcome of genotoxic teratogen exposure. The goals of this study were to assess the expression of base excision repair (BER), mismatch repair (MMR), and recombination repair (RCR) genes in the mid-organogenesis rat conceptus and to determine the effects on expression of exposure to the genotoxic teratogen, 4-hydroperoxycyclophosphamide (4-OOHCPA). METHODS The expression of 17 BER, MMR, and RCR genes was examined in gestational day (GD) 10-12 rat conceptuses using the antisense RNA (aRNA) technique. Embryos were cultured with 10 microM 4-OOHCPA to examine effects on gene expression. RESULTS Yolk sacs and embryos had similar gene expression patterns for all three DNA repair pathways from GD10-12. Transcripts for APNG, PMS1, and RAD54 were present at high concentrations in both tissues. The remainder of the genes were expressed at low levels in yolk sac, with a few not detected on GD10 and 11. In the embryo, transcripts for most genes were low on GD10 and 11; several increased by GD12. After exposure to 4-OOHCPA for 24 hr, XRCC1 and RAD57 expression decreased in yolk sac, whereas only RAD51 transcripts decreased in the embryo. By 44 hr, transcripts for all BER genes decreased in yolk sac; in the embryo, most BER, MMR, and RCR genes decreased, many below the level of detection. CONCLUSIONS The expression of DNA repair genes in the mid-organogenesis rat conceptus is varied and subject to down-regulation by 4-OOHCPA. DNA repair gene expression may determine the consequences of genotoxicant exposure during development.
Collapse
Affiliation(s)
- R K Vinson
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | | |
Collapse
|
215
|
Fukushima T, Takata M, Morrison C, Araki R, Fujimori A, Abe M, Tatsumi K, Jasin M, Dhar PK, Sonoda E, Chiba T, Takeda S. Genetic analysis of the DNA-dependent protein kinase reveals an inhibitory role of Ku in late S-G2 phase DNA double-strand break repair. J Biol Chem 2001; 276:44413-8. [PMID: 11577093 DOI: 10.1074/jbc.m106295200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two major complementary double-strand break (DSB) repair pathways exist in vertebrates, homologous recombination (HR), which involves Rad54, and non-homologous end-joining, which requires the DNA-dependent protein kinase (DNA-PK). DNA-PK comprises a catalytic subunit (DNA-PKcs) and a DNA-binding Ku70 and Ku80 heterodimer. To define the activities of individual DNA-PK components in DSB repair, we targeted the DNA-PKcs gene in chicken DT40 cells. DNA-PKcs deficiency caused a DSB repair defect that was, unexpectedly, suppressed by KU70 disruption. We have shown previously that genetic ablation of Ku70 confers RAD54-dependent radioresistance on S-G(2) phase cells, when sister chromatids are available for HR repair. To test whether direct interference by Ku70 with HR might explain the Ku70(-/-)/DNA-PKcs(-/-/-) radioresistance, we monitored HR activities directly in Ku- and DNA-PKcs-deficient cells. The frequency of intrachromosomal HR induced by the I-SceI restriction enzyme was increased in the absence of Ku but not of DNA-PKcs. Significantly, abrogation of HR activity by targeting RAD54 in Ku70(-/-) or DNA-PKcs(-/-/-) cells caused extreme radiosensitivity, suggesting that the relative radioresistance seen with loss of Ku70 was because of HR-dependent repair pathways. Our findings suggest that Ku can interfere with HR-mediated DSB repair, perhaps competing with HR for DSB recognition.
Collapse
Affiliation(s)
- T Fukushima
- CREST Research Project, Radiation Genetics, Faculty of Medicine, Kyoto University, Konoe Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Niedernhofer LJ, Essers J, Weeda G, Beverloo B, de Wit J, Muijtjens M, Odijk H, Hoeijmakers JH, Kanaar R. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells. EMBO J 2001; 20:6540-9. [PMID: 11707424 PMCID: PMC125716 DOI: 10.1093/emboj/20.22.6540] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1-Xpf incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1-Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1-Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1-Xpf in making the recipient genomic locus receptive for gene replacement.
Collapse
Affiliation(s)
- Laura J. Niedernhofer
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jeroen Essers
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Geert Weeda
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Berna Beverloo
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jan de Wit
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Manja Muijtjens
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Hanny Odijk
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jan H.J. Hoeijmakers
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| |
Collapse
|
217
|
Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M. Double-strand breaks and tumorigenesis. Trends Cell Biol 2001. [DOI: 10.1016/s0962-8924(01)82296-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
218
|
Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M. Double-strand breaks and tumorigenesis. Trends Cell Biol 2001; 11:S52-9. [PMID: 11684443 DOI: 10.1016/s0962-8924(01)02149-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The establishment of connections between biochemical defects and clinical disease is a major goal of modern molecular genetics. In this review, we examine the current literature that relates defects in the two major DNA double-strand-break repair pathways--homologous recombination and nonhomologous end-joining--with the development of human tumors. Although definitive proof has yet to be obtained, the current literature is highly suggestive of such a link.
Collapse
Affiliation(s)
- A J Pierce
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
219
|
Lambert S, Lopez BS. Role of RAD51 in sister-chromatid exchanges in mammalian cells. Oncogene 2001; 20:6627-31. [PMID: 11641788 DOI: 10.1038/sj.onc.1204813] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2001] [Revised: 06/25/2001] [Accepted: 07/05/2001] [Indexed: 11/10/2022]
Abstract
To measure the impact of the RAD51 pathway on Sister-Chromatid Exchanges (SCE), we used hamster cells expressing either the wild-type MmRAD51, which stimulates, or the dominant negative SMRAD51, which inhibits, gene conversion without affecting cell viability of untreated as well as gamma-rays irradiated cells. We show that MmRAD51 did not affect the rate of spontaneous SCE while it strongly stimulated spontaneous recombination between tandem repeats. No spontaneous recombinant was detected when expressing SMRAD51 while spontaneous SCE were only slightly diminished. After treatment by an alkylating agent (MNU), MmRAD51 stimulated MNU-induced recombination whereas no recombinant was detected when expressing SMRAD51. MNU induced SCE in all cell lines, even in the SMRAD51 expressing lines, but the induction of SCE was slightly more efficient in lines expressing MmRAD51 and less efficient in lines expressing SMRAD51. Thus, in mammalian cells, the RAD51-dependent gene conversion pathway drastically affects recombination between intrachromosomal tandem repeats, whereas it only partially participates in SCE formation, measured at a chromosomal level. These results show that RAD51-gene conversion can participate in induced SCE but that alternative pathways should exist.
