201
|
Bidère N, Ngo VN, Lee J, Collins C, Zheng L, Wan F, Davis RE, Lenz G, Anderson DE, Arnoult D, Vazquez A, Sakai K, Zhang J, Meng Z, Veenstra TD, Staudt LM, Lenardo MJ. Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature 2008; 458:92-6. [PMID: 19118383 DOI: 10.1038/nature07613] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/05/2008] [Indexed: 01/23/2023]
Abstract
The transcription factor NF-kappaB is required for lymphocyte activation and proliferation as well as the survival of certain lymphoma types. Antigen receptor stimulation assembles an NF-kappaB activating platform containing the scaffold protein CARMA1 (also called CARD11), the adaptor BCL10 and the paracaspase MALT1 (the CBM complex), linked to the inhibitor of NF-kappaB kinase complex, but signal transduction is not fully understood. We conducted parallel screens involving a mass spectrometry analysis of CARMA1 binding partners and an RNA interference screen for growth inhibition of the CBM-dependent 'activated B-cell-like' (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Here we report that both screens identified casein kinase 1alpha (CK1alpha) as a bifunctional regulator of NF-kappaB. CK1alpha dynamically associates with the CBM complex on T-cell-receptor (TCR) engagement to participate in cytokine production and lymphocyte proliferation. However, CK1alpha kinase activity has a contrasting role by subsequently promoting the phosphorylation and inactivation of CARMA1. CK1alpha has thus a dual 'gating' function which first promotes and then terminates receptor-induced NF-kappaB. ABC DLBCL cells required CK1alpha for constitutive NF-kappaB activity, indicating that CK1alpha functions as a conditionally essential malignancy gene-a member of a new class of potential cancer therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Bidère
- Molecular Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Dong G, Liu C, Ye H, Gong L, Zheng J, Li M, Huang X, Huang X, Huang Y, Shi Y, Yin W, Gao Z. BCL10 nuclear expression and t(11;18)(q21;q21) indicate nonresponsiveness to Helicobacter pylori eradication of Chinese primary gastric MALT lymphoma. Int J Hematol 2008; 88:516-523. [PMID: 18949449 DOI: 10.1007/s12185-008-0187-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 01/11/2023]
Abstract
The eradication of Helicobacter pylori (H. pylori) with antibiotics induces complete remission in 75% of patients with gastric MALT lymphoma. We investigated the efficacy of H. pylori eradication and assessed the predictive value of BCL10 nuclear expression and t(11;18)(q21;q21) regarding resistance to H. pylori eradication in primary gastric mucosa-associated lymphoid tissue lymphoma (MALT lymphoma) patients from mainland China. Twenty-two gastric MALT cases (Stage I(E)) underwent H. pylori eradication with antibiotics, and sequential endoscopic-bioptic follow-ups were performed and assessed with regular morphologic and immunohistochemical examinations. BCL10 nuclear expression and interphase fluorescence in situ hybridization (FISH) for MALT1 and API2/MALT1 were tested. Thirteen out of the 22 cases (59.1%) achieved complete regression (CR) after the eradication of H. pylori. The longest follow-up period in the 22 patients was 68 months, with 12 patients longer than 24 months. For the 13 CR patients, the longest follow-up period after H. pylori eradication was 53 months, with 6 patients longer than 24 months. BCL10 nuclear expression was detected by immunohistochemical staining in 9 cases, including 7 (77.8%) of 9 cases who showed no response (NR) and 2 (15.4%) of 13 patients who achieved CR following eradication therapy (P < 0.05). t(11;18)(q21;q21) was evaluated by interphase FISH in 18 cases including 11 CR and 7 NR patients after H. pylori eradication. t(11;18)(q21;q21) was found in 4 (57.1%) of 7 patients who showed NR following H. pylori eradication, but one in 11 CR patients (P < 0.05). A total of 59.1% of patients with early gastric MALT lymphoma recruited in this study achieved CR after H. pylori eradication. BCL10 nuclear expression and t(11;18)(q21;q21)-positive gastric MALT lymphomas are likely to be related to a failure to respond to H. pylori eradication in Chinese patients.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/genetics
- Adolescent
- Adult
- Aged
- Anti-Bacterial Agents/administration & dosage
- Asian People
- B-Cell CLL-Lymphoma 10 Protein
- China
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/metabolism
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 18/metabolism
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic/drug effects
- Helicobacter Infections/drug therapy
- Helicobacter Infections/genetics
- Helicobacter Infections/metabolism
- Helicobacter Infections/mortality
- Helicobacter Infections/pathology
- Helicobacter pylori
- Humans
- Lymphoma, B-Cell, Marginal Zone/drug therapy
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/microbiology
- Lymphoma, B-Cell, Marginal Zone/mortality
- Lymphoma, B-Cell, Marginal Zone/pathology
- Male
- Middle Aged
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/microbiology
- Stomach Neoplasms/mortality
- Stomach Neoplasms/pathology
- Translocation, Genetic
Collapse
Affiliation(s)
- Gehong Dong
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Cuiling Liu
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Hongtao Ye
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Pathology, Guilin Medical College, 541004, Guilin, People's Republic of China
| | - Liping Gong
- Department of Pathology, Capital Medical University, 100069, Beijing, People's Republic of China
| | - Jie Zheng
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Min Li
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Xin Huang
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Xuebiao Huang
- Department of Digestive Disease, Peking University Third Hospital, 100191, Beijing, People's Republic of China
| | - Yuanjie Huang
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Yunfei Shi
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Wenjuan Yin
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Zifen Gao
- Department of Pathology, Peking University Health Science Center, 100191, Beijing, People's Republic of China.
| |
Collapse
|
203
|
Takeda K, Harada Y, Watanabe R, Inutake Y, Ogawa S, Onuki K, Kagaya S, Tanabe K, Kishimoto H, Abe R. CD28 stimulation triggers NF-kappaB activation through the CARMA1-PKCtheta-Grb2/Gads axis. Int Immunol 2008; 20:1507-15. [PMID: 18829987 DOI: 10.1093/intimm/dxn108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CD28 stimulation contributes to activation of the IL-2 promoter by up-regulating the activity of several transcription factors, including nuclear factor kappaB (NF-kappaB)/Rel family members. However, the signal-transducing cascades linking the CD28 molecule and activation of NF-kappaB remain unclear. Protein kinase C (PKC) , CARMA1 and Bcl10 have recently been reported to integrate TCR-mediated NF-kappaB activation. However, since the data in these studies were drawn from experiments in which T cells were usually stimulated with both TCR and CD28, the relative contributions of TCR- and CD28-mediated signals to initiation of the NF-kappaB pathway remain elusive. To examine the role of these molecules in NF-kappaB activation through CD28-mediated stimulation, Bcl10 was over-expressed in Jurkat cells and their NF-kappaB activation by CD28- or TCR-cross-linking was evaluated. We found that CD28 stimulation alone can induce NF-kappaB activation in Bcl10-over-expressing Jurkat cells, whereas TCR stimulation alone has only little effect. In addition, we found that Bcl10-induced NF-kappaB activation through CD28-mediated stimulation could be blocked by the dominant-negative form of PKC or CARMA1. Furthermore, genetic studies revealed that Grb2/Gads binding, but not phosphatidylinositol 3-kinase binding, is important in CD28-mediated NF-kappaB activation. These findings indicate that the PKC-CARMA1-Bcl10 signaling pathway participates in the CD28 co-stimulatory signal independently of the TCR-signaling pathway, which leads us to propose that the activation of the NF-kappaB-signaling pathway via PKC-CARMA1-Bcl10 may be markedly dependent on CD28 stimulation rather than TCR stimulation.
Collapse
Affiliation(s)
- Kei Takeda
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Langel FD, Jain NA, Rossman JS, Kingeter LM, Kashyap AK, Schaefer BC. Multiple protein domains mediate interaction between Bcl10 and MALT1. J Biol Chem 2008; 283:32419-31. [PMID: 18806265 DOI: 10.1074/jbc.m800670200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bcl10 and MALT1 are essential mediators of NF-kappaB activation in response to the triggering of a diverse array of transmembrane receptors, including antigen receptors. Additionally, both proteins are translocation targets in MALT lymphoma. Thus, a detailed understanding of the interaction between these mediators is of considerable biological importance. Previous studies have indicated that a 13-amino acid region downstream of the Bcl10 caspase recruitment domain (CARD) is responsible for interacting with the immunoglobulin-like domains of MALT1. We now provide evidence that the death domain of MALT1 and the CARD of Bcl10 also contribute to Bcl10-MALT1 interactions. Although a direct interaction between the MALT1 death domain and Bcl10 cannot be detected via immunoprecipitation, FRET data strongly suggest that the death domain of MALT1 contributes significantly to the association between Bcl10 and MALT1 in T cells in vivo. Furthermore, analysis of point mutants of conserved residues of Bcl10 shows that the Bcl10 CARD is essential for interaction with the MALT1 N terminus. Mutations that disrupt proper folding of the Bcl10 CARD strongly impair Bcl10-MALT1 interactions. Molecular modeling and functional analyses of Bcl10 point mutants suggest that residues Asp(80) and Glu(84) of helix 5 of the Bcl10 CARD directly contact MALT1. Together, these data demonstrate that the association between Bcl10 and MALT1 involves a complex interaction between multiple protein domains. Moreover, the Bcl10-MALT1 interaction is the second reported example of interactions between a CARD and a non-CARD protein region, which suggests that many signaling cascades may utilize CARD interactions with non-CARD domains.
