201
|
Sharma G, Banerjee R, Srivastava S. Molecular Mechanisms and the Interplay of Important Chronic Obstructive Pulmonary Disease Biomarkers Reveals Novel Therapeutic Targets. ACS OMEGA 2023; 8:46376-46389. [PMID: 38107961 PMCID: PMC10719921 DOI: 10.1021/acsomega.3c07480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive, age-dependent, and unmet chronic inflammatory disease of the peripheral airways, leading to difficulty in exhalation. Several biomarkers have been tested in general towards the resolution for a long time, but no apparent success was achieved. Ongoing therapies of COPD have only symptomatic relief but no cure. Reactive oxygen species (ROS) are highly reactive species which include oxygen radicals and nonradical derivatives, and are the prominent players in COPD. They are produced as natural byproducts of cellular metabolism, but their levels can vary due to exposure to indoor air pollution, occupational pollution, and environmental pollutants such as cigarette smoke. In COPD, the lungs are continuously exposed to high levels of ROS thus leading to oxidative stress. ROS can cause damage to cells, proteins, lipids, and DNA which further contributes to the chronic inflammation in COPD and exacerbates the disease condition. Excessive ROS production can overwhelm cellular antioxidant systems and act as signaling molecules that regulate cellular processes, including antioxidant defense mechanisms involving glutathione and sirtuins which further leads to cellular apoptosis, cellular senescence, inflammation, and sarcopenia. In this review paper, we focused on COPD from different perspectives including potential markers and different cellular processes such as apoptosis, cellular senescence, inflammation, sirtuins, and sarcopenia, and tried to connect the dots between them so that novel therapeutic strategies to evaluate and target the possible underlying mechanisms in COPD could be explored.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
202
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Shang Q, Bian X, Zhu L, Liu J, Wu M, Lou S. Lactate Mediates High-Intensity Interval Training-Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway. Antioxidants (Basel) 2023; 12:2087. [PMID: 38136207 PMCID: PMC10740508 DOI: 10.3390/antiox12122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondrial biogenesis and fusion are essential for maintaining healthy mitochondria and ATP production. High-intensity interval training (HIIT) can enhance mitochondrial function in mouse hippocampi, but its underlying mechanism is not completely understood. Lactate generated during HIIT may mediate the beneficial effects of HIIT on neuroplasticity by activating the lactate receptor GPR81. Furthermore, growing evidence shows that lactate contributes to mitochondrial function. Given that mitochondrial function is crucial for cerebral physiological processes, the current study aimed to determine the mechanism of HIIT in hippocampal mitochondrial function. In vivo, GPR81 was knocked down in the hippocampi of mice via the injection of adeno-associated virus (AAV) vectors. The GPR81-knockdown mice were subjected to HIIT. The results demonstrated that HIIT increased mitochondria numbers, ATP production, and oxidative phosphorylation (OXPHOS) in the hippocampi of mice. In addition, HIIT induced mitochondrial biogenesis, fusion, synaptic plasticity, and ERK1/2 phosphorylation but not in GPR81-knockdown mice. In vitro, Neuro-2A cells were treated with L-lactate, a GPR81 agonist, and an ERK1/2 inhibitor. The results showed that both L-lactate and the GPR81 agonist increased mitochondrial biogenesis, fusion, ATP levels, OXPHOS, mitochondrial membrane potential, and synaptic plasticity. However, the inhibition of ERK1/2 phosphorylation blunted L-lactate or the GPR81 agonist-induced promotion of mitochondrial function and synaptic plasticity. In conclusion, our findings suggest that lactate mediates HIIT-induced promotion of mitochondrial function through the GPR81-ERK1/2 pathway.
Collapse
Affiliation(s)
- Qinghui Shang
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Xuepeng Bian
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Lutao Zhu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Jun Liu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Min Wu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| |
Collapse
|
204
|
Rivera CN, Kamer MM, Cook NE, McGovern MR, Watne RM, Wommack AJ, Vaughan RA. 5-Aza-2'-deoxycytidine-mediated DNA hypomethylation with and without concurrent insulin resistance suppresses myotube mitochondrial capacity. Cell Biochem Funct 2023; 41:1422-1429. [PMID: 37916846 DOI: 10.1002/cbf.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Type 2 diabetes is characterized by elevated blood glucose and reduced insulin sensitivity in target tissues. Moreover, reduced mitochondrial metabolism and expressional profile of genes governing mitochondrial metabolism (such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha [PGC-1α]) are also reduced during insulin resistance. Epigenetic regulation via DNA methylation of genes including PGC-1α may contribute to diminished mitochondrial capacity, while hypomethylation of PGC-1α (such as that invoked by exercise) has been associated with increased PGC-1α expression and favorable metabolic outcomes. The purpose of the present report is to characterize the effects of DNA hypomethylation on myotube metabolism and expression of several related metabolic targets. C2C12 myotubes were treated with 5-Aza-2'-deoxycytidine (5-Aza) for either 24 or 72 h both with and without hyperinsulinemic-induced insulin resistance. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via quantitative real time polymerase chain reaction and western blot analysis, respectively. Though expression of PGC-1α and other related targets remained unaltered, insulin resistance and 5-Aza treatment significantly reduced mitochondrial metabolism. Similarly, peak glycolytic metabolism was diminished by 5-Aza-treated cells, while basal glycolytic metabolism was unaltered. 5-Aza also reduced the expression of branched-chain amino acid (BCAA) catabolic components, however BCAA utilization was enhanced during insulin resistance with 5-Aza treatment. Together the present work provides proof-of-concept evidence of the potential role of DNA methylation in the regulation of mitochondrial metabolism and the potential interactions with insulin resistance in a model of skeletal muscle.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Madison M Kamer
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Norah E Cook
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Macey R McGovern
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| |
Collapse
|
205
|
Lu Y, Fujioka H, Wang W, Zhu X. Bezafibrate confers neuroprotection in the 5xFAD mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166841. [PMID: 37558011 PMCID: PMC10528941 DOI: 10.1016/j.bbadis.2023.166841] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Mitochondrial dysfunction plays an important role in the pathogenesis of Alzheimer's disease (AD), the most common neurodegenerative disease. Prior studies suggested impaired mitochondrial biogenesis likely contributes to mitochondrial dysfunction in AD. Bezafibrate, a peroxisome proliferator-activated receptor (PPAR) pan-agonist, has been shown to enhance mitochondrial biogenesis and increase oxidative phosphorylation capacity. In the present study, we investigated whether bezafibrate could rescue mitochondrial dysfunction and other AD-related deficits in 5xFAD mice. Bezafibrate was well tolerated by 5xFAD mice. Indeed, it rescued the expression of key mitochondrial proteins as well as mitochondrial dynamics and function in the brain of 5xFAD mice. Importantly, bezafibrate treatment led to significant improvement of cognitive/memory function in 5xFAD mice accompanied by alleviation of amyloid pathology and neuronal loss as well as reduced oxidative stress and neuroinflammation. Overall, this study suggests that bezafibrate improves mitochondrial function, mitigates neuroinflammation and improves cognitive functions in 5xFAD mice, thus supporting the notion that enhancing mitochondrial biogenesis/function is a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yubing Lu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Cryo-EM Core Facility, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
206
|
Cai J, Wang J, Jiang C, Ye L, He X, Huang J, Sun X, Ren Z, Lai X, Qiu Y, Wang H, Lv G, Zheng J, Lu T, Chen H, Liu Y, Chen H, Guan Y, Wang Y, Wang T, Yao J, Sui X, Kang Y, Zhang Y, Li H, Wang J, Li W, Chen G, Yang Y, Xiang AP. Combined inhibition of surface CD51 and γ-secretase-mediated CD51 cleavage improves therapeutic efficacy in experimental metastatic hepatocellular carcinoma. J Hepatol 2023; 79:1418-1434. [PMID: 37604269 DOI: 10.1016/j.jhep.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND & AIMS Integrin αv (ITGAV, CD51) is regarded as a key component in multiple stages of tumor progression. However, the clinical failure of cilengitide, a specific inhibitor targeting surface CD51, suggests the importance of yet-unknown mechanisms by which CD51 promotes tumor progression. METHODS In this study, we used several hepatocellular carcinoma (HCC) cell lines and murine hepatoma cell lines. To investigate the role of CD51 on HCC progression, we used a 3D invasion assay and in vivo bioluminescence imaging. We used periostin-knockout transgenic mice to uncover the role of the tumor microenvironment on CD51 cleavage. Moreover, we used several clinically relevant HCC models, including patient-derived organoids and patient-derived xenografts, to evaluate the therapeutic efficacy of cilengitide in combination with the γ-secretase inhibitor LY3039478. RESULTS We found that CD51 could undergo transmembrane cleavage by γ-secretase to produce a functional intracellular domain (CD51-ICD). The cleaved CD51-ICD facilitated HCC invasion and metastasis by promoting the transcription of oxidative phosphorylation-related genes. Furthermore, we identified cancer-associated fibroblast-derived periostin as the major driver of CD51 cleavage. Lastly, we showed that cilengitide-based therapy led to a dramatic therapeutic effect when supplemented with LY3039478 in both patient-derived organoid and xenograft models. CONCLUSIONS In summary, we revealed previously unrecognized mechanisms by which CD51 is involved in HCC progression and uncovered the underlying cause of cilengitide treatment failure, as well as providing evidence supporting the translational prospects of combined CD51-targeted therapy in the clinic. IMPACT AND IMPLICATIONS Integrin αv (CD51) is a widely recognized pro-tumoral molecule that plays a crucial role in various stages of tumor progression, making it a promising therapeutic target. However, despite early promising results, cilengitide, a specific antagonist of CD51, failed in a phase III clinical trial. This prompted further investigation into the underlying mechanisms of CD51's effects. This study reveals that the γ-secretase complex directly cleaves CD51 to produce an intracellular domain (CD51-ICD), which functions as a pro-tumoral transcriptional regulator and can bypass the inhibitory effects of cilengitide by entering the nucleus. Furthermore, the localization of CD51 in the nucleus is significantly associated with the prognosis of patients with HCC. These findings provide a theoretical basis for re-evaluating cilengitide in clinical settings and highlight the importance of identifying a more precise patient subpopulation for future clinical trials targeting CD51.
