201
|
Abstract
Caenorhabditis elegans senses multiple environmental stimuli through sensory systems and rapidly changes its behaviors for survival. With a simple and well-characterized nervous system, C. elegans is a suitable animal model for studying behavioral plasticity. Previous studies have shown acute neurodepressive effects of ethanol on multiple behaviors of C. elegans similar to the effect of ethanol on other organisms. Caenorhabditis elegans also develops ethanol tolerance during continuous exposure to ethanol. In mammals, chronic ethanol exposure leads to ethanol tolerance as well as increased ethanol consumption. Ethanol preference is associated with the development of tolerance and may lead to the development of ethanol dependence. In this study, we show that C. elegans is a useful model organism for studying chronic effects of ethanol, including the development of ethanol preference. We designed a behavioral assay for testing ethanol preference after prolonged ethanol exposure. Despite baseline aversive responses to ethanol, animals show ethanol preference after 4 h of pre-exposure to ethanol and exhibit significantly enhanced preference for ethanol after a lifetime of ethanol exposure. The cat-2 and tph-1 mutant animals have defects in the synthetic enzymes for dopamine and serotonin, respectively. These mutants are deficient in the development of ethanol preference, indicating that dopamine and serotonin are required for this form of behavioral plasticity.
Collapse
Affiliation(s)
- J Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, Programs in Neuroscience and Biomedical Science, University of California, San Francisco, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
202
|
Klaschka U. A new challenge-development of test systems for the infochemical effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:370-388. [PMID: 19189145 DOI: 10.1007/s11356-008-0093-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 11/25/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Many-if not all-organisms depend on so-called infochemicals, chemical substances in their surroundings which inform the receivers about their biotic and abiotic environment and which allow them to react adequately to these signals. Anthropogenic substances can interfere with this complex chemical communication system. This finding is called infochemical effect. So far, it is not known to what extent anthropogenic discharges act as infochemicals and influence life and reproduction of organisms in the environment because adequate testing methods to identify chemicals which show the infochemical effect and to quantify their effects have not been developed yet. The purpose of this article is to help and find suitable test designs. MAIN FEATURES Test systems used in basic research to elucidate the olfactory cascade and the communication of environmental organisms by infochemicals are plentiful. Some of them might be the basis for a quantified ecotoxicological analysis of the infochemical effect. In principle, test systems for the infochemical effect could be developed at each step of the chemosensory signal transduction and processing cascade. RESULTS Experimental set-ups were compiled systematically under the aspect whether they might be usable for testing the infochemical effect of single chemicals in standardized quantifying laboratory experiments. For an appropriate ecotoxicological assessment of the infochemical effect, experimental studies of many disciplines, such as molecular biology, neurobiology, physiology, chemical ecology, and population dynamics, should be evaluated in detail before a decision can be made which test system, respectively which test battery, might be suited best. The test systems presented here are based on the knowledge of the genetic sequences for olfactory receptors, binding studies of odorants, signal transmission, and reactions of the receivers on the level of the organisms or the populations. The following basic approaches are conceivable to identify the role of an infochemical: binding studies to the odorant-binding protein or to the odorant receptor binding protein (e.g., by in situ hybridization and immunohistochemical studies), measurement of electrical signals of the receptor cells in the tissue (e.g., electroolfactograms, electroantennograms), registration of phenotypic changes (e.g., observation under the microscope), behavioral tests (e.g., in situ online biomonitoring, use of T-shaped olfactometers, tests of avoidance responses), measurement of population changes (e.g., cell density or turbidity measurements), and multispecies tests with observation of community structure and community function. The main focus of this study is on aquatic organisms. DISCUSSION It is evident that the infochemical effect is a very complex sublethal endpoint, and it needs further studies with standardized quantitative methods to elucidate whether and to what extent the ecosystem is affected. The collection of approaches presented here is far from being complete but should serve as a point of depart for further experimental research. CONCLUSIONS This article is the first to compare various approaches for testing the infochemical effect. The development of a suitable test system will not be easy as there are a multitude of relevant chemicals, a multitude of relevant receptors, and a multitude of relevant reactions, and it must be expected that the effective concentrations are very low. The chemical communication is of utmost importance for the ecosystem and justifies great endeavors to find solutions to these technical problems. RECOMMENDATIONS AND PERSPECTIVES The infochemical effect is a new chapter in ecotoxicology. Will a new endpoint, the so-called infochemical effect, be required in addition to the actual standard test battery of Annex 5 to Commission Directive 92/69/EEC (EC 1992)? Finding the answer to this question is a big challenge that could be met by a comprehensive research project.
Collapse
Affiliation(s)
- Ursula Klaschka
- University of Applied Sciences Ulm, Prittwitzstr. 10, 89075, Ulm, Germany.
| |
Collapse
|
203
|
Schrimpf SP, Weiss M, Reiter L, Ahrens CH, Jovanovic M, Malmström J, Brunner E, Mohanty S, Lercher MJ, Hunziker PE, Aebersold R, von Mering C, Hengartner MO. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol 2009; 7:e48. [PMID: 19260763 PMCID: PMC2650730 DOI: 10.1371/journal.pbio.1000048] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 01/13/2009] [Indexed: 12/24/2022] Open
Abstract
The nematode Caenorhabditis elegans is a popular model system in genetics, not least because a majority of human disease genes are conserved in C. elegans. To generate a comprehensive inventory of its expressed proteome, we performed extensive shotgun proteomics and identified more than half of all predicted C. elegans proteins. This allowed us to confirm and extend genome annotations, characterize the role of operons in C. elegans, and semiquantitatively infer abundance levels for thousands of proteins. Furthermore, for the first time to our knowledge, we were able to compare two animal proteomes (C. elegans and Drosophila melanogaster). We found that the abundances of orthologous proteins in metazoans correlate remarkably well, better than protein abundance versus transcript abundance within each organism or transcript abundances across organisms; this suggests that changes in transcript abundance may have been partially offset during evolution by opposing changes in protein abundance. Proteins are the active players that execute the genetic program of a cell, and their levels and interactions are precisely controlled. Routinely monitoring thousands of proteins is difficult, as they can be present at vastly different abundances, come with various sizes, shapes, and charge, and have a more complex alphabet of twenty “letters,” in contrast to the four letters of the genome itself. Here, we used mass spectrometry to extensively characterize the proteins of a popular model organism, the nematode Caenorhabditis elegans. Together with previous data from the fruit fly Drosophila melanogaster, this allows us to compare the protein levels of two animals on a global scale. Surprisingly, we find that individual protein abundance is highly conserved between the two species. So, although worms and flies look very different, they need similar amounts of each conserved, orthologous protein. Because many C. elegans and D. melanogaster proteins also have counterparts in humans, our results suggest that similar rules may apply to our own proteins. A quantitative comparison of two animal proteomes shows a striking correlation of protein abundance levels, a better correlation than transcript levels. Are the latter more variable during evolution?
Collapse
Affiliation(s)
- Sabine P Schrimpf
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
- * To whom correspondence should be addressed. E-mail: (SPS); (CvM); (MOH)
| | - Manuel Weiss
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
- PhD Program in Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lukas Reiter
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
- PhD Program in Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Christian H Ahrens
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
- Functional Genomics Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Marko Jovanovic
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
- PhD Program in Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Johan Malmström
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Erich Brunner
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
| | - Sonali Mohanty
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Martin J Lercher
- Institute of Informatics, University of Düsseldorf, Düsseldorf, Germany
| | - Peter E Hunziker
- Functional Genomics Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Christian von Mering
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- * To whom correspondence should be addressed. E-mail: (SPS); (CvM); (MOH)
| | - Michael O Hengartner
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
- * To whom correspondence should be addressed. E-mail: (SPS); (CvM); (MOH)
| |
Collapse
|
204
|
Semmelhack JL, Wang JW. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 2009; 459:218-23. [PMID: 19396157 PMCID: PMC2702439 DOI: 10.1038/nature07983] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 03/12/2009] [Indexed: 01/08/2023]
Abstract
Fruit flies exhibit robust attraction to food odors, which usually excite multiple glomeruli. To understand how the representation of such odors leads to behavior, we used genetic tools to dissect the contribution of each activated glomerulus. Apple cider vinegar triggers robust innate attraction at a relatively low concentration, which activates six glomeruli. By silencing individual glomeruli, we found that the absence of activity in two glomeruli, DM1 and VA2, markedly reduced attraction. Conversely, when each of these two glomeruli was selectively activated, flies exhibited as robust an attraction to vinegar as wild type flies. Notably, a higher concentration of vinegar excites an additional glomerulus and is less attractive to flies. Here we show that the activation of the additional glomerulus is necessary and sufficient to mediate the behavioral switch. Together, these results indicate that individual glomeruli, rather than the entire pattern of active glomeruli, mediate innate behavioral output.
