201
|
Yakar F, Egemen E, Dere ÜA, Sağınç H, Gökdeniz U, Bakırarar B, Gökdeniz CG, Baltalarlı B, Coşkun ME, Acar F. The effectiveness of gamma knife radiosurgery for the management of residual high-grade gliomas: A single institutional study. J Clin Neurosci 2021; 95:159-163. [PMID: 34929640 DOI: 10.1016/j.jocn.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
High-grade gliomas (HGGs) are presently managed via surgical resection, external beam radiation therapy (EBRT), and chemotherapy. Although Gamma Knife radiosurgery (GKRS) is currently used to manage HGGs, it has not been considered standard care. This paper aims to compare the contribution of GKRS to clinical outcomes in patients in which gross total resection (GTR) cannot be achieved. We retrospectively reviewed the data of 99 patients with HGG (World Health Organization (WHO) grade III and IV) from two groups: group 1 consisted of 68 patients for which only EBRT was administered, and group 2 consisted of 31 patients for which EBRT and GKRS were administered. Patient demographic data, the extent of resection, IDH mutation, radiation dosage, progression-free survival (PFS), overall survival (OS), and follow-up time were recorded and compared across groups. The grade III/IV tumor ratio was 10/58 and 10/21 in groups 1 and 2, respectively. In group 2, PFS and OS were higher than in group 1 (P = 0.030 and 0.021). The mean follow-up time was 15.02 ± 11.8 (3-52) and 18.9 ± 98.6 (7-43) months in groups 1 and 2, respectively. In addition to the standard management of HGGs in patients without GTR, boost GKRS during the early postoperative period is beneficial for increasing PFS and OS.
Collapse
Affiliation(s)
- Fatih Yakar
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey.
| | - Emrah Egemen
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Ümit A Dere
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Halil Sağınç
- Pamukkale University School of Medicine, Department of Radiation Oncology, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Ulaş Gökdeniz
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Batuhan Bakırarar
- Ankara University, School of Medicine, Department of Biostatistics, Hacettepe, A. Adnan Saygun Cd, 06230 Altındağ/Ankara, Turkey
| | - Ceyda G Gökdeniz
- Pamukkale University School of Medicine, Department of Public Health, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Bahar Baltalarlı
- Pamukkale University School of Medicine, Department of Radiation Oncology, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey.
| | - Mehmet E Coşkun
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Feridun Acar
- Odak Hospital, Department of Neurosurgery, Sümer Mah. No: 18, 20100 Merkez/Denizli, Turkey
| |
Collapse
|
202
|
Zhao Y, Li S, Yang X, Chu L, Wang S, Tong T, Chu X, Yu F, Zeng Y, Guo T, Zhou Y, Zou L, Li Y, Ni J, Zhu Z. Overall survival benefit of Osimertinib and clinical value of upfront cranial local therapy in untreated EGFR-mutant non-small cell lung cancer with brain metastasis. Int J Cancer 2021; 150:1318-1328. [PMID: 34914096 DOI: 10.1002/ijc.33904] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/13/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
Osimertinib, as a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), showed more potent efficacy against brain metastasis (BM) in untreated EGFR-mutant non-small cell lung cancer (NSCLC) in the FLAURA study. However, the overall survival (OS) benefit of Osimertinib and clinical value of cranial local therapy (CLT) in these patients remain undetermined. Here we conducted a retrospective study involving untreated EGFR-mutant NSCLC patients with BMs receiving first-line osimertinib or first-generation EGFR-TKIs. Upfront CLT was defined as CLT performed before disease progression to the first-line EGFR-TKIs. Pattern of treatment failure and survival outcomes were extensively investigated. Among the 367 patients enrolled, first-generation EGFR-TKI was administered in 265, osimertinib in 102 and upfront CLT performed in 140. Patients receiving osimertinib had more (p<0.001) and larger BMs (p=0.003) than those receiving first-generation EGFR-TKIs. After propensity score matching (PSM), osimertinib was found to prolong OS (37.7 months vs. 22.2 months, p=0.027). Pattern of failure analyses found that 51.8% of the patients without upfront CLT developed their initial progressive disease (PD) in the brain and 59.0% of the cranial PD occurred at the original sites alone, suggesting potential clinical value of upfront CLT. Indeed, upfront stereotactic radiosurgery (SRS) and/or surgery was associated with improved OS among those receiving first-generation EGFR-TKIs (p=0.019) and those receiving osimertinib (p=0.041). In summary, compared with first-generation EGFR-TKIs, osimertinib is associated with improved OS in untreated EGFR-mutant NSCLC with BMs. Meanwhile, upfront SRS and/or surgery may provide extra survival benefit, which needs to be verified in future studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuyan Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengping Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tong Tong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya Zeng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
203
|
Latorzeff I, Antoni D, Josset S, Noël G, Tallet-Richard A. Radiation therapy for brain metastases. Cancer Radiother 2021; 26:129-136. [PMID: 34955413 DOI: 10.1016/j.canrad.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present the update of the recommendations of the French society for radiation oncology on radiation therapy for the management of brain metastases. It has evolved in recent years and has become more complex. As the life expectancy of patients has increased and retreatments have become more frequent, side effects must be absolutely avoided. Cognitive side effects must in particular be prevented, and the most modern radiation therapy techniques must be used systematically. New prognostic classifications specific to the primary tumour of patients, advances in imaging and radiation therapy technology and new systemic therapeutic strategies, are making treatment more relevant. Stereotactic radiation therapy has supplanted whole-brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiation therapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement for its use is constantly increasing. New targeted cancer treatment therapies based on the nature of the primitive have complicated the notion of the place and timing of radiation therapy and the discussion during multidisciplinary care meeting to indicate the best sequences is becoming a challenging issue as data on the interaction between treatments remain to be documented. In the end, although aimed at patients in the palliative phase, the management of brain metastases is one of the locations for which technical reflection is the most challenging and treatment become increasingly personalized.