Collapse
Affiliation(s)
- S Lambert
- UMR217 CNRS-CEA, CEA, Direction des Sciences du Vivant, Département de Radiobiologie et Radiopathologie, 60-68 avenue du Général Leclerc, 92 265 Fontenay aux Roses, cedex, France
| | | |
Collapse
|
220
|
Wang ZM, Chen ZP, Xu ZY, Christodoulopoulos G, Bello V, Mohr G, Aloyz R, Panasci LC. In vitro evidence for homologous recombinational repair in resistance to melphalan. J Natl Cancer Inst 2001; 93:1473-8. [PMID: 11584063 DOI: 10.1093/jnci/93.19.1473] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The generation of DNA interstrand cross-links is thought to be important in the cytotoxicity of nitrogen mustard alkylating agents, such as melphalan, which have antitumor activity. Cell lines with mutations in recombinational repair pathways are hypersensitive to nitrogen mustards. Thus, resistance to melphalan may require accelerated DNA repair by either recombinational repair mechanisms involving Rad51-related proteins (including x-ray repair cross-complementing proteins Xrcc2, Xrcc3, and Rad52) or by nonhomologous endjoining involving DNA-dependent protein kinase (DNA-PK) and Ku proteins. We investigated the role of DNA repair in melphalan resistance in epithelial tumor cell lines. METHODS Melphalan cytotoxicity was determined in 14 epithelial tumor cell lines by use of the sulforhodamine assay. Homologous recombinational repair involving Rad51-related proteins was investigated by determining the levels of Rad51, Rad52, and Xrcc3 proteins and the density of nuclear melphalan-induced Rad51 foci, which represent sites of homologous recombinational repair. Nonhomologous endjoining was investigated by determining the levels of Ku70 and Ku86 proteins and DNA-PK activity. Linear regression analysis was used to analyze correlations between the various protein levels, DNA-PK activity, or Rad51 foci formation and melphalan cytotoxicity. All statistical tests were two-sided. RESULTS Melphalan resistance was correlated with Xrcc3 levels (r =.587; P =.027) and the density of melphalan-induced Rad51 foci (r =.848; P =.008). We found no correlation between melphalan resistance and Rad51, Rad52, or Ku protein levels or DNA-PK activity. CONCLUSION Correlations of melphalan resistance in epithelial tumor cell lines with Xrcc3 protein levels and melphalan-induced Rad51 foci density suggest that homologous recombinational repair is involved in resistance to this nitrogen mustard.
Collapse
MESH Headings
- Antigens, Nuclear
- Antineoplastic Agents, Alkylating/pharmacology
- Blotting, Western
- Cross-Linking Reagents/pharmacology
- DNA Helicases
- DNA Repair
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/metabolism
- DNA-Activated Protein Kinase
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Drug Resistance, Neoplasm/genetics
- Fluorescent Antibody Technique, Indirect
- Humans
- Ku Autoantigen
- Melphalan/pharmacology
- Microscopy, Confocal
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Protein Serine-Threonine Kinases/analysis
- Rad51 Recombinase
- Recombination, Genetic
- Sequence Homology, Nucleic Acid
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- Z M Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Hasty P. The impact energy metabolism and genome maintenance have on longevity and senescence: lessons from yeast to mammals. Mech Ageing Dev 2001; 122:1651-62. [PMID: 11557271 DOI: 10.1016/s0047-6374(01)00294-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The phenomenon that caloric restriction increases life span in a variety of species from yeast to mice has been the focus of much interest. Recent observations suggest that a protein important for heterochromatin formation, Sir2, is central for caloric restriction-induced longevity in lower organisms. Interestingly, Sir2 is also capable of repairing DNA double-strand breaks by nonhomologous end joining which may be important, along with proteins that repair breaks by recombinational repair, for minimizing the age-related deleterious effects of DNA damage induced by oxygen by-products of metabolism. I propose that competition between these two distinct functions could influence longevity and the onset of senescence. In addition, sequence and functional similarities between Sir2 and other chromatin metabolism proteins present the possibility that genetic components for longevity and senescence are conserved from yeast to mammals.
Collapse
Affiliation(s)
- P Hasty
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas, Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
222
|
Abstract
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs.
Collapse
Affiliation(s)
- M L Dronkert
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
223
|
Abstract
The induction of double-strand breaks (DSBs) in DNA by exposure to DNA damaging agents or as intermediates in normal cellular processes, creates a severe threat for the integrity of the genome. Unrepaired or incorrectly repaired DSBs lead to broken chromosomes and/or gross chromosomal rearrangements which are frequently associated with tumor formation in mammals. To maintain the integrity of the genome and to prevent the formation of chromosomal aberrations, several pathways exist in eukaryotes: homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). These mechanisms are conserved in evolution, but the relative contribution depends on the organism, cell type and stage of the cell cycle. In yeast, DSBs are primarily repaired via HR while in higher eukaryotes, both HR and NHEJ are important. In mammals, defects in both HR or NHEJ lead to a predisposition to cancer and at the cellular level, the frequency of chromosomal aberrations is increased. This review summarizes our current knowledge about DSB-repair with emphasis on recent progress in understanding the precise biochemical activities of individual proteins involved.
