201
|
Computational modeling of cellular signaling processes embedded into dynamic spatial contexts. Nat Methods 2012; 9:283-9. [PMID: 22286385 PMCID: PMC3448286 DOI: 10.1038/nmeth.1861] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/23/2011] [Indexed: 12/13/2022]
Abstract
Cellular signaling processes depend on specific spatiotemporal distributions of their molecular components. Multi-color high-resolution microscopy now permits detailed assessment of such distributions, providing the input for fine-grained computational models that explore the mechanisms governing dynamic assembly of multi-molecular complexes and their role in shaping cellular behavior. However, incorporating into such models both complex molecular reaction cascades and the spatial localization of signaling components within dynamic cellular morphologies presents substantial challenges. Here we introduce an approach that addresses these challenges by automatically generating computational representations of complex reaction networks based on simple bi-molecular interaction rules embedded into detailed, adaptive models of cellular morphology. Using examples of receptor-mediated cellular adhesion and signal-induced localized MAPK activation in yeast, we illustrate the capacity of this simulation technique to provide insights into cell biological processes. The modeling algorithms, implemented in a version of the Simmune tool set, are accessible through intuitive graphical interfaces as well as programming libraries.
Collapse
|
202
|
Bonazzi M, Cossart P. Impenetrable barriers or entry portals? The role of cell-cell adhesion during infection. ACTA ACUST UNITED AC 2012; 195:349-58. [PMID: 22042617 PMCID: PMC3206337 DOI: 10.1083/jcb.201106011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell adhesion plays a fundamental role in cell polarity and organogenesis. It also contributes to the formation and establishment of physical barriers against microbial infections. However, a large number of pathogens, from viruses to bacteria and parasites, have developed countless strategies to specifically target cell adhesion molecules in order to adhere to and invade epithelial cells, disrupt epithelial integrity, and access deeper tissues for dissemination. The study of all these processes has contributed to the characterization of molecular machineries at the junctions of eukaryotic cells that have been better understood by using pathogens as probes.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Centre Nationale de la Recherche Scientifique, UMR 5236, CPBS, CNRS, 34293 Montpellier, France.
| | | |
Collapse
|
203
|
Paliga AJM, Natale DR, Watson AJ. p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8-16-cell stage during preimplantation development. Biol Cell 2012; 97:629-40. [PMID: 15850458 DOI: 10.1042/bc20040146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND INFORMATION The MAPK (mitogen-activated protein kinase) superfamily of proteins consists of four separate signalling cascades: the c-Jun N-terminal kinase or stress-activated protein kinases (JNK/SAPK); the ERKs (extracellular-signal-regulated kinases); the ERK5 or big MAPK1; and the p38 MAPK group of protein kinases, all of which are highly conserved. To date, our studies have focused on defining the role of the p38 MAPK pathway during preimplantation development. p38 MAPK regulates actin filament formation through the downstream kinases MAPKAPK2/3 (MAPK-activated protein kinase 2/3) or MAPKAPK5 [PRAK (p38 regulated/activated kinase)] and subsequently through HSP25/27 (heat-shock protein 25/27). We recently reported that 2-cell-stage murine embryos treated with cytokine-suppressive anti-inflammatory drugs (CSAIDtrade mark; SB203580 and SB220025) display a reversible blockade of development at the 8-16-cell stage, indicating that p38 (MAPK) activity is required to complete murine preimplantation development. In the present study, we have investigated the stage-specific action and role of p38 MAPK in regulating filamentous actin during murine preimplantation development. RESULTS Treatment of 8-cell-stage embryos with SB203580 and SB220025 (CSAIDtrade mark) resulted in a blockade of preimplantation development, loss of rhodamine phalloidin fluorescence, MK-p (phosphorylated MAPKAPK2/3), HSP-p (phosphorylated HSP25/27) and a redistribution of alpha-catenin immunofluorescence by 12 h of treatment. In contrast, treatment of 2- and 4-cell-stage embryos with CSAIDtrade mark drugs resulted in a loss of MK-p and HSP-p, but did not result in a loss of rhodamine phalloidin fluorescence. All these effects of p38 MAPK inhibition were reversed upon removal of the inhibitor, and development resumed in a delayed but normal manner to the blastocyst stage. Treatment of 8-cell embryos with PD098059 (ERK pathway inhibitor) did not affect development or fluorescence of MK-p, HSP-p or rhodamine phalloidin. CONCLUSION Murine preimplantation development becomes dependent on p38 MAPK at the 8-16-cell stage, which corresponds to the stage when p38 MAPK first regulates filamentous actin during early development.
Collapse
Affiliation(s)
- Andrew J M Paliga
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
204
|
Abstract
Migration is a key cellular process, involved during morphogenetic movements as well as in the adult where it participates in immune cell trafficking, wound healing or tumour invasion. As they migrate, cells interact with a microenvironment composed of extracellular matrix and neighbouring cells. Cell-cell adhesions ensure tissue integrity while they allow migration of single or grouped cells within this tissue. Cadherin and nectin-based adherens junctions are key players in intercellular interactions. They are used as adhesive complexes whose mechanical properties improve cell coordination during collective migration and promote cell motility on cadherin substrates. In addition, adherens junctions transduce signals that actively participate in the control of directed cell migration, by providing polarity cues and also participating in contact inhibition of motility.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur, Cell Polarity and Migration Group and CNRS URA 2582, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France,
| |
Collapse
|
205
|
Xiong H, Hong J, Du W, Lin YW, Ren LL, Wang YC, Su WY, Wang JL, Cui Y, Wang ZH, Fang JY. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. J Biol Chem 2011; 287:5819-32. [PMID: 22205702 DOI: 10.1074/jbc.m111.295964] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The progression of colorectal carcinoma (CRC) to invasive and metastatic disease may involve localized occurrences of epithelial-mesenchymal transition (EMT). However, mechanisms of the EMT process in CRC progression are not fully understood. We previously showed that knockdown of signal transducer and activator of transcription 3 (STAT3) up-regulated E-cadherin (a key component in EMT progression) in CRC. In this study, we examined the roles of STAT3 in CRC EMT and ZEB1, an EMT inducer, in STAT3-induced down-regulation of E-cadherin. Knockdown of STAT3 significantly increased E-cadherin and decreased N-cadherin and vimentin expressions in highly invasive LoVo CRC cells. Meanwhile, overexpression of STAT3 significantly reduced E-cadherin and enhanced N-cadherin and vimentin expressions in weakly invasive SW1116 CRC cells. Activation of STAT3 significantly increased CRC cell invasiveness and resistance to apoptosis. Knockdown of STAT3 dramatically enhanced chemosensitivity of CRC cells to fluorouracil. STAT3 regulated ZEB1 expression in CRC cells, and the STAT3-induced decrease in E-cadherin and cell invasion depended on activation of ZEB1 in CRC cells. Additionally, pSTAT3(Tyr-705) and ZEB1 expressions were significantly correlated with TNM (tumor, lymph node, and metastasis stages) (p < 0.01). In conclusion, STAT3 may directly mediate EMT progression and regulate ZEB1 expression in CRC. ZEB1 may participate in STAT3-induced cell invasion and E-cadherin down-regulation in CRC cells. The expressions of pSTAT3(Tyr-705) and ZEB1 may be positively associated with CRC metastasis. Our data may provide potential targets to prevent and/or treat CRC invasion and metastasis.
Collapse
Affiliation(s)
- Hua Xiong
- Gastrointestinal Division, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), 145 Middle Shandong Road, Shanghai 200001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related to advanced stages of tumour progression and invasiveness. But the key roles of these proteins in crosstalk with the Hippo and liver kinase B1 (LKB1)-AMPK pathways and in epithelial function and proliferation indicate that they may also be associated with the early stages of tumorigenesis. For example, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.