Collapse
Affiliation(s)
- Julia L Semmelhack
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
205
|
Three distinct amine receptors operating at different levels within the locomotory circuit are each essential for the serotonergic modulation of chemosensation in Caenorhabditis elegans. J Neurosci 2009; 29:1446-56. [PMID: 19193891 DOI: 10.1523/jneurosci.4585-08.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin modulates behavioral plasticity in both vertebrates and invertebrates and in Caenorhabditis elegans regulates key behaviors, including locomotion, aversive learning and olfaction through at least four different 5-HT receptors. In the present study, we examined the serotonergic stimulation of aversive responses to dilute octanol in animals containing null alleles of these 5-HT receptors. Both ser-1 and mod-1 null animals failed to increase sensitivity to dilute octanol on food/5-HT, in contrast to wild-type, ser-4 or ser-7 null animals. 5-HT sensitivity was restored by the expression of MOD-1 and SER-1 in the AIB or potentially the AIY, and RIA interneurons of mod-1 and ser-1 null animals, respectively. Because none of these 5-HT receptors appear to be expressed in the ASH sensory neurons mediating octanol sensitivity, we identified a 5-HT(6)-like receptor, F16D3.7(SER-5), that was required for food/5-HT-dependent increases in octanol sensitivity. ser-5 null animals failed to increase octanol sensitivity in the presence of food/5-HT and sensitivity could be restored by expression of SER-5 in the ASHs. Similarly, the RNAi knockdown of ser-5 expression in the ASHs of wild-type animals also abolished 5-HT-dependent increases in octanol sensitivity, suggesting that SER-5 modulates the octanol responsiveness of the ASHs directly. Together, these results suggest that multiple amine receptors, functioning at different levels within the locomotory circuit, are each essential for the serotonergic modulation of ASH-mediated aversive responses.
Collapse
|
206
|
Abstract
In humans, the pleasantness of odors is a major contributor to social relationships and food intake. Smells evoke attraction and repulsion responses, reflecting the hedonic value of the odorant. While olfactory preferences are known to be strongly modulated by experience and learning, it has been recently suggested that, in humans, the pleasantness of odors may be partly explained by the physicochemical properties of the odorant molecules themselves. If odor hedonic value is indeed predetermined by odorant structure, then it could be hypothesized that other species will show similar odor preferences to humans. Combining behavioral and psychophysical approaches, we here show that odorants rated as pleasant by humans were also those which, behaviorally, mice investigated longer and human subjects sniffed longer, thereby revealing for the first time a component of olfactory hedonic perception conserved across species. Consistent with this, we further show that odor pleasantness rating in humans and investigation time in mice were both correlated with the physicochemical properties of the molecules, suggesting that olfactory preferences are indeed partly engraved in the physicochemical structure of the odorant. That odor preferences are shared between mammal species and are guided by physicochemical features of odorant stimuli strengthens the view that odor preference is partially predetermined. These findings open up new perspectives for the study of the neural mechanisms of hedonic perception.
Collapse
|
207
|
Bumbarger DJ, Wijeratne S, Carter C, Crum J, Ellisman MH, Baldwin JG. Three-dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). J Comp Neurol 2009; 512:271-81. [PMID: 19003904 PMCID: PMC2750866 DOI: 10.1002/cne.21882] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amphid sensilla are the primary olfactory, chemoreceptive, and thermoreceptive organs in nematodes. Their function is well described for the model organism Caenorhabditis elegans, but it is not clear to what extent we can generalize these findings to distantly related nematodes of medical, economic, and agricultural importance. Current detailed descriptions of anatomy and sensory function are limited to nematodes that recent molecular phylogenies would place in the same taxonomic family, the Rhabditidae. Using serial thin-section transmission electron microscopy, we reconstructed the anatomy of the amphid sensilla in the more distantly related nematode, Acrobeles complexus (Cephalobidae). Amphid structure is broadly conserved in number and arrangement of cells. Details of cell anatomy differ, particularly for the sensory neurite termini. We identify an additional sensory neuron not found in the amphid of C. elegans and propose homology with the C. elegans interneuron AUA. Hypotheses of homology for the remaining sensory neurons are also proposed based on comparisons between C. elegans, Strongyloides stercoralis, and Haemonchus contortus.
Collapse
Affiliation(s)
- Daniel J Bumbarger
- Department of Nematology, University of California, Riverside, California 92521, USA.
| | | | | | | | | | | |
Collapse
|
208
|
|
209
|
Srinivasan J, Durak O, Sternberg PW. Evolution of a polymodal sensory response network. BMC Biol 2008; 6:52. [PMID: 19077305 PMCID: PMC2636771 DOI: 10.1186/1741-7007-6-52] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/15/2008] [Indexed: 11/10/2022] Open
Abstract
Background Avoidance of noxious stimuli is essential for the survival of an animal in its natural habitat. Some avoidance responses require polymodal sensory neurons, which sense a range of diverse stimuli, whereas other stimuli require a unimodal sensory neuron, which senses a single stimulus. Polymodality might have evolved to help animals quickly detect and respond to diverse noxious stimuli. Nematodes inhabit diverse habitats and most nematode nervous systems are composed of a small number of neurons, despite a wide assortment in nematode sizes. Given this observation, we speculated that cellular contribution to stereotyped avoidance behaviors would also be conserved between nematode species. The ASH neuron mediates avoidance of three classes of noxious stimuli in Caenorhabditis elegans. Two species of parasitic nematodes also utilize the ASH neuron to avoid certain stimuli. We wanted to extend our knowledge of avoidance behaviors by comparing multiple stimuli in a set of free-living nematode species. Results We used comparative behavioral analysis and laser microsurgery to examine three avoidance behaviors in six diverse species of free-living nematodes. We found that all species tested exhibit avoidance of chemo-, mechano- and osmosensory stimuli. In C. elegans, the bilaterally symmetric polymodal ASH neurons detect all three classes of repellant. We identified the putative ASH neurons in different nematode species by their anatomical positions and showed that in all six species ablation of the ASH neurons resulted in an inability to avoid noxious stimuli. However, in the nematode Pristionchus pacificus, the ADL neuron in addition to the ASH neuron contributed to osmosensation. In the species Caenorhabditis sp. 3, only the ASH neuron was required to mediate nose touch avoidance instead of three neurons in C. elegans. These data suggest that different species can increase or decrease the contribution of additional, non-ASH sensory neurons mediating osmosensation and mechanosensation. Conclusion The overall conservation of ASH mediated polymodal nociception suggests that it is an ancestral evolutionarily stable feature of sensation. However, the finding that contribution from non-ASH sensory neurons mediates polymodal nociception in some nematode species suggests that even in conserved sensory behaviors, the cellular response network is dynamic over evolutionary time, perhaps shaped by adaptation of each species to its environment.
Collapse
Affiliation(s)
- Jagan Srinivasan
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
210
|
Bacaj T, Tevlin M, Lu Y, Shaham S. Glia are essential for sensory organ function in C. elegans. Science 2008; 322:744-7. [PMID: 18974354 DOI: 10.1126/science.1163074] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sensory organs are composed of neurons, which convert environmental stimuli to electrical signals, and glia-like cells, whose functions are not well understood. To decipher glial roles in sensory organs, we ablated the sheath glial cell of the major sensory organ of Caenorhabditis elegans. We found that glia-ablated animals exhibit profound sensory deficits and that glia provide activities that affect neuronal morphology, behavior generation, and neuronal uptake of lipophilic dyes. To understand the molecular bases of these activities, we identified 298 genes whose messenger RNAs are glia-enriched. One gene, fig-1, encodes a labile protein with conserved thrombospondin TSP1 domains. FIG-1 protein functions extracellularly, is essential for neuronal dye uptake, and also affects behavior. Our results suggest that glia are required for multiple aspects of sensory organ function.