Collapse
Affiliation(s)
- Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China; Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiancheng Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China; Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Xinyi He
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jianyang Huang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiang Sun
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Ren
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Qiu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Hongmiao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Huaxin Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Facility Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Xin Sui
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Yinqian Kang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Jinkai Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Weiqiang Li
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China.
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
207
|
Yang H, Hur G, Lee TK, Kim JE, Kim JH, Kim JR, Kim J, Park JHY, Lee KW. Sulforaphane Mitigates High-Fat Diet-Induced Obesity by Enhancing Mitochondrial Biogenesis in Skeletal Muscle via the HDAC8-PGC1α Axis. Mol Nutr Food Res 2023; 67:e2300149. [PMID: 37775334 DOI: 10.1002/mnfr.202300149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Indexed: 10/01/2023]
Abstract
SCOPE Histone deacetylases (HDACs) play a crucial role in the transcriptional regulation of various genes which can contribute to metabolic disorders. Although sulforaphane (SFN), a natural HDAC inhibitor, has been reported to alleviate obesity in humans and mice, the specific mechanisms and how HDACs contribute to SFN's anti-obesity effects remain unclear. METHODS AND RESULTS Oral administration of SFN in mice fed high-fat diet increases peroxisome proliferator activating receptor γ coactivator (PGC1α)-induced mitochondrial biogenesis in skeletal muscle. Among HDACs, SFN specifically inhibits HDAC8 activity. SFN enhances mitochondrial DNA and adenosine triphosphate (ATP) production in C2C12 myotubes, similar to the action of PCI34051, a synthetic HDAC8-specific inhibitor. These effects are mediated by increased expression of PGC1α via upregulation of cAMP response element binding (CREB, Ser133 ) phosphorylation and p53 (Lys379 ) acetylation. These SFN-induced effects are not observed in cells with a genetic deletion of HDAC8, suggesting the existence of a regulatory loop between HDAC8 and PGC1α in SFN's action. CONCLUSION SFN prevents obesity-related metabolic dysregulation by enhancing mitochondrial biogenesis and function via targeting the HDAC8-PGCα axis. These results suggest SFN as a beneficial anti-obesity agent providing new insight into the role of HDAC8 in the PGC1α-mediated mitochondrial biogenesis, which may be a novel and promising drug target for metabolic diseases.
Collapse
Affiliation(s)
- Hee Yang
- Department of Food and Nutrition, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, South Korea
| | - Gihyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Kyung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin University, Seoul, 01133, Republic of Korea
- Basic Science Research Institute, Sungshin University, Seoul, 01133, Republic of Korea
| | - Jong Rhan Kim
- R&D Evaluation Center, Korea Institute of Science and Technology Evaluation and Planning, 1339 Eumseong-gun, Chungcheongbuk-do, Republic of Korea
| | - Jiyoung Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826, South Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
208
|
Wang W, Lin L, Zhang Q, Yang J, Kamili E, Chu J, Li X, Yang S, Xu Y. Heteroplasmy and Individual Mitogene Pools: Characteristics and Potential Roles in Ecological Studies. BIOLOGY 2023; 12:1452. [PMID: 37998051 PMCID: PMC10669347 DOI: 10.3390/biology12111452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The mitochondrial genome (mitogenome or mtDNA), the extrachromosomal genome, is a multicopy circular DNA with high mutation rates due to replication and repair errors. A mitochondrion, cell, tissue, organ, or an individual body may hold multiple variants, both inherited and developed over a lifetime, which make up individual mitogene pools. This phenomenon is also called mtDNA heteroplasmy. MtDNA variants influence cellular and tissular functions and are consequently subjected to selection. Although it has long been recognized that only inheritable germline heteroplasmies have evolutionary significance, non-inheritable somatic heteroplasmies have been overlooked since they directly affect individual fitness and thus indirectly affect the fate of heritable germline variants. This review focuses on the characteristics, dynamics, and functions of mtDNA heteroplasmy and proposes the concept of individual mitogene pools to discuss individual genetic diversity from multiple angles. We provide a unique perspective on the relationship between individual genetic diversity and heritable genetic diversity and guide how the individual mitogene pool with novel genetic markers can be applied to ecological research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuhui Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (W.W.); (L.L.); (Q.Z.); (J.Y.); (E.K.); (J.C.); (X.L.)
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (W.W.); (L.L.); (Q.Z.); (J.Y.); (E.K.); (J.C.); (X.L.)
| |
Collapse
|
209
|
Sangha V, Aboulhassane S, Qu QR, Bendayan R. Protective effects of pyrroloquinoline quinone in brain folate deficiency. Fluids Barriers CNS 2023; 20:84. [PMID: 37981683 PMCID: PMC10659058 DOI: 10.1186/s12987-023-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Folates (Vitamin B9) are critical for normal neurodevelopment and function, with transport mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Cerebral folate uptake primarily occurs at the blood-cerebrospinal fluid barrier (BCSFB) through concerted actions of FRα and PCFT, with impaired folate transport resulting in the neurological disorder cerebral folate deficiency (CFD). Increasing evidence suggests that disorders associated with CFD also present with neuroinflammation, oxidative stress, and mitochondrial dysfunction, however the role of brain folate deficiency in inducing these abnormalities is not well-understood. Our laboratory has identified the upregulation of RFC by nuclear respiratory factor 1 (NRF-1) at the blood-brain barrier (BBB) once indirectly activated by the natural compound pyrroloquinoline quinone (PQQ). PQQ is also of interest due to its anti-inflammatory, antioxidant, and mitochondrial biogenesis effects. In this study, we examined the effects of folate deficiency and PQQ treatment on inflammatory and oxidative stress responses, and changes in mitochondrial function. METHODS Primary cultures of mouse mixed glial cells exposed to folate-deficient (FD) conditions and treated with PQQ were analyzed for changes in gene expression of the folate transporters, inflammatory markers, oxidative stress markers, and mitochondrial DNA (mtDNA) content through qPCR analysis. Changes in cellular reactive oxygen species (ROS) levels were analyzed in vitro through a DCFDA assay. Wildtype (C57BL6/N) mice exposed to FD (0 mg/kg folate), or control (2 mg/kg folate) diets underwent a 10-day (20 mg/kg/day) PQQ treatment regimen and brain tissues were collected and analyzed. RESULTS Folate deficiency resulted in increased expression of inflammatory and oxidative stress markers in vitro and in vivo, with increased cellular ROS levels observed in mixed glial cells as well as a reduction of mitochondrial DNA (mtDNA) content observed in FD mixed glial cells. PQQ treatment was able to reverse these changes, while increasing RFC expression through activation of the PGC-1α/NRF-1 signaling pathway. CONCLUSION These results demonstrate the effects of brain folate deficiency, which may contribute to the neurological deficits commonly seen in disorders of CFD. PQQ may represent a novel treatment strategy for disorders associated with CFD, as it can increase folate uptake, while in parallel reversing many abnormalities that arise with brain folate deficiency.
Collapse
Affiliation(s)
- Vishal Sangha
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Sara Aboulhassane
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Qing Rui Qu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Reina Bendayan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
210
|
Zhang Y, Fan Y, Hu H, Zhang X, Wang Z, Wu Z, Wang L, Yu X, Song X, Xiang P, Zhang X, Wang T, Tan S, Li C, Gao L, Liang X, Li S, Li N, Yue X, Ma C. ZHX2 emerges as a negative regulator of mitochondrial oxidative phosphorylation during acute liver injury. Nat Commun 2023; 14:7527. [PMID: 37980429 PMCID: PMC10657347 DOI: 10.1038/s41467-023-43439-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
Mitochondria dysfunction contributes to acute liver injuries, and mitochondrial regulators, such as PGC-1α and MCJ, affect liver regeneration. Therefore, identification of mitochondrial modulators may pave the way for developing therapeutic strategies. Here, ZHX2 is identified as a mitochondrial regulator during acute liver injury. ZHX2 both transcriptionally inhibits expression of several mitochondrial electron transport chain genes and decreases PGC-1α stability, leading to reduction of mitochondrial mass and OXPHOS. Loss of Zhx2 promotes liver recovery by increasing mitochondrial OXPHOS in mice with partial hepatectomy or CCl4-induced liver injury, and inhibition of PGC-1α or electron transport chain abolishes these effects. Notably, ZHX2 expression is higher in liver tissues from patients with drug-induced liver injury and is negatively correlated with mitochondrial mass marker TOM20. Delivery of shRNA targeting Zhx2 effectively protects mice from CCl4-induced liver injury. Together, our data clarify ZHX2 as a negative regulator of mitochondrial OXPHOS and a potential target for developing strategies for improving liver recovery after acute injuries.