Collapse
Affiliation(s)
- I Latorzeff
- Service de radiothérapie, groupe Oncorad Garonne, clinique Pasteur, l'« Atrium », 1, rue de la Petite-Vitesse, 31300 Toulouse, France; Centre régional de radiochirurgie stéréotaxique, CHU Rangueil, avenue Jean-Poulhès, 31052 Toulouse cedex, France.
| | - D Antoni
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - S Josset
- Service de physique médicale, institut de cancérologie de l'Ouest, Unicancer, 44805 Saint-Herblain, France
| | - G Noël
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - A Tallet-Richard
- Département universitaire de radiothérapie, institut Paoli-Calmettes, Unicancer, 232, boulevard de Sainte-Marguerite, 13273 Marseille, France
| |
Collapse
|
204
|
Loo M, Clavier JB, Attal Khalifa J, Moyal E, Khalifa J. Dose-Response Effect and Dose-Toxicity in Stereotactic Radiotherapy for Brain Metastases: A Review. Cancers (Basel) 2021; 13:cancers13236086. [PMID: 34885193 PMCID: PMC8657210 DOI: 10.3390/cancers13236086] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Brain metastases are one of the most frequent complications for cancer patients. Stereotactic radiosurgery is considered a cornerstone treatment for patients with limited brain metastases and the ideal dose and fractionation schedule still remain unknown. The aim of this literature review is to discuss the dose-effect relation in brain metastases treated by stereotactic radiosurgery, accounting for fractionation and technical considerations. Abstract For more than two decades, stereotactic radiosurgery has been considered a cornerstone treatment for patients with limited brain metastases. Historically, radiosurgery in a single fraction has been the standard of care but recent technical advances have also enabled the delivery of hypofractionated stereotactic radiotherapy for dedicated situations. Only few studies have investigated the efficacy and toxicity profile of different hypofractionated schedules but, to date, the ideal dose and fractionation schedule still remains unknown. Moreover, the linear-quadratic model is being debated regarding high dose per fraction. Recent studies shown the radiation schedule is a critical factor in the immunomodulatory responses. The aim of this literature review was to discuss the dose–effect relation in brain metastases treated by stereotactic radiosurgery accounting for fractionation and technical considerations. Efficacy and toxicity data were analyzed in the light of recent published data. Only retrospective and heterogeneous data were available. We attempted to present the relevant data with caution. A BED10 of 40 to 50 Gy seems associated with a 12-month local control rate >70%. A BED10 of 50 to 60 Gy seems to achieve a 12-month local control rate at least of 80% at 12 months. In the brain metastases radiosurgery series, for single-fraction schedule, a V12 Gy < 5 to 10 cc was associated to 7.1–22.5% radionecrosis rate. For three-fractions schedule, V18 Gy < 26–30 cc, V21 Gy < 21 cc and V23 Gy < 5–7 cc were associated with about 0–14% radionecrosis rate. For five-fractions schedule, V30 Gy < 10–30 cc, V 28.8 Gy < 3–7 cc and V25 Gy < 16 cc were associated with about 2–14% symptomatic radionecrosis rate. There are still no prospective trials comparing radiosurgery to fractionated stereotactic irradiation.
Collapse
Affiliation(s)
- Maxime Loo
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
- Correspondence:
| | - Jean-Baptiste Clavier
- Radiotherapy Department, Strasbourg Europe Cancer Institute (ICANS), 67033 Strasbourg, France;
| | - Justine Attal Khalifa
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| | - Elisabeth Moyal
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| | - Jonathan Khalifa
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| |
Collapse
|
205
|
Park DJ, Unadkat P, Goenka A, Schulder M. Case Series: Cystic Brain Metastases Managed With Reservoir Placement and Stereotactic Radiosurgery. NEUROSURGERY OPEN 2021. [DOI: 10.1093/neuopn/okab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
206
|
Wilcox JA, Brown S, Reiner AS, Young RJ, Chen J, Bale TA, Rosenblum MK, Newman WC, Brennan CW, Tabar V, Beal K, Panageas KS, Moss NS. Salvage resection of recurrent previously irradiated brain metastases: tumor control and radiation necrosis dependency on adjuvant re-irradiation. J Neurooncol 2021; 155:277-286. [PMID: 34655373 PMCID: PMC11955081 DOI: 10.1007/s11060-021-03872-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE The efficacy of salvage resection (SR) of recurrent brain metastases (rBrM) following stereotactic radiosurgery (SRS) is undefined. We sought to describe local recurrence (LR) and radiation necrosis (RN) rates in patients undergoing SR, with or without adjuvant post-salvage radiation therapy (PSRT). METHODS A retrospective cohort study evaluated patients undergoing SR of post-SRS rBrM between 3/2003-2/2020 at an NCI-designated cancer center. Cases with histologically-viable malignancy were stratified by receipt of adjuvant PSRT within 60 days of SR. Clinical outcomes were described using cumulative incidences in the clustered competing-risks setting, competing risks regression, and Kaplan-Meier methodology. RESULTS One-hundred fifty-five rBrM in 135 patients were evaluated. The overall rate of LR was 40.2% (95% CI 34.3-47.2%) at 12 months. Thirty-nine (25.2%) rBrM treated with SR + PSRT trended towards lower 12-month LR versus SR alone [28.8% (95% CI 17.0-48.8%) versus 43.9% (95% CI 36.2-53.4%), p = .07 by multivariate analysis]. SR as re-operation (p = .03) and subtotal resection (p = .01) were independently associated with higher rates of LR. On univariate analysis, tumor size (p = .48), primary malignancy (p = .35), and PSRT technique (p = .43) bore no influence on LR. SR + PSRT was associated with an increased risk of radiographic RN at 12 months versus SR alone [13.4% (95% CI 5.5-32.7%) versus 3.5% (95% CI 1.5-8.0%), p = .02], though the percentage with symptomatic RN remained low (5.1% versus 0.9%, respectively). Median overall survival from SR was 13.4 months (95% CI 10.5-17.7). CONCLUSION In this largest-known series evaluating SR outcomes in histopathologically-confirmed rBrM, we identify a significant LR risk that may be reduced with adjuvant PSRT and with minimal symptomatic RN. Prospective analysis is warranted.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Brown
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Young
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Chen
- Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William C Newman
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Cameron W Brennan
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson S Moss
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
207
|
