201
|
Rademacher DJ, Kovacs B, Shen F, Napier TC, Meredith GE. The neural substrates of amphetamine conditioned place preference: implications for the formation of conditioned stimulus-reward associations. Eur J Neurosci 2006; 24:2089-97. [PMID: 17067306 DOI: 10.1111/j.1460-9568.2006.05066.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Associations formed between conditioned stimuli and drug reward are major contributors in human drug addiction. To better understand the brain changes that accompany this process, we used immunohistochemistry for c-Fos (a neuronal activity marker), synaptophysin (a marker for synaptogenesis) and tyrosine kinase B receptor (a neurotrophic factor receptor that mediates synaptic plasticity) to investigate the neural substrates of amphetamine-induced conditioned place preference in rats. Conditioned place preference was induced by both 1.0 mg/kg and 0.3 mg/kg doses of amphetamine. Furthermore, amphetamine conditioning increased the density of c-Fos-immunoreactive cells and these cells were fully colocalized with the tyrosine kinase B receptor in the dentate gyrus, CA1 field and basolateral amygdala. Amphetamine conditioning increased the density of synaptophysin-immunoreactive varicosities in all brain regions studied, except the nucleus accumbens shell and dorsolateral striatum. The degree of conditioned place preference was highly correlated with c-Fos-immunoreactive cell density in the basolateral amygdala and with the density of synaptophysin-immunoreactive varicosities in all mesolimbic regions studied. The latter correlation was particularly impressive for the ventral pallidum and basolateral amygdala. The formation of conditioned stimulus-amphetamine reward associations is accompanied by tyrosine kinase B receptor expression in the basolateral amygdala and dentate gyrus, CA1 and CA3 fields of the hippocampus. These data therefore suggest that the formation of conditioned stimulus-reward associations requires, at least in part, activation of amygdalar-hippocampal circuits.
Collapse
Affiliation(s)
- David J Rademacher
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
202
|
Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 2006; 7:697-709. [PMID: 16924259 DOI: 10.1038/nrn1970] [Citation(s) in RCA: 1223] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Behavioural, cellular and molecular studies have revealed significant effects of enriched environments on rodents and other species, and provided new insights into mechanisms of experience-dependent plasticity, including adult neurogenesis and synaptic plasticity. The demonstration that the onset and progression of Huntington's disease in transgenic mice is delayed by environmental enrichment has emphasized the importance of understanding both genetic and environmental factors in nervous system disorders, including those with Mendelian inheritance patterns. A range of rodent models of other brain disorders, including Alzheimer's disease and Parkinson's disease, fragile X and Down syndrome, as well as various forms of brain injury, have now been compared under enriched and standard housing conditions. Here, we review these findings on the environmental modulators of pathogenesis and gene-environment interactions in CNS disorders, and discuss their therapeutic implications.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, National Neuroscience Facility, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
203
|
Torres JB, Assunção J, Farias JA, Kahwage R, Lins N, Passos A, Quintairos A, Trévia N, Diniz CWP. NADPH-diaphorase histochemical changes in the hippocampus, cerebellum and striatum are correlated with different modalities of exercise and watermaze performances. Exp Brain Res 2006; 175:292-304. [PMID: 16763833 DOI: 10.1007/s00221-006-0549-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 05/05/2006] [Indexed: 02/08/2023]
Abstract
Nitric oxide is involved in memory and motor learning. We investigated possible influences of exercise on spatial memory and NADPH-diaphorase (NADPH-d) histochemical activity in the hippocampus, striatum and cerebellum. Fifteen albino Swiss mice between the 22nd and 55th post-natal days were exercised in the following modalities: voluntary (V), acrobatic (A), acrobatic/voluntary (AV) and forced (F) and compared to inactive group (I). After the exercise period, all subjects were tested in the water maze for 3 days. Animal brains were processed for NADPH-d histochemistry. Densitometry of the neuropil of the hippocampus, striatum and cerebellum and morphometric analysis of NADPHd+ type I neurons of the striatum were done. Exercise groups presented higher levels of NADPH-d activity in the molecular and polymorphic layers of dentate gyrus and lacunosum molecular layer of CA1. The A group presented higher NADPH-d activity in the cerebellar granular layer than all other groups. Branching points and dendritic segment densities of NADPH-d type I neurons were higher in V, A and AV than in F and I groups. Exercise groups revealed best performances on water maze tests. Thus, different modalities of exercise increases in different proportions for the nitrergic activity in the hippocampus, striatum and cerebellum, and these changes seem to be beneficial to spatial memory.