Collapse
Affiliation(s)
- Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Huili Hu
- Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaohui Zhang
- Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiangguo Yu
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Peng Xiang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaodong Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Shuijie Li
- College of Pharmacy, Harbin Medical University, Harbin, China
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institute, Stockholm, Sweden
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China.
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China.
| |
Collapse
|
211
|
Wang Y, Liu Z, Bian X, Zhao C, Zhang X, Liu X, Wang N. Function and regulation of ubiquitin-like SUMO system in heart. Front Cell Dev Biol 2023; 11:1294717. [PMID: 38033852 PMCID: PMC10687153 DOI: 10.3389/fcell.2023.1294717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
The small ubiquitin-related modifier (SUMOylation) system is a conserved, reversible, post-translational protein modification pathway covalently attached to the lysine residues of proteins in eukaryotic cells, and SUMOylation is catalyzed by SUMO-specific activating enzyme (E1), binding enzyme (E2) and ligase (E3). Sentrin-specific proteases (SENPs) can cleave the isopeptide bond of a SUMO conjugate and catalyze the deSUMOylation reaction. SUMOylation can regulate the activity of proteins in many important cellular processes, including transcriptional regulation, cell cycle progression, signal transduction, DNA damage repair and protein stability. Biological experiments in vivo and in vitro have confirmed the key role of the SUMO conjugation/deconjugation system in energy metabolism, Ca2+ cycle homeostasis and protein quality control in cardiomyocytes. In this review, we summarized the research progress of the SUMO conjugation/deconjugation system and SUMOylation-mediated cardiac actions based on related studies published in recent years, and highlighted the further research areas to clarify the role of the SUMO system in the heart by using emerging technologies.
Collapse
Affiliation(s)
- Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Chenxu Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
212
|
Morrish F, Gingras H, Noonan J, Huang L, Sweet IR, Kuok IT, Knoblaugh SE, Hockenbery DM. Mitochondrial diabetes in mice expressing a dominant-negative allele of nuclear respiratory factor-1 ( Nrf1 ) in pancreatic β-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.524153. [PMID: 38014068 PMCID: PMC10680558 DOI: 10.1101/2023.01.22.524153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetic polymorphisms in nuclear respiratory factor-1 ( NRF1 ), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with β-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic β-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in β- cells. Expression of NRF1 target genes Tfam , T@1m and T@2m , and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in β-cells was sufficient to restore β-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of β-cell function and establishes a model to study the interplay between regulators of bi- genomic gene transcription in diabetes.
Collapse
|
213
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
214
|
Kim HJ, Jung DW, Williams DR. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023; 12:2608. [PMID: 37998343 PMCID: PMC10670210 DOI: 10.3390/cells12222608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass and function that occurs with aging. The progression of sarcopenia is correlated with the onset of physical disability, the inability to live independently, and increased mortality. Due to global increases in lifespan and demographic aging in developed countries, sarcopenia has become a major socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional support, although these may suffer from low adherence and variable outcomes. There are currently no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical research focusing on discovering new candidate drugs and novel targets. In this review, recent progress in this research will be discussed, along with the challenges that may preclude successful translational research in the clinic. The types of drugs examined include mitochondria-targeting compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics, natural products, and repositioning candidates. In light of the large number of drugs and targets being reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or even mitigate sarcopenia may be within reach.
Collapse
Affiliation(s)
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
215
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
216
|
Teng H, Yang B, Su Y, Chen J, Cui L, Sun R, Zhao J, Liu Q, Qin A. Aminooxyacetic acid hemihydrochloride leads to decreased intracellular ATP levels and altered cell cycle of prostate cancer cells by suppressing energy metabolism. Biomed Pharmacother 2023; 167:115605. [PMID: 37801901 DOI: 10.1016/j.biopha.2023.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
The second most common cancer among men is prostate cancer, which is also the fifth leading reason for male cancer deaths worldwide. Bone metastases are the main factor affecting the prognosis of prostate cancer. Consequently, antitumor and anti-prostate cancer-induced bone destruction medicines are urgently needed. We previously discovered that aminooxyacetic acid hemihydrochloride (AOAA) suppressed bone resorption and osteoclast growth by decreasing adenosine triphosphate (ATP) production and limiting oxidative phosphorylation (OXPHOS). Here, we evaluated the impacts of AOAA on prostate cancer RM-1 cells in vitro. It's found that AOAA significantly inhibited cell proliferation, migration, and invasiveness, decreased ATP levels, increased ROS, halted the cell cycle phase, and triggered apoptosis. AOAA also decreased mitochondrial membrane potential and the ability to uptake glucose, suggesting that the antitumor effects of AOAA were expressed through the inhibition of OXPHOS and glycolysis. Furthermore, we assessed the effects of AOAA in vivo using a prostate cancer-induced bone osteolysis mice model. AOAA also delayed tumor growth and bone destruction in vivo. On the whole, our findings imply that AOAA may potentially have therapeutic effects on prostate cancer and prostate cancer-induced osteolysis.
Collapse
Affiliation(s)
- Hailong Teng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Biao Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuangang Su
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junchun Chen
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Cui
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China.
| | - An Qin
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
217
|
Spaan CN, de Boer RJ, Smit WL, van der Meer JH, van Roest M, Vermeulen JL, Koelink PJ, Becker MA, Go S, Silva J, Faller WJ, van den Brink GR, Muncan V, Heijmans J. Grp78 is required for intestinal Kras-dependent glycolysis proliferation and adenomagenesis. Life Sci Alliance 2023; 6:e202301912. [PMID: 37643866 PMCID: PMC10465924 DOI: 10.26508/lsa.202301912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
In development of colorectal cancer, mutations in APC are often followed by mutations in oncogene KRAS The latter changes cellular metabolism and is associated with the Warburg phenomenon. Glucose-regulated protein 78 (Grp78) is an important regulator of the protein-folding machinery, involved in processing and localization of transmembrane proteins. We hypothesize that targeting Grp78 in Apc and Kras (AK)-mutant intestines interferes with the metabolic phenotype imposed by Kras mutations. In mice with intestinal epithelial mutations in Apc, Kras G12D and heterozygosity for Grp78 (AK-Grp78 HET ) adenoma number and size is decreased compared with AK-Grp78 WT mice. Organoids from AK-Grp78 WT mice exhibited a glycolysis metabolism which was completely rescued by Grp78 heterozygosity. Expression and correct localization of glucose transporter GLUT1 was diminished in AK-Grp78 HET cells. GLUT1 inhibition restrained the increased growth observed in AK-mutant organoids, whereas AK-Grp78 HET organoids were unaffected. We identify Grp78 as a critical factor in Kras-mutated adenomagenesis. This can be attributed to a critical role for Grp78 in GLUT1 expression and localization, targeting glycolysis and the Warburg effect.
Collapse
Affiliation(s)
- Claudia N Spaan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ruben J de Boer
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Wouter L Smit
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jonathan Hm van der Meer
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jacqueline Lm Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pim J Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Marte Aj Becker
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Simei Go
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Joana Silva
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William J Faller
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jarom Heijmans
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
218
|
Ivanovski N, Wang H, Tran H, Ivanovska J, Pan J, Miraglia E, Leung S, Posiewko M, Li D, Mohammadi A, Higazy R, Nagy A, Kim P, Santyr G, Belik J, Palaniyar N, Gauda EB. L-citrulline attenuates lipopolysaccharide-induced inflammatory lung injury in neonatal rats. Pediatr Res 2023; 94:1684-1695. [PMID: 37349511 DOI: 10.1038/s41390-023-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Prenatal or postnatal lung inflammation and oxidative stress disrupt alveolo-vascular development leading to bronchopulmonary dysplasia (BPD) with and without pulmonary hypertension. L-citrulline (L-CIT), a nonessential amino acid, alleviates inflammatory and hyperoxic lung injury in preclinical models of BPD. L-CIT modulates signaling pathways mediating inflammation, oxidative stress, and mitochondrial biogenesis-processes operative in the development of BPD. We hypothesize that L-CIT will attenuate lipopolysaccharide (LPS)-induced inflammation and oxidative stress in our rat model of neonatal lung injury. METHODS Newborn rats during the saccular stage of lung development were used to investigate the effect of L-CIT on LPS-induced lung histopathology and pathways involved in inflammatory, antioxidative processes, and mitochondrial biogenesis in lungs in vivo, and in primary culture of pulmonary artery smooth muscle cells, in vitro. RESULTS L-CIT protected the newborn rat lung from LPS-induced: lung histopathology, ROS production, NFκB nuclear translocation, and upregulation of gene and protein expression of inflammatory cytokines (IL-1β, IL-8, MCP-1α, and TNF-α). L-CIT maintained mitochondrial morphology, increased protein levels of PGC-1α, NRF1, and TFAM (transcription factors involved in mitochondrial biogenesis), and induced SIRT1, SIRT3, and superoxide dismutases protein expression. CONCLUSION L-CIT may be efficacious in decreasing early lung inflammation and oxidative stress mitigating progression to BPD. IMPACT The nonessential amino acid L-citrulline (L-CIT) mitigated lipopolysaccharide (LPS)-induced lung injury in the early stage of lung development in the newborn rat. This is the first study describing the effect of L-CIT on the signaling pathways operative in bronchopulmonary dysplasia (BPD) in a preclinical inflammatory model of newborn lung injury. If our findings translate to premature infants, L-CIT could decrease inflammation, oxidative stress and preserve mitochondrial health in the lung of premature infants at risk for BPD.