Collapse
Affiliation(s)
- Felicia D Langel
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|
205
|
Hara H, Ishihara C, Takeuchi A, Xue L, Morris SW, Penninger JM, Yoshida H, Saito T. Cell type-specific regulation of ITAM-mediated NF-kappaB activation by the adaptors, CARMA1 and CARD9. THE JOURNAL OF IMMUNOLOGY 2008; 181:918-30. [PMID: 18606643 DOI: 10.4049/jimmunol.181.2.918] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activating NK cell receptors transduce signals through ITAM-containing adaptors, including FcRgamma and DAP12. Although the caspase recruitment domain (CARD)9-Bcl10 complex is essential for FcRgamma/DAP12-mediated NF-kappaB activation in myeloid cells, its involvement in NK cell receptor signaling is unknown. Herein we show that the deficiency of CARMA1 or Bcl10, but not CARD9, resulted in severe impairment of cytokine/chemokine production mediated by activating NK cell receptors due to a selective defect in NF-kappaB activation, whereas cytotoxicity mediated by the same receptors did not require CARMA1-Bcl10-mediated signaling. IkappaB kinase (IKK) activation by direct protein kinase C (PKC) stimulation with PMA plus ionomycin (P/I) was abrogated in CARMA1-deficient NK cells, similar to T and B lymphocytes, whereas CARD9-deficient dendritic cells (DCs) exhibited normal P/I-induced IKK activation. Surprisingly, CARMA1 deficiency also abrogated P/I-induced IKK activation in DCs, indicating that CARMA1 is essential for PKC-mediated NF-kappaB activation in all cell types, although the PKC-CARMA1 axis is not used downstream of myeloid ITAM receptors. Consistently, PKC inhibition abrogated ITAM receptor-mediated activation only in NK cells but not in DCs, suggesting PKC-CARMA1-independent, CARD9-dependent ITAM receptor signaling in myeloid cells. Conversely, the overexpression of CARD9 in CARMA1-deficient cells failed to restore the PKC-mediated NF-kappaB activation. Thus, NF-kappaB activation signaling through ITAM receptors is regulated by a cell type-specific mechanism depending on the usage of adaptors CARMA1 and CARD9, which determines the PKC dependence of the signaling.
Collapse
Affiliation(s)
- Hiromitsu Hara
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama City, Kanagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
The activation of T cells is vital to the successful elimination of pathogens, but can also have a deleterious role in autoimmunity and transplant rejection. Various signalling pathways are triggered by the T-cell receptor; these have key roles in the control of the T-cell response and represent interesting targets for therapeutic immunomodulation. Recent findings define MALT1 (mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1) as a protein with proteolytic activity that controls T-cell activation by regulating key molecules in T-cell-receptor-induced signalling pathways.
Collapse
|
207
|
Overexpression of B cell-activating factor of TNF family (BAFF) is associated with Helicobacter pylori-independent growth of gastric diffuse large B-cell lymphoma with histologic evidence of MALT lymphoma. Blood 2008; 112:2927-34. [PMID: 18628489 DOI: 10.1182/blood-2008-02-137513] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have recently demonstrated that nuclear expression of BCL10 predicts Helicobacter pylori (HP) independence of early-stage gastric diffuse large B-cell lymphoma (DLBCL) with histologic evidence of mucosa-associated lymphoid tissue (MALT). In this study, we examined the role of B cell-activating factor of TNF family (BAFF) in mediating BCL10 nuclear translocation and HP independence of gastric DLBCL (MALT). We used immunohistochemistry and immunoblotting to measure the expression of BAFF, pAKT, BCL3, BCL10, and NF-kappaB. Transactivity of NF-kappaB was measured by electromobility shift assay. In lymphoma samples from 26 patients with gastric DLBCL (MALT), we detected aberrant expression of BAFF in 7 of 10 (70%) HP-independent and in 3 of 16 (18.8%) HP-dependent cases (P = .015). BAFF overexpression was associated with pAKT expression (P = .032), and nuclear expression of BCL3 (P = .014), BCL10 (P = .015), and NF-kappaB (P = .004). In B-cell lymphoma Pfeiffer cells, BAFF activated NF-kappaB and AKT; the activated NF-kappaB up-regulated BCL10, and the activated AKT caused formation of BCL10/BCL3 complexes that translocated to the nucleus. Inhibition of AKT by LY294002 (a PI3K inhibitor) blocked BCL10 nuclear translocation, NF-kappaB transactivity, and BAFF expression. Our results indicate that autocrine BAFF signal transduction pathways may contribute to HP-independent growth of gastric DLBCL (MALT).
Collapse
|
208
|
The protein kinase C-responsive inhibitory domain of CARD11 functions in NF-kappaB activation to regulate the association of multiple signaling cofactors that differentially depend on Bcl10 and MALT1 for association. Mol Cell Biol 2008; 28:5668-86. [PMID: 18625728 DOI: 10.1128/mcb.00418-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The activation of NF-kappaB by T-cell receptor (TCR) signaling is critical for T-cell activation during the adaptive immune response. CARD11 is a multidomain adapter that is required for TCR signaling to the IkappaB kinase (IKK) complex. During TCR signaling, the region in CARD11 between the coiled-coil and PDZ domains is phosphorylated by protein kinase Ctheta (PKCtheta) in a required step in NF-kappaB activation. In this report, we demonstrate that this region functions as an inhibitory domain (ID) that controls the association of CARD11 with multiple signaling cofactors, including Bcl10, TRAF6, TAK1, IKKgamma, and caspase-8, through an interaction that requires both the caspase recruitment domain (CARD) and the coiled-coil domain. Consistent with the ID-mediated control of their association, we demonstrate that TRAF6 and caspase-8 associate with CARD11 in T cells in a signal-inducible manner. Using an RNA interference rescue assay, we demonstrate that the CARD, linker 1, coiled-coil, linker 3, SH3, linker 4, and GUK domains are each required for TCR signaling to NF-kappaB downstream of ID neutralization. Requirements for the CARD, linker 1, and coiled-coil domains in signaling are consistent with their roles in the association of CARD11 with Bcl10, TRAF6, TAK1, caspase-8, and IKKgamma. Using Bcl10- and MALT1-deficient cells, we show that CARD11 can recruit signaling cofactors independently of one another in a signal-inducible manner.
Collapse
|
209
|
Le Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A, Krajewski S, Reed JC. ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation. Cell Microbiol 2008; 10:1879-92. [PMID: 18503636 DOI: 10.1111/j.1462-5822.2008.01178.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes various human diseases, including blindness caused by ocular infection and sexually transmitted diseases resulting from urogenital infection. After infecting host cells, Chlamydiae avoid alarming the host's immune system. Among the immune evasion mechanisms, Chlamydiae can inhibit NF-kappaB activation, a crucial pathway for host inflammatory responses. In this study, we show that ChlaDub1, a deubiquitinating and deNeddylating protease from C. trachomatis, is expressed in infected cells. In transfection experiments, ChlaDub1 suppresses NF-kappaB activation induced by several pro-inflammatory stimuli and binds the NF-kappaB inhibitory subunit IkappaBalpha, impairing its ubiquitination and degradation. Thus, we provide further insight into the mechanism by which C. trachomatis may evade the host inflammatory response by demonstrating that ChlaDub1, a protease produced by this microorganism, is capable of inhibiting IkappaBalpha degradation and blocking NF-kappaB activation.