Collapse
Affiliation(s)
- Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| | | |
Collapse
|
207
|
Lu Z, Xie Y, Liu X, Cui S, Wu Y, Cai C, Zhang L, Chen X. Effect of 5/6 nephrectomized rat serum on epithelial-to-mesenchymal transition in vitro. Ren Fail 2011; 33:600-8. [PMID: 21663389 PMCID: PMC3131000 DOI: 10.3109/0886022x.2011.585416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: To investigate whether the 5/6 nephrectomized (5/6Nx) rats’ 12-week serum could lead to tubular epithelial-to-mesenchymal transition (EMT) and its molecular mechanism, so as to probe the potential stimulation from circulation in chronic progressive kidney disease. Methods: A total of 24 Sprague Dawley (SD) rats were randomly divided into two groups: sham operation group (sham group) and 5/6Nx group. Rats were killed 12 weeks after surgery to obtain 5/6Nx rats’ 12-week serum. Then we detected the expression of E-cadherin in renal tubular epithelial cells of the remaining kidney and we investigated whether the 12th week serum of 5/6Nx rats could cause HK-2 (human kidney proximal tubular cell line) cells to transdifferentiate into fibroblasts. Results: Our data confirmed that E-cadherin expression decreased significantly in the remaining kidney at 12 weeks, and the 5/6Nx rats’ 12-week serum could suppress E-cadherin protein and mRNA expression (p < 0.05). We also found that the 5/6Nx rats’ 12-week serum could upreg-ulate ZEB1, β-catenin, and wnt3 protein expression (p < 0.05). Conclusions: Our results demonstrated that the 5/6Nx rats’ 12-week serum could suppress the expression of E-cadherin in HK-2 cells. It was partially through modulating the increase of ZEB1. The loss of E-cadherin could lead β-catenin to localize to the cytoplasm and nucleus, and feed into the Wnt signaling pathway. It means that the pathogenic serum in chronic kidney disease (CKD) plays an important role in the loss of renal function and turns to be a new avenue of research with potential clinical implications.
Collapse
Affiliation(s)
- Zhaoyu Lu
- Department of Nephrology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
208
|
ERβ may contribute to the maintaining of radial glia cells polarity through cadherins during corticogenesis. Med Hypotheses 2011; 77:974-6. [DOI: 10.1016/j.mehy.2011.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/14/2011] [Indexed: 12/14/2022]
|
209
|
E/N-cadherin switch mediates cancer progression via TGF-β-induced epithelial-to-mesenchymal transition in extrahepatic cholangiocarcinoma. Br J Cancer 2011; 105:1885-93. [PMID: 22068819 PMCID: PMC3251878 DOI: 10.1038/bjc.2011.452] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a fundamental process governing not only morphogenesis in multicellular organisms, but also cancer progression. During EMT, epithelial cadherin (E-cadherin) is downregulated while neural cadherin (N-cadherin) is upregulated, referred to as 'cadherin switch'. This study aimed to investigate whether cadherin switch promotes cancer progression in cholangiocarcinoma (CC). METHODS CC cell lines were examined for migration, invasion, and morphological changes with typical EMT-induced model using recombinant TGF-β1. The changes in E-cadherin and N-cadherin expression were investigated during EMT. We also examined E-cadherin and N-cadherin expression in resected specimens from extrahepatic CC patients (n=38), and the associations with clinicopathological factors and survival rates. RESULTS TGF-β1 treatment activated cell migration, invasion, and fibroblastic morphological changes, especially in extrahepatic CC HuCCT-1 cells. These changes occurred with E-cadherin downregulation and N-cadherin upregulation, that is, cadherin switch. Patients with low E-cadherin expression had a significantly lower survival rate than patients with high E-cadherin expression (P=0.0059). Patients with decreasing E-cadherin and increasing N-cadherin expression had a significantly lower survival rate than patients with increasing E-cadherin and decreasing N-cadherin expression (P=0.017). CONCLUSION Cadherin switch promotes cancer progression via TGF-β-induced EMT in extrahepatic CC, suggesting a target for elucidating the mechanisms of invasion and metastasis in extrahepatic CC.
Collapse
|
210
|
Hakai reduces cell-substratum adhesion and increases epithelial cell invasion. BMC Cancer 2011; 11:474. [PMID: 22051109 PMCID: PMC3229560 DOI: 10.1186/1471-2407-11-474] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/03/2011] [Indexed: 12/14/2022] Open
Abstract
Background The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Methods Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Results Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The expression of Paxillin was found to be regulated by a proteasome-independent mechanism, possibly due to the decreased abundance of E-cadherin. Conclusions Taken together, these results suggest that Hakai may be involved in two hallmark aspects of tumour progression, the lowering cell-substratum adhesion and the enhancement of cell invasion.
Collapse
|
211
|
Wang W, Chin-Sheng H, Kuo LJ, Wei PL, Lien YC, Lin FY, Liu HH, Ho YS, Wu CH, Chang YJ. NNK enhances cell migration through α7-nicotinic acetylcholine receptor accompanied by increased of fibronectin expression in gastric cancer. Ann Surg Oncol 2011; 19 Suppl 3:S580-8. [PMID: 21969082 DOI: 10.1245/s10434-011-2064-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND In this study, we intended to dissect the mechanism of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-enhanced migration of gastric cancer. Smoking has been defined as a risk factor for gastric cancer. Tobacco-specific carcinogen, NNK, was reported to enhance cancer progression in gastric cancer. Currently, metastasis is the major issue for clinical cancer therapy, but the influence of NNK on the migration of gastric cancer remains to be determined. METHODS The expression of nicotinic receptor in gastric cancer cells was identified by real-time polymerase chain reaction and Western blotting. The influence of NNK on migration of gastric cancer cells was evaluated by the transwell migration assay system. Receptor-mediated migration was studied by both inhibitor and small interfering RNA. RESULTS Alpha7 nicotinic acetylcholine receptor, alpha7-nicotinic acetylcholine receptor (nAChR), was identified higher than alpha9-nAChR in gastric cancer cell lines, AGS cells. NNK enhanced significantly gastric cancer cell migration in transwell assay. We used inhibitor and siRNA to demonstrate that alpha7-nAChR mediated NNK-enhanced gastric cancer cell migration and upregulation of fibronectin were involved in NNK-enhanced migration of gastric cancer cells. Finally, we found that silenced fibronectin expression level inhibited the migratory ability in AGS cells. CONCLUSIONS NNK enhanced gastric cancer metastasis through alpha7-nAChR and fibronectin-one of the hallmarks of epithelial mesenchymal transition.
Collapse
Affiliation(s)
- Weu Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Tonoike Y, Matsushita K, Tomonaga T, Katada K, Tanaka N, Shimada H, Nakatani Y, Okamoto Y, Nomura F. Adhesion molecule periplakin is involved in cellular movement and attachment in pharyngeal squamous cancer cells. BMC Cell Biol 2011; 12:41. [PMID: 21951621 PMCID: PMC3195110 DOI: 10.1186/1471-2121-12-41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 09/27/2011] [Indexed: 01/25/2023] Open
Abstract
Background We previously reported that periplakin (PPL) is downregulated in human esophageal cancer tissues compared to the adjacent non-cancer epithelium. Thus PPL could be a useful marker for detection of early esophageal cancer and evaluation of tumor progression, but largely remains unknown in this field. To investigate PPL involvement in carcinogenesis, tumor progression, cellular movement or attachment activity, siRNAs against PPL were transfected into pharyngeal squamous cancer cell lines and their effects on cellular behaviours were examined. Results PPL knockdown appeared to decrease tumor cell growth together with G2/M phase accumulation in cells attached to a culture dish. However, the extent of cell growth suppression, evaluated by the number of cells attached to the culture dish, was too distinctive to be explained only by cell cycle delay. Importantly, PPL knockdown suppressed cellular movement and attachment to the culture dish accompanied by decreased pAktSer473 phosphorylation. Additionally, LY294002, a PI3K inhibitor that dephosphorylates pAktSer473, significantly suppressed D562 cell migration. Thus PPL potentially engages in cellular movement al least partly via the PI3K/Akt axis. Conclusions PPL knockdown is related to reduced cellular movement and attachment activity in association with PI3K/Akt axis suppression, rather than malignant progression in pharyngeal cancer cells.