Collapse
Affiliation(s)
- Nikola Ivanovski
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Huanhuan Wang
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Harvard Tran
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Julijana Ivanovska
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jingyi Pan
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emily Miraglia
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sharon Leung
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melanie Posiewko
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel Li
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Atefeh Mohammadi
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Anita Nagy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Anatomical Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Kim
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Giles Santyr
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jaques Belik
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Estelle B Gauda
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
219
|
Cheng L, Shi L, He C, Wang C, Lv Y, Li H, An Y, Duan Y, Dai H, Zhang H, Huang Y, Fu W, Sun W, Zhao B. Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway. Chin J Nat Med 2023; 21:812-829. [PMID: 38035937 DOI: 10.1016/s1875-5364(23)60481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 12/02/2023]
Abstract
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Collapse
Affiliation(s)
- Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yinglan Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huimin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Weiguang Sun
- GuangZhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou 510288, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
220
|
Zhao W, Hou Y, Zhang Q, Yu H, Meng M, Zhang H, Zhou Y. Estrogen receptor β exerts neuroprotective effects by fine-tuning mitochondrial homeostasis through NRF1/PGC-1α. Neurochem Int 2023; 171:105636. [PMID: 39491237 DOI: 10.1016/j.neuint.2023.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Estrogen deficiency causes mitochondrial defects that precede pathological changes related to Alzheimer's disease (AD) in the mouse model of postmenopause. The aim of this study was to investigate in such a mouse model whether and how estrogen receptor β (ERβ) was involved in prevention of mitochondrial damage and protection of neurons in the hippocampus. METHODS A mouse model of postmenopausal AD was created by ovariectomizing female 3xTg-AD mice, some of which were subcutaneously injected for six weeks with the non-steroidal ERβ agonist diarylpropionitrile. ERβ expression in female C57BL/6J mice was knocked down using shRNA interference. The different groups of animals were compared in terms of cognitive function using the Y-maze test, new object recognition test, and Morris water maze test, expression of numerous proteins related to mitochondrial biogenesis, mitophagy, apoptosis, and mitochondrial membrane potential, as well as deposition of amyloid β and neurofibrillary tangles. To complement these in vivo studies, we probed the effects of diarylpropionitrile on ERβ expression, apoptosis, and mitochondrial homeostasis in primary rat hippocampal neurons treated with amyloid β. RESULTS ERβ knockdown in C57BL/6J mice produced cognitive impairment, reduced mitochondrial biogenesis by downregulating PGC-1α, NRF1, mtTFA, and TOM20, and decreased mitophagy by downregulating Pink1, Parkin, and LC3B while upregulating PARIS and p62. ERβ knockdown promoted neuronal apoptosis by upregulating Cleaved-Caspase 9, Cleaved-Caspase 3, and Bax, while downregulating Bcl2 in hippocampus. Diarylpropionitrile mitigated cognitive decline in ovariectomized 3xTg-AD mice, which was associated with downregulation of BACE1, reduction of Aβ deposition, neurofibrillary tangles, and tau hyperphosphorylation, and upregulation of ERβ, increases in mitochondrial biogenesis and mitophagy, and decreases in apoptosis. The effects of diarylpropionitrile in mice were recapitulated in Aβ-injured primary rat hippocampal neurons. CONCLUSIONS ERβ activation can support learning and memory and alleviate AD symptoms in the postmenopausal AD model, which may involve regulation of neuronal mitochondrial biogenesis and mitophagy via NRF1/PGC-1α. This study supports further research on ERβ as a therapeutic target for postmenopausal women with AD.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China
| | - Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian City, 271018, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Meichen Meng
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Hanting Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China.
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China.
| |
Collapse
|
221
|
Kawakami R, Matsui H, Matsui M, Iso T, Yokoyama T, Ishii H, Kurabayashi M. Empagliflozin induces the transcriptional program for nutrient homeostasis in skeletal muscle in normal mice. Sci Rep 2023; 13:18025. [PMID: 37865720 PMCID: PMC10590450 DOI: 10.1038/s41598-023-45390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve heart failure (HF) outcomes across a range of patient characteristics. A hypothesis that SGLT2i induce metabolic change similar to fasting has recently been proposed to explain their profound clinical benefits. However, it remains unclear whether SGLT2i primarily induce this change in physiological settings. Here, we demonstrate that empagliflozin administration under ad libitum feeding did not cause weight loss but did increase transcripts of the key nutrient sensors, AMP-activated protein kinase and nicotinamide phosphoribosyltransferase, and the master regulator of mitochondrial gene expression, PGC-1α, in quadriceps muscle in healthy mice. Expression of these genes correlated with that of PPARα and PPARδ target genes related to mitochondrial metabolism and oxidative stress response, and also correlated with serum ketone body β-hydroxybutyrate. These results were not observed in the heart. Collectively, this study revealed that empagliflozin activates transcriptional programs critical for sensing and adaptation to nutrient availability intrinsic to skeletal muscle rather than the heart even in normocaloric condition. As activation of PGC-1α is sufficient for metabolic switch from fatigable, glycolytic metabolism toward fatigue-resistant, oxidative mechanism in skeletal muscle myofibers, our findings may partly explain the improvement of exercise tolerance in patients with HF receiving empagliflozin.
Collapse
Affiliation(s)
- Ryo Kawakami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Miki Matsui
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tomoyuki Yokoyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
222
|
Shang R, Miao J. Mechanisms and effects of metformin on skeletal muscle disorders. Front Neurol 2023; 14:1275266. [PMID: 37928155 PMCID: PMC10621799 DOI: 10.3389/fneur.2023.1275266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Skeletal muscle disorders are mostly genetic and include several rare diseases. With disease progression, muscle fibrosis and adiposis occur, resulting in limited mobility. The long course of these diseases combined with limited treatment options affect patients both psychologically and economically, hence the development of novel treatments for neuromuscular diseases is crucial to obtain a better quality of life. As a widely used hypoglycemic drug in clinical practice, metformin not only has anti-inflammatory, autophagy-regulating, and mitochondrial biogenesis-regulating effects, but it has also been reported to improve the symptoms of neuromuscular diseases, delay hypokinesia, and regulate skeletal muscle mass. However, metformin's specific mechanism of action in neuromuscular diseases requires further elucidation. This review summarizes the evidence showing that metformin can regulate inflammation, autophagy, and mitochondrial biogenesis through different pathways, and further explores its mechanism of action in Duchenne muscular dystrophy, statin-associated muscle disorders, and age-related sarcopenia. This review clarifies the directions of future research on therapy for neuromuscular diseases.
Collapse
Affiliation(s)
| | - Jing Miao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
223
|
Hulett NA, Knaub LA, Hull SE, Pott GB, Peelor R, Miller BF, Shankar K, Rudolph MC, Reusch JEB, Scalzo RL. Sex Differences in the Skeletal Muscle Response to a High Fat, High Sucrose Diet in Rats. Nutrients 2023; 15:4438. [PMID: 37892512 PMCID: PMC10610114 DOI: 10.3390/nu15204438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Men are diagnosed with type 2 diabetes at lower body mass indexes than women; the role of skeletal muscle in this sex difference is poorly understood. Type 2 diabetes impacts skeletal muscle, particularly in females who demonstrate a lower oxidative capacity compared to males. To address mechanistic differences underlying this sex disparity, we investigated skeletal muscle mitochondrial respiration in female and male rats in response to chronic high-fat, high-sugar (HFHS) diet consumption. Four-week-old Wistar Rats were fed a standard chow or HFHS diet for 14 weeks to identify sex-specific adaptations in mitochondrial respirometry and characteristics, transcriptional patterns, and protein profiles. Fat mass was greater with the HFHS diet in both sexes when controlled for body mass (p < 0.0001). Blood glucose and insulin resistance were greater in males (p = 0.01) and HFHS-fed rats (p < 0.001). HFHS-fed males had higher mitochondrial respiration compared with females (p < 0.01 sex/diet interaction). No evidence of a difference by sex or diet was found for mitochondrial synthesis, dynamics, or quality to support the mitochondrial respiration sex/diet interaction. However, transcriptomic analyses indicate sex differences in nutrient handling. Sex-specific differences occurred in PI3K/AKT signaling, PPARα/RXRα, and triacylglycerol degradation. These findings may provide insight into the clinical sex differences in body mass index threshold for diabetes development and tissue-specific progression of insulin resistance.
Collapse
Affiliation(s)
- Nicholas A. Hulett
- Division of Endocrinology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, USA; (N.A.H.); (J.E.B.R.)
| | - Leslie A. Knaub
- Division of Endocrinology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, USA; (N.A.H.); (J.E.B.R.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Sara E. Hull
- Division of Endocrinology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, USA; (N.A.H.); (J.E.B.R.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Gregory B. Pott
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Rick Peelor
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA (B.F.M.)
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Benjamin F. Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA (B.F.M.)
