201
|
Shema R, Haramati S, Ron S, Hazvi S, Chen A, Sacktor TC, Dudai Y. Enhancement of Consolidated Long-Term Memory by Overexpression of Protein Kinase M in the Neocortex. Science 2011; 331:1207-10. [DOI: 10.1126/science.1200215] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
202
|
Gong LQ, He LJ, Dong ZY, Lu XH, Poo MM, Zhang XH. Postinduction requirement of NMDA receptor activation for late-phase long-term potentiation of developing retinotectal synapses in vivo. J Neurosci 2011; 31:3328-35. [PMID: 21368044 PMCID: PMC3096838 DOI: 10.1523/jneurosci.5936-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 11/21/2022] Open
Abstract
Spaced patterns of repetitive synaptic activation often result in a long-lasting, protein synthesis-dependent potentiation of synaptic transmission, known as late-phase long-term potentiation (L-LTP) that may serve as a substrate for long-term memory. Behavioral studies showed that posttraining blockade of NMDA subtype of the glutamate receptor (NMDAR) impaired long-term memory, although NMDAR activation is generally known to be required during LTP induction. In this study, we found that the establishment of L-LTP in vivo requires NMDAR activation within a critical time window after LTP induction. In the developing visual system of Xenopus laevis tadpole, L-LTP of retinotectal synapses could be induced by three episodes of theta burst stimulation (TBS) of the optic nerve with 5 min spacing ("spaced TBS"), but not by three TBS episodes applied en masse or spaced with intervals ≥10 min. Within a time window of ∼30 min after the spaced TBS, local perfusion of the tectum with NMDAR antagonist d-AP5 or Ca(2+)-chelator EGTA-AM impaired the establishment of L-LTP, indicating the requirement of postinduction activation of NMDAR/Ca(2+) signaling. Moreover, inhibiting spontaneous spiking activity in the tectum by local application of tetrodotoxin (TTX) prevented L-LTP when TTX was applied for 15 min immediately after the spaced TBS but not 1 h later, whereas the same postinduction TTX application in the retina had no effect. These findings offer new insights into the synaptic basis for the requirement of postlearning activation of NMDARs and point to the importance of postlearning spontaneous circuit activity in memory formation.
Collapse
Affiliation(s)
- Li-qin Gong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| | - Ling-jie He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| | - Zhi-yuan Dong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| | - Xiao-hui Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| | - Mu-ming Poo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720-3200
| | - Xiao-hui Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| |
Collapse
|
203
|
Abstract
The electrophysiological properties of the sleeping brain profoundly influence memory function in various species, yet the molecular nature by which sleep and memory interact remains unclear. We summarize work that has established the cAMP-PKA-CREB intracellular signaling pathway as a major mechanism involved in the wakeful consolidation of memory in many organisms while highlighting newer evidence that this pathway has a role in sleep regulation, sleep deprivation and potentially sleep-memory interactions. We explore the possibility that sleep might influence memory processing by reactivating the same molecular cascades first recruited during learning during a sort of "molecular replay". Lastly, we discuss how new approaches together with established techniques will aid in our understanding of the nature of sleep-memory interactions.
Collapse
Affiliation(s)
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
204
|
Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB). Proc Natl Acad Sci U S A 2011; 108:2999-3004. [PMID: 21270333 DOI: 10.1073/pnas.1019368108] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal cytoplasmic polyadenylation element binding protein (CPEB) plays a critical role in maintaining the functional and morphological long-lasting synaptic changes that underlie learning and memory. It can undergo a prion switch, but it remains unclear if this self-templating change in protein conformation is alone sufficient to create a stable change in CPEB activity: a robust "protein-only" biochemical memory. To investigate, we take advantage of yeast cells wherein the neuronal CPEB of Aplysia is expressed in the absence of any neuronal factors and can stably adopt either an active or an inactive state. Reminiscent of well-characterized yeast prions, we find that CPEB can adopt several distinct activity states or "strains." These states are acquired at a much higher spontaneous rate than is typical of yeast prions, but they are extremely stable--perpetuating for years--and have all of the non-Mendelian genetic characteristics of bona fide yeast prions. CPEB levels are too low to allow direct physical characterization, but CPEB strains convert a fusion protein, which shares only the prion-like domain of CPEB, into amyloid in a strain-specific manner. Lysates of CPEB strains seed the purified prion domain to adopt the amyloid conformation with strain-specific efficiencies. Amyloid conformers generated by spontaneous assembly of the purified prion domain (and a more biochemically tractable derivative) transformed cells with inactive CPEB into the full range of distinct CPEB strains. Thus, CPEB employs a prion mechanism to create stable, finely tuned self-perpetuating biochemical memories. These biochemical memories might be used in the local homeostatic maintenance of long-term learning-related changes in synaptic morphology and function.
Collapse
|
205
|
Jin I, Kandel ER, Hawkins RD. Whereas short-term facilitation is presynaptic, intermediate-term facilitation involves both presynaptic and postsynaptic protein kinases and protein synthesis. Learn Mem 2011; 18:96-102. [PMID: 21245210 DOI: 10.1101/lm.1949711] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that might form a bridge between short- and long-term plasticity. Consistent with that idea, although short-term term behavioral sensitization in Aplysia involves presynaptic mechanisms, intermediate-term sensitization involves both pre- and postsynaptic mechanisms. However, it has not been known whether that is also true of facilitation in vitro, where a more detailed analysis of the mechanisms involved in the different stages and their interrelations is feasible. To address those questions, we have examined pre- and postsynaptic mechanisms of short- and intermediate-term facilitation at Aplysia sensory-motor neuron synapses in isolated cell culture. Whereas short-term facilitation by 1-min 5-HT involves presynaptic PKA and CamKII, intermediate-term facilitation by 10-min 5-HT involves presynaptic PKC and postsynaptic Ca(2+) and CamKII, as well as both pre- and postsynaptic protein synthesis. These results support the idea that the intermediate-term stage is the first to involve both pre- and postsynaptic molecular mechanisms, which could in turn serve as some of the initial steps in a cascade leading to synaptic growth during long-term plasticity.
Collapse
Affiliation(s)
- Iksung Jin
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
206
|
Je HS, Ji Y, Wang Y, Yang F, Wu W, Lu B. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation. Mol Brain 2011; 4:1. [PMID: 21211057 PMCID: PMC3023743 DOI: 10.1186/1756-6606-4-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 01/07/2011] [Indexed: 12/05/2022] Open
Abstract
Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR) is fused with bacterial gyrase B domain (GyrB-PKR), which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner.