Collapse
Affiliation(s)
- Taulant Bacaj
- Laboratory of Developmental Genetics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
211
|
High nucleotide divergence in developmental regulatory genes contrasts with the structural elements of olfactory pathways in caenorhabditis. Genetics 2008; 181:1387-97. [PMID: 19001295 DOI: 10.1534/genetics.107.082651] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Almost all organismal function is controlled by pathways composed of interacting genetic components. The relationship between pathway structure and the evolution of individual pathway components is not completely understood. For the nematode Caenorhabditis elegans, chemosensory pathways regulate critical aspects of an individual's life history and development. To help understand how olfaction evolves in Caenorhabditis and to examine patterns of gene evolution within transduction pathways in general, we analyzed nucleotide variation within and between species across two well-characterized olfactory pathways, including regulatory genes controlling the fate of the cells in which the pathways are expressed. In agreement with previous studies, we found much higher levels of polymorphism within C. remanei than within the related species C. elegans and C. briggsae. There are significant differences in the rates of nucleotide evolution for genes across the two pathways but no particular association between evolutionary rate and gene position, suggesting that the evolution of functional pathways must be considered within the context of broader gene network structure. However, developmental regulatory genes show both higher levels of divergence and polymorphism than the structural genes of the pathway. These results show that, contrary to the emerging paradigm in the evolution of development, important structural changes can accumulate in transcription factors.
Collapse
|
212
|
van der Linden AM, Wiener S, You YJ, Kim K, Avery L, Sengupta P. The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans. Genetics 2008; 180:1475-91. [PMID: 18832350 PMCID: PMC2581950 DOI: 10.1534/genetics.108.094771] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/15/2008] [Indexed: 11/18/2022] Open
Abstract
The regulation of chemoreceptor (CR) gene expression by environmental signals and internal cues may contribute to the modulation of multiple physiological processes and behavior in Caenorhabditis elegans. We previously showed that KIN-29, a homolog of salt-inducible kinase, acts in sensory neurons to regulate the expression of a subset of CR genes, as well as sensory behaviors. Here we show that the cGMP-dependent protein kinase EGL-4 acts partly in parallel with KIN-29 to regulate CR gene expression. Sensory inputs inhibit both EGL-4 and KIN-29 functions, and KIN-29 function is inhibited in turn by cAMP-dependent protein kinase (PKA) activation. EGL-4 and KIN-29 regulate CR gene expression by antagonizing the gene repression functions of the class II HDAC HDA-4 and the MEF-2 transcription factor, and KIN-29, EGL-4, and PKA target distinct residues in HDA-4 to regulate its function and subcellular localization. While KIN-29 acts primarily via MEF-2/HDA-4 to regulate additional sensory signal-regulated physiological processes and behaviors, EGL-4 acts via both MEF-2-dependent and -independent pathways. Our results suggest that integration of complex sensory inputs via multiple signaling pathways allows animals to precisely regulate sensory gene expression, thereby appropriately modulating physiology and behavior.
Collapse
|
213
|
Hukema RK, Rademakers S, Jansen G. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. Learn Mem 2008; 15:829-36. [PMID: 18984564 DOI: 10.1101/lm.994408] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While naïve Caenorhabditis elegans individuals are attracted to 0.1-200 mM NaCl, they become strongly repelled by these NaCl concentrations after prolonged exposure to 100 mM NaCl. We call this behavior gustatory plasticity. Here, we show that C. elegans displays avoidance of low NaCl concentrations only when pre-exposure to NaCl is combined with a negative stimulus, e.g., a repellent, or in the absence of food. By testing serotonin and/or dopamine signaling mutants and rescue by exogenously supplying these neurotransmitters, we found that serotonin and dopamine play a role during the plasticity response, while serotonin is also required during development. In addition, we also show that glutamate plays an important role in the response to NaCl, both in chemoattraction to NaCl and in gustatory plasticity. Thus, C. elegans can associate NaCl with negative stimuli using dopaminergic, serotonergic, and glutamatergic neurotransmission. Finally, we show that prolonged starvation enhances gustatory plasticity and can induce avoidance of NaCl in most gustatory plasticity mutants tested. Only mutation of the glutamate-gated Cl(-) channel gene avr-15 affected starvation-enhanced gustatory plasticity. These results suggest that starvation induces avoidance of NaCl largely independent of the normal gustatory plasticity mechanism.
Collapse
Affiliation(s)
- Renate K Hukema
- Department of Cell Biology and Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | |
Collapse
|
214
|
Thomas JH, Robertson HM. The Caenorhabditis chemoreceptor gene families. BMC Biol 2008; 6:42. [PMID: 18837995 PMCID: PMC2576165 DOI: 10.1186/1741-7007-6-42] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 10/06/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. RESULTS Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. CONCLUSION Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
215
|
Tsunozaki M, Chalasani SH, Bargmann CI. A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans. Neuron 2008; 59:959-71. [PMID: 18817734 PMCID: PMC2586605 DOI: 10.1016/j.neuron.2008.07.038] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 04/19/2008] [Accepted: 07/25/2008] [Indexed: 12/11/2022]
Abstract
Innate chemosensory preferences are often encoded by sensory neurons that are specialized for attractive or avoidance behaviors. Here, we show that one olfactory neuron in Caenorhabditis elegans, AWC(ON), has the potential to direct both attraction and repulsion. Attraction, the typical AWC(ON) behavior, requires a receptor-like guanylate cyclase GCY-28 that acts in adults and localizes to AWC(ON) axons. gcy-28 mutants avoid AWC(ON)-sensed odors; they have normal odor-evoked calcium responses in AWC(ON) but reversed turning biases in odor gradients. In addition to gcy-28, a diacylglycerol/protein kinase C pathway that regulates neurotransmission switches AWC(ON) odor preferences. A behavioral switch in AWC(ON) may be part of normal olfactory plasticity, as odor conditioning can induce odor avoidance in wild-type animals. Genetic interactions, acute rescue, and calcium imaging suggest that the behavioral reversal results from presynaptic changes in AWC(ON). These results suggest that alternative modes of neurotransmission can couple one sensory neuron to opposite behavioral outputs.
Collapse
Affiliation(s)
- Makoto Tsunozaki
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
216
|
Gruninger TR, Gualberto DG, Garcia LR. Sensory perception of food and insulin-like signals influence seizure susceptibility. PLoS Genet 2008; 4:e1000117. [PMID: 18604269 PMCID: PMC2432499 DOI: 10.1371/journal.pgen.1000117] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022] Open
Abstract
Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-gamma and CaMKII.
Collapse
Affiliation(s)
- Todd R. Gruninger
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Daisy G. Gualberto
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - L. Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
217
|
Frøkjær-Jensen C, Ailion M, Lockery SR. Ammonium-acetate is sensed by gustatory and olfactory neurons in Caenorhabditis elegans. PLoS One 2008; 3:e2467. [PMID: 18560547 PMCID: PMC2413426 DOI: 10.1371/journal.pone.0002467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/08/2008] [Indexed: 11/18/2022] Open
Abstract
Background Caenorhabditis elegans chemosensation has been successfully studied using behavioral assays that treat detection of volatile and water soluble chemicals as separate senses, analogous to smell and taste. However, considerable ambiguity has been associated with the attractive properties of the compound ammonium-acetate (NH4Ac). NH4Ac has been used in behavioral assays both as a chemosensory neutral compound and as an attractant. Methodology/Main Findings Here we show that over a range of concentrations NH4Ac can be detected both as a water soluble attractant and as an odorant, and that ammonia and acetic acid individually act as olfactory attractants. We use genetic analysis to show that NaCl and NH4Ac sensation are mediated by separate pathways and that ammonium sensation depends on the cyclic nucleotide gated ion channel TAX-2/TAX-4, but acetate sensation does not. Furthermore we show that sodium-acetate (NaAc) and ammonium-chloride (NH4Cl) are not detected as Na+ and Cl− specific stimuli, respectively. Conclusions/Significance These findings clarify the behavioral response of C. elegans to NH4Ac. The results should have an impact on the design and interpretation of chemosensory experiments studying detection and adaptation to soluble compounds in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
| | - Michael Ailion
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Shawn R. Lockery
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
218
|
Mukhopadhyay S, Lu Y, Shaham S, Sengupta P. Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans. Dev Cell 2008; 14:762-74. [PMID: 18477458 DOI: 10.1016/j.devcel.2008.03.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/21/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
Nonmotile primary cilia are sensory organelles composed of a microtubular axoneme and a surrounding membrane sheath that houses signaling molecules. Optimal cellular function requires the precise regulation of axoneme assembly, membrane biogenesis, and signaling protein targeting and localization via as yet poorly understood mechanisms. Here, we show that sensory signaling is required to maintain the architecture of the specialized AWB olfactory neuron cilia in C. elegans. Decreased sensory signaling results in alteration of axoneme length and expansion of a membraneous structure, thereby altering the topological distribution of a subset of ciliary transmembrane signaling molecules. Signaling-regulated alteration of ciliary structures can be bypassed by modulation of intracellular cGMP or calcium levels and requires kinesin-II-driven intraflagellar transport (IFT), as well as BBS- and RAB8-related proteins. Our results suggest that compensatory mechanisms in response to altered levels of sensory activity modulate AWB cilia architecture, revealing remarkable plasticity in the regulation of cilia structure.