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine (UCSOM), Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Michael C. Rudolph
- Department of Physiology, Harold Hamm Diabetes Center, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jane E. B. Reusch
- Division of Endocrinology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, USA; (N.A.H.); (J.E.B.R.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Ludeman Family Center for Women’s Health Research, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, USA
| | - Rebecca L. Scalzo
- Division of Endocrinology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, USA; (N.A.H.); (J.E.B.R.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Ludeman Family Center for Women’s Health Research, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, USA
| |
Collapse
|
224
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
225
|
Zhong X, Wu H, Ouyang C, Zhang W, Shi Y, Wang YC, Ann DK, Gwack Y, Shang W, Sun Z. Ncoa2 Promotes CD8+ T cell-Mediated Antitumor Immunity by Stimulating T-cell Activation via Upregulation of PGC-1α Critical for Mitochondrial Function. Cancer Immunol Res 2023; 11:1414-1431. [PMID: 37540802 PMCID: PMC10592187 DOI: 10.1158/2326-6066.cir-23-0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/24/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Nuclear receptor coactivator 2 (Ncoa2) is a member of the Ncoa family of coactivators, and we previously showed that Ncoa2 regulates the differentiation of induced regulatory T cells. However, it remains unknown if Ncoa2 plays a role in CD8+ T-cell function. Here, we show that Ncoa2 promotes CD8+ T cell-mediated immune responses against tumors by stimulating T-cell activation via upregulating PGC-1α expression to enhance mitochondrial function. Mice deficient in Ncoa2 in T cells (Ncoa2fl/fl/CD4Cre) displayed defective immune responses against implanted MC38 tumors, which associated with significantly reduced tumor-infiltrating CD8+ T cells and decreased IFNγ production. Consistently, CD8+ T cells from Ncoa2fl/fl/CD4Cre mice failed to reject tumors after adoptive transfer into Rag1-/- mice. Further, in response to TCR stimulation, Ncoa2fl/fl/CD4Cre CD8+ T cells failed to increase mitochondrial mass, showed impaired oxidative phosphorylation, and had lower expression of PGC-1α, a master regulator of mitochondrial biogenesis and function. Mechanically, T-cell activation-induced phosphorylation of CREB triggered the recruitment of Ncoa2 to bind to enhancers, thus, stimulating PGC-1α expression. Forced expression of PGC-1α in Ncoa2fl/fl/CD4Cre CD8+ T cells restored mitochondrial function, T-cell activation, IFNγ production, and antitumor immunity. This work informs the development of Ncoa2-based therapies that modulate CD8+ T cell-mediated antitumor immune responses.
Collapse
Affiliation(s)
- Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Hongmin Wu
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yun Shi
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yi-Chang Wang
- Department of Diabetes Complication and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - David K. Ann
- Department of Diabetes Complication and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Weirong Shang
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
226
|
Xu Y, Chiang YH, Ho PC, Vannini N. Mitochondria Dictate Function and Fate of HSCs and T Cells. Cancer Immunol Res 2023; 11:1303-1313. [PMID: 37789763 DOI: 10.1158/2326-6066.cir-22-0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/23/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023]
Abstract
Hematopoietic stem cells (HSC) and T cells are intimately related, lineage-dependent cell populations that are extensively used as therapeutic products for the treatment of hematologic malignancies and certain types of solid tumors. These cellular therapies can be life-saving treatments; however, their efficacies are often limited by factors influencing their activity and cellular properties. Among these factors is mitochondrial metabolism, which influences the function and fate commitment of both HSCs and T cells. Mitochondria, besides being the "cellular powerhouse," provide metabolic intermediates that are used as substrates for epigenetic modifications and chromatin remodeling, thus, driving cell fate decisions during differentiation. Moreover, mitochondrial fitness and mitochondrial quality control mechanisms are closely related to cellular function, and impairment of these mitochondrial properties associates with cellular dysfunction due to factors such as T-cell exhaustion and aging. Here, we give an overview of the role of mitochondria in shaping the behavior of these lineage-related cell populations. Moreover, we discuss the potential of novel mitochondria-targeting strategies for enhancing HSC- and T cell-based cancer immunotherapies and highlight how design and application of such approaches requires consideration of the metabolic similarities and differences between HSCs and T cells. See related article on p. 1302.
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yi-Hsuan Chiang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Nicola Vannini
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
227
|
Zhang L, Miao M, Xu X, Bai M, Wu M, Zhang A. From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:342-357. [PMID: 37901706 PMCID: PMC10601966 DOI: 10.1159/000530485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Renal diseases remain an increasing public health issue affecting millions of people. The kidney is a highly energetic organ that is rich in mitochondria. Numerous studies have demonstrated the important role of mitochondria in maintaining normal kidney function and in the pathogenesis of various renal diseases, including acute kidney injuries (AKIs) and chronic kidney diseases (CKDs). Summary Under physiological conditions, fine-tuning mitochondrial energy balance, mitochondrial dynamics (fission and fusion processes), mitophagy, and biogenesis maintain mitochondrial fitness. While under AKI and CKD conditions, disruption of mitochondrial energy metabolism leads to increased oxidative stress. In addition, mitochondrial dynamics shift to excessive mitochondrial fission, mitochondrial autophagy is impaired, and mitochondrial biogenesis is also compromised. These mitochondrial injuries regulate renal cellular functions either directly or indirectly. Mitochondria-targeted approaches, containing genetic (microRNAs) and pharmaceutical methods (mitochondria-targeting antioxidants, mitochondrial permeability pore inhibitors, mitochondrial fission inhibitors, and biogenesis activators), are emerging as important therapeutic strategies for AKIs and CKDs. Key Messages Mitochondria play a critical role in the pathogenesis of AKIs and CKDs. This review provides an updated overview of mitochondrial homeostasis under physiological conditions and the involvement of mitochondrial dysfunction in renal diseases. Finally, we summarize the current status of mitochondria-targeted strategies in attenuating renal diseases.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Miao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
228
|
Ruegsegger GN, Pataky MW, Simha S, Robinson MM, Klaus KA, Nair KS. High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. J Appl Physiol (1985) 2023; 135:763-774. [PMID: 37616334 PMCID: PMC10642518 DOI: 10.1152/japplphysiol.00405.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
This study investigated how different exercise training modalities influence skeletal muscle mitochondrial dynamics. Healthy [average body mass index (BMI): 25.8 kg/m2], sedentary younger and older participants underwent 12 wk of supervised high-intensity aerobic interval training (HIIT; n = 13), resistance training (RT; n = 14), or combined training (CT; n = 11). Mitochondrial structure was assessed using transmission electron microscopy (TEM). Regulators of mitochondrial fission and fusion, cardiorespiratory fitness (V̇o2peak), insulin sensitivity via a hyperinsulinemic-euglycemic clamp, and muscle mitochondrial respiration were assessed. TEM showed increased mitochondrial volume, number, and perimeter following HIIT (P < 0.01), increased mitochondrial number following CT (P < 0.05), and no change in mitochondrial abundance after RT. Increased mitochondrial volume associated with increased mitochondrial respiration and insulin sensitivity following HIIT (P < 0.05). Increased mitochondrial perimeter associated with increased mitochondrial respiration, insulin sensitivity, and V̇o2peak following HIIT (P < 0.05). No such relationships were observed following CT or RT. OPA1, a regulator of fusion, was increased following HIIT (P < 0.05), whereas FIS1, a regulator of fission, was decreased following HIIT and CT (P < 0.05). HIIT also increased the ratio of OPA1/FIS1 (P < 0.01), indicative of the balance between fission and fusion, which positively correlated with improvements in respiration, insulin sensitivity, and V̇o2peak (P < 0.05). In conclusion, HIIT induces a larger, more fused mitochondrial tubular network. Changes indicative of increased fusion following HIIT associate with improvements in mitochondrial respiration, insulin sensitivity, and V̇o2peak supporting the idea that enhanced mitochondrial fusion accompanies notable health benefits of HIIT.NEW & NOTEWORTHY We assessed the effects of 12 wk of supervised high-intensity interval training (HIIT), resistance training, and combined training (CT) on skeletal muscle mitochondrial abundance and markers of fission and fusion. HIIT increased mitochondrial area and size and promoted protein changes indicative of increased mitochondrial fusion, whereas lessor effects were observed after CT and no changes were observed after RT. Furthermore, increased mitochondrial area and size after HIIT associated with improved mitochondrial respiration, cardiorespiratory fitness, and insulin sensitivity.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
- Department of Health and Human Performance, University of Wisconsin-River Falls, River Falls, Wisconsin, United States
| | - Mark W Pataky
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - Suvyaktha Simha
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Katherine A Klaus
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
229
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
230
|
Zhang RH, Cao SS, Shi Y, Wang X, Shi LL, Zhang YH, Han CJ, Wang B, Feng L, Liu JP. Astragaloside IV-mediated inhibition of oxidative stress by upregulation of ghrelin in type 2 diabetes-induced cognitive impairment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2637-2650. [PMID: 37097336 DOI: 10.1007/s00210-023-02486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
This study is to observe the upregulation effect of astragaloside IV on ghrelin in diabetic cognitive impairment (DCI) rats and to investigate the pathway in prevention and treatment by reducing oxidative stress. The DCI model was induced with streptozotocin (STZ) in conjunction with a high-fat and high-sugar diet and divided into three groups: model, low-dose (40 mg/kg), and high-dose (80 mg/kg) astragaloside IV. After 30 days of gavage, the learning and memory abilities of rats, as well as their body weight and blood glucose levels, were tested using the Morris water maze and then detection of insulin resistance, SOD activity, and serum MDA levels. The whole brain of rats was sampled for hematoxylin-eosin and Nissl staining to observe pathological changes in the hippocampal CA1 region. Immunohistochemistry was used to detect ghrelin expression in the hippocampal CA1 region. A Western blot was used to determine changes in GHS-R1α/AMPK/PGC-1α/UCP2. RT-qPCR was used to determine the levels of ghrelin mRNA. Astragaloside IV reduced nerve damage, increased superoxide dismutase (SOD) activity, decreased MDA levels, and improved insulin resistance. Ghrelin levels and expression increased in serum and hippocampal tissues, and ghrelin mRNA levels increased in rat stomach tissues. According to Western blot, it increased the expression of the ghrelin receptor GHS-R1α and upregulated the mitochondrial function associated-protein AMPK-PGC-1α-UCP2. Astragaloside IV increases ghrelin expression in the brain to reduce oxidative stress and delay diabetes-induced cognitive impairment. It may be related to the promotion of ghrelin mRNA levels.