Collapse
Affiliation(s)
- H Shawn Je
- Genes, Cognition and Psychosis Program (GCAP), National Institute of Mental Health/NIH, Bethesda, MD 20892, U.S.A
| | | | | | | | | | | |
Collapse
|
207
|
Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 2011; 22:153-69. [DOI: 10.1515/rns.2011.018] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
208
|
Molecular Mechanisms for the Initiation and Maintenance of Long-Term Memory Storage. RESEARCH AND PERSPECTIVES IN ALZHEIMER'S DISEASE 2011. [DOI: 10.1007/978-3-642-16602-0_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
209
|
Abstract
The neuronal growth cone, a highly motile structure at the tip of neuronal processes, is an excellent model system for studying directional cell movements. While biochemical and genetic approaches unveiled molecular interactions between ligand, receptor, signaling, and cytoskeleton-associated proteins controlling axonal growth and guidance, in vitro live cell imaging has emerged as a crucial approach for dissecting cellular mechanisms of growth cone motility and guidance. Important insights into these mechanisms have been gained from studies using the large growth cones elaborated by Aplysia californica neurons, an outstanding model system for live cell imaging for a number of reasons. Identified neurons can be isolated and imaged at room temperature. Aplysia growth cones are five to ten times larger than growth cones from other species, making them suitable for quantitative high-resolution imaging of cytoskeletal protein dynamics and biophysical approaches. Lastly, protein, RNA, fluorescent probes, and small molecules can be microinjected into the neuronal cell body for localization and functional studies. This chapter describes culturing of Aplysia bag cell neurons, live cell imaging of neuronal growth cones using differential interference contrast and fluorescent speckle microscopy as well as the restrained bead interaction assay to induce adhesion-mediated growth cone guidance in vitro.
Collapse
Affiliation(s)
- Daniel M Suter
- Department of Biological Sciences, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
210
|
Inhibition of learning and memory by general anesthetics. Can J Anaesth 2010; 58:167-77. [DOI: 10.1007/s12630-010-9428-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/15/2010] [Indexed: 12/28/2022] Open
|
211
|
Sun Y, Monje FJ, Pollak DD, Lubec G. A first partial Aplysia californica proteome. Amino Acids 2010; 41:955-68. [PMID: 21069399 DOI: 10.1007/s00726-010-0795-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/28/2022]
Abstract
Aplysia proteins have not been studied systematically and it was therefore the aim of the study to carry out protein profiling in ganglia from Aplysia californica (AC). AC ganglia were extirpated, proteins extracted and run on 2DE with subsequent in-gel digestion, followed by identification of proteins by nano-LC-ESI-MS/MS on an ion trap. Proteins were identified based upon a public Aplysia EST database. Out of 408 picked spots, 276 spots were identified corresponding to 172 ESTs and 118 individual proteins. The range of sequence coverage was between 14 and 80% and the average amount of peptides used for the identification of proteins was 9 (from 3 to 24). Mean score for protein identification was 516. Comparison of protein levels between cerebral, pleural, pedal and abdominal ganglia revealed a series of significant differences including: signaling, metabolism, cytoskeleton and structural, redox, chaperone, replication/transcription and electron/proton transport proteins. The generation of a protein map complements transcriptional studies carried out in AC ganglia. The findings provide the basis for investigation into post-translational modifications, splice variants and assist in the generation of antibodies against AC proteins. Moreover, differences in protein expression between ganglia may be valuable for the design of future studies in neurobiology of AC.
Collapse
Affiliation(s)
- Yanwei Sun
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | |
Collapse
|
212
|
Wang SH, Redondo RL, Morris RGM. Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci U S A 2010; 107:19537-42. [PMID: 20962282 PMCID: PMC2984182 DOI: 10.1073/pnas.1008638107] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Memory for inconsequential events fades, unless these happen before or after other novel or surprising events. However, our understanding of the neurobiological mechanisms of novelty-enhanced memory persistence is mainly restricted to aversive or fear-associated memories. We now outline an "everyday appetitive" behavioral model to examine whether and how unrelated novelty facilitates the persistence of spatial memory coupled to parallel electrophysiological studies of the persistence of long-term potentiation (LTP). Across successive days, rats were given one trial per day to find food in different places and later had to recall that day's location. This task is both hippocampus and NMDA receptor dependent. First, encoding with low reward induced place memory that decayed over 24 h; in parallel, weak tetanization of CA1 synapses in brain slices induced early-LTP fading to baseline. Second, novelty exploration scheduled 30 min after this weak encoding resulted in persistent place memory; similarly, strong tetanization--analogous to novelty--both induced late-LTP and rescued early- into late-LTP on an independent but convergent pathway. Third, hippocampal dopamine D1/D5 receptor blockade or protein synthesis inhibition within 15 min of exploration prevented persistent place memory and blocked late-LTP. Fourth, symmetrically, when spatial memory was encoded using strong reward, this memory persisted for 24 h unless encoding occurred under hippocampal D1/D5 receptor blockade. Novelty exploration before this encoding rescued the drug-induced memory impairment. Parallel effects were observed in LTP. These findings can be explained by the synaptic tagging and capture hypothesis.
Collapse
Affiliation(s)
- Szu-Han Wang
- Centre for Cognitive and Neural Systems, Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Roger L. Redondo
- Centre for Cognitive and Neural Systems, Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Richard G. M. Morris
- Centre for Cognitive and Neural Systems, Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
213
|
Gao FB. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 2010; 5:25. [PMID: 20920300 PMCID: PMC2958854 DOI: 10.1186/1749-8104-5-25] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/01/2010] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate multiple developmental processes at the post-transcriptional level. Recent rapid progresses have demonstrated critical roles for a number of miRNAs in neuronal development and function. In particular, miR-9 and miR-124 are specifically expressed in the mammalian nervous system, and their respective nucleotide sequences are 100% identical among many species. Yet, their expression patterns and mRNA targets are less conserved throughout evolution. As a consequence, these miRNAs exhibit diverse context-dependent functions in different aspects of neuronal development, ranging from early neurogenesis and neuronal differentiation to dendritic morphogenesis and synaptic plasticity. Some other neuronal miRNAs also exhibit context-dependent functions in development. Thus, post-transcriptional regulation of spatial and temporal expression levels of protein-coding genes by miRNAs contributes uniquely to the proper development and evolution of the complex nervous system.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Department of Neurology and Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
214
|
Cajigas IJ, Will T, Schuman EM. Protein homeostasis and synaptic plasticity. EMBO J 2010; 29:2746-52. [PMID: 20717144 DOI: 10.1038/emboj.2010.173] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/02/2010] [Indexed: 12/20/2022] Open
Abstract
It is clear that de novo protein synthesis has an important function in synaptic transmission and plasticity. A substantial amount of work has shown that mRNA translation in the hippocampus is spatially controlled and that dendritic protein synthesis is required for different forms of long-term synaptic plasticity. More recently, several studies have highlighted a function for protein degradation by the ubiquitin proteasome system in synaptic plasticity. These observations suggest that changes in synaptic transmission involve extensive regulation of the synaptic proteome. Here, we review experimental data supporting the idea that protein homeostasis is a regulatory motif for synaptic plasticity.