Collapse
Affiliation(s)
- Gaëlle Le Negrate
- Program on Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
210
|
Zeng H, Chen Y, Yu M, Xue L, Gao X, Morris SW, Wang D, Wen R. T cell receptor-mediated activation of CD4+CD44hi T cells bypasses Bcl10: an implication of differential NF-kappaB dependence of naïve and memory T cells during T cell receptor-mediated responses. J Biol Chem 2008; 283:24392-9. [PMID: 18583339 DOI: 10.1074/jbc.m802344200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated that Bcl10 (B-cell leukemia/lymphoma 10) is essential for T cell receptor-mediated NF-kappaB activation and subsequent proliferation and interleukin 2 (IL2) production. However, here we demonstrate that, contrary to expectations, Bcl10 is differentially required for T cell activation, including for both proliferation and cytokine production. When CD4+ and CD8+ T cells were divided based on expression levels of CD44, which distinguishes naïve cells (CD44lo) versus those that are antigen-experienced (CD44hi), IL2 production by and proliferation of CD4+CD44lo naïve cells and both subpopulations of CD8+ T cells were clearly Bcl10-dependent, whereas these same functional properties of CD4+CD44hi T cells occurred largely independent of Bcl10. As with the other subpopulations of T cells, CD4+CD44hi T cells did not activate the NF-kappaB pathway in the absence of Bcl10; nevertheless, these CD4+CD44hi antigen-experienced T cells efficiently secreted IL2 after T cell receptor stimulation. Strikingly, therefore, T cell receptor-mediated IL2 production in these cells is NF-kappaB-independent. Our studies suggest that antigen-experienced CD4+ T cells differ from their naïve counterparts and from CD8+ T cells in their ability to achieve activation independent of the Bcl10/NF-kappaB pathway.
Collapse
Affiliation(s)
- Hu Zeng
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 225001, China
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Hömig-Hölzel C, Hojer C, Rastelli J, Casola S, Strobl LJ, Müller W, Quintanilla-Martinez L, Gewies A, Ruland J, Rajewsky K, Zimber-Strobl U. Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-kappaB pathway and promotes lymphomagenesis. ACTA ACUST UNITED AC 2008; 205:1317-29. [PMID: 18490492 PMCID: PMC2413030 DOI: 10.1084/jem.20080238] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD40, a member of the tumor necrosis factor (TNF) receptor family, plays an essential role in T cell–dependent immune responses. Because CD40 is widely expressed on the surface of tumor cells in various B cell malignancies, deregulated CD40 signaling has been suggested to contribute to lymphomagenesis. In this study, we show that B cell-specific expression of a constitutively active CD40 receptor, in the form of a latent membrane protein 1 (LMP1)/CD40 chimeric protein, promoted an increase in the number of follicular and marginal zone B cells in secondary lymphoid organs in transgenic mice. The B cells displayed an activated phenotype, prolonged survival and increased proliferation, but were significantly impaired in T cell-dependent immune responses. Constitutive CD40 signaling in B cells induced selective and constitutive activation of the noncanonical NF-κB pathway and the mitogen-activated protein kinases Jnk and extracellular signal–regulated kinase. LMP1/CD40-expressing mice older than 12 mo developed B cell lymphomas of mono- or oligoclonal origin at high incidence, thus showing that the interplay of the signaling pathways induced by constitutive CD40 signaling is sufficient to initiate a tumorigenic process, ultimately leading to the development of B cell lymphomas.
Collapse
Affiliation(s)
- Cornelia Hömig-Hölzel
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, German Research Center for Environment and Health, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Le Negrate G, Faustin B, Welsh K, Loeffler M, Krajewska M, Hasegawa P, Mukherjee S, Orth K, Krajewski S, Godzik A, Guiney DG, Reed JC. Salmonella Secreted Factor L Deubiquitinase of Salmonella typhimurium Inhibits NF-κB, Suppresses IκBα Ubiquitination and Modulates Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:5045-56. [DOI: 10.4049/jimmunol.180.7.5045] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
213
|
Hinshaw-Makepeace J, Huston G, Fortner KA, Russell JQ, Holoch D, Swain S, Budd RC. c-FLIP(S) reduces activation of caspase and NF-kappaB pathways and decreases T cell survival. Eur J Immunol 2008; 38:54-63. [PMID: 18081036 DOI: 10.1002/eji.200636956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Effective stimulation of NF-kappaB in T cells following TCR ligation requires the activity of caspase-8. The active caspase-8 complex includes the paracaspase, MALT1, and Bcl-10, which connect to the NF-kappaB pathway. It has been less clear what regulates the level of caspase-8 activity during T cell activation. A likely candidate is cellular FLIP (c-FLIP), an enzymatically inert caspase-8 homologue. Two alternatively spliced forms of c-FLIP exist, a long form (c-FLIP(L)) and a short-form (c-FLIP(S)). The latter lacks the C-terminal caspase-like domain. c-FLIP(L) can heterodimerize with and activate caspase-8 through an activation loop in the C terminus of c-FLIP(L). Here we show that, in contrast to c-FLIP(L), c-FLIP(S) inhibits activation of caspase-8 in T cells, and consequently reduces recruitment of MALT1 and Bcl-10 to the active caspase complex. This results in reduced activity of NF-kappaB. Consequently, T cells from c-FLIP(S)-transgenic mice undergo more rapid cell death both spontaneously and after activation. The findings suggest that c-FLIP(S) functions to reduce the expansion of T cells during an immune response.
Collapse
Affiliation(s)
- Jennifer Hinshaw-Makepeace
- Immunobiology Program, Department of Medicine, The University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 2008; 105:3023-8. [PMID: 18287044 DOI: 10.1073/pnas.0712313105] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism by which the Carma1-Bcl10-MALT1 (CBM) complex couples T cell antigen receptor (TCR) signaling to IkappaB kinase (IKK) and NF-kappaB activation is not known. Here, we show that Bcl10 undergoes K63-linked polyubiquitination in response to T cell activation and subsequently binds NEMO, the regulatory subunit of IKK. This interaction requires the ubiquitin-binding activity of NEMO. The sites of Bcl10 ubiquitination were mapped to K31 and K63. Mutation of these residues did not affect TCR signaling-induced CBM complex assembly but prevented Bcl10 ubiquitination, NEMO binding, and NF-kappaB activation. Therefore, the regulated ubiquitination of Bcl10 and its recognition by NEMO are a critical link between the CBM complex, IKK recruitment, and NF-kappaB activation.
Collapse
|
215
|
Rebeaud F, Hailfinger S, Posevitz-Fejfar A, Tapernoux M, Moser R, Rueda D, Gaide O, Guzzardi M, Iancu EM, Rufer N, Fasel N, Thome M. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 2008; 9:272-81. [PMID: 18264101 DOI: 10.1038/ni1568] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 01/22/2008] [Indexed: 02/07/2023]
|
216
|
Du MQ. MALT lymphoma : recent advances in aetiology and molecular genetics. J Clin Exp Hematop 2008; 47:31-42. [PMID: 18040143 DOI: 10.3960/jslrt.47.31] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphoma is a common low grade B-cell lymphoma arising from a background of chronic inflammatory disease at a number of mucosal sites. Those originating in the stomach are causatively linked to Helicobacter pylori infection and eradication of the bacterium with antibiotics leads to long-term complete regression of the lymphoma in aproximately 70% of cases. Now, there is further evidence of linking Campylobacter jejuni, Borrelia burgdorferi and Chlamydia psittaci infection with immunoproliferative small intestine disease, MALT lymphoma of the skin and ocular adnexa respectively. t(11;18)/API2-MALT1, t(1;14)/IGH-BCL10, t(14;18)/IGH-MALT1 and t(3;14)/IGH-FOXP1 occur at considerably variable incidences in MALT lymphomas of different sites. The first three chromosome translocations are specifically associated with the MALT lymphoma entity and the oncogenic products of these translocations have been shown to target a common molecular pathway, i.e. the nuclear factor-kappaB pathway. Here, I review the recent advances in our understanding of the association of microbial pathogens with MALT lymphoma of various sites and the molecular genetics underlying the lymphoma development.
Collapse
Affiliation(s)
- Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
217
|
T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 2008; 9:263-71. [PMID: 18223652 DOI: 10.1038/ni1561] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 01/04/2008] [Indexed: 12/16/2022]
Abstract
The paracaspase MALT1 mediates T cell antigen receptor-induced signaling to the transcription factor NF-kappaB and is indispensable for T cell activation and proliferation. Enhanced expression of MALT1 or aberrant expression of a fusion protein of the apoptosis inhibitor API2 and MALT1 has been linked to mucosa-associated lymphoid tissue lymphoma. Despite the presence of a caspase-like domain, MALT1 proteolytic activity has not yet been demonstrated. Here we show that T cell antigen receptor stimulation induced recruitment of the NF-kappaB inhibitor A20 into a complex of MALT1 and the adaptor protein Bcl-10, leading to MALT1-mediated processing of A20. API2-MALT1 expression likewise resulted in cleavage of A20. MALT1 cleaved human A20 after arginine 439 and impaired its NF-kappaB-inhibitory function. Our studies identify A20 as a substrate of MALT1 and emphasize the importance of MALT1 proteolytic activity in the 'fine tuning' of T cell antigen receptor signaling.