Collapse
|
204
|
Pang TYC, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience 2006; 141:569-584. [PMID: 16716524 DOI: 10.1016/j.neuroscience.2006.04.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/15/2006] [Accepted: 04/06/2006] [Indexed: 12/27/2022]
Abstract
Huntington's disease is a fatal neurodegenerative disorder caused by a mutation of the huntingtin gene and involves progressive motor abnormalities (including chorea), cognitive deficits (dementia) as well as psychiatric symptoms. We have previously demonstrated that environmental enrichment slows the onset and progression of Huntington's disease in transgenic mice. Here, we investigated the effects of enhanced physical exercise on disease progression and brain-derived neurotrophic factor expression. Standard-housed Huntington's disease mice developed phenotypic rear-paw clasping by 16 weeks of age, displayed abnormal rearing behavior, deficits in motor co-ordination and of spatial working memory. Huntington's disease mice with access to running wheels exhibited delayed onset of rear-paw clasping, normalized levels of rearing behavior and amelioration of the cognitive deficits. However, in contrast to our previous environmental enrichment studies, there was no rescue of motor coordination deficits in wheel-running Huntington's disease mice. An abnormal accumulation of brain-derived neurotrophic factor protein in the frontal cortex of Huntington's disease mice was unaffected by running. Striatal and hippocampal brain-derived neurotrophic factor protein levels were unchanged. Brain-derived neurotrophic factor mRNA levels were reduced in the anterior cortex, striatum and hippocampus of Huntington's disease mice, and only striatal deficits were ameliorated by running. Overall, we show that voluntary physical exercise delays the onset of Huntington's disease and the decline in cognitive ability. In addition, our results reveal that some aspects of hippocampal dependent memory are not entirely reliant on sustained hippocampal brain-derived neurotrophic factor expression.
Collapse
Affiliation(s)
- T Y C Pang
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - N C Stam
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - J Nithianantharajah
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - M L Howard
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - A J Hannan
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
205
|
Olson AK, Eadie BD, Ernst C, Christie BR. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 2006; 16:250-60. [PMID: 16411242 DOI: 10.1002/hipo.20157] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environmental enrichment (EE) and voluntary exercise (VEx) have consistently been shown to increase adult hippocampal neurogenesis and improve spatial learning ability. Although it appears that these two manipulations are equivalent in this regard, evidence exists that EE and VEx affect different phases of the neurogenic process in distinct ways. We review the data suggesting that EE increases the likelihood of survival of new cells, whereas VEx increases the level of proliferation of progenitor cells. We then outline the factors that may mediate these relationships. Finally, we provide a model showing that VEx leads to the convergence of key somatic and cerebral factors in the dentate gyrus (DG) to induce cell proliferation. Although insufficient evidence exists to provide a similar model for EE, we suggest that EE-induced cell survival in the DG involves cortical restructuring as a means of promoting survival. We conclude that EE and VEx lead to an increase in overall hippocampal neurogenesis via dissociable pathways, and should therefore, be considered distinct interventions with regard to hippocampal plasticity and associated behaviors.