Collapse
Affiliation(s)
- Iván J Cajigas
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | | |
Collapse
|
215
|
Salinas S, Schiavo G, Kremer EJ. A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nat Rev Microbiol 2010; 8:645-55. [PMID: 20706281 DOI: 10.1038/nrmicro2395] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reach the central nervous system (CNS), pathogens have to circumvent the wall of tightly sealed endothelial cells that compose the blood-brain barrier. Neuronal projections that connect to peripheral cells and organs are the Achilles heels in CNS isolation. Some viruses and bacterial toxins interact with membrane receptors that are present at nerve terminals to enter the axoplasm. Pathogens can then be mistaken for cargo and recruit trafficking components, allowing them to undergo long-range axonal transport to neuronal cell bodies. In this Review, we highlight the strategies used by pathogens to exploit axonal transport during CNS invasion.
Collapse
Affiliation(s)
- Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 34293 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
216
|
Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J Neurosci 2010; 30:7817-25. [PMID: 20534830 DOI: 10.1523/jneurosci.5543-09.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Memory formation is a continuous process composed of multiple phases that can develop independently from each other. These phases depend on signaling pathways initiated after the activation of receptors in different brain regions. The NMDA receptor acts as a sensor of coincident activity between neural inputs, and, as such, its activation during learning is thought to be crucial for various forms of memory. In this study, we inhibited the expression of the NR1 subunit of the NMDA receptor in the honeybee brain using RNA interference. We show that the disruption of the subunit expression in the mushroom body region of the honeybee brain during and shortly after appetitive learning selectively impaired memory. Although the formation of mid-term memory and early long-term memory was impaired, late long-term memory was left intact. This indicates that late long-term memory formation differs in its dependence on NMDA receptor activity from earlier memory phases.
Collapse
|
217
|
Gkogkas C, Sonenberg N, Costa-Mattioli M. Translational control mechanisms in long-lasting synaptic plasticity and memory. J Biol Chem 2010; 285:31913-7. [PMID: 20693284 DOI: 10.1074/jbc.r110.154476] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Christos Gkogkas
- Department of Biochemistry and Goodman Cancer Center, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | | | |
Collapse
|
218
|
Dieterich DC, Hodas JJL, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 2010; 13:897-905. [PMID: 20543841 PMCID: PMC2920597 DOI: 10.1038/nn.2580] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/17/2010] [Indexed: 02/02/2023]
Abstract
Protein translation has been implicated in different forms of synaptic plasticity, but direct in situ visualization of new proteins is limited to one or two proteins at a time. Here we describe a metabolic labeling approach based on incorporation of noncanonical amino acids into proteins followed by chemoselective fluorescence tagging by means of 'click chemistry'. After a brief incubation with azidohomoalanine or homopropargylglycine, a robust fluorescent signal was detected in somata and dendrites. Pulse-chase application of azidohomoalanine and homopropargylglycine allowed visualization of proteins synthesized in two sequential time periods. This technique can be used to detect changes in protein synthesis and to evaluate the fate of proteins synthesized in different cellular compartments. Moreover, using strain-promoted cycloaddition, we explored the dynamics of newly synthesized membrane proteins using single-particle tracking and quantum dots. The newly synthesized proteins showed a broad range of diffusive behaviors, as would be expected for a pool of labeled proteins that is heterogeneous.
Collapse
Affiliation(s)
- Daniela C Dieterich
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Gao HL, Xu H, Xin N, Zheng W, Chi ZH, Wang ZY. Disruption of the CaMKII/CREB signaling is associated with zinc deficiency-induced learning and memory impairments. Neurotox Res 2010; 19:584-91. [PMID: 20593259 DOI: 10.1007/s12640-010-9206-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/12/2010] [Accepted: 06/21/2010] [Indexed: 12/28/2022]
Abstract
Many studies have shown that zinc deficiency not only retards growth, but also affects several brain functions, including learning and memory. However, the underlying mechanism of impaired hippocampus-dependent learning and memory under zinc deficiency is poorly understood. In this study, young mice were fed a zinc-deficient diet (0.85 ppm) for 5 weeks. Morris water maze result showed that zinc deficiency results in spatial learning impairment. We then examined whether zinc depletion-induced learning and memory defects are associated with changes in signaling molecules essential for the expression of long-term potentiation. Immunoblot results showed that the protein levels of calmodulin (CaM), phosphorylated CaM-dependent protein kinase II (CaMKII), and phosphorylated cAMP-responsive element binding protein (CREB) were significantly reduced, whereas the total protein levels of CaMKII and CREB did not change in the zinc-deficient hippocampus. Thus, we provide a previously unrecognized mechanism whereby zinc deficiency impairs hippocampal learning and memory, at least in part, through disruption of the CaM/CaMKII/CREB signaling pathway.
Collapse
Affiliation(s)
- Hui-Ling Gao
- Key Lab of Cell Biology of Ministry of Education of China, China Medical University, Bei-Er Road 92, Shenyang 110001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
220
|
Abstract
Until recently, the literature on learning-related synaptic plasticity in invertebrates has been dominated by models assuming plasticity is mediated by presynaptic changes, whereas the vertebrate literature has been dominated by models assuming it is mediated by postsynaptic changes. Here I will argue that this situation does not reflect a biological reality and that, in fact, invertebrate and vertebrate nervous systems share a common set of mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- David L Glanzman
- Department of Physiological Science, UCLA College, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
221
|
Presynaptic and postsynaptic mechanisms of synaptic plasticity and metaplasticity during intermediate-term memory formation in Aplysia. J Neurosci 2010; 30:5781-91. [PMID: 20410130 DOI: 10.1523/jneurosci.4947-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity and learning involve different mechanisms depending on the following: (1) the stage of plasticity and (2) the history of plasticity, or metaplasticity. However, little is known about how these two factors are related. We have addressed that question by examining mechanisms of synaptic plasticity during short-term and intermediate-term behavioral sensitization and dishabituation in a semi-intact preparation of the Aplysia siphon-withdrawal reflex. Dishabituation differs from sensitization in that it is preceded by habituation, and is thus a paradigm for metaplasticity. We find that whereas facilitation during short-term sensitization by one tail shock involves presynaptic covalent modifications by protein kinase A (PKA) and CamKII, facilitation during intermediate-term sensitization by four shocks involves both presynaptic (PKA, CaMKII) and postsynaptic (Ca(2+), CaMKII) covalent modifications, as well as both presynaptic and postsynaptic protein synthesis. The facilitation also involves presynaptic spike broadening 2.5 min after either one or four shocks, but not at later times. Dishabituation by four shocks differs from sensitization in several ways. First, it does not involve PKA or CaMKII, but rather involves presynaptic PKC. In addition, unlike sensitization with the same shock, dishabituation by four shocks does not involve protein synthesis or presynaptic spike broadening, and it also does not involve postsynaptic Ca(2+). These results demonstrate that not only the mechanisms but also the site of plasticity depend on both the stage of plasticity and metaplasticity during memory formation.