Schmidt MC, Pryser EA, Baumann BC, Yaqoub MM, Raman CA, Szentivanyi P, Michalski JM, Gay HA, Knutson NC, Hugo G, Sajo E, Zygmanski P, Mazur T, Dise J, Cammin J, Laugeman E, Reynoso FJ. Development and Implementation of an Open Source Template Interpretation Class Library for Automated Treatment Planning. Pract Radiat Oncol 2021; 12:e153-e160. [PMID: 34839048 DOI: 10.1016/j.prro.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Widespread implementation of automated treatment planning in radiation therapy remains elusive due to variability in clinic and physician preferences making it difficult to ensure consistent plan parameters. We have developed an open-source class library with the aim to improve efficiency and consistency for automated treatment planning in radiation therapy. METHODS AND MATERIALS An open source class library has been developed that interprets clinical templates within a commercial treatment planning system into a treatment plan for automated planning. This code was leveraged for the automated planning of 39 patients and retrospectively compared to the 78 clinically approved manual plans. RESULTS From the initial 39 patients, 74 of 78 plans were successfully generated without manual intervention. Target dose was more homogenous for automated plans, with an average homogeneity index of 3.30 vs 3.11 for manual and automated plans, respectively (p = 0.107). Generalized equivalent uniform dose decreased in the femurs and rectum for automated plans, with mean gEUD of 3746 cGy vs 3338 cGy (p ≤ 0.001) and 5761 cGy vs 5634 cGy (p ≤ 0.001) for femurs and rectum, respectively. Dose metrics for bladder and rectum (V6500 cGy and V4000 cGy) show recognizable but insignificant improvements. All automated plans delivered for quality assurance passed a gamma analysis (>95%) with an average composite pass rate of 99.3% and 98.8% for pelvis and prostate plans, respectively. Deliverability parameters such as total monitor units and aperture complexity indicate deliverable plans. CONCLUSIONS Prostate cancer and pelvic node radiotherapy can be automated using VMAT planning and clinical templates based on a standardized clinical workflow. The class library developed in this study conveniently interfaces between the plan template and the treatment planning system to automatically generate high quality plans on customizable templates.
Collapse
Affiliation(s)
- Matthew C Schmidt
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri; Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts.
| | - Eleanor A Pryser
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian C Baumann
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Mahmoud M Yaqoub
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Caleb A Raman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Jeff M Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Hiram A Gay
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nels C Knutson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Geoffrey Hugo
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Erno Sajo
- Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Piotr Zygmanski
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas Mazur
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph Dise
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jochen Cammin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Francisco J Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
208
|
Yusuf M, Rattani A, Gaskins J, Oliver AL, Mandish SF, Burton E, May ME, Williams B, Ding D, Sharma M, Miller D, Woo S. Stereotactic radiosurgery for melanoma brain metastases: dose-size response relationship in the era of immunotherapy. J Neurooncol 2021; 156:163-172. [PMID: 34807342 PMCID: PMC8606626 DOI: 10.1007/s11060-021-03899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/11/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE/OBJECTIVE(S) To determine, for intact melanoma brain metastases (MBM) treated with single-fraction stereotactic radiosurgery (SRS), whether planning parameter peripheral dose per lesion diameter (PDLDm, Gy/mm) and lesion control (LC) differs with versus without immunotherapy (IO). MATERIALS/METHODS We performed a retrospective analysis of patients with intact MBM treated with SRS from 2008 to 2019. Cox-frailty models were constructed to include confounders selected by penalized Cox regression models with a LASSO selector. Interaction effect testing was used to determine whether a significant effect between IO and PDLDm could be demonstrated with respect to LC. RESULTS The study cohort comprised 67 patients with 244 MBMs treated with SRS (30 patients with 122 lesions treated with both SRS and IO) were included. The logarithm of PDLDm was selected as a predictor of LC (HR 0.307, 95% CI 0.098-0.441), adjusting for IO receipt (HR 0.363, 95% CI 0.108-1.224). Interaction effect testing demonstrated a differential effect of PDLDm by IO receipt, with respect to LC (p = 0.048). Twelve-month LC rates for a 7.5 mm lesion receiving SRS (18 Gy) with IO versus without IO were 87.8% (95% CI 69.0-98.3%) versus 79.8% (95% CI 55.1-93.8%) respectively. CONCLUSION PDLDm predicted LC in patients with small MBMs treated with single-fraction SRS. We found a differential effect of dose per lesion size and LC by immunotherapy receipt. Future studies are needed to determine whether lower doses of single-fraction SRS afford similarly effective LC for patients with small MBMs receiving immunotherapy.
Collapse
Affiliation(s)
- Mehran Yusuf
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abbas Rattani
- Department of Radiation Oncology, School of Medicine, University of Louisville Hospital, 529 S. Jackson St, Louisville, KY, 40202, USA.
| | - Jeremy Gaskins
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | | | - Steven F Mandish
- Department of Radiation Oncology, School of Medicine, University of Louisville Hospital, 529 S. Jackson St, Louisville, KY, 40202, USA
| | - Eric Burton
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael E May
- Department of Radiation Oncology, School of Medicine, University of Louisville Hospital, 529 S. Jackson St, Louisville, KY, 40202, USA
| | - Brian Williams
- Department of Neurosurgery, University of Louisville Hospital, Louisville, KY, USA
| | - Dale Ding
- Department of Neurosurgery, University of Louisville Hospital, Louisville, KY, USA
| | - Mayur Sharma
- Department of Neurosurgery, University of Louisville Hospital, Louisville, KY, USA
| | - Donald Miller
- Department of Medical Oncology, University of Louisville Hospital, Louisville, KY, USA
| | - Shiao Woo
- Department of Radiation Oncology, School of Medicine, University of Louisville Hospital, 529 S. Jackson St, Louisville, KY, 40202, USA
| |
Collapse
|
209
|
Mantovani C, Gastino A, Cerrato M, Badellino S, Ricardi U, Levis M. Modern Radiation Therapy for the Management of Brain Metastases From Non-Small Cell Lung Cancer: Current Approaches and Future Directions. Front Oncol 2021; 11:772789. [PMID: 34796118 PMCID: PMC8593461 DOI: 10.3389/fonc.2021.772789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Brain metastases (BMs) represent the most frequent event during the course of Non-Small Cell Lung Cancer (NSCLC) disease. Recent advancements in the diagnostic and therapeutic procedures result in increased incidence and earlier diagnosis of BMs, with an emerging need to optimize the prognosis of these patients through the adoption of tailored treatment solutions. Nowadays a personalized and multidisciplinary approach should rely on several clinical and molecular factors like patient’s performance status, extent and location of brain involvement, extracranial disease control and the presence of any “druggable” molecular target. Radiation therapy (RT), in all its focal (radiosurgery and fractionated stereotactic radiotherapy) or extended (whole brain radiotherapy) declinations, is a cornerstone of BMs management, either alone or combined with surgery and systemic therapies. Our review aims to provide an overview of the many modern RT solutions available for the treatment of BMs from NSCLC in the different clinical scenarios (single lesion, oligo and poly-metastasis, leptomeningeal carcinomatosis). This includes a detailed review of the current standard of care in each setting, with a presentation of the literature data and of the possible technical solutions to offer a “state-of-art” treatment to these patients. In addition to the validated treatment options, we will also discuss the future perspectives on emerging RT technical strategies (e.g., hippocampal avoidance whole brain RT, simultaneous integrated boost, radiosurgery for multiple lesions), and present the innovative and promising findings regarding the combination of novel targeted agents such as tyrosine kinase inhibitors and immune checkpoint inhibitors with brain irradiation.