Collapse
Affiliation(s)
- Rui-Hua Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Shan-Shan Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Yong Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Lei-Lei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Yu-Han Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Chao-Jun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Liang Feng
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, China Pharmaceutical University, 639# Longmian Road, Jiangsu, Nanjing, 210009, People's Republic of China.
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China.
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, 712046, People's Republic of China.
| |
Collapse
|
231
|
Cao K, Xu J, Cao W, Wang X, Lv W, Zeng M, Zou X, Liu J, Feng Z. Assembly of mitochondrial succinate dehydrogenase in human health and disease. Free Radic Biol Med 2023; 207:247-259. [PMID: 37490987 DOI: 10.1016/j.freeradbiomed.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Mitochondrial succinate dehydrogenase (SDH), also known as electron transport chain (ETC) Complex II, is the only enzyme complex engaged in both oxidative phosphorylation and the tricarboxylic acid (TCA) cycle. SDH has received increasing attention due to its crucial role in regulating mitochondrial metabolism and human health. Despite having the fewest subunits among the four ETC complexes, functional SDH is formed via a sequential and well-coordinated assembly of subunits. Along with the discovery of subunit-specific assembly factors, the dynamic involvement of the SDH assembly process in a broad range of diseases has been revealed. Recently, we reported that perturbation of SDH assembly in different tissues leads to interesting and distinct pathophysiological changes in mice, indicating a need to understand the intricate SDH assembly process in human health and diseases. Thus, in this review, we summarize recent findings on SDH pathogenesis with respect to disease and a focus on SDH assembly.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Xuan Zou
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
232
|
Álvarez-Córdoba M, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Munuera-Cabeza M, Suárez-Carrillo A, Romero-González A, Romero-Domínguez JM, López-Cabrera A, Armengol JÁ, Sánchez-Alcázar JA. Patient-Derived Cellular Models for Polytarget Precision Medicine in Pantothenate Kinase-Associated Neurodegeneration. Pharmaceuticals (Basel) 2023; 16:1359. [PMID: 37895830 PMCID: PMC10609847 DOI: 10.3390/ph16101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Ana Romero-González
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Jose Manuel Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, 41013 Seville, Spain;
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| |
Collapse
|
233
|
Asmara AP, Chen H, Ung AT. Preventing Adipogenesis and Preserving Mitochondria and GLUT-4 Functions by Extracts and Isolated Compounds of Australian Acacia saligna. Molecules 2023; 28:6677. [PMID: 37764453 PMCID: PMC10535536 DOI: 10.3390/molecules28186677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Acacia saligna's secondary metabolites show promise in treating type 2 diabetes mellitus and its related conditions. We previously discovered that methanolic extracts, isolated flavonoids, and cyclitols effectively preserve mitochondria in 3T3-L1 adipocytes. In this current work, quantification of lipid droplet levels with Oil Red O assay showed a noticeable decrease in lipogenesis in 3T3-L1 cells. Methanolic leaf and bark extracts and isolated compounds, (-)-epicatechin 6 and myricitrin 8, reduced cellular lipid levels by 21.15% to 25.28%, respectively. mRNA levels of key regulators of mitochondrial biogenesis, such as adiponectin, PGC-1α, and mtTFA, were increased. Methanolic flower extract (FL-MeOH) and its chemical components, naringenin 1 and D-(+)-pinitol 5a, increased these gene levels from 10% to 29% at the higher dose. Our study found that FL-MeOH slightly reduced pro-inflammatory cytokines TNF-α and IL-6, attributed to two phytochemicals, naringenin-7-O-α-L-arabinofuranoside 2 and D-(+)-pinitol 5a. Western blot analysis also showed that adipocytes treated with MeOH extracts had higher GLUT-4 expression levels than untreated adipocytes. Overall, A. saligna extracts and their isolated compounds demonstrated anti-lipogenesis activity during 3T3-L1 cell differentiation, modulation of transcriptional levels of adiponectin, PGC-1α, and mtTFA, reducing TNF-α and IL-6 mRNA levels, promoting mitochondrial biogenesis, and enhancing GLUT-4 expression.
Collapse
Affiliation(s)
- Anjar P Asmara
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alison T Ung
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
234
|
Aboouf MA, Gorr TA, Hamdy NM, Gassmann M, Thiersch M. Myoglobin in Brown Adipose Tissue: A Multifaceted Player in Thermogenesis. Cells 2023; 12:2240. [PMID: 37759463 PMCID: PMC10526770 DOI: 10.3390/cells12182240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Brown adipose tissue (BAT) plays an important role in energy homeostasis by generating heat from chemical energy via uncoupled oxidative phosphorylation. Besides its high mitochondrial content and its exclusive expression of the uncoupling protein 1, another key feature of BAT is the high expression of myoglobin (MB), a heme-containing protein that typically binds oxygen, thereby facilitating the diffusion of the gas from cell membranes to mitochondria of muscle cells. In addition, MB also modulates nitric oxide (NO•) pools and can bind C16 and C18 fatty acids, which indicates a role in lipid metabolism. Recent studies in humans and mice implicated MB present in BAT in the regulation of lipid droplet morphology and fatty acid shuttling and composition, as well as mitochondrial oxidative metabolism. These functions suggest that MB plays an essential role in BAT energy metabolism and thermogenesis. In this review, we will discuss in detail the possible physiological roles played by MB in BAT thermogenesis along with the potential underlying molecular mechanisms and focus on the question of how BAT-MB expression is regulated and, in turn, how this globin regulates mitochondrial, lipid, and NO• metabolism. Finally, we present potential MB-mediated approaches to augment energy metabolism, which ultimately could help tackle different metabolic disorders.
Collapse
Affiliation(s)
- Mostafa A. Aboouf
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Thomas A. Gorr
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Nadia M. Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Max Gassmann
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
235
|
Mihaylov SR, Castelli LM, Lin YH, Gül A, Soni N, Hastings C, Flynn HR, Păun O, Dickman MJ, Snijders AP, Goldstone R, Bandmann O, Shelkovnikova TA, Mortiboys H, Ultanir SK, Hautbergue GM. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun 2023; 14:5496. [PMID: 37679383 PMCID: PMC10485026 DOI: 10.1038/s41467-023-41304-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.