Collapse
|
218
|
Cronin SJF, Penninger JM. From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev 2008; 220:151-68. [PMID: 17979845 DOI: 10.1111/j.1600-065x.2007.00570.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The activation of resting T cells is crucial to most immune processes. Recognition of foreign antigen by T-cell receptors has to be correctly translated into signal transduction events necessary for the induction of an effective immune response. In this review, we discuss the essential signals, molecules, and processes necessary to achieve full T-cell activation. In addition to describing these key biological events, we also discuss how T-cell receptor signaling may be harnessed to yield new therapeutic targets for a next generation of anti-cancer drugs.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
219
|
Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-kappaB and MAPK activation to selectively control cytokine production. Blood 2008; 112:2421-8. [PMID: 18192506 DOI: 10.1182/blood-2007-11-123513] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that mediate resistance against viruses and tumors. They express multiple activating receptors that couple to immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling chains for downstream cell activation. Ligation of activating NK-cell receptors induces NK-cell cytotoxicity and cytokine release. How these distinct events are selectively controlled is not well defined. Here we report the identification of a specific signaling pathway that operates downstream of the ITAM-coupled NK-cell receptors NK1.1, Ly49D, Ly49H, and NKG2D. Using primary NK cells from Bcl10(-/-), Malt1(-/-), Carma1(-/-), and Card9(-/-) mice, we demonstrate a key role for Bcl10 signalosomes in the activation of canonical NF-kappaB signaling as well as JNK and p38 MAPK upon NK-cell triggering. Bcl10 directly cooperates with Malt1 and depends on Carma1 (Card11) but not on Card9 for NK-cell activation. These Bcl10-dependent cascades selectively control cytokine and chemokine production but do not affect NK-cell differentiation or killing. Thus, we identify a molecular basis for the segregation of NK-cell receptor-induced signals for cytokine release and target cell killing and extend the previously recognized roles for CARD-protein/Bcl10/Malt1 complexes in ITAM receptor signaling in innate and adaptive immune cells.
Collapse
|
220
|
Torgersen KM, Aandahl EM, Taskén K. Molecular architecture of signal complexes regulating immune cell function. Handb Exp Pharmacol 2008:327-63. [PMID: 18491059 DOI: 10.1007/978-3-540-72843-6_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signals transmitted via multichain immunoreceptors control the development, differentiation and activation of hematopoetic cells. The cytoplasmic parts of these receptors contain immunoreceptor tyrosine-based activation motifs (ITAMs) that upon phosphorylation by members of the Src tyrosine kinase family orchestrate a complex set of signaling events involving tyrosine phosphorylation, generation of second messengers like DAG, IP3 and Ca2+, activation of effector molecules like Ras and MAPKs and the translocation and activation of transcription factors like NFAT, API and NF-kB. Spatial and temporal organization of these signaling events is essential both to connect the receptors to downstream cascades as well as to control the functional outcome of the immune activation. Throughout this process control and fine-tuning of the different signals are necessary both for effective immune function and in order to avoid inappropriate or exaggerated immune activation and autoimmunity. This control includes modulating mechanisms that set the threshold for activation and reset the activation status after an immune response has been launched. One immunomodulating pathway is the cAMP-protein kinase A-Csk pathway scaffolded by a supramolecular complex residing in lipid rafts with the A kinase-anchoring protein (AKAP) ezrin, the Csk-binding protein PAG and a linker between the two, EBP50. Failure of correct scaffolding and loss of spatiotemporal control can potentially have severe consequences, leading to immune failure or autoimmunity. The clinical relevance of supramolecular complexes specifically organized by scaffolding proteins in regulating immune activity and the specter of genetic diseases linked to different signaling components suggest that protein-protein contact surfaces can be potential targets for drug intervention. It is also of interest to note that different pathogens have evolved strategies to specifically modulate signal integration, thereby rewiring the signal in a way beneficial for their survival. In addition to demonstrating the importance of different signal processes, these adaptations are elegant illustrations of the potential for drug targeting of protein assembly. This chapter reviews some of the important scaffolding events downstream of immunoreceptors with focus on signaling transduction through the T-cell receptor (TCR).
Collapse
Affiliation(s)
- K M Torgersen
- The Biotechnology Centre of Oslo, Gaustadalléen 21, PO Box 1125 Blindern, Oslo, Norway
| | | | | |
Collapse
|
221
|
Abstract
NF-kappaB is a major regulator of the first-line defense against invading pathogens, antigen-specific adaptive immune responses or chemical stress. Stimulation either by extracellular ligands (e.g., inflammatory cytokines, microbial pathogens, peptide antigens) or by intracellular Stressors (e.g., genotoxic drugs) initiates signal-specific pathways that all converge at the IkappaB kinase (IKK) complex, the gatekeeper for NF-kappaB activation. During recent years, considerable progress has been made in understanding the function of NF-kappaB in the regulation of cell growth, survival and apoptosis. In this review, we will focus on the regulation of large signaling complexes on the route to NF-kappaB. Recently published data demonstrate that the assembly, maintenance and activity of the IKK complex determine downstream activation of NF-kappaB. In addition, dynamic complexes upstream of IKK are formed in response to tumor necrosis factor (TNF), antigenic peptides or DNA-damaging agents. Clustering of signaling adaptors promotes the association and activation of ubiquitin ligases that trigger the conjugation of regulatory ubiquitin to target proteins. Ubiquitination serves as a platform to recruit the IKK complex and potentially other protein kinases to trigger IKK activation. These findings support a concept whereby protein complex assembly induces regulatory ubiquitination, which in turn recruits and activates protein kinases. Notably, the great interest in a detailed description of the mechanisms that regulate NF-kappaB activity stems from many observations that link dysregulated NF-kappaB signaling with the onset or progression of various diseases, including cancer, chronic inflammation, cardiovascular disorders and neurodegenerative diseases. Thus, the formation of large signaling clusters and regulatory ubiquitin chains represents promising targets for pharmacological intervention to modulate NF-kappaB signal transduction in disease.
Collapse
Affiliation(s)
- E Wegener
- GSF - Research Center for Environment and Health, Institute of Toxicology, Ingolstädter Landstr. 1, Neuherberg, Germany
| | | |
Collapse
|
222
|
Abstract
More than a quarter of a century has passed since the observation that T cells rapidly polarize their actin and microtubule cytoskeletal systems toward antigen-presenting cells during activation. Since this initial discovery, several receptors on T cells (e.g., T cell receptor [TCR], co-receptors, integrins, and chemokine receptors) have been identified to regulate these two cytoskeletal networks through complex signaling pathways, which are still being elucidated. There is now an undeniable body of biochemical, pharmacological, and genetic evidence indicating that regulators of actin and microtubule dynamics are crucial for T cell activation and effector functions. In fact, the actin cytoskeleton participates in the initial clustering of TCR-major histocompatibility complex or peptide complexes, formation and stabilization of the immune synapse, integrin-mediated adhesion, and receptor sequestration, whereas both the actin and microtubule cytoskeletons regulate the establishment of cell polarity, cell migration, and directed secretion of cytokines and cytolytic granules. Over the past several years, we have begun to more thoroughly understand the contributions of specific actin-regulatory and actin-nucleating proteins that govern these processes. Herein, we discuss our current understanding of how activating receptors on T lymphocytes regulate the actin and microtubule cytoskeletons, and how in turn, these distinct but integrated cytoskeletal networks coordinate T cell immune responses.
Collapse
|
223
|
CARD6 is interferon inducible but not involved in nucleotide-binding oligomerization domain protein signaling leading to NF-kappaB activation. Mol Cell Biol 2007; 28:1541-52. [PMID: 18160713 DOI: 10.1128/mcb.01359-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported the cloning and characterization of CARD6, a caspase recruitment domain (CARD)-containing protein that is structurally related to the interferon (IFN)-inducible GTPases. CARD6 associates with microtubules and with receptor-interacting protein 2 (RIP2). RIP2 mediates NF-kappaB activation induced by the intracellular nucleotide-binding oligomerization domain (NOD) receptors that sense bacterial peptidoglycan. Here we report that the expression of CARD6 and RIP2 in bone marrow-derived macrophages is rapidly induced by beta IFN and gamma IFN. This IFN-induced upregulation of CARD6 is suppressed by lipopolysaccharide (LPS), in contrast to LPS's enhancement of IFN-induced RIP2 upregulation. We generated CARD6-deficient (CARD6(-/-)) mice and carried out extensive analyses of signaling pathways mediating innate and adaptive immune responses, including the NOD pathways, but did not detect any abnormalities. Moreover, CARD6(-/-) mice were just as susceptible as wild-type mice to infection by Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Candida albicans, lymphocytic choriomeningitis virus, or mouse adenovirus type 1. Thus, although structural and in vitro analyses strongly suggest an important role for CARD6 in immune defense, the physiological function of CARD6 remains obscure.
Collapse
|
224
|
Abstract
In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.(1) These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.(2) In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin's function to kill tumor cells.(3) In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin's ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported "black and white" tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti-cancer agent.