Collapse
Affiliation(s)
- Yurie Tonoike
- Department of Otorhinolaryngology, Chiba University Hospital, Chiba City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Khurana S, George SP. The role of actin bundling proteins in the assembly of filopodia in epithelial cells. Cell Adh Migr 2011; 5:409-20. [PMID: 21975550 PMCID: PMC3218608 DOI: 10.4161/cam.5.5.17644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/05/2011] [Indexed: 01/22/2023] Open
Abstract
The goal of this review is to highlight how emerging new models of filopodia assembly, which include tissue specific actin-bundling proteins, could provide more comprehensive representations of filopodia assembly that would describe more adequately and effectively the complexity and plasticity of epithelial cells. This review also describes how the true diversity of actin bundling proteins must be considered to predict the far-reaching significance and versatile functions of filopodia in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | |
Collapse
|
214
|
Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 2011; 12:565-80. [PMID: 21860392 DOI: 10.1038/nrm3175] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.
Collapse
|
215
|
Taguchi K, Ishiuchi T, Takeichi M. Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. ACTA ACUST UNITED AC 2011; 194:643-56. [PMID: 21844208 PMCID: PMC3160587 DOI: 10.1083/jcb.201104124] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The F-actin–stabilizing protein EPLIN is a mechanosensitive regulator of adherens junction remodeling in epithelial cells. The zonula adherens (ZA), a type of adherens junction (AJ), plays a major role in epithelial cell–cell adhesions. It remains unknown how the ZA is remodeled during epithelial reorganization. Here we found that the ZA was converted to another type of AJ with punctate morphology (pAJ) at the margins of epithelial colonies. The F-actin–stabilizing protein EPLIN (epithelial protein lost in neoplasm), which functions to maintain the ZA via its association with αE-catenin, was lost in the pAJs. Consistently, a fusion of αE-catenin and EPLIN contributed to the formation of ZA but not pAJs. We show that junctional tension was important for retaining EPLIN at AJs, and another force derived from actin fibers laterally attached to the pAJs inhibited EPLIN–AJ association. Vinculin was required for general AJ formation, and it cooperated with EPLIN to maintain the ZA. These findings suggest that epithelial cells remodel their junctional architecture by responding to mechanical forces, and the αE-catenin–bound EPLIN acts as a mechanosensitive regulator for this process.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
216
|
CAR modulates E-cadherin dynamics in the presence of adenovirus type 5. PLoS One 2011; 6:e23056. [PMID: 21850251 PMCID: PMC3151283 DOI: 10.1371/journal.pone.0023056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 07/12/2011] [Indexed: 11/26/2022] Open
Abstract
Adenovirus (Ad) serotype 5 (Ad5) fiber competitively binds to the coxsackievirus and Ad receptor (CAR) to attach Ad5 to target cells and also disrupts cell junctions and facilitates virus escape at a late stage in Ad5 infection. Here we demonstrate that paracellular permeability in MCF7 and CAR overexpressing MCF7 (FLCARMCF7) cells is increased within minutes following the addition of Ad5 to cells. This is brought about, at least in part, by altering the molecular dynamics of E-cadherin, a key component of the cell-cell adhesion complex. We also demonstrate that the increase in E-cadherin mobility is constitutively altered by the presence of CAR at FLCARMCF7 cell junctions. As increased paracellular permeability was observed early after the addition of Ad5 to cells, we postulate that this may represent a mechanism by which Ad5 could disrupt cell junctions to facilitate further access to its cell receptors.
Collapse
|
217
|
Schackmann RCJ, van Amersfoort M, Haarhuis JHI, Vlug EJ, Halim VA, Roodhart JML, Vermaat JS, Voest EE, van der Groep P, van Diest PJ, Jonkers J, Derksen PWB. Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. J Clin Invest 2011; 121:3176-88. [PMID: 21747168 DOI: 10.1172/jci41695] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/18/2011] [Indexed: 01/28/2023] Open
Abstract
Metastatic breast cancer is the major cause of cancer-related death among women in the Western world. Invasive carcinoma cells are able to counteract apoptotic signals in the absence of anchorage, enabling cell survival during invasion and dissemination. Although loss of E-cadherin is a cardinal event in the development and progression of invasive lobular carcinoma (ILC), little is known about the underlying mechanisms that govern these processes. Using a mouse model of human ILC, we show here that cytosolic p120-catenin (p120) regulates tumor growth upon loss of E-cadherin through the induction of anoikis resistance. p120 conferred anchorage independence by indirect activation of Rho/Rock signaling through interaction and inhibition of myosin phosphatase Rho-interacting protein (Mrip), an antagonist of Rho/Rock function. Consistent with these data, primary human ILC samples expressed hallmarks of active Rock signaling, and Rock controlled the anoikis resistance of human ILC cells. Thus, we have linked loss of E-cadherin - an initiating event in ILC development - to Rho/Rock-mediated control of anchorage-independent survival. Because activation of Rho and Rock are strongly linked to cancer progression and are susceptible to pharmacological inhibition, these insights may have clinical implications for the development of tailor-made intervention strategies to better treat invasive and metastatic lobular breast cancer.
Collapse
Affiliation(s)
- Ron C J Schackmann
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A 2011; 108:11930-5. [PMID: 21730131 DOI: 10.1073/pnas.1103345108] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylation and nuclear localization of Yes-associated protein (YAP) by the highly conserved kinase cascade of the Hippo signaling pathway has been intensively studied. However, cell-surface receptors regulating the Hippo signaling pathway in mammals are not well understood. In this study, we show that Hippo signaling pathway components are required for E-cadherin-dependent contact inhibition of proliferation. Knockdown of the Hippo signaling components or overexpression of YAP inhibits the decrease in cell proliferation caused by E-cadherin homophilic binding at the cell surface, independent of other cell-cell interactions. We also demonstrate that the E-cadherin/catenin complex functions as an upstream regulator of the Hippo signaling pathway in mammalian cells. Expression of E-cadherin in MDA-MB-231 cells restores the density-dependent regulation of YAP nuclear exclusion. Knockdown of β-catenin in densely cultured MCF10A cells, which mainly depletes E-cadherin-bound β-catenin, induces a decrease in the phosphorylation of S127 residue of YAP and its nuclear accumulation. Moreover, E-cadherin homophilic binding independent of other cell interactions is sufficient to control the subcellular localization of YAP. Therefore, Our results indicate that, in addition to its role in cell-cell adhesion, E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control cell proliferation.
Collapse
|
219
|
|
220
|
Naydenov NG, Ivanov AI. Spectrin-adducin membrane skeleton: A missing link between epithelial junctions and the actin cytoskeletion? BIOARCHITECTURE 2011; 1:186-191. [PMID: 22069512 DOI: 10.4161/bioa.1.4.17642] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 01/09/2023]
Abstract
Adherens junctions (AJs) and tight junctions (TJs) represent key adhesive structures that regulate the apico-basal polarity and barrier properties of epithelial layers. AJs and TJs readily undergo disassembly and reassembly during normal tissue remodeling and disruption of epithelial barriers in diseases. Such junctional plasticity depends on the orchestrated dynamics of the plasma membrane with its underlying F-actin cytoskeleton, however the interplay between these cellular structures remains poorly understood. Recent studies highlighted the spectrin-adducin-based membrane skeleton as an emerging regulator of AJ and TJ integrity and remodeling. Here we discuss new evidences implicating adducin, spectrin and other membrane skeleton proteins in stabilization of epithelial junctions and regulation of junctional dynamics. Based on the known ability of the membrane skeleton to link cortical actin filaments to the plasma membrane, we hypothesize that the spectrin-adducin network serves as a critical signal and force transducer from the actomyosin cytoskeleton to junctions during remodeling of AJs and TJs.