Collapse
Affiliation(s)
- Simeon R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Aytac Gül
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Christopher Hastings
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oana Păun
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Life Science Mass Spectrometry, Bruker Daltonics, Banner Lane, Coventry, CV4 9GH, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
236
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
237
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
238
|
Sacco SA, McAtee Pereira AG, Trenary I, Smith KD, Betenbaugh MJ, Young JD. Overexpression of peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺) in Chinese hamster ovary cells increases oxidative metabolism and IgG productivity. Metab Eng 2023; 79:108-117. [PMID: 37473833 DOI: 10.1016/j.ymben.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Chinese hamster ovary (CHO) cells are used extensively to produce protein therapeutics, such as monoclonal antibodies (mAbs), in the biopharmaceutical industry. MAbs are large proteins that are energetically demanding to synthesize and secrete; therefore, high-producing CHO cell lines that are engineered for maximum metabolic efficiency are needed to meet increasing demands for mAb production. Previous studies have identified that high-producing cell lines possess a distinct metabolic phenotype when compared to low-producing cell lines. In particular, it was found that high mAb production is correlated to lactate consumption and elevated TCA cycle flux. We hypothesized that enhancing flux through the mitochondrial TCA cycle and oxidative phosphorylation would lead to increased mAb productivities and final titers. To test this hypothesis, we overexpressed peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺), a gene that promotes mitochondrial metabolism, in an IgG-producing parental CHO cell line. Stable cell pools overexpressing PGC-1⍺ exhibited increased oxygen consumption, indicating increased mitochondrial metabolism, as well as increased mAb specific productivity compared to the parental line. We also performed 13C metabolic flux analysis (MFA) to quantify how PGC-1⍺ overexpression alters intracellular metabolic fluxes, revealing not only increased TCA cycle flux, but global upregulation of cellular metabolic activity. This study demonstrates the potential of rationally engineering the metabolism of industrial cell lines to improve overall mAb productivity and to increase the abundance of high-producing clones in stable cell pools.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kevin D Smith
- Pharmaceutical Development and Manufacturing Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
239
|
Jane EP, Reslink MC, Gatesman TA, Halbert ME, Miller TA, Golbourn BJ, Casillo SM, Mullett SJ, Wendell SG, Obodo U, Mohanakrishnan D, Dange R, Michealraj A, Brenner C, Agnihotri S, Premkumar DR, Pollack IF. Targeting mitochondrial energetics reverses panobinostat- and marizomib-induced resistance in pediatric and adult high-grade gliomas. Mol Oncol 2023; 17:1821-1843. [PMID: 37014128 PMCID: PMC10483615 DOI: 10.1002/1878-0261.13427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
In previous studies, we demonstrated that panobinostat, a histone deacetylase inhibitor, and bortezomib, a proteasomal inhibitor, displayed synergistic therapeutic activity against pediatric and adult high-grade gliomas. Despite the remarkable initial response to this combination, resistance emerged. Here, in this study, we aimed to investigate the molecular mechanisms underlying the anticancer effects of panobinostat and marizomib, a brain-penetrant proteasomal inhibitor, and the potential for exploitable vulnerabilities associated with acquired resistance. RNA sequencing followed by gene set enrichment analysis (GSEA) was employed to compare the molecular signatures enriched in resistant compared with drug-naïve cells. The levels of adenosine 5'-triphosphate (ATP), nicotinamide adenine dinucleotide (NAD)+ content, hexokinase activity, and tricarboxylic acid (TCA) cycle metabolites required for oxidative phosphorylation to meet their bioenergetic needs were analyzed. Here, we report that panobinostat and marizomib significantly depleted ATP and NAD+ content, increased mitochondrial permeability and reactive oxygen species generation, and promoted apoptosis in pediatric and adult glioma cell lines at initial treatment. However, resistant cells exhibited increased levels of TCA cycle metabolites, which required for oxidative phosphorylation to meet their bioenergetic needs. Therefore, we targeted glycolysis and the electron transport chain (ETC) with small molecule inhibitors, which displayed substantial efficacy, suggesting that resistant cell survival is dependent on glycolytic and ETC complexes. To verify these observations in vivo, lonidamine, an inhibitor of glycolysis and mitochondrial function, was chosen. We produced two diffuse intrinsic pontine glioma (DIPG) models, and lonidamine treatment significantly increased median survival in both models, with particularly dramatic effects in panobinostat- and marizomib-resistant cells. These data provide new insights into mechanisms of treatment resistance in gliomas.
Collapse
Affiliation(s)
- Esther P. Jane
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew C. Reslink
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Taylor A. Gatesman
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew E. Halbert
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Tracy A. Miller
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Brian J. Golbourn
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Stephanie M. Casillo
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Udochukwu Obodo
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | | | - Riya Dange
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Antony Michealraj
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Charles Brenner
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | - Sameer Agnihotri
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Daniel R. Premkumar
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Ian F. Pollack
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| |
Collapse
|
240
|
Bobba-Alves N, Sturm G, Lin J, Ware SA, Karan KR, Monzel AS, Bris C, Procaccio V, Lenaers G, Higgins-Chen A, Levine M, Horvath S, Santhanam BS, Kaufman BA, Hirano M, Epel E, Picard M. Cellular allostatic load is linked to increased energy expenditure and accelerated biological aging. Psychoneuroendocrinology 2023; 155:106322. [PMID: 37423094 PMCID: PMC10528419 DOI: 10.1016/j.psyneuen.2023.106322] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/08/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.
Collapse
Affiliation(s)
- Natalia Bobba-Alves
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Sarah A Ware
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Céline Bris
- Department of Genetics, Angers Hospital, Angers, France; MitoLab, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, Université d'Angers, Angers, France
| | - Vincent Procaccio
- MitoLab, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, Université d'Angers, Angers, France
| | - Guy Lenaers
- Department of Genetics, Angers Hospital, Angers, France; MitoLab, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, Université d'Angers, Angers, France; Department of Neurology, Angers Hospital, Angers, France
| | - Albert Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, United States
| | - Morgan Levine
- Altos Labs, San Diego Institute of Science, San Diego, CA United States
| | - Steve Horvath
- Altos Labs, San Diego Institute of Science, San Diego, CA United States
| | - Balaji S Santhanam
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, United States
| | - Brett A Kaufman
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michio Hirano
- Department of Neurology, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, United States
| | - Elissa Epel
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States; Department of Neurology, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States.
| |
Collapse
|
241
|
Hernandez J, Schäffer J, Herden C, Pflieger FJ, Reiche S, Körber S, Kitagawa H, Welter J, Michels S, Culmsee C, Bier J, Sommer N, Kang JX, Mayer K, Hecker M, Rummel C. n-3 Polyunsaturated Fatty Acids Modulate LPS-Induced ARDS and the Lung-Brain Axis of Communication in Wild-Type versus Fat-1 Mice Genetically Modified for Leukotriene B4 Receptor 1 or Chemerin Receptor 23 Knockout. Int J Mol Sci 2023; 24:13524. [PMID: 37686333 PMCID: PMC10487657 DOI: 10.3390/ijms241713524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Collapse
Affiliation(s)
- Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Sylvia Reiche
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Svenja Körber
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Hiromu Kitagawa
- Department of Biomedical Engineering, Osaka Institute of Technology, Omiya, Osaka 535-8585, Japan
| | - Joelle Welter
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| | - Jens Bier
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Boston, MA 02129, USA
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| |
Collapse
|
242
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
243
|
Roy SD, Nagarajan S, Jalal MS, Basar MA, Duttaroy A. New mutant alleles for Spargel/dPGC-1 highlights the function of Spargel RRM domain in oogenesis and expands the role of Spargel in embryogenesis and intracellular transport. G3 (BETHESDA, MD.) 2023; 13:jkad142. [PMID: 37369430 PMCID: PMC10468312 DOI: 10.1093/g3journal/jkad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/24/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Energy metabolism in vertebrates is controlled by three members of the PGC-1 (PPAR γ- coactivator 1) family, transcriptional coactivators that shape responses to physiological stimuli by interacting with the nuclear receptors and other transcription factors. Multiple evidence now supports that Spargel protein found in insects and ascidians is the ancestral form of vertebrate PGC-1's. Here, we undertook functional analysis of srl gene in Drosophila, asking about the requirement of Spargel per se during embryogenesis and its RNA binding domains. CRISPR- engineered srl gene deletion turned out to be an amorphic allele that is late embryonic/early larval lethal and Spargel protein missing its RNA binding domain (SrlΔRRM) negatively affects female fertility. Overexpression of wild-type Spargel in transgenic flies expedited the growth of egg chambers. On the other hand, oogenesis is blocked in a dominant-negative fashion in the presence of excess Spargel lacking its RRM domains. Finally, we observed aggregation of Notch proteins in egg chambers of srl mutant flies, suggesting that Spargel is involved in intracellular transport of Notch proteins. Taken together, we claim that these new mutant alleles of spargel are emerging powerful tools for revealing new biological functions for Spargel, an essential transcription coactivator in both Drosophila and mammals.
Collapse
Affiliation(s)
- Swagota D Roy
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Sabarish Nagarajan
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Md Shah Jalal
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Md Abul Basar
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Atanu Duttaroy
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| |
Collapse
|
244
|
Yang C, Tian X, Han Y, Shi X, Wang H, Li H. Extracts of Dunkelfelder Grape Seeds and Peel Increase the Metabolic Rate and Reduce Fat Deposition in Mice Maintained on a High-Fat Diet. Foods 2023; 12:3251. [PMID: 37685184 PMCID: PMC10487004 DOI: 10.3390/foods12173251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic high-fat diet intake may induce obesity and increase the risk of metabolic syndrome. The pomace of grape (Vitis vinifera L.) is rich in polyphenols, which are candidates for anti-obesity therapy. The present study aimed to investigate the effects of Dunkelfelder grape seed extract (GSE) and grape peel extract (GPE) on lipid and energy metabolism disorders in mice maintained on a high-fat diet (HFD). Male nine-week C57BL/6J mice were randomly assigned to one of four groups, namely, the normal chow diet (ND), HFD, HFD plus GSE (400 mg/kg BW) administered by oral gavage, or HFD plus GPE (400 mg/kg BW) administered by oral gavage. There were eight mice per group, and the experiment was 14 weeks in duration. The results showed that GSE and GPE treatments did not affect energy intake in mice on a high-fat diet, but body weight gain was 24.5% and 17.3% lower in the GSE- and GPE-treated mice than in the HFD group, respectively. They also decreased blood triglyceride (TG), total cholesterol (TC), and fasting blood glucose levels and increased high-density lipoprotein cholesterol (HDL-C). In addition, GSE and GPE reduced adipose tissue weight and excessive lipid droplet accumulation in the adipocytes. The metabolic chamber test showed that the GSE and GPE treatments enhanced oxygen consumption, carbon dioxide production, and heat release while decreasing the respiratory exchange rate (RER). This suggests that GSE and GPE augmented fuel oxidation and energy generation and increased the proportion of lipids being utilized in energy metabolism. GSE and GPE also upregulated the genes controlling lipolysis and downregulated those controlling lipogenesis in adipose tissues. Moreover, they significantly increased the expression levels of the genes regulating thermogenesis in BAT, eWAT, and iWAT, and mitochondrial biogenesis in all three types of adipose tissue. In conclusion, the present study empirically demonstrated that GSE and GPE enhance body fat utilization by augmenting lipid and energy metabolism and could, therefore, ameliorate high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Chenlu Yang
- College of Enology, Northwest A&F University, Yangling 712100, China; (C.Y.); (X.T.); (Y.H.); (X.S.); (H.W.)
| | - Xuelin Tian
- College of Enology, Northwest A&F University, Yangling 712100, China; (C.Y.); (X.T.); (Y.H.); (X.S.); (H.W.)
| | - Yulei Han
- College of Enology, Northwest A&F University, Yangling 712100, China; (C.Y.); (X.T.); (Y.H.); (X.S.); (H.W.)
| | - Xueqing Shi
- College of Enology, Northwest A&F University, Yangling 712100, China; (C.Y.); (X.T.); (Y.H.); (X.S.); (H.W.)