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
219
|
Luo L, Gabel CV, Ha HI, Zhang Y, Samuel ADT. Olfactory Behavior of Swimming C. elegans Analyzed by Measuring Motile Responses to Temporal Variations of Odorants. J Neurophysiol 2008; 99:2617-25. [DOI: 10.1152/jn.00053.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caenorhabditis elegans responds to chemical cues using a small number of chemosensory neurons that detect a large variety of molecules in its environment. During chemotaxis, C. elegans biases its migration in spatial chemical gradients by lengthening (/shortening) periods of forward movement when it happens to be moving toward (/away) from preferred locations. In classical assays of chemotactic behavior, a group of crawling worms is placed on an agar plate containing a point source of chemical, the group is allowed to navigate for a period of time, and aggregation of worms near the source is quantified. Here we show that swimming worms exhibit acute motile responses to temporal variations of odor in their surrounding environment, allowing our development of an automated assay of chemotactic behavior with single-animal resolution. By placing individual worms in small microdroplets and quantifying their movements as they respond to the addition and removal of odorized airstreams, we show that the sensorimotor phenotypes of swimming worms (wild-type behavior, the effects of certain mutations, and the effects of laser ablation of specific olfactory neurons) are consistent with aggregation phenotypes previously obtained in crawling assays. The microdroplet swimming assay has certain advantages over crawling assays, including flexibility and precision in defining the stimulus waveform and automated quantification of motor response during stimulus presentation. In this study, we use the microdroplet assay to quantify the temporal dynamics of the olfactory response, the sensitivity to odorant concentration, combinations, and gradients, and the contribution of specific olfactory neurons to overall behavior.
Collapse
|
220
|
Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 2008; 451:569-72. [PMID: 18185515 DOI: 10.1038/nature06535] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/13/2007] [Indexed: 11/10/2022]
Abstract
There are fundamental similarities between sleep in mammals and quiescence in the arthropod Drosophila melanogaster, suggesting that sleep-like states are evolutionarily ancient. The nematode Caenorhabditis elegans also has a quiescent behavioural state during a period called lethargus, which occurs before each of the four moults. Like sleep, lethargus maintains a constant temporal relationship with the expression of the C. elegans Period homologue LIN-42 (ref. 5). Here we show that quiescence associated with lethargus has the additional sleep-like properties of reversibility, reduced responsiveness and homeostasis. We identify the cGMP-dependent protein kinase (PKG) gene egl-4 as a regulator of sleep-like behaviour, and show that egl-4 functions in sensory neurons to promote the C. elegans sleep-like state. Conserved effects on sleep-like behaviour of homologous genes in C. elegans and Drosophila suggest a common genetic regulation of sleep-like states in arthropods and nematodes. Our results indicate that C. elegans is a suitable model system for the study of sleep regulation. The association of this C. elegans sleep-like state with developmental changes that occur with larval moults suggests that sleep may have evolved to allow for developmental changes.
Collapse
Affiliation(s)
- David M Raizen
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
221
|
Mainen ZF. The main olfactory bulb and innate behavior: different perspectives on an olfactory scene. Nat Neurosci 2007; 10:1511-2. [DOI: 10.1038/nn1207-1511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
222
|
Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H. Innate versus learned odour processing in the mouse olfactory bulb. Nature 2007; 450:503-8. [PMID: 17989651 DOI: 10.1038/nature06281] [Citation(s) in RCA: 473] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/14/2007] [Indexed: 11/09/2022]
Abstract
The mammalian olfactory system mediates various responses, including aversive behaviours to spoiled foods and fear responses to predator odours. In the olfactory bulb, each glomerulus represents a single species of odorant receptor. Because a single odorant can interact with several different receptor species, the odour information received in the olfactory epithelium is converted to a topographical map of multiple glomeruli activated in distinct areas in the olfactory bulb. To study how the odour map is interpreted in the brain, we generated mutant mice in which olfactory sensory neurons in a specific area of the olfactory epithelium are ablated by targeted expression of the diphtheria toxin gene. Here we show that, in dorsal-zone-depleted mice, the dorsal domain of the olfactory bulb was devoid of glomerular structures, although second-order neurons were present in the vacant areas. The mutant mice lacked innate responses to aversive odorants, even though they were capable of detecting them and could be conditioned for aversion with the remaining glomeruli. These results indicate that, in mice, aversive information is received in the olfactory bulb by separate sets of glomeruli, those dedicated for innate and those for learned responses.
Collapse
Affiliation(s)
- Ko Kobayakawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Bumbarger DJ, Crum J, Ellisman MH, Baldwin JG. Three-dimensional fine structural reconstruction of the nose sensory structures of Acrobeles complexus compared to Caenorhabditis elegans (Nematoda: Rhabditida). J Morphol 2007; 268:649-63. [PMID: 17514723 DOI: 10.1002/jmor.10535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nematode sensory structures can be divided into two classes; cuticular sensillae, with dendrites ending outside the epidermis, and internal receptors, that typically are single dendrites terminating within the body cavity. Fine structure of the former has been described completely in more than a dozen nematode taxa, while the latter were previously only well understood in the microbial feeder Caenorhabditis elegans. The distantly related nematode Acrobeles complexus has a similar ecology and together the two span a clade representing a large proportion of nematode biodiversity. The cuticular sensillae and internal receptors of A. complexus are here shown to be remarkably similar in number, arrangement, and morphology to those of C. elegans. Several key differences are reported that likely relate to function, and suggest that this nematode has a cuticular sensillum morphology that is closer to that of the common ancestor of the two taxa. Internal sensory receptors have more elaborate termini than those of C. elegans. The existence of a novel form of mechanoreceptor in A. complexus and spatial relationships between sensillum dendrites suggest differences between two classes of sensillae in how a touch-response behavior may be mediated.
Collapse
Affiliation(s)
- Daniel J Bumbarger
- Department of Nematology, University of California, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|
224
|
Mohamed AK, Burr C, Burr AHJ. Unique two-photoreceptor scanning eye of the nematode Mermis nigrescens. THE BIOLOGICAL BULLETIN 2007; 212:206-21. [PMID: 17565110 DOI: 10.2307/25066603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A single eye is present in females of the nematode Mermis nigrescens. A pigment cup occupies the entire cross section near the anterior tip of the worm, and the curved cuticle at the tip becomes a cornea. The shading pigment is hemoglobin instead of melanin. The eye has been shown to provide a positive phototaxis utilizing a scanning mechanism; however, the eye's structure has not been sufficiently described. Here, we provide a reconstruction of the eye on the basis of light and electron microscopy of serial sections. Hemoglobin crystals are densely packed in the cytoplasm of expanded hypodermal cells, forming the cylindrical shadowing structure. The two putative photoreceptors are found laterally within the transparent conical center of this structure where they would be exposed to light from different anterior fields of view. Each consists of a multilamellar sensory process formed by one of the dendrites in each of the two amphidial sensory nerve bundles that pass through the center. Multilamellar processes are also found in the same location in immature adult females and fourth stage juvenile females, which lack the shadowing pigment and exhibit a weak negative phototaxis. The unique structure of the pigment cup eye is discussed in terms of optical function, phototaxis mechanism, eye nomenclature, and evolution.