Collapse
Affiliation(s)
- M Tavassoli
- Head and Neck Oncology Group, Department of Oral Medicine and Pathology, King's College London, 123 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | |
Collapse
|
225
|
Malarkannan S, Regunathan J, Chu H, Kutlesa S, Chen Y, Zeng H, Wen R, Wang D. Bcl10 plays a divergent role in NK cell-mediated cytotoxicity and cytokine generation. THE JOURNAL OF IMMUNOLOGY 2007; 179:3752-62. [PMID: 17785812 DOI: 10.4049/jimmunol.179.6.3752] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activating receptors such as NKG2D and Ly49D mediate a multitude of effector functions including cytotoxicity and cytokine generation in NK cells. However, specific signaling events that are responsible for the divergence of distinct effector functions have yet to be determined. In this study, we show that lack of caspase recruitment domain-containing protein Bcl10 significantly affected receptor-mediated cytokine and chemokine generation, but not cytotoxicity against tumor cells representing "missing-self" or "induced-self." Lack of Bcl10 completely abrogated the generation of GM-CSF and chemokines and it significantly reduced the generation of IFN-gamma (>75%) in NK cells. Commitment, development, and terminal maturation of NK cells were largely unaffected in the absence of Bcl10. Although IL-2-activated NK cells could mediate cytotoxicity to the full extent, the ability of the freshly isolated NK cells to mediate cytotoxicity was somewhat reduced. Therefore, we conclude that the Carma1-Bcl10-Malt1 signaling axis is critical for cytokine and chemokine generation, although it is dispensable for cytotoxic granule release depending on the activation state of NK cells. These results indicate that Bcl10 represents an exclusive "molecular switch" that links the upstream receptor-mediated signaling to cytokine and chemokine generations.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigens, Ly/physiology
- Antigens, Surface/physiology
- B-Cell CLL-Lymphoma 10 Protein
- CHO Cells
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Tumor
- Chemokines/antagonists & inhibitors
- Chemokines/biosynthesis
- Cricetinae
- Cricetulus
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic/genetics
- Immunity, Innate/genetics
- Interleukin-2/physiology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily A
- NK Cell Lectin-Like Receptor Subfamily B
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Immunologic/physiology
- Receptors, NK Cell Lectin-Like
- Receptors, Natural Killer Cell
- Self Tolerance/genetics
- Self Tolerance/immunology
Collapse
|
226
|
Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation. EMBO J 2007; 26:4634-45. [PMID: 17948050 DOI: 10.1038/sj.emboj.7601897] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 09/26/2007] [Indexed: 12/31/2022] Open
Abstract
Triggering of antigen receptors on lymphocytes is critical for initiating adaptive immune response against pathogens. T-cell receptor (TCR) engagement induces the formation of the Carma1-Bcl10-Malt1 (CBM) complex that is essential for activation of the IkappaB kinase (IKK)/NF-kappaB pathway. However, the molecular mechanisms that link CBM complex formation to IKK activation remain unclear. Here we report that Malt1 is polyubiquitinated upon T-cell activation. Ubiquitin chains on Malt1 provide a docking surface for the recruitment of the IKK regulatory subunit NEMO/IKKgamma. TRAF6 associates with Malt1 in response to T-cell activation and can function as an E3 ligase for Malt1 in vitro and in vivo, mediating lysine 63-linked ubiquitination of Malt1. Multiple lysine residues in the C-terminus of Malt1 serve as acceptor sites for the assembly of polyubiquitin chains. Malt1 mutants that lack C-terminal ubiquitin acceptor lysines are impaired in rescuing NF-kappaB signaling and IL-2 production in Malt1-/- T cells. Thus, our data demonstrate that induced Malt1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing TCR signals to the canonical NF-kappaB pathway.
Collapse
|
227
|
Lobry C, Weil R. Mécanismes régulateurs de la voie NF-κB dans les lymphocytes T. Med Sci (Paris) 2007; 23:857-61. [DOI: 10.1051/medsci/20072310857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
228
|
Inagaki H. Mucosa-associated lymphoid tissue lymphoma: molecular pathogenesis and clinicopathological significance. Pathol Int 2007; 57:474-84. [PMID: 17610471 DOI: 10.1111/j.1440-1827.2007.02128.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphoma is a low-grade tumor closely associated with chronic inflammation such as that of Helicobacter pylori gastritis, Sjogren's syndrome, and Hashimoto's thyroiditis. Tumor regression by H. pylori eradication alone is well known in gastric MALT lymphoma, but some tumors occur in the absence of pre-existing chronic inflammation. The understanding of MALT lymphoma biology has significantly improved, and recurrent cytogenetic alterations have been detected. These include the trisomies 3 and 18, and the translocations t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). At least some of these alterations result in the constitutive activation of the nuclear factor (NF)-kappaB pathway, and may exert anti-apoptotic action. Apoptosis inhibitor 2-MALT lymphoma-associated translocation 1 (API12-MALT1) fusion, resulting from t(11;18)(q21;q21), is specific to, and is the most common in, MALT lymphomas, and its clinicopathological significance has been studied extensively. The focus of the present review is on the recent progress made in elucidating MALT lymphomagenesis and its clinicopathological impact, especially in terms of the effect of API2-MALT1 fusion on this unique tumor.
Collapse
Affiliation(s)
- Hiroshi Inagaki
- Department of Pathology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
229
|
Ferch U, zum Büschenfelde CM, Gewies A, Wegener E, Rauser S, Peschel C, Krappmann D, Ruland J. MALT1 directs B cell receptor-induced canonical nuclear factor-kappaB signaling selectively to the c-Rel subunit. Nat Immunol 2007; 8:984-91. [PMID: 17660823 DOI: 10.1038/ni1493] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 06/20/2007] [Indexed: 01/03/2023]
Abstract
NF-kappaB (Rel) transcription factors control physiological and pathological immune cell function. The scaffold proteins Bcl-10 and MALT1 couple antigen-receptor signals to the canonical NF-kappaB pathway and are pivotal in lymphomagenesis. Here we found that Bcl-10 and MALT1 differentially regulated B cell receptor-induced activation of RelA and c-Rel. Bcl-10 was essential for recruitment of the kinase IKK into lipid rafts for the activation of RelA and c-Rel, for blocking apoptosis and for inducing division after B cell receptor ligation. In contrast, MALT1 participated in survival signaling but was not involved in IKK recruitment or activation and was dispensable for RelA induction and proliferation. MALT1 selectively activated c-Rel to control a distinct subprogram. Our results provide mechanistic insights into B cell receptor-induced survival and proliferation signals and demonstrate the selective control of c-Rel in the canonical NF-kappaB pathway.
Collapse
Affiliation(s)
- Uta Ferch
- Third Medical Department, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics 2007; 8:230. [PMID: 17623099 PMCID: PMC1959522 DOI: 10.1186/1471-2164-8-230] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 07/10/2007] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Human natural killer (NK) cells are the key contributors of innate immune response and the effector functions of these cells are enhanced by cytokines such as interleukine 2 (IL2). We utilized genome-wide transcriptional profiling to identify gene expression signatures and pathways in resting and IL2 activated NK cell isolated from peripheral blood of healthy donors. RESULTS Gene expression profiling of resting NK cells showed high expression of a number of cytotoxic factors, cytokines, chemokines and inhibitory and activating surface NK receptors. Resting NK cells expressed many genes associated with cellular quiescence and also appeared to have an active TGFbeta (TGFB1) signaling pathway. IL2 stimulation induced rapid downregulation of quiescence associated genes and upregulation of genes associated with cell cycle progression and proliferation. Numerous genes that may enhance immune function and responsiveness including activating receptors (DNAM1, KLRC1 and KLRC3), death receptor ligand (TNFSF6 (FASL) and TRAIL), chemokine receptors (CX3CR1, CCR5 and CCR7), interleukin receptors (IL2RG, IL18RAB and IL27RA) and members of secretory pathways (DEGS1, FKBP11, SSR3, SEC61G and SLC3A2) were upregulated. The expression profile suggested PI3K/AKT activation and NF-kappaB activation through multiple pathways (TLR/IL1R, TNF receptor induced and TCR-like possibly involving BCL10). Activation of NFAT signaling was supported by increased expression of many pathway members and downstream target genes. The transcription factor GATA3 was expressed in resting cells while T-BET was upregulated on activation concurrent with the change in cytokine expression profile. The importance of NK cells in innate immune response was also reflected by late increased expression of inflammatory chemotactic factors and receptors and molecules involved in adhesion and lymphocyte trafficking or migration. CONCLUSION This analysis allowed us to identify genes implicated in cellular quiescence and the cytokines and cytotoxic factors ready for immediate immune response. It also allowed us to observe the sequential immunostimulatory effects of IL2 on NK cells improving our understanding of the biology and molecular mediators behind NK cell activation.