Collapse
|
222
|
Yoo S, van Niekerk EA, Merianda TT, Twiss JL. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 2010; 223:19-27. [PMID: 19699200 PMCID: PMC2849851 DOI: 10.1016/j.expneurol.2009.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/05/2009] [Accepted: 08/08/2009] [Indexed: 12/12/2022]
Abstract
Locally generating new proteins in subcellular regions provide means to spatially and temporally modify protein content in polarized cells. Recent years have seen resurgence of the concept that axonal processes of neurons can locally synthesize proteins. Experiments from a number of groups have now shown that axonal protein synthesis helps to initiate growth, provides a means to respond to guidance cues, and generates retrograde signaling complexes. Additionally, there is increasing evidence that locally synthesized proteins provide functions beyond injury responses and growth in the mature peripheral nervous system. A key regulatory event in this translational regulation is moving the mRNA templates into the axonal compartment. Transport of mRNAs into axons is a highly regulated and specific process that requires interaction of RNA binding proteins with specific cis-elements or structures within the mRNAs. mRNAs are transported in ribonucleoprotein particles that interact with microtubule motor proteins for long-range axonal transport and likely use microfilaments for short-range movement in the axons. The mature axon is able to recruit mRNAs into translation with injury and possibly other stimuli, suggesting that mRNAs can be stored in a dormant state in the distal axon until needed. Axotomy triggers a shift in the populations of mRNAs localized to axons, indicating a dynamic regulation of the specificity of the axonal transport machinery. In this review, we discuss how axonal mRNA transport and localization are regulated to achieve specific changes in axonal RNA content in response to axonal stimuli.
Collapse
Affiliation(s)
- Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803
| | - Erna A. van Niekerk
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Tanuja T. Merianda
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803
| | - Jeffery L. Twiss
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
223
|
Crispino M, Cefaliello C, Kaplan B, Giuditta A. Protein synthesis in nerve terminals and the glia-neuron unit. Results Probl Cell Differ 2010; 48:243-67. [PMID: 19554280 DOI: 10.1007/400_2009_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The progressive philogenetic lengthening of axonal processes and the increase in complexity of terminal axonal arborizations markedly augmented the demands of the neuronal cytoplasmic mass on somatic gene expression. It is proposed that in an adaptive response to this challenge, novel gene expression functions developed in the axon compartment, consisting of axonal and presynaptic translation systems that rely on the delivery of transcripts synthesized in adjacent glial cells. Such intercellular mode of gene expression would allow more rapid plastic changes to occur in spatially restricted neuronal domains, down to the size of individual synapses. The cell body contribution to local gene expression in well-differentiated neurons remains to be defined. The history of this concept and the experimental evidence supporting its validity are critically discussed in this article. The merit of this perspective lies with the recognition that plasticity events represent a major occurrence in the brain, and that they largely occur at synaptic sites, including presynaptic endings.
Collapse
Affiliation(s)
- Marianna Crispino
- Department of Biological Sciences, University of Naples Federico II, Naples, Italy
| | | | | | | |
Collapse
|
224
|
Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RGM. Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 2010; 30:4981-9. [PMID: 20371818 PMCID: PMC6632790 DOI: 10.1523/jneurosci.3140-09.2010] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 12/15/2009] [Accepted: 01/06/2010] [Indexed: 11/21/2022] Open
Abstract
Weakly tetanized synapses in area CA1 of the hippocampus that ordinarily display long-term potentiation lasting approximately 3 h (called early-LTP) will maintain a longer-lasting change in efficacy (late-LTP) if the weak tetanization occurs shortly before or after strong tetanization of an independent, but convergent, set of synapses in CA1. The synaptic tagging and capture hypothesis explains this heterosynaptic influence on persistence in terms of a distinction between local mechanisms of synaptic tagging and cell-wide mechanisms responsible for the synthesis, distribution, and capture of plasticity-related proteins (PRPs). We now present evidence that distinct CaM kinase (CaMK) pathways serve a dissociable role in these mechanisms. Using a hippocampal brain-slice preparation that permits stable long-term recordings in vitro for >10 h and using hippocampal cultures to validate the differential drug effects on distinct CaMK pathways, we show that tag setting is blocked by the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) that, at low concentration, is more selective for CaMKII. In contrast, the CaMK kinase inhibitor STO-609 [7H-benzimidazo(2,1-a)benz(de)isoquinoline-7-one-3-carboxylic acid] specifically limits the synthesis and/or availability of PRPs. Analytically powerful three-pathway protocols using sequential strong and weak tetanization in varying orders and test stimulation over long periods of time after LTP induction enable a pharmacological dissociation of these distinct roles of the CaMK pathways in late-LTP and so provide a novel framework for the molecular mechanisms by which synaptic potentiation, and possibly memories, become stabilized.
Collapse
Affiliation(s)
- Roger L Redondo
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
225
|
Abstract
One of the hallmarks of both memory and the underlying synaptic plasticity is that they each rely on short-lived and longer-lived forms. Short-lived memory is thought to rely on modification to existing proteins, whereas long-term memory requires induction of new gene expression. The most common view is that these two processes rely on signaling mechanisms within the same neurons. We recently demonstrated a dissection of the signaling requirements for short and long-lived memory into distinct sets of neurons. Using an aversive olfactory conditioning task in Drosophila, we found that cAMP signaling in different neuron cell types is sufficient to support short or long-term memory independently.
Collapse
Affiliation(s)
- Allison Blum
- Watson School of Biological Sciences, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
226
|
A novel 65 kDa RNA-binding protein in squid presynaptic terminals. Neuroscience 2010; 166:73-83. [DOI: 10.1016/j.neuroscience.2009.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/01/2009] [Indexed: 11/22/2022]
|
227
|
Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER. Aplysia CPEB Can Form Prion-like Multimers in Sensory Neurons that Contribute to Long-Term Facilitation. Cell 2010; 140:421-35. [DOI: 10.1016/j.cell.2010.01.008] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 07/20/2009] [Accepted: 01/05/2010] [Indexed: 11/24/2022]
|
228
|
Wang SH, Morris RGM. Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 2010; 61:49-79, C1-4. [PMID: 19575620 DOI: 10.1146/annurev.psych.093008.100523] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review, focusing on work using animals, updates a theoretical approach whose aim is to translate neuropsychological ideas about the psychological and anatomical organization of memory into the neurobiological domain. It is suggested that episodic-like memory consists of both automatic and controlled components, with the medial temporal mediation of memory encoding including neurobiological mechanisms that are primarily automatic or incidental. These ideas, in the cognitive and behavioral domain, are linked to neurophysiological ideas about cellular consolidation concerning synaptic potentiation, particularly the relationship between protein synthesis-dependent long-term changes and shorter-lasting post-translational mechanisms. Ideas from psychology about mental schemas are considered in relation to the phenomenon of systems consolidation and, specifically, about how prior knowledge can alter the rate at which consolidation occurs. Finally, the hippocampal-neocortical interactions theory is updated in relation to reconsolidation, a process that enables updating of stored memory traces in response to novelty.