Collapse
|
221
|
Assessing the role of the cadherin/catenin complex at the Schwann cell-axon interface and in the initiation of myelination. J Neurosci 2011; 31:3032-43. [PMID: 21414924 DOI: 10.1523/jneurosci.4345-10.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myelination is dependent on complex reciprocal interactions between the Schwann cell (SC) and axon. Recent evidence suggests that the SC-axon interface represents a membrane specialization essential for myelination; however, the manner in which this polarized-apical domain is generated remains a mystery. The cell adhesion molecule N-cadherin is enriched at the SC-axon interface and colocalizes with the polarity protein Par-3. The asymmetric localization is induced on SC-SC and SC-axon contact. Knockdown of N-cadherin in SCs cocultured with DRG neurons disrupts Par-3 localization and delays the initiation of myelination. However, knockdown or overexpression of neuronal N-cadherin does not influence the distribution of Par-3 or myelination, suggesting that homotypic interactions between SC and axonal N-cadherin are not essential for the events surrounding myelination. To further investigate the role of N-cadherin, mice displaying SC-specific gene ablation of N-cadherin were generated and characterized. Surprisingly, myelination is only slightly delayed, and mice are viable without any detectable myelination defects. β-Catenin, a downstream effector of N-cadherin, colocalizes and coimmunoprecipitates with N-cadherin on the initiation of myelination. To determine whether β-catenin mediates compensation on N-cadherin deletion, SC-specific gene ablation of β-catenin was generated and characterized. Consistent with our hypothesis, myelination is more severely delayed than when manipulating N-cadherin alone, but without any defect to the myelin sheath. Together, our results suggest that N-cadherin interacts with β-catenin in establishing SC polarity and the timely initiation of myelination, but they are nonessential components for the formation and maturation of the myelin sheath.
Collapse
|
222
|
Hyun SW, Anglin IE, Liu A, Yang S, Sorkin JD, Lillehoj E, Tonks NK, Passaniti A, Goldblum SE. Diverse injurious stimuli reduce protein tyrosine phosphatase-μ expression and enhance epidermal growth factor receptor signaling in human airway epithelia. Exp Lung Res 2011; 37:327-43. [PMID: 21649524 DOI: 10.3109/01902148.2011.566673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In response to injury, airway epithelia utilize an epidermal growth factor (EGF) receptor (EGFR) signaling program to institute repair and restitution. Protein tyrosine phosphatases (PTPs) counterregulate EGFR autophosphorylation and downstream signaling. PTPμ is highly expressed in lung epithelia and can be localized to intercellular junctions where its ectodomain homophilically interacts with PTPμ ectodomain expressed on neighboring cells. We asked whether PTPμ expression might be altered in response to epithelial injury and whether altered PTPμ expression might influence EGFR signaling. In A549 cells, diverse injurious stimuli dramatically reduced PTPμ protein expression. Under basal conditions, small interfering RNA (siRNA)-induced silencing of PTPμ increased EGFR Y992 and Y1068 phosphorylation. In the presence of EGF, PTPμ knockdown increased EGFR Y845, Y992, Y1045, Y1068, Y1086, and Y1173 but not Y1148 phosphorylation. Reduced PTPμ expression increased EGF-stimulated phosphorylation of Y992, a docking site for phospholipase C (PLC)γ(1), activation of PLCγ(1) itself, and increased cell migration in both wounding and chemotaxis assays. In contrast, overexpression of PTPμ decreased EGF-stimulated EGFR Y992 and Y1068 phosphorylation. Therefore, airway epithelial injury profoundly reduces PTPμ expression, and PTPμ depletion selectively increases phosphorylation of specific EGFR tyrosine residues, PLCγ(1) activation, and cell migration, providing a novel mechanism through which epithelial integrity may be restored.
Collapse
Affiliation(s)
- Sang W Hyun
- Department of Medicine, Mucosal Biology Research Center, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Shi J, Sun M, Vogt PK. Smooth muscle α-actin is a direct target of PLZF: effects on the cytoskeleton and on susceptibility to oncogenic transformation. Oncotarget 2011; 1:9-21. [PMID: 20634973 PMCID: PMC2903758 DOI: 10.18632/oncotarget.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Changes in cell morphology and rearrangements of the actin cytoskeleton are common features accompanying cell transformation induced by various oncogenes. In this study, we show that promyelocytic leukemia zinc finger protein (PLZF) binds to the promoter of smooth muscle α-actin, reducing mRNA and protein levels encoded by this gene and resulting in a reorganization of the actin cytoskeleton. In cultures of chicken embryo fibroblasts (CEF), this effect on α-actin expression is correlated with a change in cellular phenotype from spindle shaped to polygonal and flattened. This morphological change is dependent on Ras function. The polygonal, flattened CEF show a high degree of resistance to the transforming activity of several oncoproteins. Our results support the conclusion that reorganization of the actin cytoskeleton plays an important role in tumor suppression by PLZF.
Collapse
Affiliation(s)
- Jin Shi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
224
|
Li X, Hou L, Ma J, Liu Y, Zheng L, Zou X. Cloning and characterization of β-catenin gene in early embryonic developmental stage of Artemia sinica. Mol Biol Rep 2011; 39:701-7. [PMID: 21584700 DOI: 10.1007/s11033-011-0788-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 04/29/2011] [Indexed: 01/09/2023]
Abstract
β-Catenin plays a crucial role in embryonic development and responds to the activation of several signal transduction pathways. In this paper, in order to understand the functions of β-catenin gene in early embryonic development of Artemia sinica, the complete cDNA sequence was cloned for the first time using RACE technology, then the sequence was analyzed by some bioinformatic methods. The expression of the β-catenin gene was investigated at various stages during the embryonic development using quantitative real-time PCR and immunohistochemistry assay. Through the investigation, the result of real-time PCR illustrated that β-catenin gene might relate to the response of A. sinica's immune system and osmotic pressure system in early embryonic developmental stage. Meanwhile, Immunohistochemistry assay demonstrated that during embryonic development, β-catenin was mainly expressed in the cephalothorax. Besides, we discovered that β-catenin might not be a maternal gene in A. sinica, and this new phenomenon may explain a constitutive and regional expression during the early embryonic development of A. sinica.
Collapse
Affiliation(s)
- Xiang Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | | | | | | | | | | |
Collapse
|
225
|
Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. ACTA ACUST UNITED AC 2011; 192:907-17. [PMID: 21422226 PMCID: PMC3063136 DOI: 10.1083/jcb.201009141] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The epithelial cadherin (E-cadherin)–catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell’s apical–basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling.
Collapse
Affiliation(s)
- Buzz Baum
- University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
226
|
Jelani M, Chishti MS, Ahmad W. Mutation in PVRL4 gene encoding nectin-4 underlies ectodermal-dysplasia-syndactyly syndrome (EDSS1). J Hum Genet 2011; 56:352-7. [PMID: 21346770 DOI: 10.1038/jhg.2011.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ectodermal-dysplasia-syndactyly syndrome (EDSS1) is a rare form of ectodermal dysplasia (ED), affecting skin and its appendages mainly hair, teeth and nails. In the present study, we have investigated a large consanguineous Pakistani family with 10 individuals showing features of EDSS1. Human genome was screened using highly polymorphic microsatellite markers to identify the gene causing EDSS1. The disease locus for EDSS1 was assigned to chromosome 1q23.1-q23.3. This region corresponds to 5.63 Mb according to the sequenced based physical map (Build 36.2) of the human genome and flanked by markers D1S1653 and D1S1677. A maximum two-point LOD score of 5.05 was obtained with the marker D1S484. Sequence analysis revealed a homozygous missense mutation (c.635C>G; p.Pro212Arg) in the recently reported PVRL4 gene causing EDSS1. The involvement of mutant nectin-4 in causing EDSS1 may open up interesting prospectives into the role of cell adhesion molecules in causing syndromic forms of EDs.
Collapse
Affiliation(s)
- Musharraf Jelani
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | |
Collapse
|
227
|
Yano T, Yamazaki Y, Adachi M, Okawa K, Fort P, Uji M, Tsukita S, Tsukita S. Tara up-regulates E-cadherin transcription by binding to the Trio RhoGEF and inhibiting Rac signaling. ACTA ACUST UNITED AC 2011; 193:319-32. [PMID: 21482718 PMCID: PMC3080255 DOI: 10.1083/jcb.201009100] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spatiotemporal regulation of E-cadherin expression is important during body plan development and carcinogenesis. We found that Tara (Trio-associated repeat on actin) is enriched in cadherin-based adherens junctions (AJs), and its knockdown in MDCK cells (Tara-KD cells) significantly decreases the expression of E-cadherin. Tara-KD activates Rac1 through the Trio RhoGEF, which binds to E-cadherin and subsequently increases the phosphorylation of p38 and Tbx3, a transcriptional E-cadherin repressor. Accordingly, the decrease in E-cadherin expression is abrogated by ITX3 and SB203580 (specific inhibitors of Trio RhoGEF and p38MAPK, respectively), and by dephosphomimetic Tbx3. Despite the decreased E-cadherin expression, the Tara-KD cells do not undergo an epithelial-mesenchymal transition and remain as an epithelial cell sheet, presumably due to the concomitant up-regulation of cadherin-6. Tara-KD reduces the actin-belt density in the circumferential ring, and the cells form flattened cysts, suggesting that Tara functions to modulate epithelial cell sheet formation and integrity by up-regulating E-cadherin transcription.