Collapse
Affiliation(s)
- Andrea K Olson
- Department of Psychology, Division of Neuroscience and The Brain Research Centre at UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | | | | | |
Collapse
|
206
|
Artola A, von Frijtag JC, Fermont PCJ, Gispen WH, Schrama LH, Kamal A, Spruijt BM. Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur J Neurosci 2006; 23:261-72. [PMID: 16420435 DOI: 10.1111/j.1460-9568.2005.04552.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Behavioural experience (e.g. chronic stress, environmental enrichment) can have long-lasting effects on cognitive functions. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as hippocampus, we tested whether behaviour has also long-lasting effects on synaptic plasticity by examining the induction of long-term potentiation (LTP) and long-term depression (LTD) in slices of hippocampal CA1 obtained from rats either 7-9 months after social defeat (behavioural stress) or 3-5 weeks after 5-week exposure to environmental enrichment. Compared with age-matched controls, defeated rats showed markedly reduced LTP. LTP was even completely impaired but LTD was enhanced in defeated and, subsequently, individually housed (during the 7-9-month period after defeat) rats. However, increasing stimulus intensity during 100-Hz stimulation resulted in significant LTP. This suggests that the threshold for LTP induction is still raised and that for LTD lowered several months after a short stressful experience. Both LTD and LTP were enhanced in environmentally enriched rats, 3-5 weeks after enrichment, as compared with age-matched controls. Because enrichment reduced paired-pulse facilitation, an increase in presynaptic release, facilitating both LTD and LTP induction, might contribute to enhanced synaptic changes. Consistently, enrichment reduced the number of 100-Hz stimuli required for inducing LTP. But enrichment may also actually enhance the range of synaptic modification. Repeated LTP and LTD induction produced larger synaptic changes in enriched than in control rats. These data reveal that exposure to very different behavioural experiences can produce long-lasting effects on the susceptibility to synaptic plasticity, involving pre- and postsynaptic processes.
Collapse
Affiliation(s)
- Alain Artola
- Department of Animals, Science & Society, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
207
|
Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, Younkin LH, Younkin SG, Borchelt DR, Savonenko AV. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease. J Neurosci 2006; 25:5217-24. [PMID: 15917461 PMCID: PMC4440804 DOI: 10.1523/jneurosci.5080-04.2005] [Citation(s) in RCA: 382] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies suggest that individuals with greater education or more cognitively demanding occupations have diminished risk of developing dementia. We wanted to test whether this effect could be recapitulated in rodents using environmental enrichment, a paradigm well documented to attenuate behavioral deficits induced by various pathological insults. Here, we demonstrate that learning and memory deficits observed in a transgenic mouse model of Alzheimer's disease can be ameliorated by enrichment. Female transgenic mice overexpressing amyloid precursor protein and/or presenilin-1 and nontransgenic controls were placed into enriched or standard cages at 2 months of age and tested for cognitive behavior after 6 months of differential housing. Enrichment significantly improved performance of all genotypes in the radial water maze and in the classic and repeated-reversal versions of the Morris water maze. However, enrichment did not benefit all genotypes equally. Mice overproducing amyloid-beta (Abeta), particularly those with amyloid deposits, showed weaker memory for the platform location in the classic Morris water maze and learned new platform positions in the repeated-reversals task less quickly than their nontransgenic cagemates. Nonetheless, enrichment normalized the performance of Abeta-overproducing mice to the level of standard-housed nontransgenic mice. Moreover, this functional preservation occurred despite increased neuritic plaque burden in the hippocampus of double-transgenic animals and elevated steady-state Abeta levels, because both endogenous and transgene-derived Abeta are increased in enriched animals. These results demonstrate that the generation of Abeta in vivo and its impact on the function of the nervous system can be strongly modulated by environmental factors.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Mahncke HW, Bronstone A, Merzenich MM. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. PROGRESS IN BRAIN RESEARCH 2006; 157:81-109. [PMID: 17046669 DOI: 10.1016/s0079-6123(06)57006-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.
Collapse
|
209
|
Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 2005; 163:78-90. [PMID: 15913801 DOI: 10.1016/j.bbr.2005.04.009] [Citation(s) in RCA: 344] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/22/2022]
Abstract
An enriched environment consists of a combination of enhanced social relations, physical exercise and interactions with non-social stimuli that leads to behavioral and neuronal modifications. In the present study, we analyzed the behavioral effects of environmental complexity on different facets of spatial function, and we assessed dendritic arborisation and spine density in a cortical area mainly involved in the spatial learning, as the parietal cortex. Wistar rat pups (21 days old) were housed in enriched conditions (10 animals in a large cage with toys and a running wheel), or standard condition (two animals in a standard cage, without objects). At the age of 3 months, both groups were tested in the radial maze task and Morris water maze (MWM). Morphological analyses on layer-III pyramidal neurons of parietal cortex were performed in selected animals belonging to both experimental groups. In the radial maze task, enriched animals exhibited high performance levels, by exploiting procedural competencies and working memory abilities. Furthermore, when the requirements of the context changed, they promptly reorganized their strategies by shifting from prevalently using spatial procedures to applying mnesic competencies. In the Morris water maze, enriched animals more quickly acquired tuned navigational strategies. Environmental enrichment provoked increased dendritic arborisation as well as increased density of dendritic spines in layer-III parietal pyramidal neurons.