Collapse
Affiliation(s)
- A Pastink
- Sylvius Laboratory, Department of Radiation Genetics and Chemical Mutagenesis, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
224
|
McHugh PJ, Spanswick VJ, Hartley JA. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol 2001; 2:483-90. [PMID: 11905724 DOI: 10.1016/s1470-2045(01)00454-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drugs that produce DNA interstrand crosslinks (ICLs), between the two complementary strands of the double helix, have an important role in chemotherapy regimens for cancer. Novel crosslinking agents, and targeting strategies involving DNA crosslinking agents, continue to be developed. The ability of cells to repair DNA ICLs is a critical determinant of sensitivity, and recent dinical studies indicate that DNA repair capacity is strongly implicated in both inherent tumour sensitivity and acquired drug resistance. A detailed understanding of the cellular mechanisms that act to eliminate these critical DNA lesions is clearly important. DNA ICLs present a complex challenge to DNA repair mechanisms because of the involvement of both DNA strands. It is now clear that cells from bacteria and yeast to mammals eliminate interstrand ICLs through the coordinated action of several DNA repair pathways. Recently, a model of ICL repair has been proposed, in which mammalian cells use novel excision repair reactions (requiring the XPF and ERCC1 proteins) to uncouple the crosslink. This is followed by a homologous recombination step to provide the genetic information needed to complete repair. This new knowledge may permit the development of screens for tumour response to crosslinking agents, and should also aid the design of more effective crosslinking agents that evade DNA repair. In addition, the proteins mediating the repair reactions represent potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- P J McHugh
- Department of Oncology, Royal Free and University College Medical School, London, UK
| | | | | |
Collapse
|
225
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
226
|
Sonoda E, Takata M, Yamashita YM, Morrison C, Takeda S. Homologous DNA recombination in vertebrate cells. Proc Natl Acad Sci U S A 2001; 98:8388-94. [PMID: 11459980 PMCID: PMC37448 DOI: 10.1073/pnas.111006398] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The RAD52 epistasis group genes are involved in homologous DNA recombination, and their primary structures are conserved from yeast to humans. Although biochemical studies have suggested that the fundamental mechanism of homologous DNA recombination is conserved from yeast to mammals, recent studies of vertebrate cells deficient in genes of the RAD52 epistasis group reveal that the role of each protein is not necessarily the same as that of the corresponding yeast gene product. This review addresses the roles and mechanisms of homologous recombination-mediated repair with a special emphasis on differences between yeast and vertebrate cells.
Collapse
Affiliation(s)
- E Sonoda
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
227
|
Solinger JA, Heyer WD. Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl Acad Sci U S A 2001; 98:8447-53. [PMID: 11459988 PMCID: PMC37456 DOI: 10.1073/pnas.121009898] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rad54 and Rad51 are important proteins for the repair of double-stranded DNA breaks by homologous recombination in eukaryotes. As previously shown, Rad51 protein forms nucleoprotein filaments on single-stranded DNA, and Rad54 protein directly interacts with such filaments to enhance synapsis, the homologous pairing with a double-stranded DNA partner. Here we demonstrate that Saccharomyces cerevisiae Rad54 protein has an additional role in the postsynaptic phase of DNA strand exchange by stimulating heteroduplex DNA extension of established joint molecules in Rad51/Rpa-mediated DNA strand exchange. This function depended on the ATPase activity of Rad54 protein and on specific protein:protein interactions between the yeast Rad54 and Rad51 proteins.
Collapse
Affiliation(s)
- J A Solinger
- Division of Biological Sciences, Section of Microbiology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
228
|
Masson JY, Stasiak AZ, Stasiak A, Benson FE, West SC. Complex formation by the human RAD51C and XRCC3 recombination repair proteins. Proc Natl Acad Sci U S A 2001; 98:8440-6. [PMID: 11459987 PMCID: PMC37455 DOI: 10.1073/pnas.111005698] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, the RAD51 protein is required for genetic recombination, DNA repair, and cellular proliferation. Five paralogs of RAD51, known as RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3, have been identified and also shown to be required for recombination and genome stability. At the present time, however, very little is known about their biochemical properties or precise biological functions. As a first step toward understanding the roles of the RAD51 paralogs in recombination, the human RAD51C and XRCC3 proteins were overexpressed and purified from baculovirus-infected insect cells. The two proteins copurify as a complex, a property that reflects their endogenous association observed in HeLa cells. Purified RAD51C--XRCC3 complex binds single-stranded, but not duplex DNA, to form protein--DNA networks that have been visualized by electron microscopy.
Collapse
Affiliation(s)
- J Y Masson
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | |
Collapse
|
229
|
Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G, Powell SN. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci U S A 2001; 98:8644-9. [PMID: 11447276 PMCID: PMC37489 DOI: 10.1073/pnas.151253498] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carriers of BRCA2 germline mutations are at high risk to develop early-onset breast cancer. The underlying mechanisms of how BRCA2 inactivation predisposes to malignant transformation have not been established. Here, we provide direct functional evidence that human BRCA2 promotes homologous recombination (HR), which comprises one major pathway of DNA double-strand break repair. We found that up-regulated HR after transfection of wild-type (wt) BRCA2 into a human tumor line with mutant BRCA2 was linked to increased radioresistance. In addition, BRCA2-mediated enhancement of HR depended on the interaction with Rad51. In contrast to the tumor suppressor BRCA1, which is involved in multiple DNA repair pathways, BRCA2 status had no impact on the other principal double-strand break repair pathway, nonhomologous end joining. Thus, there exists a specific regulation of HR by BRCA2, which may function to maintain genomic integrity and suppress tumor development in proliferating cells.