Collapse
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Sehrawat A, Singh SV. Benzyl isothiocyanate inhibits epithelial-mesenchymal transition in cultured and xenografted human breast cancer cells. Cancer Prev Res (Phila) 2011; 4:1107-17. [PMID: 21464039 DOI: 10.1158/1940-6207.capr-10-0306] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells and suppresses mammary cancer development in a transgenic mouse model. We now show, for the first time, that BITC inhibits epithelial-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell line (PL-45) to BITC resulted in upregulation of epithelial markers (e.g., E-cadherin and/or occludin) with a concomitant decrease in protein levels of mesenchymal markers, including vimentin, fibronectin, snail, and/or c-Met. The BITC-mediated induction of E-cadherin protein was accompanied by an increase in its transcription, whereas BITC-treated MDA-MB-231 cells exhibited suppression of vimentin, snail, and slug mRNA levels. Experimental EMT induced by exposure to TGFβ and TNFα or Rb knockdown in a spontaneously immortalized nontumorigenic human mammary epithelial cell line (MCF-10A) was also partially reversed by BITC treatment. The TGFβ-/TNFα-induced migration of MCF-10A cells was inhibited in the presence of BITC, which was partially attenuated by RNA interference of E-cadherin. Inhibition of MDA-MB-231 xenograft growth in vivo in female athymic mice by BITC administration was associated with an increase in protein level of E-cadherin and suppression of vimentin and fibronectin protein expression. In conclusion, this study reports a novel anticancer effect of BITC involving inhibition of EMT, a process triggered during progression of cancer to invasive state.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
229
|
Pulimeno P, Paschoud S, Citi S. A role for ZO-1 and PLEKHA7 in recruiting paracingulin to tight and adherens junctions of epithelial cells. J Biol Chem 2011; 286:16743-50. [PMID: 21454477 DOI: 10.1074/jbc.m111.230862] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Paracingulin is a 160-kDa protein localized in the cytoplasmic region of epithelial tight and adherens junctions, where it regulates RhoA and Rac1 activities by interacting with guanine nucleotide exchange factors. Here, we investigate the molecular mechanisms that control the recruitment of paracingulin to cell-cell junctions. We show that paracingulin forms a complex with the tight junction protein ZO-1, and the globular head domain of paracingulin interacts directly with ZO-1 through an N-terminal region containing a conserved ZIM (ZO-1-Interaction-Motif) sequence. Recruitment of paracingulin to cadherin-based cell-cell junctions in Rat1 fibroblasts requires the ZIM-containing region, whereas in epithelial cells removal of this region decreases the junctional localization of paracingulin at tight junctions but not at adherens junctions. Depletion of ZO-1, but not ZO-2, reduces paracingulin accumulation at tight junctions. A yeast two-hybrid screen identifies both ZO-1 and the adherens junction protein PLEKHA7 as paracingulin-binding proteins. Paracingulin forms a complex with PLEKHA7 and its interacting partner p120ctn, and the globular head domain of paracingulin interacts directly with a central region of PLEKHA7. Depletion of PLEKHA7 from Madin-Darby canine kidney cells results in the loss of junctional localization of paracingulin and a decrease in its expression. In summary, we characterize ZO-1 and PLEKHA7 as paracingulin-interacting proteins that are involved in its recruitment to epithelial tight and adherens junctions, respectively.
Collapse
Affiliation(s)
- Pamela Pulimeno
- Department of Molecular Biology, University of Geneva, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | | | | |
Collapse
|
230
|
Oroz J, Valbuena A, Vera AM, Mendieta J, Gómez-Puertas P, Carrión-Vázquez M. Nanomechanics of the cadherin ectodomain: "canalization" by Ca2+ binding results in a new mechanical element. J Biol Chem 2011; 286:9405-18. [PMID: 21177864 PMCID: PMC3058956 DOI: 10.1074/jbc.m110.170399] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/13/2010] [Indexed: 11/06/2022] Open
Abstract
Cadherins form a large family of calcium-dependent cell-cell adhesion receptors involved in development, morphogenesis, synaptogenesis, differentiation, and carcinogenesis through signal mechanotransduction using an adaptor complex that connects them to the cytoskeleton. However, the molecular mechanisms underlying mechanotransduction through cadherins remain unknown, although their extracellular region (ectodomain) is thought to be critical in this process. By single molecule force spectroscopy, molecular dynamics simulations, and protein engineering, here we have directly examined the nanomechanics of the C-cadherin ectodomain and found it to be strongly dependent on the calcium concentration. In the presence of calcium, the ectodomain extends through a defined ("canalized") pathway that involves two mechanical resistance elements: a mechanical clamp from the cadherin domains and a novel mechanostable component from the interdomain calcium-binding regions ("calcium rivet") that is abolished by magnesium replacement and in a mutant intended to impede calcium coordination. By contrast, in the absence of calcium, the mechanical response of the ectodomain becomes largely "decanalized" and destabilized. The cadherin ectodomain may therefore behave as a calcium-switched "mechanical antenna" with very different mechanical responses depending on calcium concentration (which would affect its mechanical integrity and force transmission capability). The versatile mechanical design of the cadherin ectodomain and its dependence on extracellular calcium facilitate a variety of mechanical responses that, we hypothesize, could influence the various adhesive properties mediated by cadherins in tissue morphogenesis, synaptic plasticity, and disease. Our work represents the first step toward the mechanical characterization of the cadherin system, opening the door to understanding the mechanical bases of its mechanotransduction.
Collapse
Affiliation(s)
- Javier Oroz
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Alejandro Valbuena
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Andrés Manuel Vera
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Jesús Mendieta
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, E-28049 Madrid, Spain, and
- Biomol-Informatics SL, E-28049 Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, E-28049 Madrid, Spain, and
| | - Mariano Carrión-Vázquez
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| |
Collapse
|
231
|
Nethe M, Hordijk PL. The role of ubiquitylation and degradation in RhoGTPase signalling. J Cell Sci 2011; 123:4011-8. [PMID: 21084561 DOI: 10.1242/jcs.078360] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rho-like guanosine triphosphatases (RhoGTPases) control many aspects of cellular physiology through their effects on the actin cytoskeleton and on gene transcription. Signalling by RhoGTPases is tightly coordinated and requires a series of regulatory proteins, including guanine-nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine-nucleotide dissociation inhibitors (GDIs). GEFs and GAPs regulate GTPase cycling between the active (GTP-bound) and inactive (GDP-bound) states, whereas GDI is a cytosolic chaperone that binds inactive RhoGTPases. Like many other proteins, RhoGTPases are subject to degradation following the covalent conjugation of ubiquitin. There have been increasing indications that ubiquitylation of small GTPases occurs in a regulated fashion, primarily upon activation, and is an important means to control signalling output. Recent work has identified cellular proteins that control RasGTPase and RhoGTPase ubiquitylation and degradation, allowing us to amend the canonical model for GTPase (in)activation. Moreover, accumulating evidence for indirect regulation of GTPase function through the ubiquitylation of GTPase regulators makes this post-translational modification a key feature of GTPase-dependent signalling pathways. Here, we will discuss these recent insights into the regulation of RhoGTPase ubiquitylation and their relevance for cell signalling.
Collapse
Affiliation(s)
- Micha Nethe
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
232
|
Abstract
hsa-mir-483 is located within intron 2 of the IGF2 gene. We have previously shown oncogenic features of miR-483-3p through cooperation with IGF2 or by independently targeting the proapoptotic gene BBC3/PUMA. Here we demonstrate that expression of miR-483 can be induced independently of IGF2 by the oncoprotein β-catenin through an interaction with the basic helix-loop-helix protein upstream stimulatory transcription factor 1. We also show that β-catenin itself is a target of miR-483-3p, triggering a negative regulatory loop that becomes ineffective in cells harboring an activating mutation of β-catenin. These results provide insights into the complex regulation of the IGF2/miR-483 locus, revealing players in the β-catenin pathway.