Collapse
Affiliation(s)
- Maria Giuseppa Leggio
- Department of Psychology, University of Rome La Sapienza, Via dei Marsi 78, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
210
|
Benice TS, Rizk A, Kohama S, Pfankuch T, Raber J. Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience 2005; 137:413-23. [PMID: 16330151 DOI: 10.1016/j.neuroscience.2005.08.029] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 07/05/2005] [Accepted: 08/07/2005] [Indexed: 11/26/2022]
Abstract
Understanding cognitive aging is becoming more important as the elderly population grows. Here, the effects of age and sex on learning and memory performance were compared in female and male young (3-4 months old) middle-aged (10-12 months old) and old (18-20 months old) wild-type C57BL/6J mice. Old males and females performed worse than young or middle-aged mice in novel location, but not novel object recognition tasks. Old mice, of both sexes, also showed impaired spatial water maze performance during training compared with young or middle-aged mice, however only old females failed to show robust spatial bias during probe trials. While there was no age-difference in passive avoidance performance for males, females showed an age-related decline. There was no difference in cognitive performance between young and middle-age mice of either sex on any task. Cognitive performance was associated with alterations in immunoreactivity of microtubule-associated protein 2-positive dendrites and synaptophysin-positive pre-synaptic terminals in hippocampal CA1, CA3, and dentate, entorhinal cortex, and central nucleus of amygdala. Overall, microtubule-associated protein 2 immunoreactivity was increased in old females compared with both young and middle-age females with no significant difference in males. In contrast, synaptophysin immunoreactivity increased from young to middle-age in females, and from middle-age to old in males; females had higher levels of synaptophysin immunoreactivity than males in middle-age only. Elevated levels of microtubule-associated protein 2 and synaptophysin may constitute a compensatory response to age-related functional decline in mice.
Collapse
Affiliation(s)
- T S Benice
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, 97239, USA
| | | | | | | | | |
Collapse
|
211
|
Ziegler DR, Gallagher M. Spatial memory in middle-aged female rats: assessment of estrogen replacement after ovariectomy. Brain Res 2005; 1052:163-73. [PMID: 16023091 DOI: 10.1016/j.brainres.2005.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 05/31/2005] [Accepted: 06/05/2005] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that estrogen influences diverse aspects of neuronal function and morphology and modulates acquisition of various memory tasks in young adult female rodents. It is not clear whether estrogen is critical for optimal memory function in middle-aged female animals, i.e. when cyclicity gradually declines. We trained young adult (5 months) and older (10 months) female Long-Evans rats on a win-shift (delay) 12-arm radial maze (7 arms blocked pre-delay). Rats were preoperatively trained to criterion (< or =2 errors/trial for 3 days) with no delay then with a 60 s delay. All rats were ovariectomized when the age groups were 9 (Y) and 14 months (MA), respectively. Following recovery and retraining to criterion, each rat underwent consecutive treatment cycles with vehicle (Oil) or 17-beta-estradiol benzoate (E). Each 6-day acute treatment cycle, modeled after protocols previously shown to induce morphological and electrophysiological plasticity in the hippocampus at 24-48 h after estrogen injection, consisted of two consecutive daily injections of 10 microg E or Oil (0.1 ml subcutaneously) on Days 1-2 (Oil-Oil or E-E), testing on Days 3-4 at 60 s or 6 h delays, with Days 5-6 comprising of washout days. Each rat received a total of 4 treatment cycles, alternating between Oil and E cycles, in counterbalanced order. Estrogen treatment had no effect in either age group on pre-delay or post-delay errors at either 60 s or 6 h delays. The data indicate that the cyclic estrogen replacement regimen does not influence spatial memory function in young or middle-aged animals in the hippocampal-dependent appetitive radial maze task. Discussion of these unexpected results includes consideration of important experimental design factors that differ between our study and some previous reports, such as the extensive training and task experience our subject received prior to testing for estrogen effects.