Collapse
Affiliation(s)
- Szu-Han Wang
- Center for Cognitive and Neural Systems, Neuroscience, The University of Edinburgh, Edinburgh EH8 9JZ, Scotland.
| | | |
Collapse
|
229
|
Sossin WS, Abrams TW. Evolutionary conservation of the signaling proteins upstream of cyclic AMP-dependent kinase and protein kinase C in gastropod mollusks. BRAIN, BEHAVIOR AND EVOLUTION 2009; 74:191-205. [PMID: 20029183 DOI: 10.1159/000258666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The protein kinase C (PKC) and the cAMP-dependent kinase (protein kinase A; PKA) pathways are known to play important roles in behavioral plasticity and learning in the nervous systems of a wide variety of species across phyla. We briefly review the members of the PKC and PKA family and focus on the evolution of the immediate upstream activators of PKC and PKA i.e., phospholipase C (PLC) and adenylyl cyclase (AC), and their conservation in gastropod mollusks, taking advantage of the recent assembly of the Aplysiacalifornica and Lottia gigantea genomes. The diversity of PLC and AC family members present in mollusks suggests a multitude of possible mechanisms to activate PKA and PKC; we briefly discuss the relevance of these pathways to the known physiological activation of these kinases in Aplysia neurons during plasticity and learning. These multiple mechanisms of activation provide the gastropod nervous system with tremendous flexibility for implementing neuromodulatory responses to both neuronal activity and extracellular signals.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Que., Canada.
| | | |
Collapse
|
230
|
Tomchik SM, Davis RL. Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Neuron 2009; 64:510-21. [PMID: 19945393 DOI: 10.1016/j.neuron.2009.09.029] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
Functional imaging with genetically encoded calcium and cAMP reporters was used to examine the signal integration underlying learning in Drosophila. Dopamine and octopamine modulated intracellular cAMP in spatially distinct patterns in mushroom body neurons. Pairing of neuronal depolarization with subsequent dopamine application revealed a synergistic increase in cAMP in the mushroom body lobes, which was dependent on the rutabaga adenylyl cyclase. This synergy was restricted to the axons of mushroom body neurons, and occurred only following forward pairing with time intervals similar to those required for behavioral conditioning. In contrast, forward pairing of neuronal depolarization and octopamine produced a subadditive effect on cAMP. Finally, elevating intracellular cAMP facilitated calcium transients in mushroom body neurons, suggesting that cAMP elevation is sufficient to induce presynaptic plasticity. These data suggest that rutabaga functions as a coincidence detector in an intact neuronal circuit, with dopamine and octopamine bidirectionally influencing the generation of cAMP.
Collapse
Affiliation(s)
- Seth M Tomchik
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
231
|
Rapid and long-lasting increase in sites for synapse assembly during late-phase potentiation in rat hippocampal neurons. PLoS One 2009; 4:e7690. [PMID: 19893634 PMCID: PMC2767506 DOI: 10.1371/journal.pone.0007690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/12/2009] [Indexed: 01/07/2023] Open
Abstract
Long-term potentiation in hippocampal neurons has stages that correspond to the stages of learning and memory. Early-phase (10–30 min) potentiation is accompanied by rapid increases in clusters or puncta of presynaptic and postsynaptic proteins, which depend on actin polymerization but not on protein synthesis. We have now examined changes in pre- and postsynaptic puncta and structures during glutamate-induced late-phase (3 hr) potentiation in cultured hippocampal neurons. We find that (1) the potentiation is accompanied by long-lasting maintenance of the increases in puncta, which depends on protein synthesis, (2) most of the puncta and synaptic structures are very dynamic, continually assembling and disassembling at sites that are more stable than the puncta or structures themselves, (3) the increase in presynaptic puncta appears to be due to both rapid and more gradual increases in the number of sites where the puncta may form, and also to the stabilization of existing puncta, (4) under control conditions, puncta of postsynaptic proteins behave similarly to puncta of presynaptic proteins and share sites with them, and (5) the increase in presynaptic puncta is accompanied by a similar increase in presumably presynaptic structures, which may form at distinct as well as shared sites. The new sites could contribute to the transition between the early and late phase mechanisms of plasticity by serving as seeds for the formation and maintenance of new synapses, thus acting as local “tags” for protein synthesis-dependent synaptic growth during late-phase plasticity.
Collapse
|
232
|
Akins MR, Berk-Rauch HE, Fallon JR. Presynaptic translation: stepping out of the postsynaptic shadow. Front Neural Circuits 2009; 3:17. [PMID: 19915727 PMCID: PMC2776480 DOI: 10.3389/neuro.04.017.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/07/2009] [Indexed: 11/13/2022] Open
Abstract
The ability of the nervous system to convert transient experiences into long-lasting structural changes at the synapse relies upon protein synthesis. It has become increasingly clear that a critical subset of this synthesis occurs within the synaptic compartment. While this process has been extensively characterized in the postsynaptic compartment, the contribution of local translation to presynaptic function remains largely unexplored. However, recent evidence highlights the potential importance of translation within the presynaptic compartment. Work in cultured neurons has shown that presynaptic translation occurs specifically at synapses undergoing long-term plasticity and may contribute to the maintenance of nascent synapses. Studies from our laboratory have demonstrated that Fragile X proteins, which regulate mRNA localization and translation, are expressed at the presynaptic apparatus. Further, mRNAs encoding presynaptic proteins traffic into axons. Here we discuss recent advances in the study of presynaptic translation as well as the challenges confronting the field. Understanding the regulation of presynaptic function by local protein synthesis promises to shed new light on activity-dependent modification of synaptic architecture.
Collapse
Affiliation(s)
- Michael R Akins
- Department of Neuroscience, Brown University Providence, RI, USA
| | | | | |
Collapse
|
233
|
Abstract
In the forty years since the Society for Neuroscience was founded, our understanding of the biology of memory has progressed dramatically. From a historical perspective, one can discern four distinct periods of growth in neurobiological research during that time. Here I use that chronology to chart a personalized and selective course through forty years of extraordinary advances in our understanding of the biology of memory storage.