Collapse
|
231
|
Rueda D, Gaide O, Ho L, Lewkowicz E, Niedergang F, Hailfinger S, Rebeaud F, Guzzardi M, Conne B, Thelen M, Delon J, Ferch U, Mak TW, Ruland J, Schwaller J, Thome M. Bcl10 controls TCR- and FcgammaR-induced actin polymerization. THE JOURNAL OF IMMUNOLOGY 2007; 178:4373-84. [PMID: 17371994 DOI: 10.4049/jimmunol.178.7.4373] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bcl10 plays an essential role in the adaptive immune response, because Bcl10-deficient lymphocytes show impaired Ag receptor-induced NF-kappaB activation and cytokine production. Bcl10 is a phosphoprotein, but the physiological relevance of this posttranslational modification remains poorly defined. In this study, we report that Bcl10 is rapidly phosphorylated upon activation of human T cells by PMA/ionomycin- or anti-CD3 treatment, and identify Ser(138) as a key residue necessary for Bcl10 phosphorylation. We also show that a phosphorylation-deficient Ser(138)/Ala mutant specifically inhibits TCR-induced actin polymerization yet does not affect NF-kappaB activation. Moreover, silencing of Bcl10, but not of caspase recruitment domain-containing MAGUK protein-1 (Carma1) induces a clear defect in TCR-induced F-actin formation, cell spreading, and conjugate formation. Remarkably, Bcl10 silencing also impairs FcgammaR-induced actin polymerization and phagocytosis in human monocytes. These results point to a key role of Bcl10 in F-actin-dependent immune responses of T cells and monocytes/macrophages.
Collapse
Affiliation(s)
- Daniel Rueda
- Department of Biochemistry, University of Lausanne, BIL Biomedical Research Center, Chemin des Boveresses 155, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P. RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 2007; 14:400-10. [PMID: 17301840 DOI: 10.1038/sj.cdd.4402085] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Binding of inflammatory cytokines to their receptors, stimulation of pathogen recognition receptors by pathogen-associated molecular patterns, and DNA damage induce specific signalling events. A cell that is exposed to these signals can respond by activation of NF-kappaB, mitogen-activated protein kinases and interferon regulatory factors, resulting in the upregulation of antiapoptotic proteins and of several cytokines. The consequent survival may or may not be accompanied by an inflammatory response. Alternatively, a cell can also activate death-signalling pathways, resulting in apoptosis or alternative cell death such as necrosis or autophagic cell death. Interplay between survival and death-promoting complexes continues as they compete with each other until one eventually dominates and determines the cell's fate. RIP1 is a crucial adaptor kinase on the crossroad of these stress-induced signalling pathways and a cell's decision to live or die. Following different upstream signals, particular RIP1-containing complexes are formed; these initiate only a limited number of cellular responses. In this review, we describe how RIP1 acts as a key integrator of signalling pathways initiated by stimulation of death receptors, bacterial or viral infection, genotoxic stress and T-cell homeostasis.
Collapse
Affiliation(s)
- N Festjens
- Molecular Signalling and Cell Death Unit, Department for Molecular Biomedical Research, VIB and Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
233
|
Thome M, Weil R. Post-translational modifications regulate distinct functions of CARMA1 and BCL10. Trends Immunol 2007; 28:281-8. [PMID: 17468049 DOI: 10.1016/j.it.2007.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 03/20/2007] [Accepted: 04/17/2007] [Indexed: 12/15/2022]
Abstract
Activation of the transcription factor nuclear factor (NF)-kappaB is essential for the normal functioning of the immune system. Deregulated NF-kappaB signalling in lymphocytes can lead to immunodeficiency, but also to autoimmunity or lymphomas. Many of the signalling components controlling NF-kappaB activation in lymphocytes are now known, but it is less clear how distinct molecular components of this pathway are regulated. Here, we summarize recent findings on post-translational modifications of intracellular components of this pathway. Phosphorylation of the CARMA1 and BCL10 proteins and ubiquitylation of BCL10 affect the formation and stability of the CARMA1-BCL10-MALT1 (CBM) complex, and also control negative feedback regulation of the NF-kappaB signalling pathway. Moreover, the study of BCL10 phosphorylation isoforms has revealed a new mechanism controlling BCL10 nuclear translocation and an unexpected role for BCL10 in the regulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Margot Thome
- Department of Biochemistry, University of Lausanne, BIL Biomedical Research Center, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.
| | | |
Collapse
|
234
|
Loeser S, Penninger JM. Regulation of peripheral T cell tolerance by the E3 ubiquitin ligase Cbl-b. Semin Immunol 2007; 19:206-14. [PMID: 17391982 DOI: 10.1016/j.smim.2007.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 02/07/2023]
Abstract
The family of the Casitas B-lineage Lymphoma (Cbl) proteins, c-Cbl, Cbl-b, and Cbl-3, function as E3 ubiquitin ligases and molecular adaptors. In particular, Cbl-b acts as a gatekeeper in T cell activation that controls activation thresholds and the requirement for co-stimulation. Loss of Cbl-b expression renders animals susceptible to antigen-triggered autoimmunity suggesting that Cbl-b is a key autoimmunity gene. In addition, Cbl-b plays a critical role in T cell anergy and escape from regulatory T cells (Treg) suppression. Modulation of Cbl-b might provide us with a unique opportunity for future immune treatment of human disorders such as autoimmunity, immunodeficiency, or cancer.
Collapse
Affiliation(s)
- Stefanie Loeser
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse 3, A-1030 Vienna, Austria.
| | | |
Collapse
|
235
|
Jost PJ, Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 2007; 109:2700-7. [PMID: 17119127 DOI: 10.1182/blood-2006-07-025809] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factor NF-kappaB is a tightly regulated positive mediator of T- and B-cell development, proliferation, and survival. The controlled activity of NF-kappaB is required for the coordination of physiologic immune responses. However, constitutive NF-kappaB activation can promote continuous lymphocyte proliferation and survival and has recently been recognized as a critical pathogenetic factor in lymphoma. Various molecular events lead to deregulation of NF-kappaB signaling in Hodgkin disease and a variety of T- and B-cell non-Hodgkin lymphomas either up-stream or downstream of the central IkappaB kinase. These alterations are prerequisites for lymphoma cell cycling and blockage of apoptosis. This review provides an overview of the NF-kappaB pathway and discusses the mechanisms of NF-kappaB deregulation in distinct lymphoma entities with defined aberrant pathways: Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), mucosa-associated lymphoid tissue (MALT) lymphoma, primary effusion lymphoma (PEL), and adult T-cell lymphoma/leukemia (ATL). In addition, we summarize recent data that validates the NF-kappaB signaling pathway as an attractive therapeutic target in T- and B-cell malignancies.
Collapse
MESH Headings
- Hodgkin Disease/physiopathology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/physiopathology
- Lymphocytes/physiology
- Lymphoma/genetics
- Lymphoma/physiopathology
- Lymphoma/therapy
- Lymphoma, B-Cell/physiopathology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/physiopathology
- Lymphoma, Large B-Cell, Diffuse/physiopathology
- Models, Biological
- NF-kappa B/physiology
- Oncogene Proteins, Viral/physiology
- Prognosis
- Signal Transduction/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- Philipp J Jost
- III Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
236
|
Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. ACTA ACUST UNITED AC 2007; 79:187-210. [PMID: 17177317 DOI: 10.1002/bdra.20333] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
237
|
Medeiros RB, Burbach BJ, Mueller KL, Srivastava R, Moon JJ, Highfill S, Peterson EJ, Shimizu Y. Regulation of NF-kappaB activation in T cells via association of the adapter proteins ADAP and CARMA1. Science 2007; 316:754-8. [PMID: 17478723 DOI: 10.1126/science.1137895] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The adapter protein ADAP regulates T lymphocyte adhesion and activation. We present evidence for a previously unrecognized function for ADAP in regulating T cell receptor (TCR)-mediated activation of the transcription factor NF-kappaB. Stimulation of ADAP-deficient mouse T cells with antibodies to CD3 and CD28 resulted in impaired nuclear translocation of NF-kappaB, a reduced DNA binding, and delayed degradation and decreased phosphorylation of IkappaB (inhibitor of NF-kappaB). TCR-stimulated assembly of the CARMA1-BCL-10-MALT1 complex was substantially impaired in the absence of ADAP. We further identified a region of ADAP that is required for association with the CARMA1 adapter and NF-kappaB activation but is not required for ADAP-dependent regulation of adhesion. These findings provide new insights into ADAP function and the mechanism by which CARMA1 regulates NF-kappaB activation in T cells.