Collapse
Affiliation(s)
- Dana R Ziegler
- Department Psychological and Brain Sciences, John Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
212
|
Restivo L, Ferrari F, Passino E, Sgobio C, Bock J, Oostra BA, Bagni C, Ammassari-Teule M. Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci U S A 2005; 102:11557-62. [PMID: 16076950 PMCID: PMC1183589 DOI: 10.1073/pnas.0504984102] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome, the most frequent form of hereditary mental retardation, is due to a mutation of the fragile X mental retardation 1 (FMR1) gene on the X chromosome. Like fragile X patients, FMR1-knockout (FMR1-KO) mice lack the normal fragile X mental retardation protein (FMRP) and show both cognitive alterations and an immature neuronal morphology. We reared FMR1-KO mice in a C57BL/6 background in enriched environmental conditions to examine the possibility that experience-dependent stimulation alleviates their behavioral and neuronal abnormalities. FMR1-KO mice kept in standard cages were hyperactive, displayed an altered pattern of open field exploration, and did not show habituation. Quantitative morphological analyses revealed a reduction in basal dendrite length and branching together with more immature-appearing spines along apical dendrites of layer five pyramidal neurons in the visual cortex. Enrichment largely rescued these behavioral and neuronal abnormalities while increasing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit 1 (GluR1) levels in both genotypes. Enrichment did not, however, affect FMRP levels in the WT mice. These data suggest that FMRP-independent pathways activating glutamatergic signaling are preserved in FMR1-KO mice and that they can be elicited by environmental stimulation.
Collapse
Affiliation(s)
- Leonardo Restivo
- Laboratory of Psychobiology, Consiglio Nazionale delle Ricerche Institute of Neuroscience, 00179 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Lambert TJ, Fernandez SM, Frick KM. Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiol Learn Mem 2005; 83:206-16. [PMID: 15820856 DOI: 10.1016/j.nlm.2004.12.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 12/20/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
Environmental enrichment paradigms that incorporate cognitive stimulation, exercise, and motor learning benefit memory and synaptic plasticity across the rodent lifespan. However, the contribution each individual element of the enriched environment makes to enhancing memory and synaptic plasticity has yet to be delineated. Therefore, the current study tested the effects of three of these elements on memory and synaptic protein levels. Young female C57BL/6 mice were given 3h of daily exposure to either rodent toys (cognitive stimulation) or running wheels (exercise), or daily acrobatic training for 6 weeks prior to and throughout behavioral testing. Controls were group housed, but did not receive enrichment. Spatial working and reference memory were tested in a water-escape motivated radial arm maze. Levels of the presynaptic protein synaptophysin were then measured in frontoparietal cortex, hippocampus, striatum, and cerebellum. Exercise, but not cognitive stimulation or acrobat training, improved spatial working memory relative to controls, despite the fact that both exercise and cognitive stimulation increased synaptophysin levels in the neocortex and hippocampus. These data suggest that exercise alone is sufficient to improve working memory, and that enrichment-induced increases in synaptophysin levels may not be sufficient to improve working memory in young females. Spatial reference memory was unaffected by enrichment. Acrobat training had no effect on memory or synaptophysin levels, suggesting a minimal contribution of motor learning to the mnemonic and neuronal benefits of enrichment. These results provide the first evidence that different elements of the enriched environment have markedly distinct effects on spatial memory and synaptic alterations.
Collapse
Affiliation(s)
- Talley J Lambert
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
214
|
Spires TL, Hannan AJ. Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Anniversary Prize Lecture delivered on 27 June 2004 at the 29th FEBS Congress in Warsaw. FEBS J 2005; 272:2347-61. [PMID: 15885086 DOI: 10.1111/j.1742-4658.2005.04677.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases, affect millions of people worldwide and currently there are few effective treatments and no cures for these diseases. Transgenic mice expressing human transgenes for huntingtin, amyloid precursor protein, and other genes associated with familial forms of neurodegenerative disease in humans provide remarkable tools for studying neurodegeneration because they mimic many of the pathological and behavioural features of the human conditions. One of the recurring themes revealed by these various transgenic models is that different diseases may share similar molecular and cellular mechanisms of pathogenesis. Cellular mechanisms known to be disrupted at early stages in multiple neurodegenerative disorders include gene expression, protein interactions (manifesting as pathological protein aggregation and disrupted signaling), synaptic function and plasticity. Recent work in mouse models of Huntington's disease has shown that enriching the environment of transgenic animals delays the onset and slows the progression of Huntington's disease-associated motor and cognitive symptoms. Environmental enrichment is known to induce various molecular and cellular changes in specific brain regions of wild-type animals, including altered gene expression profiles, enhanced neurogenesis and synaptic plasticity. The promising effects of environmental stimulation, demonstrated recently in models of neurodegenerative disease, suggest that therapy based on the principles of environmental enrichment might benefit disease sufferers and provide insight into possible mechanisms of neurodegeneration and subsequent identification of novel therapeutic targets. Here, we review the studies of environmental enrichment relevant to some major neurodegenerative diseases and discuss their research and clinical implications.