Collapse
|
234
|
Impey S, Davare M, Lesiak A, Lasiek A, Fortin D, Ando H, Varlamova O, Obrietan K, Soderling TR, Goodman RH, Wayman GA. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 2009; 43:146-56. [PMID: 19850129 DOI: 10.1016/j.mcn.2009.10.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 01/22/2023] Open
Abstract
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synaptic plasticity remain largely uncharacterized. We show here that the CREB- and activity-regulated microRNA, miR132, is induced during periods of active synaptogenesis. Moreover, miR132 is necessary and sufficient for hippocampal spine formation. Expression of the miR132 target, p250GAP, is inversely correlated with miR132 levels and spinogenesis. Furthermore, knockdown of p250GAP increases spine formation while introduction of a p250GAP mutant unresponsive to miR132 attenuates this activity. Inhibition of miR132 decreases both mEPSC frequency and the number of GluR1-positive spines, while knockdown of p250GAP has the opposite effect. Additionally, we show that the miR132/p250GAP circuit regulates Rac1 activity and spine formation by modulating synapse-specific Kalirin7-Rac1 signaling. These data suggest that neuronal activity regulates spine formation, in part, by increasing miR132 transcription, which in turn activates a Rac1-Pak actin remodeling pathway.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Waterhouse EG, Xu B. New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 2009; 42:81-9. [PMID: 19577647 PMCID: PMC2748315 DOI: 10.1016/j.mcn.2009.06.009] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 06/25/2009] [Indexed: 12/14/2022] Open
Abstract
Substantial evidence indicates that brain-derived neurotrophic factor (BDNF) plays a crucial role in synaptic plasticity. Long-lasting synaptic plasticity is restricted to active synapses and requires new protein synthesis. Recent work has identified local protein synthesis as an important source for new protein during the expression of enduring synaptic plasticity. This review discusses recent progress in understanding the mechanisms that restrict the action of BDNF to active synapses and by which BDNF mediates chemical and structural modifications of individual synapses, placing an emphasis on the role of local protein synthesis in these processes.
Collapse
Affiliation(s)
- Emily G. Waterhouse
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Baoji Xu
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
236
|
Kim DH, Kim S, Jeon SJ, Son KH, Lee S, Yoon BH, Cheong JH, Ko KH, Ryu JH. Tanshinone I enhances learning and memory, and ameliorates memory impairment in mice via the extracellular signal-regulated kinase signalling pathway. Br J Pharmacol 2009; 158:1131-42. [PMID: 19775283 DOI: 10.1111/j.1476-5381.2009.00378.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The intracellular signalling kinase, extracellular signal-regulated kinase 1/2 (ERK1/2) is required for new memory formation, suggesting that control of ERK signalling might be a target for the treatment of cognitive dysfunction. Previously, we reported that tanshinone congeners have ameliorating effects on drug-induced memory impairment in mice. Here, we have investigated possible modes of action of tanshinone I on learning and memory, associated with ERK phosphorylation. EXPERIMENTAL APPROACH Using immunohistochemical, Western blot techniques, and behavioural testing, we studied the effect of tanshinone I on memory impairment induced by diazepam or dizocilpine (MK-801) in mice. KEY RESULTS Tanshinone I (2 or 4 mg.kg(-1), p.o.) increased latency times versus vehicle-treated control group in the passive avoidance task. Western blot analysis and immunohistochemical data showed that tanshinone I (4 mg.kg(-1)) increased levels of phosphorylated cAMP response element binding protein (pCREB) and phosphorylated ERK (pERK) in the hippocampus. These increases in pCREB and pERK were blocked by U0126 (inhibitor of ERK1/2), which also prevented the increase in passive avoidance task latency time after tanshinone I. In models of learning and memory impairment induced by diazepam and MK-801, tanshinone I (4 mg.kg(-1)) reversed learning and memory impairments detected by the passive avoidance test. Western blot analysis showed that tanshinone I reversed the diazepam- and MK-801-induced inhibitions of ERK and CREB activation in hippocampal tissues. These effects were also blocked by U0126. CONCLUSIONS AND IMPLICATIONS Tanshinone I ameliorates the learning and memory impairments induced by diazepam and MK-801 through activation of ERK signalling.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Blum AL, Li W, Cressy M, Dubnau J. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr Biol 2009; 19:1341-50. [PMID: 19646879 PMCID: PMC2752374 DOI: 10.1016/j.cub.2009.07.016] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 01/04/2023]
Abstract
BACKGROUND A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. RESULTS Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. CONCLUSIONS Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.
Collapse
Affiliation(s)
- Allison L. Blum
- Cold Spring Harbor Laboratory 1 Bungtown Rd. Cold Spring Harbor, NY, 11724
- Watson School of Biological Sciences Cold Spring Harbor Laboratory
| | - Wanhe Li
- Cold Spring Harbor Laboratory 1 Bungtown Rd. Cold Spring Harbor, NY, 11724
- Dept. of Molecular and Cellular Biology Stony Brook University, Stony Brook NY
| | - Mike Cressy
- Cold Spring Harbor Laboratory 1 Bungtown Rd. Cold Spring Harbor, NY, 11724
- Dept of Genetics Stony Brook University Stony Brook, NY
| | - Josh Dubnau
- Cold Spring Harbor Laboratory 1 Bungtown Rd. Cold Spring Harbor, NY, 11724
| |
Collapse
|
238
|
Ferrara E, Cefaliello C, Eyman M, De Stefano R, Giuditta A, Crispino M. Synaptic mRNAs are modulated by learning. J Neurosci Res 2009; 87:1960-8. [DOI: 10.1002/jnr.22037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
239
|
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, D-38106 Germany.