Collapse
Affiliation(s)
| | | | - Marzia Cerrato
- Department of Oncology, University of Torino, Torino, Italy
| | | | | | - Mario Levis
- Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
210
|
Stereotactic radiosurgery for IDH wild type glioblastoma: an international, multicenter study. J Neurooncol 2021; 155:343-351. [PMID: 34797526 DOI: 10.1007/s11060-021-03883-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Isocitrate dehydrogenase (IDH) mutation status is recommended used for diagnosis and prognostication of glioblastoma patients. We studied efficacy and safety of stereotactic radiosurgery (SRS) for patients with recurrent IDH-wt glioblastoma. METHODS Consecutive patients treated with SRS for IDH-wt glioblastoma were pooled for this retrospective observational international multi-institutional study from institutions participating in the International Radiosurgery Research Foundation. RESULTS Sixty patients (median age 61 years) underwent SRS (median dose 15 Gy and median treatment volume: 7.01 cm3) for IDH-wt glioblastoma. All patients had histories of surgery and chemotherapy with temozolomide, and 98% underwent fractionated radiation therapy. MGMT status was available for 42 patients, of which half of patients had MGMT mutant glioblastomas. During median post-SRS imaging follow-up of 6 months, 52% of patients experienced tumor progression. Median post-SRS progression free survival was 4 months. SRS prescription dose of > 14 Gy predicted longer progression free survival [HR 0.357 95% (0.164-0.777) p = 0.009]. Fifty-percent of patients died during post-SRS clinical follow-up that ranged from 1 to 33 months. SRS treatment volume of > 5 cc emerged as an independent predictor of shorter post-SRS overall survival [HR 2.802 95% CI (1.219-6.444) p = 0.02]. Adverse radiation events (ARE) suggestive of radiation necrosis were diagnosed in 6/55 (10%) patients and were managed conservatively in the majority of patients. CONCLUSIONS SRS prescription dose of > 14 Gy is associated with longer progression free survival while tumor volume of > 5 cc is associated with shorter overall survival after SRS for IDH-wt glioblastomas. AREs are rare and are typically managed conservatively.
Collapse
|
211
|
Sayan M, Şahin B, Mustafayev TZ, Kefelioğlu EŞS, Vergalasova I, Gupta A, Balmuk A, Güngör G, Ohri N, Weiner J, Karaarslan E, Özyar E, Atalar B. Risk of symptomatic radiation necrosis in patients treated with stereotactic radiosurgery for brain metastases. ACTA ACUST UNITED AC 2021; 32:261-267. [PMID: 34743823 DOI: 10.1016/j.neucie.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/31/2020] [Indexed: 12/01/2022]
Abstract
INTRODUCTIO Stereotactic radiosurgery (SRS) is a treatment option in the initial management of patients with brain metastases. While its efficacy has been demonstrated in several prior studies, treatment-related complications, particularly symptomatic radiation necrosis (RN), remains as an obstacle for wider implementation of this treatment modality. We thus examined risk factors associated with the development of symptomatic RN in patients treated with SRS for brain metastases. PATIENTS AND METHODS We performed a retrospective review of our institutional database to identify patients with brain metastases treated with SRS. Diagnosis of symptomatic RN was determined by appearance on serial MRIs, MR spectroscopy, requirement of therapy, and the development of new neurological complaints without evidence of disease progression. RESULTS We identified 323 brain metastases treated with SRS in 170 patients from 2009 to 2018. Thirteen patients (4%) experienced symptomatic RN after treatment of 23 (7%) lesions. After SRS, the median time to symptomatic RN was 8.3 months. Patients with symptomatic RN had a larger mean target volume (p<0.0001), and thus larger V100% (p<0.0001), V50% (p<0.0001), V12Gy (p<0.0001), and V10Gy (p=0.0002), compared to the rest of the cohort. Single-fraction treatment (p=0.0025) and diabetes (p=0.019) were also significantly associated with symptomatic RN. CONCLUSION SRS is an effective treatment option for patients with brain metastases; however, a subset of patients may develop symptomatic RN. We found that patients with larger tumor size, larger plan V100%, V50%, V12Gy, or V10Gy, who received single-fraction SRS, or who had diabetes were all at higher risk of symptomatic RN.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| | - Bilgehan Şahin
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Teuta Zoto Mustafayev
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | - Irina Vergalasova
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Apar Gupta
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Aykut Balmuk
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Görkem Güngör
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Nisha Ohri
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Joseph Weiner
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Ercan Karaarslan
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Enis Özyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
212
|
Lanier CM, Lecompte M, Glenn C, Hughes RT, Isom S, Jenkins W, Cramer CK, Chan M, Tatter SB, Laxton AW. A Single-Institution Retrospective Study of Patients Treated With Laser-Interstitial Thermal Therapy for Radiation Necrosis of the Brain. Cureus 2021; 13:e19967. [PMID: 34984127 PMCID: PMC8714182 DOI: 10.7759/cureus.19967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 11/05/2022] Open
Abstract