Collapse
Affiliation(s)
- F Xia
- Laboratory of Molecular and Cellular Radiation Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
Cells are constantly under threat from the cytotoxic and mutagenic effects of DNA damaging agents. These agents can either be exogenous or formed within cells. Environmental DNA-damaging agents include UV light and ionizing radiation, as well as a variety of chemicals encountered in foodstuffs, or as air- and water-borne agents. Endogenous damaging agents include methylating species and the reactive oxygen species that arise during respiration. Although diverse responses are elicited in cells following DNA damage, this review focuses on three aspects: DNA repair mechanisms, cell cycle checkpoints, and apoptosis. Because the areas of nucleotide excision repair and mismatch repair have been covered extensively in recent reviews, we restrict our coverage of the DNA repair field to base excision repair and DNA double-strand break repair.
Collapse
Affiliation(s)
- C J Norbury
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom.
| | | |
Collapse
|
231
|
Geiman TM, Tessarollo L, Anver MR, Kopp JB, Ward JM, Muegge K. Lsh, a SNF2 family member, is required for normal murine development. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1526:211-20. [PMID: 11325543 DOI: 10.1016/s0304-4165(01)00129-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lsh is a member of the SNF2 family of chromatin remodelers, that regulate diverse biological processes such as replication, repair and transcription. Although expression of Lsh is highly tissue specific in adult animals, Lsh mRNA is detectable in multiple tissues during embryogenesis. In order to determine the physiologic role of Lsh during murine development and to assess its unique function in adult mice, we performed targeted deletion of the Lsh gene using homologous recombination in murine embryonic stem cells. Lsh-/- embryos occurred with the expected Mendelian frequency after implantation and during embryogenesis. However, Lsh-/- mice died within a few hours after birth. Furthermore, newborn mice were 22% lower in weight in comparison with their littermates and showed renal lesions. Thus Lsh is a non-redundant member of the SNF2 family and is essential for normal murine development and survival.
Collapse
Affiliation(s)
- T M Geiman
- Laboratory of Immunoregulation, SAIC, National Cancer Institute-FCRDC, Bldg 469, Rm 239, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
232
|
Utsumi H, Elkind MM. Requirement for repair of DNA double-strand breaks by homologous recombination in split-dose recovery. Radiat Res 2001; 155:680-6. [PMID: 11302764 DOI: 10.1667/0033-7587(2001)155[0680:rfrodd]2.0.co;2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Utsumi, H., Tano, K., Takata, M., Takeda, S. and Elkind, M. M. Requirement for Repair of DNA Double-Strand Breaks by Homologous Recombination in Split-Dose Recovery. Radiat. Res. 155, 680-686 (2001). Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and is believed to be the result of the repair of sublethal damage. It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism(s) of this repair, we analyzed the knockout mutants KU70-/-, RAD54-/-, and KU70-/-/RAD54-/- of the chicken B-cell line, DT40. RAD54 participates in the recombinational repair of DNA double-strand breaks (DSBs), while members of the KU family of proteins are involved in nonhomologous end joining. Split-dose recovery was observed in the parent DT40 and the KU70-/- cells. Moreover, the split-dose survival enhancement had all of the characteristics demonstrated earlier for the repair of sublethal damage, e.g., the reappearance of the shoulder on the survival curve with dose fractionation; cyclic fluctuation in cell survival at 37 degrees C; repair and no cyclic fluctuation at 25 degrees C. These results strongly suggest that repair of sublethal damage is due to DSB repair mediated by homologous recombination, and that these DNA DSBs constitute sublethal damage.
Collapse
Affiliation(s)
- H Utsumi
- Research Reactor Institute, Kyoto University, Kumatori-cho Noda, Sennan-gun, Osaka 590-0494, Japan
| | | |
Collapse
|
233
|
Wang H, Zeng ZC, Bui TA, Sonoda E, Takata M, Takeda S, Iliakis G. Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene 2001; 20:2212-24. [PMID: 11402316 DOI: 10.1038/sj.onc.1204350] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Revised: 02/01/2001] [Accepted: 02/05/2001] [Indexed: 12/17/2022]
Abstract
Rejoining of ionizing radiation (IR) induced DNA DSBs usually follows biphasic kinetics with a fast (t(50): 5-30 min) component attributed to DNA-PK-dependent non-homologous endjoining (NHEJ) and a slow (t(50): 1-20 h), as of yet uncharacterized, component. To examine whether homologous recombination (HR) contributes to DNA DSB rejoining, a systematic genetic study was undertaken using the hyper-recombinogenic DT40 chicken cell line and a series of mutants defective in HR. We show that DT40 cells rejoin IR-induced DNA DSBs with half times of 13 min and 4.5 h and contributions by the fast (78%) and the slow (22%) components similar to those of other vertebrate cells with 1000-fold lower levels of HR. We also show that deletion of RAD51B, RAD52 and RAD54 leaves unchanged the rejoining half times and the contribution of the slow component, as does also a conditional knock out mutant of RAD51. A significant reduction (to 37%) in the contribution of the fast component is observed in Ku70(-/-) DT40 cells, but the slow component, operating with a half time of 18.4 h, is still able to rejoin the majority (63%) of DSBs. A double mutant Ku70(-/-)/RAD54(-/-) shows similar half times to Ku70(-/-) cells. Thus, variations in HR by several orders of magnitude leave unchanged the kinetics of rejoining of DNA DSBs, and fail to modify the contribution of the slow component in a way compatible with a dependence on HR. We propose that, in contrast to yeast, cells of vertebrates are 'hard-wired' in the utilization of NHEJ as the main pathway for rejoining of IR-induced DNA DSBs and speculate that the contribution of homologous recombination repair (HRR) is at a stage after the initial rejoining.