Collapse
Affiliation(s)
- Tara L Spires
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | |
Collapse
|
215
|
Marrone DF. The morphology of bi-directional experience-dependent cortical plasticity: a meta-analysis. ACTA ACUST UNITED AC 2005; 50:100-13. [PMID: 15927268 DOI: 10.1016/j.brainresrev.2005.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 05/02/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
Describing the neural mechanisms underlying learning and memory continues to be an intensive area of study within neuroscience. Of specific interest are changes in synaptic number and structure in the neocortex, which may play a distinct role in learning and memory. As such, characterizing the structural correlates of neocortical learning and memory may be critical to understanding the link between synaptic structure and function. Towards this understanding, a meta-analysis was conducted on several well-researched paradigms of behavioral plasticity, categorized by those which enhance or deprive plasticity-inducing experience (PIE). Results revealed several distinct groups. Several variables (spine size, density of multisynaptic terminals, vesicular content) showed distinct dynamics under enhanced vs. deprived PIE, but changed consistently within these categories, regardless of the manipulation. A second set of variables (i.e., density of excitatory, inhibitory, excitatory spinuous, and inhibitory spinuous synapses) showed the same qualitative changes following both enhanced and impoverished PIE. A third group (total synapse density, total basilar branches, apical spine density, total postsynaptic density size, and total bouton size) showed significant heterogeneity that could not be accounted for by partitioning enhancement and deprivation of PIE. However, this variance was accounted for by the modality and duration of the manipulation, the delay between this manipulation and sacrifice, and the stereological/methodological rigor of the study. These data, along with suggestions for future investigation based on gaps in the literature may go far towards the goal of relating neural structure and function.
Collapse
Affiliation(s)
- Diano F Marrone
- Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C1A4.
| |
Collapse
|
216
|
Gresack JE, Frick KM. Environmental enrichment reduces the mnemonic and neural benefits of estrogen. Neuroscience 2005; 128:459-71. [PMID: 15381276 PMCID: PMC1513274 DOI: 10.1016/j.neuroscience.2004.06.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
The degree to which memory is enhanced by estrogen replacement in postmenopausal women may depend on environmental factors such as education. The present study utilized an animal model of environmental enrichment to determine whether environmental factors influence the mnemonic and neural response to estrogen. Female mice were raised in standard (SC) or enriched (EC) conditions from weaning until adulthood (7 months). All mice were ovariectomized at 10 weeks, and tested in object recognition and water-escape motivated radial arm maze (WRAM) tasks at 6 months. Each day at the completion of training, mice received injections of 0.1 mg/kg cyclodextrin-encapsulated 17-beta-estradiol (E2), 0.2 mg/kg E2, or cyclodextrin vehicle (VEH). At the completion of behavioral testing, hippocampal levels of the presynaptic protein synaptophysin and of brain-derived neurotrophic factor (BDNF) were measured. Enrichment effects were evident in VEH-treated mice; relative to SC-VEH females, EC-VEH females committed fewer working memory errors in the WRAM and exhibited increased hippocampal synaptophysin levels. Estrogen effects depended on environmental conditions. E2 (0.2 mg/kg) improved object memory only in SC females. The same dose improved working memory in SC females, but somewhat impaired working memory in EC females. Furthermore, both doses reduced hippocampal synaptophysin levels in EC, but not SC, females. In contrast, E2 reduced hippocampal BDNF levels in SC, but not EC, females. This study is the first to compare the effects of estrogen on memory and hippocampal function in enriched and non-enriched female mice. The results suggest that: (1) estrogen benefits object and working memory more in mice raised in non-enriched environments than in those raised in enriched environments, and (2) the changes induced by estrogen and/or enrichment may be associated with alterations in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- J E Gresack
- Department of Psychology, Yale University, 2 Hillhouse Avenue, P.O. Box 208205, New Haven, CT 06520, USA
| | | |
Collapse
|
217
|
Abstract
Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching, neurogenesis, gene expression, and improved learning and memory. Moreover, in animal models of CNS insult (e.g., gene deletion), a more complex environment has attenuated or prevented the sequelae of the insult. Of relevance is the prevention of seizures and attenuation of their neuropathological sequelae as a consequence of exposure to a more complex environment. Relatively little attention, however, has been given to the issue of sensitive periods associated with such effects, the relative importance of social versus inanimate stimulation, or the unique contribution of exercise. Our studies have examined the effects of environmental complexity on the development of the restricted, repetitive behavior commonly observed in individuals with autism. In this model, a more complex environment substantially attenuates the development of the spontaneous and persistent stereotypies observed in deer mice reared in standard laboratory cages. Our findings support a sensitive period for such effects and suggest that early enrichment may have persistent neuroprotective effects after the animal is returned to a standard cage environment. Attenuation or prevention of repetitive behavior by environmental complexity was associated with increased neuronal metabolic activity, increased dendritic spine density, and elevated neurotrophin (BDNF) levels in brain regions that are part of cortical-basal ganglia circuitry. These effects were not observed in limbic areas such as the hippocampus.
Collapse
Affiliation(s)
- Mark H Lewis
- McKnight Brain Institute and Department of Psychiatry, University of Florida, Gainesville, Florida 32601, USA.
| |
Collapse
|
218
|
Zang DW, Lopes EC, Cheema SS. Loss of synaptophysin-positive boutons on lumbar motor neurons innervating the medial gastrocnemius muscle of the SOD1G93A G1H transgenic mouse model of ALS. J Neurosci Res 2005; 79:694-9. [PMID: 15668955 DOI: 10.1002/jnr.20379] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a common form of motor neuron disease (MND) that involves both upper and lower nervous systems. In the SOD1G93A G1H transgenic mouse, a widely used animal model of human ALS, a significant pathology is linked to the degeneration of lower motor neurons in the lumbar spinal cord and brainstem. In the current study, the number of presynaptic boutons immunoreactive for synaptophysin was estimated on retrogradely labeled soma and proximal dendrites of alpha and gamma motor neurons innervating the medial gastrocnemius muscle. No changes were detected on both soma and proximal dendrites at postnatal day 60 (P60) of alpha and gamma motor neurons. By P90 and P120, however, alpha motor neuron soma had a reduction of 14 and 33% and a dendritic reduction of 19 and 36%, respectively. By P90 and P120, gamma motor neuron soma had a reduction of 17 and 41% and a dendritic reduction of 19 and 35%, respectively. This study shows that levels of afferent innervation significantly decreased on surviving alpha and gamma motor neurons that innervate the medial gastrocnemius muscle. This finding suggests that the loss of motor neurons and the decrease of synaptophysin in the remaining motor neurons could lead to functional motor deficits, which may contribute significantly to the progression of ALS/MND.
Collapse
Affiliation(s)
- Da Wei Zang
- Motor Neuron Disease Research Laboratory, Brain Injury and Repair Group, Howard Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
219
|
Sale A, Putignano E, Cancedda L, Landi S, Cirulli F, Berardi N, Maffei L. Enriched environment and acceleration of visual system development. Neuropharmacology 2004; 47:649-60. [PMID: 15458836 DOI: 10.1016/j.neuropharm.2004.07.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/30/2004] [Accepted: 07/12/2004] [Indexed: 11/15/2022]
Abstract
Rearing mice from birth in an enriched environment leads to a conspicuous acceleration of visual system development appreciable at behavioral, electrophysiological and molecular level. Little is known about the possible mechanisms of action through which enriched environment affects visual system development. It has been suggested that differences in maternal behavior between enriched and non-enriched conditions could contribute to the earliest effects of enriched environment on visual development and that neurotrophins, BDNF in particular, might be involved. Here, we examined Brain Derived Neurotrophic Factor (BDNF) levels in the visual cortex during development and showed that an increase occurs in the first week of life in enriched pups compared to standard reared pups; BDNF levels at birth were equal in the two groups. This suggests a postnatal rather than a prenatal effect of environment on BDNF. A detailed analysis of maternal care behavior showed that pups raised in a condition of social and physical enrichment experienced higher levels of licking behavior and physical contact compared to standard reared pups and that enhanced levels of licking were also provided to pups in an enriched environment where no adult females other than the mother were present. Thus, different levels of maternal care in different environmental conditions could act as indirect mediator for the earliest effects of enrichment on visual system development. Some of the effects of different levels of maternal care on the offspring behavior are long lasting. We measured the visual acuity of differentially reared mice at the end of the period of visual acuity development (postnatal day 45) and at 12 months of age, using a behavioral discrimination task. We found better learning abilities and higher visual acuity in enriched compared to standard reared mice at both ages.