Object Laser-interstitial thermal therapy (LITT) has been proposed as an alternative treatment to surgery for radiation necrosis (RN) in patients treated with stereotactic radiosurgery (SRS) for brain metastases. The present study sought to retrospectively analyze LITT outcomes in patients with RN from SRS. Methods This was a single-institution retrospective study of 30 patients treated from 2011-2018 with pathologically-proven RN after SRS for brain metastases (n=28) or proximally treated extracranial lesions treated with external beam radiotherapy (n=2). Same-day biopsy was performed in all cases. Patients were prospectively followed with Functional Assessment of Cancer Therapy - Brain (FACT-Br), EuroQol-5 Dimension (EQ-5D), Hopkins Verbal Learning Test (HVLT) and clinical history and examination. Adjusted means, standard errors and tests comparing visits to pre-LITT were generated. Kaplan-Meier method was used to estimate time overall survival. Competing risk analysis was used to estimate cumulative incidence of LITT failure. Results In our patient population, median time from radiotherapy to LITT was 13.1 months. Median SRS dose and median LITT treatment target volume were 20 Gy (IQR 18-22) and 3.5 cc (IQR 2.2-4.6), respectively. Seventy-seven percent of our patients tapered off steroids within one month. There were only two instances of RN recurrence after LITT, with recurrence defined as recurrence of symptoms after initial improvement. These recurrences occurred at 1.9 and 3.4 months. The three-, six- and nine-month freedom from recurrence rates were 95.7%, 90.9%, and 90.9%. Median survival in our patient population with pathologically confirmed RN treated with LITT was 2.1 years. Regarding the quality of life questionnaires with which some patients were followed as part of different prospective studies, completion rates were 22/30 for FACT-Br, 16/30 for the EQ-5D and 8/30 for HVLT. Quality of life questionnaire results were overall stable from baseline. Mean FACT-Br scores were stable from baseline (17.9, 16.6, 21.4 and 22.8) to three months (18.8, 15.4, 18.4 and 23.4) (p=0.38, 0.53, 0.09 and 0.59). The mean EQ-5D Aggregate score was stable from baseline (7.1) to one month (7.6) (p=0.25). Mean HVLT-R Total Recall was stable from baseline (20.6) to three months (18.4) (p=0.09). There was a statistically significant decrease in mean Karnofsky Performance Scale (KPS) score from baseline (84) to three-month follow-up (75) (p=0.03). Conclusions LITT represents a safe and durably effective treatment option for RN in the brain. Results demonstrate a median survival of 2.1 years from LITT with only two recurrences, both within four months of treatment and salvageable. Patient-reported outcomes showed no severe declines after LITT. Quality of life questionnaires demonstrated stable well-being and functionality from baseline. LITT should be considered for definitive treatment of RN, especially in cases where patients have significant side effects from standards medical therapies such as steroids or if steroids are minimally effective.
Collapse
Affiliation(s)
- Claire M Lanier
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Michael Lecompte
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Chase Glenn
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Ryan T Hughes
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Scott Isom
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Wendy Jenkins
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Christina K Cramer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Michael Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, USA
| |
Collapse
|
213
|
Park SJ, Lim SH, Kim YJ, Moon KS, Kim IY, Jung S, Kim SK, Oh IJ, Hong JH, Jung TY. The Tumor Control According to Radiation Dose of Gamma Knife Radiosurgery for Small and Medium-Sized Brain Metastases from Non-Small Cell Lung Cancer. J Korean Neurosurg Soc 2021; 64:983-994. [PMID: 34689476 PMCID: PMC8590918 DOI: 10.3340/jkns.2021.0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The effectiveness of gamma knife radiosurgery (GKR) in the treatment of brain metastases is well established. The aim of this study was to evaluate the efficacy and safety of maximizing the radiation dose in GKR and the factors influencing tumor control in cases of small and medium-sized brain metastases from non-small cell lung cancer (NSCLC). METHODS We analyzed 230 metastatic brain tumors less than 5 mL in volume in 146 patients with NSCLC who underwent GKR. The patients had no previous radiation therapy for brain metastases. The pathologies of the tumors were adenocarcinoma (n=207), squamous cell carcinoma (n=18), and others (n=5). The radiation doses were classified as 18, 20, 22, and 24 Gy, and based on the tumor volume, the tumors were categorized as follows : small-sized (less than 1 mL) and medium-sized (1-3 and 3-5 mL). The progression-free survival (PFS) of the individual 230 tumors and 146 brain metastases was evaluated after GKR depending on the pathology, Eastern Cooperative Oncology Group (ECOG) performance score (PS), tumor volume, radiation dose, and anti-cancer regimens. The radiotoxicity after GKR was also evaluated. RESULTS After GKR, the restricted mean PFS of individual 230 tumors at 24 months was 15.6 months (14.0-17.1). In small-sized tumors, as the dose of radiation increased, the tumor control rates tended to increase (p=0.072). In medium-sized tumors, there was no statistically difference in PFS with an increase of radiation dose (p=0.783). On univariate analyses, a statistically significant increase in PFS was associated with adenocarcinomas (p=0.001), tumors with ECOG PS 0 (p=0.005), small-sized tumors (p=0.003), radiation dose of 24 Gy (p=0.014), synchronous lesions (p=0.002), and targeted therapy (p=0.004). On multivariate analyses, an improved PFS was seen with targeted therapy (hazard ratio, 0.356; 95% confidence interval, 0.150-0.842; p=0.019). After GKR, the restricted mean PFS of brain at 24 months was 9.8 months (8.5-11.1) in 146 patients, and the pattern of recurrence was mostly distant within the brain (66.4%). The small and medium-sized tumors treated with GKR showed radiotoxicitiy in five out of 230 tumors (2.2%), which were controlled with medical treatment. CONCLUSION The small-sized tumors were effectively controlled without symptomatic radiation necrosis as the radiation dose was increased up to 24 Gy. The medium-sized tumors showed potential for symptomatic radiation necrosis without signifcant tumor control rate, when greater than 18 Gy. GKR combined targeted therapy improved the tumor control of GKR-treated tumors.