Collapse
|
233
|
Yamazaki Y, Tokumasu R, Kimura H, Tsukita S. Role of claudin species-specific dynamics in reconstitution and remodeling of the zonula occludens. Mol Biol Cell 2011; 22:1495-504. [PMID: 21372174 PMCID: PMC3084672 DOI: 10.1091/mbc.e10-12-1003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Due to a new reconstitution system of zonula occludens (zTJ) by expressing specific claudin species, this study found that each of claudin-7, -14, and -19 could singly reconstitute zTJ, but with distinct characteristics in morphology. The molecular dynamics is one important factor for this reconstitution, as revealed by FRAP analysis. Tight-junction strands, which are organized into the beltlike cell–cell adhesive structure called the zonula occludens (TJ), create the paracellular permselective barrier in epithelial cells. The TJ is constructed on the basis of the zonula adherens (AJ) by polymerized claudins in a process mediated by ZO-1/2, but whether the 24 individual claudin family members play different roles at the TJ is unclear. Here we established a cell system for examining the polymerization of individual claudins in the presence of ZO-1/2 using an epithelial-like cell line, SF7, which lacked endogenous TJs and expressed no claudin but claudin-12 in immunofluorescence and real-time PCR assays. In stable SF7-derived lines, exogenous claudin-7, -14, or -19, but no other claudins, individually reconstituted TJs, each with a distinct TJ-strand pattern, as revealed by freeze-fracture analyses. Fluorescence recovery after photobleaching (FRAP) analyses of the claudin dynamics in these and other epithelial cells suggested that slow FRAP-recovery dynamics of claudins play a critical role in regulating their polymerization around AJs, which are loosely coupled with ZO-1/2, to form TJs. Furthermore, the distinct claudin stabilities in different cell types may help to understand how TJs regulate paracellular permeability by altering the paracellular flux and the paracellular ion permeability.
Collapse
Affiliation(s)
- Yuji Yamazaki
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
234
|
Lien YC, Wang W, Kuo LJ, Liu JJ, Wei PL, Ho YS, Ting WC, Wu CH, Chang YJ. Nicotine Promotes Cell Migration Through Alpha7 Nicotinic Acetylcholine Receptor in Gastric Cancer Cells. Ann Surg Oncol 2011; 18:2671-9. [DOI: 10.1245/s10434-011-1598-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Indexed: 02/06/2023]
|
235
|
Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat Cell Biol 2011; 13:203-14. [PMID: 21336301 DOI: 10.1038/ncb2163] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 11/30/2010] [Indexed: 12/16/2022]
Abstract
During development, a polarized epidermal sheet undergoes stratification and differentiation to produce the skin barrier. Through mechanisms that are poorly understood, the process involves actin dynamics, spindle reorientation and Notch signalling. To elucidate how epidermal embryogenesis is governed, we conditionally targeted serum response factor (Srf), a transcription factor that is essential for epidermal differentiation. Unexpectedly, previously ascribed causative defects are not responsible for profoundly perturbed embryonic epidermis. Seeking the mechanism for this, we identified actins and their regulators that were downregulated after ablation. Without Srf, cells exhibit a diminished cortical network and in mitosis, they fail to round up, features we recapitulate with low-dose actin inhibitors in vivo and shRNA-knockdown in vitro. Altered concomitantly are phosphorylated ERM and cortical myosin-IIA, shown in vitro to establish a rigid cortical actomyosin network and elicit critical shape changes. We provide a link between these features and Srf loss, and we show that the process is physiologically relevant in skin, as reflected by defects in spindle orientation, asymmetric cell divisions, stratification and differentiation.
Collapse
|
236
|
Derksen PWB, Braumuller TM, van der Burg E, Hornsveld M, Mesman E, Wesseling J, Krimpenfort P, Jonkers J. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis Model Mech 2011; 4:347-58. [PMID: 21282721 PMCID: PMC3097456 DOI: 10.1242/dmm.006395] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30-40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10-15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.
Collapse
Affiliation(s)
- Patrick W B Derksen
- Division of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Apoptosis in the developing human heart resembles apoptosis in epithelial tissues. Cell Tissue Res 2011; 343:537-43. [PMID: 21274568 DOI: 10.1007/s00441-010-1121-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/15/2010] [Indexed: 01/10/2023]
Abstract
It is widely accepted that apoptosis plays an important role in the development of the heart as well as in different heart diseases. Despite extensive research efforts, many issues regarding apoptosis in the heart remain unsolved, including the detection of apoptotic cardiomyocytes, their morphological features, the mechanisms of their removal and the clinical significance of apoptosis in the heart. It has been suggested that fetal cardiomyocytes resemble epithelial tissues. To test this hypothesis, we analyzed the expression of an epithelial marker cytokeratin 18 (CK18) and caspase-cleaved-CK18, recognized by antibody M30, as well as the expression of cleaved caspase-3 and desmosomal and classical cadherins, major components of desmosomes and adherens junctions in fetal hearts in comparison to infant and adult human hearts. We found that, in fetal hearts, cardiomyocytes expressed CK18 and that apoptotic cardiomyocytes expressed caspase-cleaved CK18, being recognized by antibody M30. Furthermore, desmosomal and classical cadherins exhibited a membraneous reaction similar to epithelial tissues. In adults and children after the age of 6 months, cadherins were localized in the intercalated disks, cardiomyocytes lost CK18 expression and apoptotic cardiomyocytes were no longer recognized by M30. We conclude that apoptosis in the developing human heart resembles apoptosis in epithelial tissues, exhibiting different characteristics than in the adult human heart.
Collapse
|
238
|
Ethanol impairs the assembly and disassembly of actin cytoskeleton and cell adhesion via the RhoA signaling pathway, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini. Biochem Biophys Res Commun 2011; 405:558-63. [PMID: 21262198 DOI: 10.1016/j.bbrc.2011.01.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 01/19/2011] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to evaluate the effects of EtOH on RhoA, actin cytoskeleton, catenin p120 and E-cadherin and their interactions in CCK-stimulated rat pancreatic acini. In isolated rat pancreatic acinar cells, CCK stimulation enhanced protein expression and association of RhoA, G(α13), Vav-2, catenin p120 and E-cadherin. CCK induced translocation and activation of RhoA and actin-filamentous assembly and disassembly. RhoA was diffusely localized throughout the acinar cell in the resting state and redistributed to the apical site in response to submaximal CCK stimulation and to a lesser extent in response to supramaximal CCK stimulation. Ethanol and subsequent submaximal CCK stimulation mimicked the effect of supramaximal CCK stimulation in terms of amylase secretion and morphologic effects. However, inhibition of RhoA translocation and activation were observed only with ethanol pretreatment. Ethanol followed by supramaximal CCK stimulation disrupted the well-defined localization of catenin p120 and E-cadherin around the lateral plasma membrane. These data suggest that ethanol impaired the assembly and disassembly of actin cytoskeleton and impaired cell-cell adhesion via the RhoA signaling pathways, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini.