Collapse
Affiliation(s)
- H Wang
- Department of Radiation Oncology of Kimmel Cancer Center, Jefferson Medical College, Thompson Building Room B-1, Philadelphia, Pennsylvania, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 2001; 21:2858-66. [PMID: 11283264 PMCID: PMC86915 DOI: 10.1128/mcb.21.8.2858-2866.2001] [Citation(s) in RCA: 425] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Rad51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a central role in both mitotic and meiotic homologous DNA recombination (HR) in Saccharomyces cerevisiae and is essential for the proliferation of vertebrate cells. Five vertebrate genes, RAD51B, -C, and -D and XRCC2 and -3, are implicated in HR on the basis of their sequence similarity to Rad51 (Rad51 paralogs). We generated mutants deficient in each of these proteins in the chicken B-lymphocyte DT40 cell line and report here the comparison of four new mutants and their complemented derivatives with our previously reported rad51b mutant. The Rad51 paralog mutations all impair HR, as measured by targeted integration and sister chromatid exchange. Remarkably, the mutant cell lines all exhibit very similar phenotypes: spontaneous chromosomal aberrations, high sensitivity to killing by cross-linking agents (mitomycin C and cisplatin), mild sensitivity to gamma rays, and significantly attenuated Rad51 focus formation during recombinational repair after exposure to gamma rays. Moreover, all mutants show partial correction of resistance to DNA damage by overexpression of human Rad51. We conclude that the Rad51 paralogs participate in repair as a functional unit that facilitates the action of Rad51 in HR.
Collapse
Affiliation(s)
- M Takata
- CREST Research Project, Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
235
|
van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2001; 2:196-206. [PMID: 11256071 DOI: 10.1038/35056049] [Citation(s) in RCA: 854] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-stranded breaks in DNA are important threats to genome integrity because they can result in chromosomal aberrations that can affect, simultaneously, many genes, and lead to cell malfunctioning and cell death. These detrimental consequences are counteracted by two mechanistically distinct pathways of double-stranded break repair: homologous recombination and non-homologous end-joining. Recently, unexpected links between these double-stranded break-repair systems, and several human genome instability and cancer predisposition syndromes, have emerged. Now, interactions between both double-stranded break-repair pathways and other cellular processes, such as cell-cycle regulation and replication, are being unveiled.
Collapse
Affiliation(s)
- D C van Gent
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | |
Collapse
|
236
|
Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27:247-54. [PMID: 11242102 DOI: 10.1038/85798] [Citation(s) in RCA: 1747] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation-the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.
Collapse
Affiliation(s)
- K K Khanna
- The Queensland Institute of Medical Research, and Department of Pathology, University of Queensland, PO Royal Brisbane Hospital, Brisbane, Queensland, Australia.
| | | |
Collapse
|
237
|
Hoeijmakers JH. From xeroderma pigmentosum to the biological clock contributions of Dirk Bootsma to human genetics. Mutat Res 2001; 485:43-59. [PMID: 11341993 DOI: 10.1016/s0921-8777(00)00079-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper commemorates the multiple contributions of Dirk Bootsma to human genetics. During a scientific 'Bootsma' cruise on his sailing-boat 'de Losbol', we visit a variety of scenery locations along the lakes and canals in Friesland, passing the highlights of Dirk Bootsma's scientific oeuvre. Departing from 'de Fluessen', his homeport, with his PhD work on the effect of X-rays and UV on cell cycle progression, we head for the pioneering endeavours of his team on mapping genes on human chromosomes by cell hybridization. Next we explore the use of cell hybrids by the Bootsma team culminating in the molecular cloning of one of the first chromosomal breakpoints involved in oncogenesis: the bcr-abl fusion gene responsible for chronic myelocytic leukemia. This seminal achievement enabled later development of new methods for early detection and very promising therapeutic intervention. A series of highlights at the horizon constitute the contributions of his team to the field of DNA repair, beginning with the discovery of genetic heterogeneity in the repair syndrome xeroderma pigmentosum (XP) followed later by the cloning of a large number of human repair genes. This led to the discovery that DNA repair is strongly conserved in evolution rendering knowledge from yeast relevant for mammals and vice versa. In addition, it resolved the molecular basis of several repair syndromes and permitted functional analysis of the encoded proteins. Another milestone is the discovery of the surprising connection between DNA repair and transcription initiation via the dual functional TFIIH complex in collaboration with Jean-Marc Egly et al. in Strasbourg. This provided an explanation for many puzzling clinical features and triggered a novel concept in human genetics: the existence of repair/transcription syndromes. The generation of many mouse mutants carrying defects in repair pathways yielded valuable models for assessing the clinical relevance of DNA repair including carcinogenesis and the identification of a link between DNA damage and premature aging. His team also opened a fascinating area of cell biology with the analysis of repair and transcription in living cells. A final surprising evolutionary twist was the discovery that photolyases designed for the light-dependent repair of UV-induced DNA lesions appeared to be adopted for driving the mammalian biological clock. The latter indicates that it is time to return to 'de Fluessen', where we will consider briefly the merits of Dirk Bootsma for Dutch science in general.
Collapse
Affiliation(s)
- J H Hoeijmakers
- MGC, Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
| |
Collapse
|
238
|
Kozubek S, Bártová E, Kozubek M, Lukásová E, Cafourková A, Koutná I, Skalníková M. Spatial distribution of selected genetic loci in nuclei of human leukemia cells after irradiation. Radiat Res 2001; 155:311-9. [PMID: 11175666 DOI: 10.1667/0033-7587(2001)155[0311:sdosgl]2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fluorescence in situ hybridization (FISH) combined with high-resolution cytometry was used to determine the topographic characteristics of the centromeric heterochromatin (of the chromosomes 6, 8, 9, 17) and the tumor suppressor gene TP53 (which is located on chromosome 17) in cells of the human leukemia cell lines ML-1 and U937. Analysis was performed on cells that were either untreated or irradiated with gamma rays and incubated for different intervals after exposure. Compared to untreated cells, homologous centromeres and the TP53 genes were found closer to each other and also closer to the nuclear center 2 h after irradiation. The spatial relationship between genetic elements returned to that of the unirradiated controls during the next 2-3 h. Statistical evaluation of our experimental results shows that homologous centromeres and the homologous genes are positioned closer to each other 2 h after irradiation because they are localized closer to the center of the nucleus (probably due to more pronounced decondensation of the chromatin related to repair). This radial movement of genetic loci, however, is not connected with repair of DSBs by processes involving homologous recombination, because the angular distribution of homologous sequences remains random after irradiation.