Collapse
Affiliation(s)
- Sue Jee Park
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Sa-Hoe Lim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Young-Jin Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - In-Young Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Seul-Kee Kim
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Jong-Hwan Hong
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
214
|
Ahmed KA, Kim Y, Arrington JA, Kim S, DeJesus M, Soyano AE, Armaghani AJ, Costa RL, Khong HT, Loftus LS, Rosa M, Caudell JJ, Diaz R, Robinson TJ, Etame AB, Tran ND, Sahebjam S, Soliman HH, Czerniecki BJ, Forsyth PA, Yu HM, Han HS. Nivolumab and Stereotactic Radiosurgery for Patients With Breast Cancer Brain Metastases: A Nonrandomized, Open-Label Phase 1b Study. Adv Radiat Oncol 2021; 6:100798. [PMID: 34934864 PMCID: PMC8655428 DOI: 10.1016/j.adro.2021.100798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose Methods and Materials Results Conclusions
Collapse
|
215
|
Fowler ME, Marotta DA, Kennedy RE, Gerstenecker A, Gammon M, Triebel K. Reliability of self-report versus the capacity to consent to treatment instrument to make medical decisions in brain metastasis and other metastatic cancers. Brain Behav 2021; 11:e2303. [PMID: 34599852 PMCID: PMC8613414 DOI: 10.1002/brb3.2303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To evaluate the ability of persons with metastatic cancer to self-assess their medical decision-making capacity (MDC). To investigate this, we compared an objective measure of MDC with self-ratings and evaluated predictors of agreement. METHODS Data were obtained from a cross-sectional study of metastatic cancer patients at a large academic medical center. Across all standards of MDC, sensitivity, specificity, and reliability using Gwet's AC1 statistic were calculated using the objective measure as the gold standard. Logistic regression was used to evaluate predictors of agreement between the measures across all MDC standards. RESULTS In those with brain metastases, high sensitivity (greater than 0.7), but low specificity was observed for all standards. Poor reliability was observed across all standards. Higher age resulted in higher odds of disagreement for Standard 3 (appreciation) (OR: 1.07, 95% CI: 1.00, 1.15) and Standard 4 (reasoning) (OR: 1.05, 95% CI: 1.00, 1.10). For Standard 3, chemotherapy use and brain metastases compared to other metastases resulted in higher odds of disagreement (Chemotherapy: OR: 5.62, 95% CI: 1.37, 23.09, Brain Metastases: OR: 5.93, 95% CI: 1.28, 27.55). For Standard 5 (understanding), no predictors were associated with disagreement. CONCLUSIONS For less cognitively complex standards (e.g., appreciation), self-report may be more valid and reliable than more cognitively complex standards (e.g., reasoning or understanding). However, overall, MDC self-report in the current sample is suboptimal. Thus, the need for detailed assessment of MDC, especially when patients are older or used chemotherapy, is indicated. Other studies should be conducted to assess MDC agreement longitudinally.
Collapse
Affiliation(s)
- Mackenzie E Fowler
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dario A Marotta
- Division of Neuropsychology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
| | - Richard E Kennedy
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adam Gerstenecker
- Division of Neuropsychology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meredith Gammon
- Division of Neuropsychology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kristen Triebel
- Division of Neuropsychology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
216
|
Rahman R, Sulman E, Haas-Kogan D, Cagney DN. Update on Radiation Therapy for Central Nervous System Tumors. Hematol Oncol Clin North Am 2021; 36:77-93. [PMID: 34711456 DOI: 10.1016/j.hoc.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiation therapy has long been a critical modality of treatment of patients with central nervous system tumors, including primary brain tumors, brain metastases, and meningiomas. Advances in radiation technology and delivery have allowed for more precise treatment to optimize patient outcomes and minimize toxicities. Improved understanding of the molecular underpinnings of brain tumors and normal brain tissue response to radiation will allow for continued refinement of radiation treatment approaches to improve clinical outcomes for brain tumor patients. With continued advances in precision and delivery, radiation therapy will continue to be an important modality to achieve optimal outcomes of brain tumor patients.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA
| | - Erik Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, 160 East 34th Street, New York, NY 10016, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA
| | - Daniel N Cagney
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA.
| |
Collapse
|
217
|
Wegner RE, Horne ZD, Liang Y, Goss M, Yu A, Pace J, Williamson RW, Leonardo J, Karlovits SM, Fuhrer R. Single Fraction Frameless Stereotactic Radiosurgery on the Gamma Knife Icon for Patients With Brain Metastases: Time to Abandon the Frame? Adv Radiat Oncol 2021; 6:100736. [PMID: 34646964 PMCID: PMC8498737 DOI: 10.1016/j.adro.2021.100736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose The latest version of the Gamma Knife, the Icon, allows for immobilization with a mask in lieu of the traditional frame during stereotactic radiosurgery. There have been some concerns regarding extent of immobilization during single fraction frameless treatment and potential effect on outcomes. As such, we reviewed outcomes in patients with brain metastases treated in a single fraction using either a frame or mask on the Gamma Knife Icon at our institution. Methods and Materials We reviewed the records of 95 patients with a total of 374 metastases treated between May 2019 and January 2021. Thirty-nine patients (41%) were treated using the Leksell frame with the remainder being immobilized with a mask. The median number of metastatic lesions was 2 (1–20). The median prescription dose was 20 Gy (11.5–24 Gy). Odds ratios were generated to identify predictors of mask use. Kaplan-Meier analysis was used to calculate survival, local failure, and distant failure rates. Cox regression was used to identify predictors of survival. Propensity matching was used to account for indication bias. Results Of the 95 patients treated, 88 (93%) had follow-up with a median duration of 5 months (1–18). Frame utilization was more likely with 6 to 10 brain metastases. Median overall survival was not reached and was 70% and 60% at 6 and 12 months for the entire cohort, respectively. There was no significant difference in survival by immobilization method (P = .12). Six patients had local failure in 10 total lesions (3 patients in each group). After propensity matching the 12 month tumor local control was 96% and 85% for framed and frameless cases, respectively (P = .07). Conclusions Frameless mask-based stereotactic radiosurgery using the Gamma Knife Icon is feasible and maintains the excellent local control seen with the use of the headframe.