Collapse
|
239
|
Tu CL, Chang W, Bikle DD. The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A. J Invest Dermatol 2011; 131:1119-28. [PMID: 21209619 DOI: 10.1038/jid.2010.414] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracellular Ca(2+) (Ca(2+)(o)) functioning through the calcium-sensing receptor (CaR) induces E-cadherin-mediated cell-cell adhesion and cellular signals mediating cell differentiation in epidermal keratinocytes. Previous studies indicate that CaR regulates cell-cell adhesion through Fyn/Src tyrosine kinases. In this study, we investigate whether Rho GTPase is a part of the CaR-mediated signaling cascade regulating cell adhesion and differentiation. Suppressing endogenous Rho A expression by small interfering RNA (siRNA)-mediated gene silencing blocked the Ca(2+)(o)-induced association of Fyn with E-cadherin and suppressed the Ca(2+)(o)-induced tyrosine phosphorylation of β-, γ-, and p120-catenin and formation of intercellular adherens junctions. Rho A silencing also decreased the Ca(2+)(o)-stimulated expression of terminal differentiation markers. Elevating the Ca(2+)(o) level induced interactions among CaR, Rho A, E-cadherin, and the scaffolding protein filamin A at the cell membrane. Inactivation of CaR expression by adenoviral expression of a CaR antisense complementary DNA inhibited Ca(2+)(o)-induced activation of endogenous Rho. Ca(2+)(o) activation of Rho required a direct interaction between CaR and filamin A. Interference of CaR-filamin interaction inhibited Ca(2+)(o)-induced Rho activation and the formation of cell-cell junctions. These results indicate that Rho is a downstream mediator of CaR in the regulation of Ca(2+)(o)-induced E-cadherin-mediated cell-cell adhesion and keratinocyte differentiation.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Veteran Affairs Medical Center and University of California, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
240
|
Arima Y, Hayashi H, Kamata K, Goto TM, Sasaki M, Kuramochi A, Saya H. Decreased expression of neurofibromin contributes to epithelial-mesenchymal transition in neurofibromatosis type 1. Exp Dermatol 2011; 19:e136-41. [PMID: 20002172 DOI: 10.1111/j.1600-0625.2009.01017.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plexiform and/or dermal neurofibromas are nerve sheath tumors of the peripheral nervous system that are usually present in individuals with neurofibromatosis type 1 (NF1). Neurofibromas arise from Schwann cells with biallelic inactivation of NF1, the gene that encodes neurofibromin. This protein is responsible for regulation of the Ras-mediated pathway, which has been shown to play a crucial role in epithelial-to-mesenchymal transition (EMT). EMT is a biological process that occurs during embryogenesis and wound healing and is involved in pathological processes such as organ fibrosis and cancer metastasis. However, the relationship between neurofibromin and EMT has not been elucidated. We investigated whether the EMT-related signaling pathway was upregulated in NF1-associated neurofibromas and Schwann cells by assessing the expression levels of the EMT-related transcription factors Snail, Slug, Twist, ZEB1 and ZEB2. Immunohistochemical studies and quantitative reverse transcription polymerase chain reaction revealed an increase in the expression levels of EMT-related transcription factors in neurofibroma specimens and NF1-derived Schwann cells (sNF96.2). In addition, the silencing of NF1 by siRNA induced the expression of EMT-related transcription factors in normal human Schwann cells and in epithelial-like breast cancer cells. Our findings suggest that the loss of neurofibromin activated the EMT-related signaling pathway and that the excessive mesenchymal reaction may play a key role in the development of NF1-associated neurofibromas.
Collapse
Affiliation(s)
- Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
241
|
Proteins move! Protein dynamics and long-range allostery in cell signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:163-221. [PMID: 21570668 DOI: 10.1016/b978-0-12-381262-9.00005-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An emerging point of view in protein chemistry is that proteins are not the static objects that are displayed in textbooks but are instead dynamic actors. Protein dynamics plays a fundamental role in many diseases, and spans a large hierarchy of timescales, from picoseconds to milliseconds or even longer. Nanoscale protein domain motion on length scales comparable to protein dimensions is key to understanding how signals are relayed through multiple protein-protein interactions. A canonical example is how the scaffolding proteins NHERF1 and ezrin work in coordination to assemble crucial membrane complexes. As membrane-cytoskeleton scaffolding proteins, these provide excellent prototypes for understanding how regulatory signals are relayed through protein-protein interactions between the membrane and the cytoskeleton. Here, we review recent progress in understanding the structure and dynamics of the interaction. We describe recent novel applications of neutron spin echo spectroscopy to reveal the dynamic propagation of allosteric signals by nanoscale protein motion, and present a guide to the future study of dynamics and its application to the cure of disease.
Collapse
|
242
|
Boutilier J, Duncan R. The reovirus fusion-associated small transmembrane (FAST) proteins: virus-encoded cellular fusogens. CURRENT TOPICS IN MEMBRANES 2011; 68:107-40. [PMID: 21771497 DOI: 10.1016/b978-0-12-385891-7.00005-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Julie Boutilier
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
243
|
Paschoud S, Yu D, Pulimeno P, Jond L, Turner JR, Citi S. Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions. Mol Membr Biol 2010; 28:123-35. [PMID: 21166484 DOI: 10.3109/09687688.2010.538937] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cingulin (CGN) and paracingulin (CGNL1) are structurally related proteins that regulate Rho family GTPases by recruiting guanine nucleotide exchange factors to epithelial junctions. Although the subcellular localization of cingulin and paracingulin is likely to be essential for their role as adaptor proteins, nothing is known on their in vivo localization, and their dynamics of exchange with the junctional membrane. To address these questions, we generated stable clones of MDCK cells expressing fluorescently tagged cingulin and paracingulin. By FRAP analysis, cingulin and paracingulin show a very similar dynamic behaviour, with recovery curves and mobile fractions that are distinct from ZO-1, and indicate a rapid exchange with a cytosolic pool. Interestingly, only paracingulin, but not cingulin, is peripherally localized in isolated cells, requires the integrity of the microtubule cytoskeleton to be stably anchored to junctions, and associates with E-cadherin. In contrast, both proteins require the integrity of the actin cytoskeleton to maintain their junctional localization. Although cingulin and paracingulin form a complex and can interact in vitro, the junctional recruitment and the dynamics of membrane exchange of paracingulin is independent of cingulin, and vice-versa. In summary, cingulin and paracingulin show a similar dynamic behaviour, but partially distinct localizations and functional interactions with the cytoskeleton, and are recruited independently to junctions.
Collapse
Affiliation(s)
- Serge Paschoud
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
244
|
Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gärtner F, Gruber AD. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol 2010; 48:98-116. [PMID: 21149845 DOI: 10.1177/0300985810390826] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies focusing on the molecular basis of canine mammary tumors (CMT) have long been hampered by limited numbers of molecular tools specific to the canine species. The lack of molecular information for CMT has impeded the identification of clinically relevant tumor markers beyond histopathology and the introduction of new therapeutic concepts. Additionally, the potential use for the dog as a model for human breast cancer is debatable until questions are answered regarding cellular origin, mechanisms, and cellular pathways. During the past years, increasing numbers of canine molecular tools have been developed on the genomic, RNA, and protein levels, and an increasing number of studies have shed light on specific aspects of canine carcinogenesis, particularly of the mammary gland. This review summarizes current knowledge on the molecular carcinogenesis of CMT, including the role of specific oncogenes, tumor suppressors, regulators of apoptosis and DNA repair, proliferation indices, adhesion molecules, circulating tumor cells, and mediators of angiogenesis in CMT progression and clinical behavior. Whereas the data available are far from complete, knowledge of molecular pathways has a significant potential to complement and refine the current diagnostic and therapeutic approach to this tumor type. Furthermore, current data show that significant similarities and differences exist between canine and human mammary tumors at the molecular level. Clearly, this is only the beginning of an understanding of the molecular mechanisms of CMT and their application in clinical patient management.
Collapse
Affiliation(s)
- R Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, reie Universität Berlin, Robert von Ostertag Str 15, D-14163 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
245
|
Epithelial-to-Mesenchymal Transition in Metaplastic Breast Carcinomas With Chondroid Differentiation. Appl Immunohistochem Mol Morphol 2010; 18:526-31. [DOI: 10.1097/pai.0b013e3181e8d54b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
246
|
Lefort CT, Wojciechowski K, Hocking DC. N-cadherin cell-cell adhesion complexes are regulated by fibronectin matrix assembly. J Biol Chem 2010; 286:3149-60. [PMID: 21084302 DOI: 10.1074/jbc.m110.115733] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fibronectin is a principal component of the extracellular matrix. Soluble fibronectin molecules are assembled into the extracellular matrix as insoluble, fibrillar strands via a cell-dependent process. In turn, the interaction of cells with the extracellular matrix form of fibronectin stimulates cell functions critical for tissue repair. Cross-talk between cell-cell and cell-extracellular matrix adhesion complexes is essential for the organization of cells into complex, functional tissue during embryonic development and tissue remodeling. Here, we demonstrate that fibronectin matrix assembly affects the organization, composition, and function of N-cadherin-based adherens junctions. Using fibronectin-null mouse embryonic myofibroblasts, we identified a novel quaternary complex composed of N-cadherin, β-catenin, tensin, and actin that exists in the absence of a fibronectin matrix. In the absence of fibronectin, homophilic N-cadherin ligation recruited both tensin and α5β1 integrins into nascent cell-cell adhesions. Initiation of fibronectin matrix assembly disrupted the association of tensin and actin with N-cadherin, released α5β1 integrins and tensin from cell-cell contacts, stimulated N-cadherin reorganization into thin cellular protrusions, and decreased N-cadherin adhesion. Fibronectin matrix assembly has been shown to recruit α5β1 integrins and tensin into fibrillar adhesions. Taken together, these studies suggest that tensin serves as a common cytoskeletal link for integrin- and cadherin-based adhesions and that the translocation of α5β1 integrins from cell-cell contacts into fibrillar adhesions during fibronectin matrix assembly is a novel mechanism by which cell-cell and cell-matrix adhesions are coordinated.