Collapse
Affiliation(s)
- Abir Khalil Mohamed
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | |
Collapse
|
225
|
Mukhopadhyay S, Lu Y, Qin H, Lanjuin A, Shaham S, Sengupta P. Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J 2007; 26:2966-80. [PMID: 17510633 PMCID: PMC1894762 DOI: 10.1038/sj.emboj.7601717] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 04/09/2007] [Indexed: 01/18/2023] Open
Abstract
Individual cell types can elaborate morphologically diverse cilia. Cilia are assembled via intraflagellar transport (IFT) of ciliary precursors; however, the mechanisms that generate ciliary diversity are unknown. Here, we examine IFT in the structurally distinct cilia of the ASH/ASI and the AWB chemosensory neurons in Caenorhabditis elegans, enabling us to compare IFT in specific cilia types. We show that unlike in the ASH/ASI cilia, the OSM-3 kinesin moves independently of the kinesin-II motor in the AWB cilia. Although OSM-3 is essential to extend the distal segments of the ASH/ASI cilia, it is not required to build the AWB distal segments. Mutations in the fkh-2 forkhead domain gene result in AWB-specific defects in ciliary morphology, and FKH-2 regulates kinesin-II subunit gene expression specifically in AWB. Our results suggest that cell-specific regulation of IFT contributes to the generation of ciliary diversity, and provide insights into the networks coupling the acquisition of ciliary specializations with other aspects of cell fate.
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Hongmin Qin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anne Lanjuin
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 2454, USA. Tel.: +1 781 736 2686; Fax: +1 781 736 3107; E-mail:
| |
Collapse
|
226
|
Jacobs GH, Williams GA, Cahill H, Nathans J. Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 2007; 315:1723-5. [PMID: 17379811 DOI: 10.1126/science.1138838] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Changes in the genes encoding sensory receptor proteins are an essential step in the evolution of new sensory capacities. In primates, trichromatic color vision evolved after changes in X chromosome-linked photopigment genes. To model this process, we studied knock-in mice that expressed a human long-wavelength-sensitive (L) cone photopigment in the form of an X-linked polymorphism. Behavioral tests demonstrated that heterozygous females, whose retinas contained both native mouse pigments and human L pigment, showed enhanced long-wavelength sensitivity and acquired a new capacity for chromatic discrimination. An inherent plasticity in the mammalian visual system thus permits the emergence of a new dimension of sensory experience based solely on gene-driven changes in receptor organization.
Collapse
Affiliation(s)
- Gerald H Jacobs
- Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
227
|
Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank JJ. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci U S A 2007; 104:2295-300. [PMID: 17267603 PMCID: PMC1892944 DOI: 10.1073/pnas.0610281104] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nematode Caenorhabditis elegans is present in soils and composts, where it can encounter a variety of microorganisms. Some bacteria in these rich environments are innocuous food sources for C. elegans, whereas others are pathogens. Under laboratory conditions, C. elegans will avoid certain pathogens, such as Serratia marcescens, by exiting a bacterial lawn a few hours after entering it. By combining bacterial genetics and nematode genetics, we show that C. elegans specifically avoids certain strains of Serratia based on their production of the cyclic lipodepsipentapeptide serrawettin W2. Lawn-avoidance behavior is chiefly mediated by the two AWB chemosensory neurons, probably through G protein-coupled chemoreceptors, and also involves the nematode Toll-like receptor gene tol-1. Purified serrawettin W2, added to an Escherichia coli lawn, can directly elicit lawn avoidance in an AWB-dependent fashion, as can another chemical detected by AWB. These findings represent an insight into chemical recognition between these two soil organisms and reveal sensory mechanisms for pathogen recognition in C. elegans.
Collapse
Affiliation(s)
- Elizabeth Pradel
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
- Institut National de la Santé et de la Recherche Médicale, U631, 13288 Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | - Yun Zhang
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and
| | - Nathalie Pujol
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
- Institut National de la Santé et de la Recherche Médicale, U631, 13288 Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | - Tohey Matsuyama
- **Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Cornelia I. Bargmann
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and
- To whom correspondence may be addressed. E-mail:
or
| | - Jonathan J. Ewbank
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
- Institut National de la Santé et de la Recherche Médicale, U631, 13288 Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
228
|
Sengupta P. Generation and modulation of chemosensory behaviors in C. elegans. Pflugers Arch 2007; 454:721-34. [PMID: 17206445 DOI: 10.1007/s00424-006-0196-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
C. elegans recognizes and discriminates among hundreds of chemical cues using a relatively compact chemosensory nervous system. Chemosensory behaviors are also modulated by prior experience and contextual cues. Because of the facile genetics and genomics possible in this organism, C. elegans provides an excellent system in which to explore the generation of chemosensory behaviors from the level of a single gene to the motor output. This review summarizes the current knowledge on the molecular and neuronal substrates of chemosensory behaviors and chemosensory behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
229
|
Abstract
Odour perception is initiated by specific interactions between odorants and a large repertoire of receptors in olfactory neurons. During the past few years, considerable progress has been made in tracing olfactory perception from the odorant receptor protein to the activity of olfactory neurons to higher processing centres and, ultimately, to behaviour. The most complete picture is emerging for the simplest olfactory system studied--that of the fruitfly Drosophila melanogaster. Comparison of rodent, insect and nematode olfaction reveals surprising differences and unexpected similarities among chemosensory systems.
Collapse
Affiliation(s)
- Cornelia I Bargmann
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
230
|
Braendle C, Milloz J, Félix MA. Mechanisms and evolution of environmental responses in Caenorhabditis elegans. Curr Top Dev Biol 2007; 80:171-207. [PMID: 17950375 DOI: 10.1016/s0070-2153(07)80005-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We review mechanistic and evolutionary aspects of interactions between the model organism Caenorhabditis elegans and its environment. In particular, we focus on environmental effects affecting developmental mechanisms. We describe natural and laboratory environments of C. elegans and provide an overview of the different environmental responses of this organism. We then show how two developmental processes respond to changes in the environment. First, we discuss the development of alternative juvenile stages, the dauer and non-dauer larva. This example illustrates how development responds to variation in the environment to generate complex phenotypic variation. Second, we discuss the development of the C. elegans vulva. This example illustrates how development responds to variation in the environment while generating an invariant final phenotype.
Collapse
Affiliation(s)
- Christian Braendle
- Institut Jacques Monod, CNRS-Universities of Paris 6/7, Tour 43 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
231
|
Chatterjee N, Sinha S. Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. PROGRESS IN BRAIN RESEARCH 2007; 168:145-53. [PMID: 18166392 DOI: 10.1016/s0079-6123(07)68012-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nervous system of the nematode C. elegans provides a unique opportunity to understand how behavior ('mind') emerges from activity in the nervous system ('brain') of an organism. The hermaphrodite worm has only 302 neurons, all of whose connections (synaptic and gap junctional) are known. Recently, many of the functional circuits that make up its behavioral repertoire have begun to be identified. In this paper, we investigate the hierarchical structure of the nervous system through k-core decomposition and find it to be intimately related to the set of all known functional circuits. Our analysis also suggests a vital role for the lateral ganglion in processing information, providing an essential connection between the sensory and motor components of the C. elegans nervous system.
Collapse
|
232
|
van der Linden AM, Nolan KM, Sengupta P. KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J 2006; 26:358-70. [PMID: 17170704 PMCID: PMC1783467 DOI: 10.1038/sj.emboj.7601479] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 11/07/2006] [Indexed: 11/09/2022] Open
Abstract
The expression of individual chemoreceptor (CR) genes in Caenorhabditis elegans is regulated by multiple environmental and developmental cues, possibly enabling C. elegans to modulate its sensory responses. We had previously shown that KIN-29, a member of the salt-inducible kinase family, acts in a subset of chemosensory neurons to regulate the expression of CR genes, body size and entry into the alternate dauer developmental stage. Here, we show that KIN-29 regulates these processes by phosphorylating the HDA-4 class II histone deacetylase (HDAC) and inhibiting the gene repression functions of HDA-4 and an MEF-2 MADS domain transcription factor. MEF-2 binds directly to the CR gene regulatory sequences, and is required only to repress but not activate CR gene expression. A calcineurin phosphatase antagonizes the KIN-29/MEF-2-regulated pathway to modulate levels of CR gene expression. Our results identify KIN-29 as a new regulator of MEF2/HDAC functions in the nervous system, reveal cell-specific mechanisms of action of this pathway in vivo and demonstrate remarkable complexity in the regulation of CR gene expression in C. elegans.