| |
Collapse
|
240
|
Wang DO, Kim SM, Zhao Y, Hwang H, Miura SK, Sossin WS, Martin KC. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 2009; 324:1536-40. [PMID: 19443737 PMCID: PMC2821090 DOI: 10.1126/science.1173205] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long-term memory and synaptic plasticity require changes in gene expression and yet can occur in a synapse-specific manner. Messenger RNA localization and regulated translation at synapses are thus critical for establishing synapse specificity. Using live-cell microscopy of photoconvertible fluorescent protein translational reporters, we directly visualized local translation at synapses during long-term facilitation of Aplysia sensory-motor synapses. Translation of the reporter required multiple applications of serotonin, was spatially restricted to stimulated synapses, was transcript- and stimulus-specific, and occurred during long-term facilitation but not during long-term depression of sensory-motor synapses. Translational regulation only occurred in the presence of a chemical synapse and required calcium signaling in the postsynaptic motor neuron. Thus, highly regulated local translation occurs at synapses during long-term plasticity and requires trans-synaptic signals.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles (UCLA), BSRB 390B, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
The nervous system of the marine mollusk Aplysia californica is relatively simple, consisting of approximately 20,000 neurons. The neurons are large (up to 1 mm in diameter) and identifiable, with distinct sizes, shapes, positions and pigmentations, and the cell bodies are externally exposed in five paired ganglia distributed throughout the body of the animal. These properties have allowed investigators to delineate the circuitry underlying specific behaviors in the animal. The monosynaptic connection between sensory and motor neurons is a central component of the gill-withdrawal reflex in the animal, a simple defensive reflex in which the animal withdraws its gill in response to tactile stimulation of the siphon. This reflex undergoes forms of non-associative and associative learning, including sensitization, habituation and classical conditioning. Of particular benefit to the study of synaptic plasticity, the sensory-motor synapse can be reconstituted in culture, where well-characterized stimuli elicit forms of plasticity that have direct correlates in the behavior of the animal. Specifically, application of serotonin produces a synaptic strengthening that, depending on the application protocol, lasts for minutes (short-term facilitation), hours (intermediate-term facilitation) or days (long-term facilitation). In contrast, application of the peptide transmitter FMRFamide produces a synaptic weakening or depression that, depending on the application protocol, can last from minutes to days (long-term depression). The large size of the neurons allows for repeated sharp electrode recording of synaptic strength over periods of days together with microinjection of expression vectors, siRNAs and other compounds to target specific signaling cascades and molecules and thereby identify the molecular and cell biological steps that underlie the changes in synaptic efficacy. An additional advantage of the Aplysia culture system comes from the fact that the neurons demonstrate synapse-specificity in culture. Thus, sensory neurons do not form synapses with themselves (autapses) or with other sensory neurons, nor do they form synapses with non-target identified motor neurons in culture. The varicosities, sites of synaptic contact between sensory and motor neurons, are large enough (2-7 microns in diameter) to allow synapse formation (as well as changes in synaptic morphology) with target motor neurons to be studied at the light microscopic level. In this video, we demonstrate each step of preparing sensory-motor neuron cultures, including anesthetizing adult and juvenile Aplysia, dissecting their ganglia, protease digestion of the ganglia, removal of the connective tissue by microdissection, identification of both sensory and motor neurons and removal of each cell type by microdissection, plating of the motor neuron, addition of the sensory neuron and manipulation of the sensory neurite to form contact with the cultured motor neuron.
Collapse
Affiliation(s)
- Yali Zhao
- Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | | | | |
Collapse
|
242
|
Persistent transcription- and translation-dependent long-term potentiation induced by mGluR1 in hippocampal interneurons. J Neurosci 2009; 29:5605-15. [PMID: 19403827 DOI: 10.1523/jneurosci.5355-08.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal interneurons synchronize the activity of large neuronal ensembles during memory consolidation. Although the latter process is manifested as increases in synaptic efficacy which require new protein synthesis in pyramidal neurons, it is unknown whether such enduring plasticity occurs in interneurons. Here, we uncover a long-term potentiation (LTP) of transmission at individual interneuron excitatory synapses which persists for at least 24 h, after repetitive activation of type-1 metabotropic glutamate receptors [mGluR1-mediated chemical late LTP (cL-LTP(mGluR1))]. cL-LTP(mGluR1) involves presynaptic and postsynaptic expression mechanisms and requires both transcription and translation via phosphoinositide 3-kinase/mammalian target of rapamycin and MAP kinase kinase-extracellular signal-regulated protein kinase signaling pathways. Moreover, cL-LTP(mGluR1) involves translational control at the level of initiation as it is prevented by hippuristanol, an inhibitor of eIF4A, and facilitated in mice lacking the cap-dependent translational repressor, 4E-BP. Our results reveal novel mechanisms of long-term synaptic plasticity that are transcription and translation-dependent in inhibitory interneurons, indicating that persistent synaptic modifications in interneuron circuits may contribute to hippocampal-dependent cognitive processes.
Collapse
|
243
|
Okada D, Ozawa F, Inokuchi K. Input-specific spine entry of soma-derived Vesl-1S protein conforms to synaptic tagging. Science 2009; 324:904-9. [PMID: 19443779 DOI: 10.1126/science.1171498] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Late-phase synaptic plasticity depends on the synthesis of new proteins that must function only in the activated synapses. The synaptic tag hypothesis requires input-specific functioning of these proteins after undirected transport. Confirmation of this hypothesis requires specification of a biochemical tagging activity and an example protein that behaves as the hypothesis predicts. We found that in rat neurons, soma-derived Vesl-1S (Homer-1a) protein, a late-phase plasticity-related synaptic protein, prevailed in every dendrite and did not enter spines. N-methyl-d-aspartate receptor activation triggered input-specific spine entry of Vesl-1S proteins, which met many criteria for synaptic tagging. These results suggest that Vesl-1S supports the hypothesis and that the activity-dependent regulation of spine entry functions as a synaptic tag.
Collapse
Affiliation(s)
- Daisuke Okada
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | |
Collapse
|
244
|
Espinosa JS, Wheeler DG, Tsien RW, Luo L. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 2009; 62:205-17. [PMID: 19409266 PMCID: PMC2788338 DOI: 10.1016/j.neuron.2009.03.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/25/2009] [Accepted: 03/04/2009] [Indexed: 11/18/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.
Collapse
Affiliation(s)
- J. Sebastian Espinosa
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
- Neurosciences Program, Stanford University, Stanford, CA 94305
| | - Damian G. Wheeler
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Richard W. Tsien
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305
- Neurosciences Program, Stanford University, Stanford, CA 94305
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
- Neurosciences Program, Stanford University, Stanford, CA 94305
| |
Collapse
|
245
|
Kaye JA, Rose NC, Goldsworthy B, Goga A, L'Etoile ND. A 3'UTR pumilio-binding element directs translational activation in olfactory sensory neurons. Neuron 2009; 61:57-70. [PMID: 19146813 DOI: 10.1016/j.neuron.2008.11.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 05/15/2008] [Accepted: 11/05/2008] [Indexed: 01/25/2023]
Abstract
Prolonged stimulation leads to specific and stable changes in an animal's behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known. Adaptation of the AWC olfactory sensory neurons of C. elegans requires the cGMP-dependent protein kinase EGL-4. Here, we show that the RNA-binding PUF protein FBF-1 is required in the adult AWC for adaptation. In the odor-adapted animal, it increases translation via binding to the egl-4 3' UTR. Further, the PUF protein may localize translation near the sensory cilia and cell body. Although the RNA-binding PUF proteins have been shown to promote plasticity in development by temporally and spatially repressing translation, this work reveals that in the adult nervous system, they can work in a different way to promote experience-dependent plasticity by activating translation in response to environmental stimulation.