Collapse
Affiliation(s)
- Rodney E Wegner
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Allegheny, Pennsylvania
| | - Zachary D Horne
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Allegheny, Pennsylvania
| | - Yun Liang
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Allegheny, Pennsylvania
| | - Matthew Goss
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Allegheny, Pennsylvania
| | - Alexander Yu
- Department of Neurologic Surgery, Allegheny Health Network, Allegheny, Pennsylvania
| | - Jonathan Pace
- Department of Neurologic Surgery, Allegheny Health Network, Allegheny, Pennsylvania
| | - Richard W Williamson
- Department of Neurologic Surgery, Allegheny Health Network, Allegheny, Pennsylvania
| | - Jody Leonardo
- Department of Neurologic Surgery, Allegheny Health Network, Allegheny, Pennsylvania
| | - Stephen M Karlovits
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Allegheny, Pennsylvania
| | - Russel Fuhrer
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Allegheny, Pennsylvania
| |
Collapse
|
218
|
A new prognostic score for predicting survival in patients treated with robotic stereotactic radiotherapy for brain metastases. Sci Rep 2021; 11:20347. [PMID: 34645854 PMCID: PMC8514560 DOI: 10.1038/s41598-021-98847-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/02/2021] [Indexed: 11/11/2022] Open
Abstract
The study aimed to analyze potential prognostic factors in patients treated with robotic radiosurgery for brain metastases irrespective of primary tumor location and create a simple prognostic score that can be used without a full diagnostic workup. A retrospective analysis of 142 patients with 1–9 brain metastases treated with stereotactic radiosurgery (1–4 fractions) was performed. Volumes of all lesions were calculated using linear dimensions of the tumors (CC, LR, AP) and 4/3*π*(CC/2)*(LR/2)*(AP/2) formula. Kaplan–Meier method and log-rank test were used to analyze survival. Variables significantly associated with overall survival in univariate analysis were included in Cox multivariate analysis. The validity of the model was tested with the bootstrap method. Variables from the final model were used to construct a new prognostic index by assigning points according to the impact of a specific variable on overall survival. In the multivariate analysis, four factors: Karnofsky Performance Status (p = 0.000068), number of brain metastases (p = 0.019), volume of the largest lesion (p = 0.0037), and presence of extracerebral metastases (p = 0.0017), were independent predictors of survival. Total scores ranged from 0 to 12 points, and patients were divided into four groups based on median survival of each subgroup: 0–1 points—18.8 months, 2–3 points—16.9 months, 4–5 points—5.6 months, and ≥ 6 points—4.9 months (p < 0.001). The new prognostic index is simple to calculate. It has a strong prognostic value in a heterogeneous population of patients with a various number of brain metastases, but its value requires confirmation in another cohort.
Collapse
|
219
|
Practical Considerations for Single Isocenter LINAC Radiosurgery of Multiple Brain Metastases. Pract Radiat Oncol 2021; 12:195-199. [PMID: 34619373 DOI: 10.1016/j.prro.2021.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to summarize treatment guidelines for the performance of single isocenter LINAC radiosurgery of multiple brain metastases developed and used by 3 experienced centers. This article is not meant to provide consensus guidelines. Rather, this is a practical, "how we do it" reference without substantial discussion. To serve as a treatment reference, the great majority of the information is presented in topic-specific tables.
Collapse
|
220
|
Bunevicius A, Pikis S, Anand RK, Nabeel AM, Reda WA, Tawadros SR, Abdelkarim K, El-Shehaby AMN, Emad RM, Chytka T, Liscak R, Caceres MP, Mathieu D, Lee CC, Yang HC, Picozzi P, Franzini A, Attuati L, Speckter H, Olivo J, Patel S, Cifarelli CP, Cifarelli DT, Hack JD, Strickland BA, Zada G, Chang EL, Fakhoury KR, Rusthoven CG, Warnick RE, Sheehan J. Stereotactic radiosurgery for clinoid meningiomas: a multi-institutional study. Acta Neurochir (Wien) 2021; 163:2861-2869. [PMID: 34427769 DOI: 10.1007/s00701-021-04972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Resection of clinoid meningiomas can be associated with significant morbidity. Experience with stereotactic radiosurgery (SRS) for clinoid meningiomas remains limited. We studied the safety and effectiveness of SRS for clinoid meningiomas. METHODS From twelve institutions participating in the International Radiosurgery Research Foundation, we pooled patients treated with SRS for radiologically suspected or histologically confirmed WHO grade I clinoid meningiomas. RESULTS Two hundred seven patients (median age: 56 years) underwent SRS for clinoid meningiomas. Median treatment volume was 8.02 cm3, and 87% of tumors were immediately adjacent to the optic apparatus. The median tumor prescription dose was 12 Gy, and the median maximal dose to the anterior optic apparatus was 8.5 Gy. During a median post-SRS imaging follow-up of 51.1 months, 7% of patients experienced tumor progression. Greater margin SRS dose (HR = 0.700, p = 0.007) and pre-SRS radiotherapy (HR = 0.004, p < 0.001) were independent predictors of better tumor control. During median visual follow-up of 48 months, visual function declined in 8% of patients. Pre-SRS visual deficit (HR = 2.938, p = 0.048) and maximal radiation dose to the optic apparatus of ≥ 10 Gy (HR = 11.297, p = 0.02) independently predicted greater risk of post-SRS visual decline. Four patients experienced new post-SRS cranial nerve V neuropathy. CONCLUSIONS SRS allows durable control of clinoid meningiomas and visual preservation in the majority of patients. Greater radiosurgical prescription dose is associated with better tumor control. Radiation dose to the optic apparatus of ≥ 10 Gy and visual impairment before the SRS increase risk of visual deterioration.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Stylianos Pikis
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Ahmed M Nabeel
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt
- Neurosurgery Department, Benha University, Qalubya, Egypt
| | - Wael A Reda
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt
- Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Sameh R Tawadros
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt
- Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Khaled Abdelkarim
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt
- Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Amr M N El-Shehaby
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt
- Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Reem M Emad
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt
- National Cancer Institute, Cairo, Egypt
| | - Tomas Chytka
- Stereotactic and Radiation Neurosurgery Department, Na Homolce Hospital, Prague, Czech Republic
| | - Roman Liscak
- Stereotactic and Radiation Neurosurgery Department, Na Homolce Hospital, Prague, Czech Republic
| | - Marco Perez Caceres
- Department of Neurosurgery, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Canada
| | - David Mathieu
- Department of Neurosurgery, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Canada
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Piero Picozzi
- Department of Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rome, Italy
| | - Andrea Franzini
- Department of Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rome, Italy