Collapse
Affiliation(s)
- Alexander M van der Linden
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Katherine M Nolan
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, South St., Waltham, MA 02454, USA. Tel.: +1 781 736 2686; Fax: +1 781 736 3107; E-mail:
| |
Collapse
|
233
|
Lans H, Jansen G. Noncell- and cell-autonomous G-protein-signaling converges with Ca2+/mitogen-activated protein kinase signaling to regulate str-2 receptor gene expression in Caenorhabditis elegans. Genetics 2006; 173:1287-99. [PMID: 16868120 PMCID: PMC1526693 DOI: 10.1534/genetics.106.058750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the sensory system of C. elegans, the candidate odorant receptor gene str-2 is strongly expressed in one of the two AWC neurons and weakly in both ASI neurons. Asymmetric AWC expression results from suppression of str-2 expression by a Ca2+/MAPK signaling pathway in one of the AWC neurons early in development. Here we show that the same Ca2+/MAPK pathway promotes str-2 expression in the AWC and ASI neurons together with multiple cell-autonomous and noncell-autonomous G-protein-signaling pathways. In first-stage larvae and adult animals, signals mediated by the Galpha subunits ODR-3, GPA-2, GPA-5, and GPA-6 and a Ca2+/MAPK pathway involving the Ca2+ channel subunit UNC-36, the CaMKII UNC-43, and the MAPKK kinase NSY-1 induce strong str-2 expression. Cell-specific rescue experiments suggest that ODR-3 and the Ca2+/MAPK genes function in the AWC neurons, but that GPA-5 and GPA-6 function in the AWA and ADL neurons, respectively. In Dauer larvae, the same network of genes promotes strong str-2 expression in the ASI neurons, but ODR-3 functions in AWB and ASH and GPA-6 in AWB. Our results reveal a complex signaling network, encompassing signals from multiple cells, that controls the level of receptor gene expression at different developmental stages.
Collapse
Affiliation(s)
- Hannes Lans
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
234
|
Braungart E, Gerlach M, Riederer P, Baumeister R, Hoener MC. Caenorhabditis elegans MPP+ model of Parkinson's disease for high-throughput drug screenings. NEURODEGENER DIS 2006; 1:175-83. [PMID: 16908987 DOI: 10.1159/000080983] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neurotoxin MPTP and its active metabolite MPP+ cause Parkinson's disease (PD)-like symptoms in vertebrates by selectively destroying dopaminergic neurons in the substantia nigra. MPTP/MPP+ models have been established in rodents to screen for pharmacologically active compounds. In addition to being costly and time consuming, these animal models are not suitable for large scale testings using compound libraries. We present a novel MPP+-based model for high-throughput screenings using the nematode Caenorhabditis elegans. Incubation of C. elegans with MPTP or its active metabolite MPP+ resulted in strong symptomatic defects including reduced mobility and increased lethality, and is correlated with a specific degeneration of the dopaminergic neurons. The phenotypic consequences of MPTP/MPP+ treatments were recorded using automated hardware and software for quantification. Incubation of C. elegans with a variety of pharmacologically active components used in PD treatment reduced the MPP+-induced defects. Our data suggest that the C. elegans MPTP/MPP+ model can be used for the quantitative evaluation of anti-PD drugs.
Collapse
|
235
|
Olsen DP, Phu D, Libby LJM, Cormier JA, Montez KM, Ryder EF, Politz SM. Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2006; 6:240-52. [PMID: 16879619 DOI: 10.1111/j.1601-183x.2006.00252.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free-living species Caenorhabditis elegans, wild-type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well-characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis-defective che-3, osm-3 and tax-4 mutants. In contrast, chemotaxis-defective mutants altered in a different gene, srf-6, show constitutive display of the L1 epitope on all four larval stages. The ILD-defective che-3, osm-3 and tax-4 mutations blocked the constitutive larval display of an srf-6 mutant. Combining srf-6 and certain dauer-constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf-6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode's chemosensory neurons.
Collapse
Affiliation(s)
- D P Olsen
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Hall DH, Lints R, Altun Z. Nematode neurons: anatomy and anatomical methods in Caenorhabditis elegans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 69:1-35. [PMID: 16492460 DOI: 10.1016/s0074-7742(05)69001-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David H Hall
- Center for C. elegans Anatomy, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
237
|
Murakami H, Bessinger K, Hellmann J, Murakami S. Aging-dependent and -independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans. J Neurosci 2006; 25:10894-904. [PMID: 16306402 PMCID: PMC6725869 DOI: 10.1523/jneurosci.3600-04.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the insulin/IGF-1 neuroendocrine pathway extend lifespan and affect development, metabolism, and other biological processes in Caenorhabditis elegans and in other species. In addition, they may play a role in learning and memory. Investigation of the insulin/IGF-1 pathway may provide clues for the prevention of age-related declines in cognitive functions. Here, we examined the effects of the life-extending (Age) mutations, such as the age-1 (phosphatidylinositol 3-OH kinase) and daf-2 (insulin/IGF-1 receptor) mutations, on associative learning behavior called isothermal tracking. This thermotaxis learning behavior associates paired stimuli, temperature, and food. The age-1 mutation delayed the age-related decline of isothermal tracking, resulting in a 210% extension of the period that ensures it. The effect is dramatic compared with the extension of other physiological health spans. In addition, young adults of various Age mutants (age-1, daf-2, clk-1, and eat-2) showed increased consistency of temperature-food association, which may be caused by a common feature of the mutants, such as the secondary effects of life extension (i.e., enhanced maintenance of neural mechanisms). The age-1 and daf-2 mutants but not the other Age mutants showed an increase in temperature-starvation association through a different mechanism. Increased temperature-food association of the daf-2 mutant was dependent on neuronal Ca2+-sensor ncs-1, which modulates isothermal tracking in the AIY interneuron. Interestingly, mutations in the daf-7 TGFbeta gene, which functions in parallel to the insulin/IGF-1 pathway, caused deficits in acquisition of temperature-food and temperature-starvation association. This study highlights roles of the Age mutations in modulation of certain behavioral plasticity.
Collapse
Affiliation(s)
- Hana Murakami
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
238
|
Conte C, Guarin E, Marcuz A, Andres-Barquin PJ. Functional expression of mammalian bitter taste receptors in Caenorhabditis elegans. Biochimie 2006; 88:801-6. [PMID: 16494987 DOI: 10.1016/j.biochi.2006.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 01/13/2006] [Indexed: 11/29/2022]
Abstract
Bitter taste has evolved as a central warning signal against the ingestion of potentially toxic substances appearing in the environment. The molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCR) called T2Rs and expressed at the surface of taste receptor cells. The functional characterisation of T2R receptors is far from been completed due to the difficulty to functionally express them in heterologous systems. Taking advantage of the parallelisms between the Caenorhabditis elegans (C. elegans) and mammalian GPCR signalling pathways, we developed a C. elegans-based expression system to express functional human and rodent GPCRs of the T2R family. We generated transgenic worms expressing T2Rs in ASI chemosensory neurons and performed behavioural assays using a variety of bitter tastants. As a proof of the concept, we generated transgenic worms expressing human T2R4 or its mouse ortholog T2R8 receptors, which respond to two bitter tastants previously characterised as their functional ligands, 6-n-propyl-2-thiouracil and denatoniun. As expected, expression of human T2R4 or its mouse ortholog T2R8 in ASI neurons counteracted the water-soluble avoidance to 6-n-propyl-2-thiouracil and denatoniun observed in control wild-type worms. The expression in ASI neurons of human T2R16, the ligand of which, phenyl-beta-d-glucopyranoside, belong to a chemically different group of bitter tastants, also counteracted the water-soluble avoidance to this compound observed in wild-type worms. These results indicate that C. elegans is a suitable heterologous expression system to express functional T2Rs providing a tool to efficiently search for specific taste receptor ligands and to extend our understanding of the molecular basis of gustation.