Collapse
Affiliation(s)
- Julia A Kaye
- Cellular and Developmental Biology Program, 1 Shields Drive, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
246
|
Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61:10-26. [PMID: 19146809 PMCID: PMC5154738 DOI: 10.1016/j.neuron.2008.10.055] [Citation(s) in RCA: 744] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023]
Abstract
Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior. Translational control is important for regulating both general protein synthesis and synthesis of specific proteins in response to neuronal activity. In this review, we summarize and discuss recent progress in the field and highlight the prospects for better understanding of long-lasting changes in synaptic strength, learning, and memory and implications for neurological diseases.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, BT 110, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
247
|
Kaplan BB, Gioio AE, Hillefors M, Aschrafi A. Axonal protein synthesis and the regulation of local mitochondrial function. Results Probl Cell Differ 2009; 48:225-42. [PMID: 19343315 PMCID: PMC2786086 DOI: 10.1007/400_2009_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had similar effects on the organelle's functional activity. In addition to mitochondrial mRNAs, SCG axons contain approximately 200 different microRNAs (miRs), short, noncoding RNA molecules involved in the posttranscriptional regulation of gene expression. One of these miRs (miR-338) targets cytochrome c oxidase IV (COXIV) mRNA. This nuclear-encoded mRNA codes for a protein that plays a key role in the assembly of the mitochondrial enzyme complex IV and oxidative phosphorylation. Over-expression of miR-338 in the axon markedly decreases COXIV expression, mitochondrial functional activity, and the uptake of neurotransmitter into the axon. Conversely, the inhibition of endogeneous miR-338 levels in the axon significantly increased mitochondrial activity and norepinephrine uptake into the axon. The silencing of COXIV expression in the axon using short, inhibitory RNAs (siRNAs) yielded similar results, a finding that indicated that the effects of miR-338 on mitochondrial activity and axon function were mediated, at least in part, through local COXIV mRNA translation. Taken together, recent findings establish that proteins requisite for mitochondrial activity are synthesized locally in the axon and nerve terminal, and call attention to the intimacy of the relationship that has evolved between the distant cellular domains of the neuron and its energy generating systems.
Collapse
Affiliation(s)
- Barry B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892-1381, USA.
| | | | | | | |
Collapse
|
248
|
Puthanveettil SV, Monje FJ, Miniaci MC, Choi YB, Karl KA, Khandros E, Gawinowicz MA, Sheetz MP, Kandel ER. A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex. Cell 2008; 135:960-73. [PMID: 19041756 PMCID: PMC2635114 DOI: 10.1016/j.cell.2008.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/28/2008] [Accepted: 11/04/2008] [Indexed: 01/09/2023]
Abstract
To explore how gene products, required for the initiation of synaptic growth, move from the cell body of the sensory neuron to its presynaptic terminals, and from the cell body of the motor neuron to its postsynaptic dendritic spines, we have investigated the anterograde transport machinery in both the sensory and motor neurons of the gill-withdrawal reflex of Aplysia. We found that the induction of long-term facilitation (LTF) by repeated applications of serotonin, a modulatory transmitter released during learning in Aplysia, requires upregulation of kinesin heavy chain (KHC) in both pre- and postsynaptic neurons. Indeed, upregulation of KHC in the presynaptic neurons alone is sufficient for the induction of LTF. However, KHC is not required for the persistence of LTF. Thus, in addition to transcriptional activation in the nucleus and local protein synthesis at the synapse, our studies have identified a third component critical for long-term learning-related plasticity: the coordinated upregulation of kinesin-mediated transport.
Collapse
Affiliation(s)
- Sathyanarayanan V Puthanveettil
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Francisco J Monje
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Maria Concetta Miniaci
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
- Department of Experimental Pharmacology, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Yun-Beom Choi
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Kevin A Karl
- Howard Hughes Medical Institute, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Eugene Khandros
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Mary Ann Gawinowicz
- Protein Chemistry Core Facility, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Michael P. Sheetz
- Department of Biological Sciences, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Eric R. Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
- Howard Hughes Medical Institute, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
- Kavli Institute for Brain Science, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
249
|
Pugh JR, Raman IM. Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci 2008; 28:10549-60. [PMID: 18923031 PMCID: PMC2592847 DOI: 10.1523/jneurosci.2061-08.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/01/2008] [Accepted: 09/02/2008] [Indexed: 11/21/2022] Open
Abstract
Neurons of the cerebellar nuclei receive synaptic excitation from cerebellar mossy fibers. Unlike in many principal neurons, coincident presynaptic activity and postsynaptic depolarization do not generate long-term potentiation at these synapses. Instead, EPSCs are potentiated by high-frequency trains of presynaptic activity applied with postsynaptic hyperpolarization, in patterns resembling mossy-fiber-mediated excitation and Purkinje-cell-mediated inhibition that are predicted to occur during delay eyelid conditioning. Here, we have used electrophysiology and Ca imaging to test how synaptic excitation and inhibition interact to generate long-lasting synaptic plasticity in nuclear cells in cerebellar slices. We find that the extent of plasticity varies with the relative timing of synaptic excitation and hyperpolarization. Potentiation is most effective when synaptic stimuli precede the postinhibitory rebound by approximately 400 ms, whereas with longer intervals, or with a reverse sequence, EPSCs tend to depress. When basal intracellular Ca is raised by spontaneous firing or reduced by voltage clamping at subthreshold potentials, potentiation is induced as long as the synaptic-rebound temporal sequence is maintained, suggesting that plasticity does not require Ca levels to exceed a threshold or attain a specific concentration. Although rebound and spike-dependent Ca influx are global, potentiation is synapse specific, and is disrupted by inhibitors of calcineurin or Ca-calmodulin-dependent protein kinase II, but not PKC. When IPSPs replace the hyperpolarizing step in the induction protocol, potentiation proceeds normally. These results lead us to propose that synaptic and inhibitory/rebound stimuli initiate separate processes, with local NMDA receptor-mediated Ca influx "priming" synapses, and Ca changes from the inhibition and rebound "triggering" potentiation at recently activated synapses.
Collapse
Affiliation(s)
| | - Indira M. Raman
- Interdepartmental Neuroscience Program and
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
250
|
Miniaci MC, Kim JH, Puthanveettil SV, Si K, Zhu H, Kandel ER, Bailey CH. Sustained CPEB-dependent local protein synthesis is required to stabilize synaptic growth for persistence of long-term facilitation in Aplysia. Neuron 2008; 59:1024-36. [PMID: 18817739 PMCID: PMC3442368 DOI: 10.1016/j.neuron.2008.07.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 06/24/2008] [Accepted: 07/28/2008] [Indexed: 11/28/2022]
Abstract
The time course of the requirement for local protein synthesis in the stabilization of learning-related synaptic growth and the persistence of long-term memory was examined using Aplysia bifurcated sensory neuron-motor neuron cultures. We find that, following repeated pulses of serotonin (5-HT), the local perfusion of emetine, an inhibitor of protein synthesis, or a TAT-AS oligonucleotide directed against ApCPEB blocks long-term facilitation (LTF) at either 24 or 48 hr and leads to a selective retraction of newly formed sensory neuron varicosities induced by 5-HT. By contrast, later inhibition of local protein synthesis, at 72 hr after 5-HT, has no effect on either synaptic growth or LTF. These results define a specific stabilization phase for the storage of long-term memory during which newly formed varicosities are labile and require sustained CPEB-dependent local protein synthesis to acquire the more stable properties of mature varicosities required for the persistence of LTF.
Collapse
Affiliation(s)
- Maria Concetta Miniaci
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|