Collapse
Affiliation(s)
- S Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
239
|
Affiliation(s)
- A C Begg
- Division of Experimental Therapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | | |
Collapse
|
240
|
Abstract
The BRCA2 tumor suppressor has been implicated in the maintenance of chromosomal stability through a function in DNA repair. In this report, we examine human and mouse cell lines containing different BRCA2 mutations for their ability to repair chromosomal breaks by homologous recombination. Using the I-SceI endonuclease to introduce a double-strand break at a specific chromosomal locus, we find that BRCA2 mutant cell lines are recombination deficient, such that homology-directed repair is reduced 6- to >100-fold, depending on the cell line. Thus, BRCA2 is essential for efficient homology-directed repair, presumably in conjunction with the Rad51 recombinase. We propose that impaired homology-directed repair caused by BRCA2 deficiency leads to chromosomal instability and, possibly, tumorigenesis, through lack of repair or misrepair of DNA damage.
Collapse
Affiliation(s)
- M E Moynahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
241
|
Vreeken K, Zonneveld JB, Brandsma JA, Lombaerts M, Murray JM, Lohman PH, Pastink A. Characterization of RAD52 homologs in the fission yeast Schizosaccharomyces pombe. Mutat Res 2001; 461:311-23. [PMID: 11104907 DOI: 10.1016/s0921-8777(00)00060-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RAD52 gene of Saccharomyces cerevisiae is essential for repair of DNA double-strand breaks (DSBs) by homologous recombination. Inactivation of this gene confers hypersensitivity to DSB-inducing agents and defects in most forms of recombination. The rad22+ gene in Schizosaccharomyces pombe (here referred to as rad22A+) has been characterized as a homolog of RAD52 in fission yeast. Here, we report the identification of a second RAD52 homolog in Schizosaccharomyces pombe, called rad22B+. The amino acid sequences of Rad22A and Rad22B show significant conservation (38% identity). Deletion mutants of respectively, rad22A and rad22B, show different phenotypes with respect to sensitivity to X-rays and the ability to perform homologous recombination as measured by the integration of plasmid DNA. Inactivation of rad22A+ leads to a severe sensitivity to X-rays and a strong decrease in recombination (13-fold), while the rad22B mutation does not result in a decrease in homologous recombination or a change in radiation sensitivity. In a rad22A-rad22B double mutant the radiation sensitivity is further enhanced in comparison with the rad22A single mutant. Overexpression of the rad22B+ gene results in partial suppression of the DNA repair defects of the rad22A mutant strain. Meiotic recombination and spore viability are only slightly affected in either single mutant, but outgrowth of viable spores is almost 31-fold reduced in the rad22A-rad22B double mutant. The results obtained imply a crucial role for rad22A+ in repair and recombination in vegetative cells just like RAD52 in S. cerevisiae. The rad22B+ gene presumably has an auxiliary role in the repair of DSBs. The drastic reduced spore viability in the double mutant suggests that meiosis in S. pombe is dependent on the presence of either rad22A+ or rad22B+.
Collapse
|
242
|
Deans B, Griffin CS, Maconochie M, Thacker J. Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J 2000; 19:6675-85. [PMID: 11118202 PMCID: PMC305908 DOI: 10.1093/emboj/19.24.6675] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Repair of DNA damage by homologous recombination has only recently been established as an important mechanism in maintaining genetic stability in mammalian cells. The recently cloned Xrcc2 gene is a member of the mammalian Rad51 gene family, thought to be central to homologous recombination repair. To understand its function in mammals, we have disrupted Xrcc2 in mice. No Xrcc2(-/-) animals were found alive, with embryonic lethality occurring from mid-gestation. Xrcc2(-/-) embryos surviving until later stages of embryogenesis commonly showed developmental abnormalities and died at birth. Neonatal lethality, apparently due to respiratory failure, was associated with a high frequency of apoptotic death of post- mitotic neurons in the developing brain, leading to abnormal cortical structure. Embryonic cells showed genetic instability, revealed by a high level of chromosomal aberrations, and were sensitive to gamma-rays. Our findings demonstrate that homologous recombination has an important role in endogenous damage repair in the developing embryo. Xrcc2 disruption identifies a range of defects that arise from malfunction of this repair pathway, and establishes a previously unidentified role for homologous recombination repair in correct neuronal development.
Collapse
Affiliation(s)
- B Deans
- Medical Research Council, Radiation and Genome Stability Unit and Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | | | | | | |
Collapse
|
243
|
Richardson C, Jasin M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol 2000; 20:9068-75. [PMID: 11074004 PMCID: PMC86559 DOI: 10.1128/mcb.20.23.9068-9075.2000] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) may be caused by normal metabolic processes or exogenous DNA damaging agents and can promote chromosomal rearrangements, including translocations, deletions, or chromosome loss. In mammalian cells, both homologous recombination and nonhomologous end joining (NHEJ) are important DSB repair pathways for the maintenance of genomic stability. Using a mouse embryonic stem cell system, we previously demonstrated that a DSB in one chromosome can be repaired by recombination with a homologous sequence on a heterologous chromosome, without any evidence of genome rearrangements (C. Richardson, M. E. Moynahan, and M. Jasin, Genes Dev., 12:3831-3842, 1998). To determine if genomic integrity would be compromised if homology were constrained, we have now examined interchromosomal recombination between truncated but overlapping gene sequences. Despite these constraints, recombinants were readily recovered when a DSB was introduced into one of the sequences. The overwhelming majority of recombinants showed no evidence of chromosomal rearrangements. Instead, events were initiated by homologous invasion of one chromosome end and completed by NHEJ to the other chromosome end, which remained highly preserved throughout the process. Thus, genomic integrity was maintained by a coupling of homologous and nonhomologous repair pathways. Interestingly, the recombination frequency, although not the structure of the recombinant repair products, was sensitive to the relative orientation of the gene sequences on the interacting chromosomes.