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling 712100, China; (C.Y.); (X.T.); (Y.H.); (X.S.); (H.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling 712100, China; (C.Y.); (X.T.); (Y.H.); (X.S.); (H.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China
| |
Collapse
|
245
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
246
|
Balakrishnan R, Garcia PA, Veluthakal R, Huss JM, Hoolachan JM, Thurmond DC. Toward Ameliorating Insulin Resistance: Targeting a Novel PAK1 Signaling Pathway Required for Skeletal Muscle Mitochondrial Function. Antioxidants (Basel) 2023; 12:1658. [PMID: 37759961 PMCID: PMC10525748 DOI: 10.3390/antiox12091658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
The p21-activated kinase 1 (PAK1) is required for insulin-stimulated glucose uptake in skeletal muscle cells. However, whether PAK1 regulates skeletal muscle mitochondrial function, which is a central determinant of insulin sensitivity, is unknown. Here, the effect of modulating PAK1 levels (knockdown via siRNA, overexpression via adenoviral transduction, and/or inhibition of activation via IPA3) on mitochondrial function was assessed in normal and/or insulin-resistant rat L6.GLUT4myc and human muscle (LHCN-M2) myotubes. Human type 2 diabetes (T2D) and non-diabetic (ND) skeletal muscle samples were also used for validation of the identified signaling elements. PAK1 depletion in myotubes decreased mitochondrial copy number, respiration, altered mitochondrial structure, downregulated PGC1α (a core regulator of mitochondrial biogenesis and oxidative metabolism) and PGC1α activators, p38 mitogen-activated protein kinase (p38MAPK) and activating transcription factor 2 (ATF2). PAK1 enrichment in insulin-resistant myotubes improved mitochondrial function and rescued PGC1α expression levels. Activated PAK1 was localized to the cytoplasm, and PAK1 enrichment concurrent with p38MAPK inhibition did not increase PGC1α levels. PAK1 inhibition and enrichment also modified nuclear phosphorylated-ATF2 levels. T2D human samples showed a deficit for PGC1α, and PAK1 depletion in LHCN-M2 cells led to reduced mitochondrial respiration. Overall, the results suggest that PAK1 regulates muscle mitochondrial function upstream of the p38MAPK/ATF2/PGC1α-axis pathway.
Collapse
Affiliation(s)
- Rekha Balakrishnan
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Pablo A. Garcia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Janice M. Huss
- School of Medicine, Washington University, 660 S Euclid Ave, St. Louis, MO 63110, USA;
| | - Joseph M. Hoolachan
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| |
Collapse
|
247
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 223] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
248
|
Chen H, Wu C, Lv Q, Li M, Ren L. Targeting Mitochondrial Homeostasis: The Role of Acupuncture in Depression Treatment. Neuropsychiatr Dis Treat 2023; 19:1741-1753. [PMID: 37546517 PMCID: PMC10404048 DOI: 10.2147/ndt.s421540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Background Depression is a common mental health disorder characterized by persistent feelings of sadness, loss of interest or pleasure, and a range of physical and cognitive symptoms. It affects people of all ages and can significantly impact their daily functioning and quality of life. Mitochondrial homeostasis plays an important role in the pathogenesis of depression. Mitochondrial homeostasis includes mitophagy, mitochondrial oxidative stress, mitoptosis, mitochondrial biogenesis, and mitochondrial dynamics. The regulation of mitochondrial homeostasis is the key link in the prevention and treatment of depression. Methods In this article, we focus on the core link of depression-mitochondrial homeostasis and summarize the research progress of acupuncture targeting mitochondrial homeostasis in the treatment of depression in recent years, so as to provide ideas and experimental basis for the research and formulation of more appropriate depression treatment strategies. Results Acupuncture has been found to regulate mitochondrial homeostasis (by modulating mitochondrial autophagy, reducing mitochondrial oxidative stress, inhibiting mitochondrial fission, inducing mitochondrial biogenesis, and maintaining mitochondrial dynamics), alleviate depression-like behavior, and regulate signal pathways and key proteins. Conclusion Here, we highlight the role of acupuncture in the treatment of depression. A comprehensive exploration of the impact of acupuncture on mitochondrial homeostasis could potentially present a novel mechanism for treating depression and offer fresh perspectives for the treatment of patients with clinical depression.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Chenlin Wu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Qin Lv
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Mingjie Li
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
- Mental Disorders Research Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| |
Collapse
|
249
|
Choi J, Zhang X, Li W, Houston M, Peregrina K, Dubin R, Ye K, Augenlicht L. Dynamic Intestinal Stem Cell Plasticity and Lineage Remodeling by a Nutritional Environment Relevant to Human Risk for Tumorigenesis. Mol Cancer Res 2023; 21:808-824. [PMID: 37097719 PMCID: PMC10390890 DOI: 10.1158/1541-7786.mcr-22-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
New Western-style diet 1 (NWD1), a purified diet establishing mouse exposure to key nutrients recapitulating levels that increase human risk for intestinal cancer, reproducibly causes mouse sporadic intestinal and colonic tumors reflecting human etiology, incidence, frequency, and lag with developmental age. Complex NWD1 stem cell and lineage reprogramming was deconvolved by bulk and single-cell RNA sequencing, single-cell Assay for Transposase-Accessible Chromatin using sequencing, functional genomics, and imaging. NWD1 extensively, rapidly, and reversibly, reprogrammed Lgr5hi stem cells, epigenetically downregulating Ppargc1a expression, altering mitochondrial structure and function. This suppressed Lgr5hi stem cell functions and developmental maturation of Lgr5hi cell progeny as cells progressed through progenitor cell compartments, recapitulated by Ppargc1a genetic inactivation in Lgr5hi cells in vivo. Mobilized Bmi1+, Ascl2hi cells adapted lineages to the nutritional environment and elevated antigen processing and presentation pathways, especially in mature enterocytes, causing chronic, protumorigenic low-level inflammation. There were multiple parallels between NWD1 remodeling of stem cells and lineages with pathogenic mechanisms in human inflammatory bowel disease, also protumorigenic. Moreover, the shift to alternate stem cells reflects that the balance between Lgr5-positive and -negative stem cells in supporting human colon tumors is determined by environmental influences. Stem cell and lineage plasticity in response to nutrients supports historic concepts of homeostasis as a continual adaptation to environment, with the human mucosa likely in constant flux in response to changing nutrient exposures. IMPLICATIONS Although oncogenic mutations provide a competitive advantage to intestinal epithelial cells in clonal expansion, the competition is on a playing field dynamically sculpted by the nutritional environment, influencing which cells dominate in mucosal maintenance and tumorigenesis.
Collapse
Affiliation(s)
- Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Wenge Li
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Michele Houston
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Karina Peregrina
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Robert Dubin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Leonard Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
250
|
Wu CC, Chen WC, Hsiao WP, Huang KF, Liao YS, Lin HB, Wu YJ, Kao CH, Chen SL. Reciprocal Regulation of Peroxisome Biogenesis and Myogenic Factors Is Critical for Myogenesis. Int J Mol Sci 2023; 24:12262. [PMID: 37569637 PMCID: PMC10419124 DOI: 10.3390/ijms241512262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria (MITO) and peroxisomes (PEXO) are the major organelles involved in the oxidative metabolism of cells, but detailed examination of their dynamics and functional adaptations during skeletal muscle (SKM) development (myogenesis) is still lacking. In this study, we found that during myogenesis, MITO DNA, ROS level, and redox ratio increased in myotubes, but the membrane potential (Δψm) and ATP content reduced, implying that the MITO efficiency might reduce during myogenesis. The PEXO number and density both increased during myogenesis, which probably resulted from the accumulation and increased biogenesis of PEXO. The expression of PEXO biogenesis factors was induced during myogenesis in vitro and in utero, and their promoters were also activated by MyoD. Knockdown of the biogenesis factors Pex3 repressed not only the PEXO density and functions but also the levels of MITO genes and functions, suggesting a close coupling between PEXO biogenesis and MITO functions. Surprisingly, Pex3 knockdown by the CRISPRi system repressed myogenic differentiation, indicating critical involvement of PEXO biogenesis in myogenesis. Taken together, these observations suggest that the dynamics and functions of both MITO and PEXO are coupled with each other and with the metabolic changes that occur during myogenesis, and these metabolic couplings are critical to myogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shen-Liang Chen
- Department of Life Sciences, College of Health Sciences and Technology, National Central University, Taoyuan 320317, Taiwan; (C.-C.W.); (W.-C.C.); (W.-P.H.); (K.-F.H.); (Y.-S.L.); (H.-B.L.); (Y.-J.W.); (C.-H.K.)
| |
Collapse
|