Collapse
Affiliation(s)
- C Conte
- Neuroscience, Pharma Research, F. Hoffmann-La Roche, Basel 4070, Switzerland.
| | | | | | | |
Collapse
|
239
|
Lanjuin A, Claggett J, Shibuya M, Hunter CP, Sengupta P. Regulation of neuronal lineage decisions by the HES-related bHLH protein REF-1. Dev Biol 2006; 290:139-51. [PMID: 16376329 DOI: 10.1016/j.ydbio.2005.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/08/2005] [Accepted: 11/14/2005] [Indexed: 12/12/2022]
Abstract
Members of the HES subfamily of bHLH proteins play crucial roles in neural patterning via repression of neurogenesis. In C. elegans, loss-of-function mutations in ref-1, a distant nematode-specific member of this subfamily, were previously shown to cause ectopic neurogenesis from postembryonic lineages. However, while the vast majority of the nervous system in C. elegans is generated embryonically, the role of REF-1 in regulating these neural lineage decisions is unknown. Here, we show that mutations in ref-1 result in the generation of multiple ectopic neuron types derived from an embryonic neuroblast. In wild-type animals, neurons derived from this sublineage are present in a left/right symmetrical manner. However, in ref-1 mutants, while the ectopically generated neurons exhibit gene expression profiles characteristic of neurons on the left, they are present only on the right side. REF-1 functions in a Notch-independent manner to regulate this ectopic lineage decision. We also demonstrate that loss of REF-1 function results in defective differentiation of an embryonically generated serotonergic neuron type. These results indicate that REF-1 functions in both Notch-dependent and independent pathways to regulate multiple developmental decisions in different neuronal sublineages.
Collapse
Affiliation(s)
- Anne Lanjuin
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
240
|
Matsuki M, Kunitomo H, Iino Y. Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2006; 103:1112-7. [PMID: 16418272 PMCID: PMC1347976 DOI: 10.1073/pnas.0506954103] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heterotrimeric G protein G(o) is abundantly expressed in the mammalian nervous system and modulates neural activities in response to various ligands. However, G(o)'s functions in living animals are less well understood. Here, we demonstrate that GOA-1 G(o)alpha has a fundamental role in olfactory adaptation in Caenorhabditis elegans. Impairment of GOA-1 G(o)alpha function and excessive activation of EGL-30 G(q)alpha cause a defect in adaptation to AWC-sensed odorants. These pathways antagonistically modulate olfactory adaptation in AWC chemosensory neurons. Wild-type animals treated with phorbol esters and double-mutant animals of diacylglycerol (DAG) kinases, dgk-3; dgk-1, also have a defect in adaptation, suggesting that elevated DAG signals disrupt normal adaptation. Constitutively active GOA-1 can suppress the adaptation defect of dgk-3; dgk-1 double mutants, whereas it fails to suppress the adaptation defect of animals with constitutively active EGL-30, implying that GOA-1 acts upstream of EGL-30 in olfactory adaptation. Our results suggest that down-regulation of EGL-30-DAG signaling by GOA-1 underlies olfactory adaptation and plasticity of chemotaxis.
Collapse
Affiliation(s)
- Masahiro Matsuki
- Molecular Genetics Research Laboratory and Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
241
|
Tennessen JM, Gardner HF, Volk ML, Rougvie AE. Novel heterochronic functions of the Caenorhabditis elegans period-related protein LIN-42. Dev Biol 2005; 289:30-43. [PMID: 16300753 DOI: 10.1016/j.ydbio.2005.09.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
LIN-42, the Caenorhabditis elegans homolog of the Period (Per) family of circadian rhythm proteins, functions as a member of the heterochronic pathway, regulating temporal cell identities. We demonstrate that lin-42 acts broadly, timing developmental events in the gonad, vulva, and sex myoblasts, in addition to its well-established role in timing terminal differentiation of the hypodermis. In the vulva, sex myoblasts, and hypodermis, lin-42 activity prevents stage-specific cell division patterns from occurring too early. This general function of timing stage-appropriate cell division patterns is shared by the majority of heterochronic genes; their mutation temporally alters stage-specific division patterns. In contrast, lin-42 function in timing gonad morphogenesis is unique among the known heterochronic genes: inactivation of lin-42 causes the elongating gonad arms to reflex too early, a phenotype which implicates lin-42 in temporal regulation of cell migration. Three additional isoforms of lin-42 are identified that expand our view of the lin-42 locus and significantly extend the homology between LIN-42 and other PER family members. We show that, similar to PER proteins, LIN-42 has a dynamic expression pattern; its levels oscillate relative to the molts during postembryonic development. Transformation rescue studies indicate lin-42 is bipartite with respect to function. Intriguingly, the hallmark PAS domain is dispensable for LIN-42 function in transgenic animals.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | |
Collapse
|
242
|
Horiuchi JI, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM. Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. PLANTA 2005; 222:848-57. [PMID: 16025342 DOI: 10.1007/s00425-005-0025-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 05/07/2005] [Indexed: 05/03/2023]
Abstract
Symbiosis between legume species and rhizobia results in the sequestration of atmospheric nitrogen into ammonium, and the early mechanisms involved in this symbiosis have become a model for plant-microbe interactions and thus highly amenable for agricultural applications. The working model for this interaction states that the symbiosis is the outcome of a chemical/molecular dialogue initiated by flavonoids produced by the roots of legumes and released into the soil as exudates, which specifically induce the synthesis of nodulation factors in rhizobia that initiate the nodulation process. Here, we argue that other organisms, such as the soil nematode Caenorhabditis elegans, also mediate the interaction between roots and rhizobia in a positive way, leading to nodulation. We report that C. elegans transfers the rhizobium species Sinorhizobium meliloti to the roots of the legume Medicago truncatula in response to plant-released volatiles that attract the nematode. These findings reveal a biologically-relevant and largely unknown interaction in the rhizosphere that is multitrophic and may control the initiation of the symbiosis.
Collapse
Affiliation(s)
- Jun-ichiro Horiuchi
- Department of Horticulture and Landscape Architecture, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
243
|
Tajima T, Watanabe N, Kogawa Y, Takiguchi N, Kato J, Ikeda T, Kuroda A, Ohtake H. Chemotaxis of the nematode Caenorhabditis elegans toward cycloheximide and quinine hydrochloride. J Biosci Bioeng 2005; 91:322-4. [PMID: 16232999 DOI: 10.1263/jbb.91.322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Accepted: 12/25/2000] [Indexed: 11/17/2022]
Abstract
We investigated the chemotaxis of the nematode Caenorhabditis elegans toward cycloheximide, denatonium benzoate, 6-n-propyl-2-thiouracil, and quinine hydrochloride. Interestingly, C. elegans was strongly attracted to cycloheximide, while avoiding quinine hydrochloride. This is the first report thus far to describe the chemotactic responses of C. elegans toward bitter tastants for humans.
Collapse
Affiliation(s)
- T Tajima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Abstract
A current challenge in neuroscience is to bridge the gaps between genes, proteins, neurons, neural circuits, and behavior in a single animal model. The nematode Caenorhabditis elegans has unique features that facilitate this synthesis. Its nervous system includes exactly 302 neurons, and their pattern of synaptic connectivity is known. With only five olfactory neurons, C. elegans can dynamically respond to dozens of attractive and repellent odors. Thermosensory neurons enable the nematode to remember its cultivation temperature and to track narrow isotherms. Polymodal sensory neurons detect a wide range of nociceptive cues and signal robust escape responses. Pairing of sensory stimuli leads to long-lived changes in behavior consistent with associative learning. Worms exhibit social behaviors and complex ultradian rhythms driven by Ca(2+) oscillators with clock-like properties. Genetic analysis has identified gene products required for nervous system function and elucidated the molecular and neural bases of behaviors.