Collapse
Affiliation(s)
- C Richardson
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
244
|
Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 2000; 14:2989-3002. [PMID: 11114888 PMCID: PMC317107 DOI: 10.1101/gad.851000] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The BRCA1 gene encodes a tumor suppressor that is mutated in 50% of familial breast cancers. The BRCA1 protein has been implicated in the DNA damage response, as DNA damage induces the phosphorylation of BRCA1 and causes its recruitment into nuclear foci that contain DNA repair proteins. The ataxia-telangiectasia-mutated (ATM) gene product controls overall BRCA1 phosphorylation in response to gamma-irradiation (IR). In this study, we show that BRCA1 phosphorylation is only partially ATM dependent in response to IR and ATM independent in response to treatment with UV light, or the DNA replication inhibitors hydroxyurea (HU) and aphidicolin (APH). We provide evidence that the kinase responsible for this phosphorylation is the ATM-related kinase, ATR. ATR phosphorylates BRCA1 on six Ser/Thr residues, including Ser 1423, in vitro. Increased expression of ATR enhanced the phosphorylation of BRCA1 on Ser 1423 following cellular exposure to HU or UV light, whereas doxycycline-induced expression of a kinase-inactive ATR mutant protein inhibited HU- or UV light-induced Ser 1423 phosphorylation in GM847 fibroblasts, and partially suppressed the phosphorylation of this site in response to IR. Thus, ATR, like ATM, controls BRCA1 phosphorylation in vivo. Although ATR isolated from DNA-damaged cells does not show enhanced kinase activity in vitro, we found that ATR responds to DNA damage and replication blocks by forming distinct nuclear foci at the sites of stalled replication forks. Furthermore, ATR nuclear foci overlap with the nuclear foci formed by BRCA1. The dramatic relocalization of ATR in response to DNA damage points to a possible mechanism for its ability to enhance the phosphorylation of substrates in response to DNA damage. Together, these results demonstrate that ATR and BRCA1 are components of the same genotoxic stress-responsive pathway, and that ATR directly phosphorylates BRCA1 in response to damaged DNA or stalled DNA replication.
Collapse
Affiliation(s)
- R S Tibbetts
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
245
|
De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 2000; 20:7980-90. [PMID: 11027268 PMCID: PMC86408 DOI: 10.1128/mcb.20.21.7980-7990.2000] [Citation(s) in RCA: 336] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms by which DNA interstrand cross-links (ICLs) are repaired in mammalian cells are unclear. Studies in bacteria and yeasts indicate that both nucleotide excision repair (NER) and recombination are required for their removal and that double-strand breaks are produced as repair intermediates in yeast cells. The role of NER and recombination in the repair of ICLs induced by nitrogen mustard (HN2) was investigated using Chinese hamster ovary mutant cell lines. XPF and ERCC1 mutants (defective in genes required for NER and some types of recombination) and XRCC2 and XRCC3 mutants (defective in RAD51-related homologous recombination genes) were highly sensitive to HN2. Cell lines defective in other genes involved in NER (XPB, XPD, and XPG), together with a mutant defective in nonhomologous end joining (XRCC5), showed only mild sensitivity. In agreement with their extreme sensitivity, the XPF and ERCC1 mutants were defective in the incision or "unhooking" step of ICL repair. In contrast, the other mutants defective in NER activities, the XRCC2 and XRCC3 mutants, and the XRCC5 mutant all showed normal unhooking kinetics. Using pulsed-field gel electrophoresis, DNA double-strand breaks (DSBs) were found to be induced following nitrogen mustard treatment. DSB induction and repair were normal in all the NER mutants, including XPF and ERCC1. The XRCC2, XRCC3, and XRCC5 mutants also showed normal induction kinetics. The XRCC2 and XRCC3 homologous recombination mutants were, however, severely impaired in the repair of DSBs. These results define a role for XPF and ERCC1 in the excision of ICLs, but not in the recombinational components of cross-link repair. In addition, homologous recombination but not nonhomologous end joining appears to play an important role in the repair of DSBs resulting from nitrogen mustard treatment.
Collapse
Affiliation(s)
- I U De Silva
- CRC Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, University College London, London W1P 8BT, United Kingdom
| | | | | | | |
Collapse
|
246
|
Marcon F, Boei JJ, Natarajan AT. Recombination between homologous chromosomes does not play a dominant role in the formation of radiation-induced chromosomal aberrations. Int J Radiat Biol 2000; 76:1343-8. [PMID: 11057742 DOI: 10.1080/09553000050151619] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE In mammalian cells, the relevance of homologous recombination in radiation-induced double-strand break (DSB) repair is not yet well understood. In the present work, the role of recombination between homologous chromosomes and homology-directed repair of DSB were studied, using X-ray-induced chromosomal aberrations as an end-point. MATERIALS AND METHODS Human-hamster hybrid cells containing one or two copies of human chromosome 8 were used. If recombination between homologous chromosomes plays a dominant role in DSB repair, it is expected that X-irradiation of cells with two copies of chromosome 8 would result in a lower frequency of aberrations involving this chromosome compared with cells with only one copy of chromosome 8. The aberrations involving human chromosome 8 were detected by fluorescence in situ hybridization (FISH). Furthermore, a comparison between the hamster cell line XR-C1 (defective in non-homologous repair), CHO-9 (the wild-type cells) and the cell line XR-C1#8 (in which the defect of XR-C1 is complemented by human chromosome 8) was made to determine, indirectly, the involvement of homology-directed recombination in DSB repair. RESULTS The observed frequencies of aberrations per human chromosome 8 were not significantly different between cells containing one or two copies of this chromosome. The frequency of chromatid-type aberrations was doubled in XR-C1 cells compared with CHO-9 and XR-C1#8 cells. CONCLUSIONS In hamster cells, recombination between homologous chromosomes appears not to have a major role in the formation of radiation-induced chromosomal aberrations, while nonhomologous repair seems to be important in both the G and G2 phases of the cell cycle.