Collapse
Affiliation(s)
- Craig T Lefort
- Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
247
|
Li J, Bertram JF. Review: Endothelial-myofibroblast transition, a new player in diabetic renal fibrosis. Nephrology (Carlton) 2010; 15:507-12. [PMID: 20649869 DOI: 10.1111/j.1440-1797.2010.01319.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of chronic kidney failure and end-stage renal disease in the Western world. Studies from diabetic animal models and clinical trials have shown that inhibition of the renin-angiotensin system delays the progression of advanced DN. However, a recent large-scale clinical trial has revealed that inhibition of renin-angiotensin system in early phases of DN does not slow the decline of renal function or the development of morphological lesions, suggesting that different mechanism(s) may be involved in the different stages of DN. The role of epithelial-mesenchymal transition in renal fibrosis has been intensively investigated. Recently, endothelial-mesenchymal transition, or endothelial-myofibroblast transition (EndoMT) has emerged as another mechanism involved in both developmental and pathological processes. The essential role of EndoMT in cardiac development has been thoroughly studied. EndoMT also exists and contributes to the development and progression of cardiac fibrosis, lung fibrosis, liver fibrosis and corneal fibrosis. EndoMT is a specific form of epithelial-mesenchymal transition. During EndoMT, endothelial cells lose endothelial markers and obtain mesenchymal markers. Recent evidence from our laboratory and others suggests that EndoMT plays an important role in the development of renal fibrosis in several pathological settings, including experimental DN. This review considers the evidence supporting the occurrence of EndoMT in normal development and in pathology, as well as the latest findings suggesting EndoMT contributes to fibrosis in DN. Whether experimental findings of EndoMT will be reproduced in human studies remains to be determined.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
248
|
Zhang Z, Chometon G, Wen T, Qu H, Mauch C, Krieg T, Aumailley M. Migration of epithelial cells on laminins: RhoA antagonizes directionally persistent migration. Eur J Cell Biol 2010; 90:1-12. [PMID: 20971525 DOI: 10.1016/j.ejcb.2010.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 11/15/2022] Open
Abstract
Spatial and temporal expression of laminin isoforms is assumed to provide specific local information to neighboring cells. Here, we report the remarkably selective presence of LM-111 at the very tip of hair follicles where LM-332 is absent, suggesting that epithelial cells lining the dermal-epidermal junction at this location may receive different signals from the two laminins. This hypothesis was tested in vitro by characterizing with functional and molecular assays the comportment of keratinocytes exposed to LM-111 and LM-332. The two laminins induced morphologically distinct focal adhesions, and LM-332, but not LM-111, elicited persistent migration of keratinocytes. The different impact on cellular behavior was associated with distinct activation patterns of Rho GTPases and other signaling intermediates. In particular, while LM-111 triggered a robust activation of Cdc42, LM-332 provoked a strong and sustained activation of FAK. Interestingly, activation of Rac1 was necessary but not sufficient to promote migration because there was no directed migration on LM-111 despite Rac1 activation. In contrast, RhoA antagonized directional migration, since silencing of RhoA by RNA interference boosted unidirectional migration on LM-332. Molecular analysis of the role of RhoA strongly suggested that the mechanisms involve disassembly of cell-cell contacts, loss of the cortical actin network, mobilization of α6β4 integrin out of stable adhesions, and displacement of the integrin from its association with the insoluble pool of intermediate filaments.
Collapse
Affiliation(s)
- Zhigang Zhang
- Center for Biochemistry, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
249
|
Leonard M, Zhang L, Zhai N, Cader A, Chan Y, Nowak RB, Fowler VM, Menko AS. Modulation of N-cadherin junctions and their role as epicenters of differentiation-specific actin regulation in the developing lens. Dev Biol 2010; 349:363-77. [PMID: 20969840 DOI: 10.1016/j.ydbio.2010.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/05/2010] [Accepted: 10/09/2010] [Indexed: 12/01/2022]
Abstract
Extensive elongation of lens fiber cells is a central feature of lens morphogenesis. Our study investigates the role of N-cadherin junctions in this process in vivo. We investigate both the molecular players involved in N-cadherin junctional maturation and the subsequent function of these junctions as epicenters for the assembly of an actin cytoskeleton that drives morphogenesis. We present the first evidence of nascent cadherin junctions in vivo, and show that they are a prominent feature along lateral interfaces of undifferentiated lens epithelial cells. Maturation of these N-cadherin junctions, required for lens cell differentiation, preceded organization of a cortical actin cytoskeleton along the cells' lateral borders, but was linked to recruitment of α-catenin and dephosphorylation of N-cadherin-linked β-catenin. Biochemical analysis revealed differentiation-specific recruitment of actin regulators cortactin and Arp3 to maturing N-cadherin junctions of differentiating cells, linking N-cadherin junctional maturation with actin cytoskeletal assembly during fiber cell elongation. Blocking formation of mature N-cadherin junctions led to reduced association of α-catenin with N-cadherin, prevented organization of actin along lateral borders of differentiating lens fiber cells and blocked their elongation. These studies provide a molecular link between N-cadherin junctions and the organization of an actin cytoskeleton that governs lens fiber cell morphogenesis in vivo.
Collapse
Affiliation(s)
- Michelle Leonard
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Matsumoto K, Hara K, Sawaki A, Mizuno N, Hijioka S, Kondo S, Niwa Y, Tajika M, Kawai H, Shimizu Y, Hosoda W, Yatabe Y, Yamao K. Pre-operative diagnosis of synchronous solid-pseudopapillary neoplasms of the pancreas. Clin J Gastroenterol 2010; 3:301-6. [PMID: 26190487 DOI: 10.1007/s12328-010-0173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 08/16/2010] [Indexed: 11/30/2022]
Abstract
We report the case of a 37-year-old woman with two synchronous solid-pseudopapillary neoplasms (SPNs) of the pancreas. The patient underwent abdominal echography as part of the screening for hepatitis C virus antibody positivity, and a pancreatic tail tumor was detected. She was referred to our hospital for further examination of the pancreatic tail tumor. There were two masses measuring 37 and 20 mm, in the pancreatic body and tail, respectively, which were slightly enhanced on abdominal computed tomography. On endoscopic ultrasonography (EUS), their surfaces were smooth, their margins were clear, anechoic spots were seen in the hypoechoic mass, and there were no lateral shadows. Magnetic resonance imaging showed a low- and high-intensity mass of the body and a low- and low-intensity mass of the tail on T1- and T2-weighted images, respectively. EUS-guided fine needle aspiration biopsy (EUS-FNA) suggested SPNs because the tumor cells showed an aberrant nuclear expression of β-catenin and loss of membranous staining of E-cadherin on immunohistochemical analysis. With a diagnosis of SPNs based on the EUS-FNA findings, a distal pancreatectomy was performed. On histopathologic examination of the resected specimen, the SPNs were arising synchronously.
Collapse
Affiliation(s)
- Kazuya Matsumoto
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan. .,Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Japan.
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Akira Sawaki
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Nobumasa Mizuno
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Susumu Hijioka
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Shinya Kondo
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Yasumasa Niwa
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Masahiro Tajika
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hiroki Kawai
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhiro Shimizu
- Department of Gastrointestinal Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan.
| |
Collapse
|