Collapse
Affiliation(s)
- Alessandro Sale
- Laboratorio di Neurobiologia, Scuola Normale Superiore, via Moruzzi 1, I-56100, Pisa Italy.
| | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
Research during the last decades has greatly increased our understanding of brain plasticity, i.e. how neuronal circuits can be modified by experience, learning and in response to brain lesions. Currently available neuroimaging techniques that make it possible to study the function of the human brain in vivo have had an important impact. Cross-modal plasticity during development is demonstrated by cortical reorganization in blind or deaf children. Early musical training has lasting effects in shaping the brain. Albeit the plasticity is largest during childhood, the adult brain retains a capacity for functional and structural reorganization that earlier has been underestimated. Recent research on Huntington's disease has revealed the possibility of environmental interaction even with dominant genes. Scientifically based training methods are now being applied in rehabilitation of patients after stroke and trauma, and in the sensory retraining techniques currently applied in the treatment of focal hand dystonia as well as in sensory re-education after nerve repair in hand surgery. There is evidence that frequent participation in challenging and stimulating activities is associated with reduced cognitive decline during aging. The current concept of brain plasticity has wide implication for areas outside neuroscience and for all human life.
Collapse
Affiliation(s)
- Barbro B Johansson
- Division for Experimental Brain Research, Department of Clinical Neuroscience, Lund University, Wallenberg Neuroscience Center, Lund, Sweden.
| |
Collapse
|
221
|
Frick KM, Stearns NA, Pan JY, Berger-Sweeney J. Effects of environmental enrichment on spatial memory and neurochemistry in middle-aged mice. Learn Mem 2003; 10:187-98. [PMID: 12773583 PMCID: PMC202309 DOI: 10.1101/lm.50703] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 02/19/2003] [Indexed: 11/24/2022]
Abstract
The present study compared the effects of environmental enrichment on spatial memory, glutamic acid decarboxylase (GAD) activity, and synaptophysin levels in middle-aged male and female mice. Prior to testing, a subset of 18-month-old male and female C57BL/6 mice was housed with two to three toys and a running wheel in the home cage for up to 29 d. Adult mice (7 mo) of both sexes and the remaining middle-aged mice were group (social) housed, but not exposed to enriching objects. After the enrichment period, all mice were tested in a 1-day version of the Morris water maze, in which both spatial and nonspatial memory were assessed. Immediately after testing, the hippocampus and frontoparietal cortex were dissected, and GAD activity and synaptophysin levels were measured. Environmental enrichment reduced the age-related impairment in spatial acquisition and retention; relative to adult social controls, middle-aged enriched mice were unimpaired, whereas middle-aged social controls were impaired. This reduction was similar in middle-aged males and females. Enrichment did not affect cued memory in either sex. Although hippocampal GAD activity was increased by enrichment in males, all other neurochemical measurements were unaffected by enrichment or aging in either sex. These data suggest that environmental enrichment initiated at middle age can reduce age-related impairments in spatial memory in males and females, although the underlying neurobiological mechanisms of this effect remain unknown.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
222
|
Branchi I, Bichler Z, Berger-Sweeney J, Ricceri L. Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev 2003; 27:141-53. [PMID: 12732230 DOI: 10.1016/s0149-7634(03)00016-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
Collapse
Affiliation(s)
- Igor Branchi
- Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | | | | | | |
Collapse
|