Collapse
Affiliation(s)
- Mario de Bono
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | |
Collapse
|
245
|
Miesenböck G, Kevrekidis IG. Optical imaging and control of genetically designated neurons in functioning circuits. Annu Rev Neurosci 2005; 28:533-63. [PMID: 16022604 DOI: 10.1146/annurev.neuro.28.051804.101610] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins with engineered sensitivities to light are infiltrating the biological mechanisms by which neurons generate and detect electrochemical signals. Encoded in DNA and active only in genetically specified target cells, these proteins provide selective optical interfaces for observing and controlling signaling by defined groups of neurons in functioning circuits, in vitro and in vivo. Light-emitting sensors of neuronal activity (reporting calcium increase, neurotransmitter release, or membrane depolarization) have begun to reveal how information is represented by neuronal assemblies, and how these representations are transformed during the computations that inform behavior. Light-driven actuators control the electrical activities of central neurons in freely moving animals and establish causal connections between the activation of specific neurons and the expression of particular behaviors. Anchored within mathematical systems and control theory, the combination of finely resolved optical field sensing and finely resolved optical field actuation will open new dimensions for the analysis of the connectivity, dynamics, and plasticity of neuronal circuits, and perhaps even for replacing lost--or designing novel--functionalities.
Collapse
Affiliation(s)
- Gero Miesenböck
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
246
|
Cheung BHH, Cohen M, Rogers C, Albayram O, de Bono M. Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr Biol 2005; 15:905-17. [PMID: 15916947 DOI: 10.1016/j.cub.2005.04.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/31/2005] [Accepted: 04/04/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ambient oxygen (O2) influences the behavior of organisms from bacteria to man. In C. elegans, an atypical O2 binding soluble guanylate cyclase (sGC), GCY-35, regulates O2 responses. However, how acute and chronic changes in O2 modify behavior is poorly understood. RESULTS Aggregating C. elegans strains can respond to a reduction in ambient O2 by a rapid, reversible, and graded inhibition of roaming behavior. This aerokinetic response is mediated by GCY-35 and GCY-36 sGCs, which appear to become activated as O2 levels drop and to depolarize the AQR, PQR, and URX neurons. Coexpression of GCY-35 and GCY-36 is sufficient to transform olfactory neurons into O2 sensors. Natural variation at the npr-1 neuropeptide receptor alters both food-sensing and O2-sensing circuits to reconfigure the salient features of the C. elegans environment. When cultivated in 1% O2 for a few hours, C. elegans reset their preferred ambient O2, seeking instead of avoiding 0%-5% O2. This plasticity involves reprogramming the AQR, PQR, and URX neurons. CONCLUSIONS To navigate O2 gradients, C. elegans can modulate turning rates and speed of movement. Aerotaxis can be reprogrammed by experience or engineered artificially. We propose a model in which prolonged activation of the AQR, PQR, and URX neurons by low O2 switches on previously inactive O2 sensors. This enables aerotaxis to low O2 environments and may encode a "memory" of previous cultivation in low O2.
Collapse
|
247
|
Hirotsu T, Iino Y. Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway. Genes Cells 2005; 10:517-30. [PMID: 15938711 DOI: 10.1111/j.1365-2443.2005.00856.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular machinery that mediates odor adaptation in the olfactory neurons is well documented in various animal species. However, types of adaptation that depend on neural circuits are mostly unexplored. We report here that the Ras-MAPK pathway is essential for such a type of odor adaptation, called early adaptation, in C. elegans. Early adaptation requires a pair of AIY interneurons, which receive synaptic inputs from olfactory neurons. Mutants of the Ras-MAPK pathway show defects in early adaptation. Continued exposure to an odorant causes activation of MAP kinase not only in the olfactory neurons, but also in the AIY interneurons. While activity of the Ras-MAPK pathway in the olfactory neurons is important for odor perception, its activity in the AIY interneurons is important for odor adaptation. Our results thus reveal a dual role of the Ras-MAPK pathway in sensory processing in the nervous system of C. elegans.
Collapse
Affiliation(s)
- Takaaki Hirotsu
- Molecular Genetics Research Laboratory, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
248
|
Mazzoni EO, Desplan C, Celik A. 'One receptor' rules in sensory neurons. Dev Neurosci 2005; 26:388-95. [PMID: 15855768 DOI: 10.1159/000082281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/14/2004] [Indexed: 11/19/2022] Open
Abstract
With the recent explosion in the characterization of different sensory systems, a general rule is emerging: only one type of sensory receptor molecule is expressed per receptor neuron. The visual system is no exception and, in most cases, photoreceptors express only one visual pigment per cell. However, the mechanisms underlying the exclusion of sensory receptors are poorly understood. As expression of a given receptor in a given cell is often stochastic, a decision must first be made to express one of the many receptors of the same family (i.e. one particular rhodopsin) and this expression must correlate with the silencing of the other receptors. Furthermore, the projection center for the receptors in the brain must be informed of the decision in order to process this information. Although cells can choose from up to hundreds of sensory receptors (e.g. in the olfactory system), they make almost no mistakes. Evidence has recently emerged that the exclusion mechanism involves the sensory receptor molecules themselves. Here, we describe the findings from various systems in mammals and Drosophila, and review evidence that in the simple visual system of the fly, rhodopsin molecules play an important role in sensory receptor exclusion.
Collapse
Affiliation(s)
- Esteban O Mazzoni
- Center for Developmental Genetics, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| | | | | |
Collapse
|
249
|
Melkman T, Sengupta P. Regulation of chemosensory and GABAergic motor neuron development by the C. elegans Aristaless/Arx homolog alr-1. Development 2005; 132:1935-49. [PMID: 15790968 DOI: 10.1242/dev.01788] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the highly conserved Aristaless-related homeodomain protein ARX have been shown to underlie multiple forms of X-linked mental retardation. Arx knockout mice exhibit thinner cerebral cortices because of decreased neural precursor proliferation, and also exhibit defects in the differentiation and migration of GABAergic interneurons. However, the role of ARX in the observed behavioral and developmental abnormalities is unclear. The regulatory functions of individual homeodomain proteins and the networks in which they act are frequently highly conserved across species, although these networks may be deployed in different developmental contexts. In Drosophila, aristaless mutants exhibit defects in the development of terminal appendages, and Aristaless has been shown to function with the LIM-homeodomain protein LIM1 to regulate leg development. Here, we describe the role of the Aristaless/Arx homolog alr-1 in C. elegans. We show that alr-1 acts in a pathway with the LIM1 ortholog lin-11 to regulate the development of a subset of chemosensory neurons. Moreover, we demonstrate that the differentiation of a GABAergic motoneuron subtype is affected in alr-1 mutants, suggesting parallels with ARX functions in vertebrates. Investigating ALR-1 functions in C. elegans may yield insights into the role of this important protein in neuronal development and the etiology of mental retardation.
Collapse
Affiliation(s)
- Tali Melkman
- Department of Biology, Brandeis University, 415 South Street, Brandeis, MA 02454, USA
| | | |
Collapse
|
250
|
Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, Samuel ADT, Sengupta P. Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr Biol 2005; 14:2245-51. [PMID: 15620651 DOI: 10.1016/j.cub.2004.12.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 11/22/2022]
Abstract
Most C. elegans sensory neuron types consist of a single bilateral pair of neurons, and respond to a unique set of sensory stimuli. Although genes required for the development and function of individual sensory neuron types have been identified in forward genetic screens, these approaches are unlikely to identify genes that when mutated result in subtle or pleiotropic phenotypes. Here, we describe a complementary approach to identify sensory neuron type-specific genes via microarray analysis using RNA from sorted AWB olfactory and AFD thermosensory neurons. The expression patterns of subsets of these genes were further verified in vivo. Genes identified by this analysis encode 7-transmembrane receptors, kinases, and nuclear factors including dac-1, which encodes a homolog of the highly conserved Dachshund protein. dac-1 is expressed in a subset of sensory neurons including the AFD neurons and is regulated by the TTX-1 OTX homeodomain protein. On thermal gradients, dac-1 mutants fail to suppress a cryophilic drive but continue to track isotherms at the cultivation temperature, representing the first genetic separation of these AFD-mediated behaviors. Expression profiling of single neuron types provides a rapid, powerful, and unbiased method for identifying neuron-specific genes whose functions can then be investigated in vivo.
Collapse
Affiliation(s)
- Marc E Colosimo
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|