Collapse
Affiliation(s)
- Ricardo B Medeiros
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Zeng H, Di L, Fu G, Chen Y, Gao X, Xu L, Lin X, Wen R. Phosphorylation of Bcl10 negatively regulates T-cell receptor-mediated NF-kappaB activation. Mol Cell Biol 2007; 27:5235-45. [PMID: 17502353 PMCID: PMC1951946 DOI: 10.1128/mcb.01645-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bcl10 (B-cell lymphoma 10) is an adaptor protein comprised of an N-terminal caspase recruitment domain and a C-terminal serine/threonine-rich domain. Bcl10 plays a critical role in antigen receptor-mediated NF-kappaB activation and lymphocyte development and functions. Our current study has discovered that T-cell activation induced monophosphorylation and biphosphorylation of Bcl10 and has identified S138 within Bcl10 as one of the T-cell receptor-induced phosphorylation sites. Alteration of S138 to an alanine residue impaired T-cell activation-induced ubiquitination and subsequent degradation of Bcl10, ultimately resulting in prolongation of TCR-mediated NF-kappaB activation and enhancement of interleukin-2 production. Taken together, our findings demonstrate that phosphorylation of Bcl10 at S138 down-regulates Bcl10 protein levels and thus negatively regulates T-cell receptor-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Hu Zeng
- The Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, Inui M, Takai T, Shibuya A, Saijo S, Iwakura Y, Ohno N, Koseki H, Yoshida H, Penninger JM, Saito T. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol 2007; 8:619-29. [PMID: 17486093 DOI: 10.1038/ni1466] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/13/2007] [Indexed: 12/21/2022]
Abstract
Immunoreceptor tyrosine-based activation motifs (ITAMs) are crucial in antigen receptor signaling in acquired immunity. Although receptors associated with the ITAM-bearing adaptors FcRgamma and DAP12 on myeloid cells have been suggested to activate innate immune responses, the mechanism coupling those receptors to 'downstream' signaling events is unclear. The CARMA1-Bcl-10-MALT1 complex is critical for the activation of transcription factor NF-kappaB in lymphocytes but has an unclear function in myeloid cells. Here we report that deletion of the gene encoding the Bcl-10 adaptor-binding partner CARD9 resulted in impaired myeloid cell activation of NF-kappaB signaling by several ITAM-associated receptors. Moreover, CARD9 was required for Toll-like receptor-induced activation of dendritic cells through the activation of mitogen-activated protein kinases. Although Bcl10-/- and Card9-/- mice had similar signaling impairment in myeloid cells, Card11-/- (CARMA1-deficient) myeloid cell responses were normal, and although Card11-/- lymphocytes were defective in antigen receptor-mediated activation, Card9-/- lymphocytes were not. Thus, the activation of lymphoid and myeloid cells through ITAM-associated receptors or Toll-like receptors is regulated by CARMA1-Bcl-10 and CARD9-Bcl-10, respectively.
Collapse
Affiliation(s)
- Hiromitsu Hara
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
CARD11 (CARMA1), Bcl10, and Malt1 are required for nuclear factor NF-kappaB activation in response to antigen recognition. Initially, gene disruption experiments in mice pointed to a lymphocyte-specific role for CARD11-Bcl10-Malt1 complexes. However, strong evidence suggesting that conserved Bcl10-Malt1 complexes interact with different CARD scaffolds to connect various receptors in different cell types to NF-kappaB signaling has emerged more recently. The CARD10 (CARMA3)-Bcl10-Malt1 signalosome functions as a link between G protein-coupled receptor (GPCR) signaling and proinflammatory NF-kappaB activation. Further, Dectin-1-induced antifungal responses to NF-kappaB in dendritic cells depend on CARD9-Bcl10-Malt1. These results identify CARD-Bcl10-Malt1 signalosomes as pivotal regulators that link not only innate and adaptive immune responses, but also GPCR signaling, to the canonical NF-kappaB pathway.
Collapse
Affiliation(s)
- Elmar Wegener
- GSF--National Research Center for Environment and Health, Institute of Toxicology, Neuherberg, Germany
| | | |
Collapse
|
241
|
Misra RS, Russell JQ, Koenig A, Hinshaw-Makepeace JA, Wen R, Wang D, Huo H, Littman DR, Ferch U, Ruland J, Thome M, Budd RC. Caspase-8 and c-FLIPL associate in lipid rafts with NF-kappaB adaptors during T cell activation. J Biol Chem 2007; 282:19365-74. [PMID: 17462996 PMCID: PMC4521413 DOI: 10.1074/jbc.m610610200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-kappaB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIP(L) rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIP(L) at a known caspase-8 cleavage site. The active caspase.c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-kappaB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-kappaB regulators PKC theta, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-kappaB activation. The current findings define a link among TCR, caspases, and the NF-kappaB pathway that occurs in a sequestered lipid raft environment in T cells.
Collapse
Affiliation(s)
- Ravi S. Misra
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
| | - Jennifer Q. Russell
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
| | - Andreas Koenig
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
| | - Jennifer A. Hinshaw-Makepeace
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
| | - Renren Wen
- Blood Research Institute, Department of Microbiology and Molecular Genetics, Blood Center of Wisconsin, Milwaukee, Wisconsin 53201-2178
| | - Demin Wang
- Blood Research Institute, Department of Microbiology and Molecular Genetics, Blood Center of Wisconsin, Milwaukee, Wisconsin 53201-2178
| | - Hairong Huo
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Dan R. Littman
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Uta Ferch
- Department of Medicine (Hematology/Oncology), Technical University of Munich, Munich, Germany
| | - Jurgen Ruland
- Department of Medicine (Hematology/Oncology), Technical University of Munich, Munich, Germany
| | - Margot Thome
- Institute of Biochemistry, University of Lausanne, BIL Biomedical Research Center, 1066 Epalinges, Switzerland
| | - Ralph C. Budd
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
- To whom correspondence should be addressed: Given Medical Bldg., Burlington, VT 05405-0068. Tel.: 802-656-2286; Fax: 802-656-3854;
| |
Collapse
|
242
|
Grabiner BC, Blonska M, Lin PC, You Y, Wang D, Sun J, Darnay BG, Dong C, Lin X. CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-{kappa}B activation. Genes Dev 2007; 21:984-96. [PMID: 17438001 PMCID: PMC1847715 DOI: 10.1101/gad.1502507] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 02/20/2007] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulating various cellular functions. Although many GPCRs induce NF-kappaB activation, the molecular mechanism of GPCR-induced NF-kappaB activation remains largely unknown. CARMA3 (CARD and MAGUK domain-containing protein 3) is a scaffold molecule with unknown biological functions. By generating CARMA3 knockout mice using the gene targeting approach, here we show CARMA3 is required for GPCR-induced NF-kappaB activation. Mechanistically, we found that CARMA3 deficiency impairs GPCR-induced IkappaB kinase (IKK) activation, although it does not affect GPCR-induced IKKalpha/beta phosphorylation, indicating that inducible phosphorylation of IKKalpha/beta alone is not sufficient to induce its kinase activity. We also found that CARMA3 is physically associated with NEMO/IKKgamma, and induces polyubiquitination of an unknown protein(s) that associates with NEMO, likely by linking NEMO to TRAF6. Consistently, we found TRAF6 deficiency also abrogates GPCR-induced NF-kappaB activation. Together, our results provide the genetic evidence that CARMA3 is required for GPCR-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Brian C. Grabiner
- Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marzenna Blonska
- Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Pei-Chun Lin
- Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yun You
- Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Donghai Wang
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jiyuan Sun
- Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bryant G. Darnay
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chen Dong
- Department of Immunology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xin Lin
- Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
243
|
Tanner MJ, Hanel W, Gaffen SL, Lin X. CARMA1 coiled-coil domain is involved in the oligomerization and subcellular localization of CARMA1 and is required for T cell receptor-induced NF-kappaB activation. J Biol Chem 2007; 282:17141-7. [PMID: 17428801 DOI: 10.1074/jbc.m700169200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T lymphocyte (T cell) activation and proliferation is induced by the activation of multiple signal transduction pathways. Earlier studies indicate that CARMA1, a Caspase Recruitment Domain (CARD) and Membrane-associated GUanylate Kinase domain (MAGUK)-containing scaffold protein, plays an essential role in NF-kappaB activation induced by the costimulation of T cell receptor (TCR) and CD28 molecules. However, the molecular mechanism by which CARMA1 mediates TCR-CD28 costimulation-induced NF-kappaB activation is not fully understood. Here we show that CARMA1 is constitutively oligomerized. This oligomerization of CARMA1 is through its Coiled-coil domain. Disruption of the predicted structure of the Coiled-coil domain of CARMA1 impaired its oligomerization and, importantly, abrogated CARMA1-mediated NF-kappaB activation. Interestingly, disruption of the CC1 domain abrogates CARMA1 localization, whereas disruption of the CC2 domain seems to inhibit CARMA1 self-association. Together, our results demonstrate that the oligomerization of CARMA1 is required for TCR-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Matthew J Tanner
- Department of Molecular and Cellular Oncology, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
244
|
Casola S. Control of peripheral B-cell development. Curr Opin Immunol 2007; 19:143-9. [PMID: 17303401 DOI: 10.1016/j.coi.2007.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 02/02/2007] [Indexed: 12/20/2022]
|
245
|
Shambharkar PB, Blonska M, Pappu BP, Li H, You Y, Sakurai H, Darnay BG, Hara H, Penninger J, Lin X. Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways. EMBO J 2007; 26:1794-805. [PMID: 17363905 PMCID: PMC1847656 DOI: 10.1038/sj.emboj.7601622] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 01/29/2007] [Indexed: 11/09/2022] Open
Abstract
The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.