Collapse
Affiliation(s)
- F Marcon
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Rome, Italy.
| | | | | |
Collapse
|
247
|
Braybrooke JP, Spink KG, Thacker J, Hickson ID. The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2. J Biol Chem 2000; 275:29100-6. [PMID: 10871607 DOI: 10.1074/jbc.m002075200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rad51 protein in eukaryotic cells is a structural and functional homolog of Escherichia coli RecA with a role in DNA repair and genetic recombination. Several proteins showing sequence similarity to Rad51 have previously been identified in both yeast and human cells. In Saccharomyces cerevisiae, two of these proteins, Rad55p and Rad57p, form a heterodimer that can stimulate Rad51-mediated DNA strand exchange. Here, we report the purification of one of the representatives of the RAD51 family in human cells. We demonstrate that the purified RAD51L3 protein possesses single-stranded DNA binding activity and DNA-stimulated ATPase activity, consistent with the presence of "Walker box" motifs in the deduced RAD51L3 sequence. We have identified a protein complex in human cells containing RAD51L3 and a second RAD51 family member, XRCC2. By using purified proteins, we demonstrate that the interaction between RAD51L3 and XRCC2 is direct. Given the requirements for XRCC2 in genetic recombination and protection against DNA-damaging agents, we suggest that the complex of RAD51L3 and XRCC2 is likely to be important for these functions in human cells.
Collapse
Affiliation(s)
- J P Braybrooke
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, Oxfordshire OX11 ORD, United Kingdom
| | | | | | | |
Collapse
|
248
|
Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S. The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 2000; 20:6476-82. [PMID: 10938124 PMCID: PMC86122 DOI: 10.1128/mcb.20.17.6476-6482.2000] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The highly conserved Saccharomyces cerevisiae Rad51 protein plays a central role in both mitotic and meiotic homologous DNA recombination. Seven members of the Rad51 family have been identified in vertebrate cells, including Rad51, Dmc1, and five Rad51-related proteins referred to as Rad51 paralogs, which share 20 to 30% sequence identity with Rad51. In chicken B lymphocyte DT40 cells, we generated a mutant with RAD51B/RAD51L1, a member of the Rad51 family, knocked out. RAD51B(-/-) cells are viable, although spontaneous chromosomal aberrations kill about 20% of the cells in each cell cycle. Rad51B deficiency impairs homologous recombinational repair (HRR), as measured by targeted integration, sister chromatid exchange, and intragenic recombination at the immunoglobulin locus. RAD51B(-/-) cells are quite sensitive to the cross-linking agents cisplatin and mitomycin C and mildly sensitive to gamma-rays. The formation of damage-induced Rad51 nuclear foci is much reduced in RAD51B(-/-) cells, suggesting that Rad51B promotes the assembly of Rad51 nucleoprotein filaments during HRR. These findings show that Rad51B is important for repairing various types of DNA lesions and maintaining chromosome integrity.
Collapse
Affiliation(s)
- M Takata
- Bayer-Chair Department of Molecular Immunology and Allergy, Faculty of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102:553-63. [PMID: 11007474 DOI: 10.1016/s0092-8674(00)00078-7] [Citation(s) in RCA: 2629] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced overexpression of AID in CH12F3-2 B lymphoma cells augmented class switching from IgM to IgA without cytokine stimulation. AID deficiency caused a complete defect in class switching and showed a hyper-IgM phenotype with enlarged germinal centers containing strongly activated B cells before or after immunization. AID-/- spleen cells stimulated in vitro with LPS and cytokines failed to undergo class switch recombination although they expressed germline transcripts. Immunization of AID-/- chimera with 4-hydroxy-3-nitrophenylacetyl (NP) chicken gamma-globulin induced neither accumulation of mutations in the NP-specific variable region gene nor class switching. These results suggest that AID may be involved in regulation or catalysis of the DNA modification step of both class switching and somatic hypermutation.
Collapse
Affiliation(s)
- M Muramatsu
- Department of Medical Chemistry, Graduate School of Medicine, Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
250
|
Petukhova G, Sung P, Klein H. Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev 2000; 14:2206-15. [PMID: 10970884 PMCID: PMC316899 DOI: 10.1101/gad.826100] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The first DNA joint formed in homologous recombination processes is a D-loop. Saccharomyces cerevisiae RDH54/TID1-encoded product, a Swi2/Snf2-like factor involved in recombination, is shown here to promote D-loop formation with Rad51 recombinase. Physical interaction between Rdh54 and Rad51 is functionally important because Rdh54 does not enhance the recombinase activity of the Escherichia coli RecA protein. Robust dsDNA-activated ATPase activity in Rdh54 generates unconstrained negative and positive supercoils in DNA. Efficient D-loop formation occurs with even topologically relaxed DNA, suggesting that via specific protein-protein interactions, the negative supercoils produced by Rdh54 are used by Rad51 for making DNA joints.
Collapse
Affiliation(s)
- G Petukhova
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245-3207, USA
| | | | | |
Collapse
|