Collapse
Affiliation(s)
- Prashant B Shambharkar
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Microbiology and Immunology, State University of New York, Buffalo, NY, USA
| | - Marzenna Blonska
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Bhanu P Pappu
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Hongxiu Li
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yun You
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroaki Sakurai
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | - Bryant G Darnay
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Hiromitsu Hara
- Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Josef Penninger
- IMBA, Institute for Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Xin Lin
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA. Tel.: +1 171 379 289 69; Fax: +1 171 379 402 09; E-mail:
| |
Collapse
|
246
|
Borthakur A, Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:G829-38. [PMID: 17095757 DOI: 10.1152/ajpgi.00380.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carrageenan is a high molecular weight sulfated polygalactan used to improve the texture of commercial food products. Its use increased markedly during the last half century, although carrageenan is known to induce inflammation in rheumatological models and in intestinal models of colitis. We performed studies to determine its direct effects on human intestinal cells, including normal human intestinal epithelial cells from colonic surgeries, the normal intestinal epithelial cell line NCM460, and normal rat ileal epithelial cells. Cells were treated with high molecular weight lambda-carrageenan at a concentration of 1 mug/ml for 1-96 h. IL-8, IL-8 promoter activity, total and nuclear NF-kappaB, IkappaBalpha, phospho-IkappaBalpha, and Bcl10 were assessed by immunohistochemistry, Western blot, ELISA, and cDNA microarray. Increased Bcl10, nuclear and cytoplasmic NF-kappaB, IL-8 promoter activation, and IL-8 secretion were detected following carrageenan exposure. Knockdown of Bcl10 by siRNA markedly reduced the increase in IL-8 that followed carrageenan exposure in the NCM460 cells. These results show, for the first time, that exposure of human intestinal epithelial cells to carrageenan triggers a distinct inflammatory pathway via activation of Bcl10 with NF-kappaB activation and upregulation of IL-8 secretion. Since Bcl10 contains a caspase-recruitment domain, similar to that found in NOD2/CARD15 and associated with genetic predisposition to Crohn's disease, the study findings may represent a link between genetic and environmental etiologies of inflammatory bowel disease. Because of the high use of carrageenan as a food additive in the diet, the findings may have clinical significance.
Collapse
Affiliation(s)
- Alip Borthakur
- Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
247
|
Jost PJ, Weiss S, Ferch U, Gross O, Mak TW, Peschel C, Ruland J. Bcl10/Malt1 signaling is essential for TCR-induced NF-kappaB activation in thymocytes but dispensable for positive or negative selection. THE JOURNAL OF IMMUNOLOGY 2007; 178:953-60. [PMID: 17202357 DOI: 10.4049/jimmunol.178.2.953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During T cell development in the thymus, high-affinity/avidity TCR engagement induces negative selection by apoptosis, while lower affinity/avidity TCR interactions lead to positive selection and survival of thymocytes. Yet, the mechanisms that discriminate between positive and negative selection are not fully understood. One major regulator of survival and apoptosis in lymphoid cells is the transcription factor NF-kappaB. Several reports have indicated key roles for NF-kappaB in positive and negative selection. In peripheral T cells, TCR ligation activates NF-kappaB through a selective pathway that involves protein kinase Ctheta, Bcl10, and Malt1. While protein kinase Ctheta is dispensable for thymic TCR signaling, the molecular roles of Bcl10 and Malt1 in thymocytes have not been investigated. In the present study, we show that both Bcl10 and Malt1 are essential for TCR signaling in thymocytes as a genetic disruption of either molecule blocks TCR-induced NF-kappaB activation in these cells. To investigate the function of this pathway in thymic selection, we introduced the Bcl10 or Malt1 mutations into three well-established TCR transgenic mouse models. Surprisingly, using several in vivo or in vitro assays, we were unable to demonstrate a role for TCR-induced NF-kappaB activation in either positive or negative selection. Thus, while TCR signaling to NF-kappaB controls the activation of mature T cells, we suggest that this pathway is not involved in the positive or negative selection of thymocytes.
Collapse
Affiliation(s)
- Philipp J Jost
- Third Medical Department, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
248
|
Liston A, Rudensky AY. Thymic development and peripheral homeostasis of regulatory T cells. Curr Opin Immunol 2007; 19:176-85. [PMID: 17306520 DOI: 10.1016/j.coi.2007.02.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 02/01/2007] [Indexed: 11/16/2022]
Abstract
The development and maintenance of regulatory T (T-reg) cells is crucial for determining the level of reactivity in the immune system. Until recently, however, surprisingly little was known about the factors involved in the development of these cells in the thymus or the mechanisms that maintain them in the periphery. Studies have now demonstrated that thymic development of T-reg cells is facilitated by TCRs with increased affinity for self-peptide-MHC complexes. Increased TCR affinity alone, however, is not sufficient to support the development of T-reg cells, and external factors such as CD80 and CD86, ligands for co-stimulatory receptor CD28, and interleukin 2 are required. These factors are also needed to maintain the T-reg cell subset in the periphery.
Collapse
Affiliation(s)
- Adrian Liston
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
249
|
Noels H, van Loo G, Hagens S, Broeckx V, Beyaert R, Marynen P, Baens M. A Novel TRAF6 binding site in MALT1 defines distinct mechanisms of NF-kappaB activation by API2middle dotMALT1 fusions. J Biol Chem 2007; 282:10180-9. [PMID: 17287209 DOI: 10.1074/jbc.m611038200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recurrent translocation t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue (MALT) lymphoma results in the expression of an API2.MALT1 fusion protein that constitutively activates NF-kappaB. The first baculovirus IAP repeat (BIR) domain of API2 and the C terminus of MALT1, which contains its caspase-like domain, are present in all reported fusion variants and interact with TRAF2 and TRAF6, respectively, suggesting their contribution to NF-kappaB signaling by API2.MALT1. Also, the involvement of BCL10 has been suggested via binding to BIR1 of API2 and via its interaction with the immunoglobulin domains of MALT1, present in half of the fusion variants. However, conflicting reports exist concerning their roles in API2.MALT1-induced NF-kappaB signaling. In this report, streptavidin pulldowns of biotinylated API2.MALT1 fusion variants showed that none of the fusion variants interacted with endogenous BCL10; its role in NF-kappaB signaling by API2.MALT1 was further questioned by RNA interference experiments. In contrast, TRAF6 was essential for NF-kappaB activation by all fusion variants, and we identified a novel TRAF6 binding site in the second immunoglobulin domain of MALT1, which enhanced NF-kappaB activation when present in the fusion protein. Furthermore, inclusion of both immunoglobulin domains in API2.MALT1 further enhanced NF-kappaB signaling via intramolecular TRAF6 activation. Finally, binding of TRAF2 to BIR1 contributed to NF-kappaB activation by API2.MALT1, although additional mechanisms involving BIR1-mediated raft association are also important. Taken together, these data reveal distinct mechanisms of NF-kappaB activation by the different API2.MALT1 fusion variants with an essential role for TRAF6.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- B-Cell CLL-Lymphoma 10 Protein
- Binding Sites/genetics
- Caspases/genetics
- Caspases/metabolism
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 18/genetics
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
- Humans
- Jurkat Cells
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion
- Protein Binding/genetics
- Protein Structure, Tertiary/genetics
- Signal Transduction
- TNF Receptor-Associated Factor 2/genetics
- TNF Receptor-Associated Factor 2/metabolism
- TNF Receptor-Associated Factor 6/genetics
- TNF Receptor-Associated Factor 6/metabolism
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Heidi Noels
- Human Genome Laboratory, Department for Molecular and Developmental Genetics, Flanders Institute for Biotechnology VIB, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
B cells maintain homeostasis by balancing cell viability and cell death. B lymphocytes are susceptible to mitochondria- and receptor-initiated cell death at various stages of peripheral differentiation and during immune responses. The inducible transcription factor NF-kappaB enhances cell viability by activating genes that counteract both cell-death pathways. This review uses characteristic features of NF-kappaB activation and downregulation to provide insight into the regulation of B cell apoptosis in the periphery. In particular, the temporal patterns of NF-kappaB induction, differences between Rel family members, and the intersection between canonical and noncanonical signaling pathways in keeping B cells alive are discussed.
Collapse
Affiliation(s)
- Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, Maryland 21224, USA.
| |
Collapse
|