| | - Luca Attuati
- Department of Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rome, Italy
| | - Herwin Speckter
- Centro Gamma Knife Dominicano and Radiology Department, CEDIMAT, Santo Domingo, Dominican Republic
| | - Jeremy Olivo
- Centro Gamma Knife Dominicano and Radiology Department, CEDIMAT, Santo Domingo, Dominican Republic
| | - Samir Patel
- Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Canada
| | - Christopher P Cifarelli
- Department of Neurosurgery, West Virginia University, Morgantown, USA
- Department of Radiation Oncology, West Virginia University, Morgantown, USA
| | | | - Joshua D Hack
- Department of Radiation Oncology, West Virginia University, Morgantown, USA
| | - Ben A Strickland
- Department of Neurosurgery, University of Southern California, Los Angeles, USA
| | - Gabriel Zada
- Department of Neurosurgery, University of Southern California, Los Angeles, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, USA
| | - Kareem R Fakhoury
- Department of Radiation Oncology, University of Colorado, Boulder, USA
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Boulder, USA
| | | | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
221
|
Asuzu DT, Bunevicius A, Kormath Anand R, Suleiman M, Nabeel AM, Reda WA, Tawadros SR, Abdel Karim K, El-Shehaby AMN, Emad Eldin RM, Chytka T, Liščák R, Sheehan K, Sheehan D, Perez Caceres M, Mathieu D, Lee CC, Yang HC, Picozzi P, Franzini A, Attuati L, Speckter H, Olivo J, Patel S, Cifarelli CP, Cifarelli DT, Hack JD, Strickland BA, Zada G, Chang EL, Fakhoury KR, Rusthoven CG, Warnick RE, Sheehan JP. Clinical and radiologic outcomes after stereotactic radiosurgery for meningiomas in direct contact with the optic apparatus: an international multicenter study. J Neurosurg 2021; 136:1070-1076. [PMID: 34560648 DOI: 10.3171/2021.3.jns21328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/30/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Resection of meningiomas in direct contact with the anterior optic apparatus carries risk of injury to the visual pathway. Stereotactic radiosurgery (SRS) offers a minimally invasive alternative. However, its use is limited owing to the risk of radiation-induced optic neuropathy. Few SRS studies have specifically assessed the risks and benefits of treating meningiomas in direct contact with the optic nerve, chiasm, or optic tract. The authors hypothesized that SRS is safe for select patients with meningiomas in direct contact with the anterior optic apparatus. METHODS The authors performed an international multicenter retrospective analysis of 328 patients across 11 institutions. All patients had meningiomas in direct contract with the optic apparatus. Patients were followed for a median duration of 56 months after SRS. Neurological examinations, including visual function evaluations, were performed at follow-up visits. Clinical and treatment variables were collected at each site according to protocol. Tumor volumes were assessed with serial MR imaging. Variables predictive of visual deficit were identified using univariable and multivariable logistic regression. RESULTS SRS was the initial treatment modality for 64.6% of patients, and 93% of patients received SRS as a single fraction. Visual information was available for 302 patients. Of these patients, visual decline occurred in 29 patients (9.6%), of whom 12 (41.4%) had evidence of tumor progression. Visual decline in the remaining 17 patients (5.6%) was not associated with tumor progression. Pre-SRS Karnofsky Performance Status predicted visual decline in adjusted analysis (adjusted OR 0.9, 95% CI 0.9-1.0, p < 0.01). Follow-up imaging data were available for 322 patients. Of these patients, 294 patients (91.3%) had radiographic evidence of stability or tumor regression at last follow up. Symptom duration was associated with tumor progression in adjusted analysis (adjusted OR 1.01, adjusted 95% CI 1.0-1.02, adjusted p = 0.02). CONCLUSIONS In this international multicenter study, the vast majority of patients exhibited tumor control and preservation of visual function when SRS was used to treat meningioma in direct contact with the anterior optic pathways. SRS is a relatively safe treatment modality for select patients with perioptic meningiomas in direct contact with the optic apparatus.
Collapse
Affiliation(s)
- David T Asuzu
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia.,20Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Adomas Bunevicius
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | | | - Mohanad Suleiman
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Ahmed M Nabeel
- 2Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,3Neurosurgery Department, Benha University, Qalubya, Egypt
| | - Wael A Reda
- 2Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,4Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Sameh R Tawadros
- 2Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,4Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Khaled Abdel Karim
- 2Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,6Clinical Oncology Department, Ain Shams University, Cairo, Egypt
| | - Amr M N El-Shehaby
- 2Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,4Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Reem M Emad Eldin
- 2Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,5Radiation Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Tomas Chytka
- 7Stereotactic and Radiation Neurosurgery Department, Na Homolce Hospital, Prague, Czech Republic
| | - Roman Liščák
- 7Stereotactic and Radiation Neurosurgery Department, Na Homolce Hospital, Prague, Czech Republic
| | - Kimball Sheehan
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Darrah Sheehan
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Marco Perez Caceres
- 8Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Quebec, Canada
| | - David Mathieu
- 8Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Cheng-Chia Lee
- 9Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,10School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huai-Che Yang
- 9Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,10School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Piero Picozzi
- 11Department of Neurosurgery, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Andrea Franzini
- 11Department of Neurosurgery, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Luca Attuati
- 11Department of Neurosurgery, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Herwin Speckter
- 12Centro Gamma Knife Dominicano and CEDIMAT Radiology Department, Santo Domingo, Dominican Republic
| | - Jeremy Olivo
- 12Centro Gamma Knife Dominicano and CEDIMAT Radiology Department, Santo Domingo, Dominican Republic
| | - Samir Patel
- 13Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Canada
| | - Christopher P Cifarelli
- 14Department of Neurosurgery, West Virginia University, Morgantown, West Virginia.,15Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia
| | - Daniel T Cifarelli
- 14Department of Neurosurgery, West Virginia University, Morgantown, West Virginia
| | - Joshua D Hack
- 15Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia
| | - Ben A Strickland
- 16Department of Neurosurgery, University of Southern California, Los Angeles, California
| | - Gabriel Zada
- 16Department of Neurosurgery, University of Southern California, Los Angeles, California
| | - Eric L Chang
- 17Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Kareem R Fakhoury
- 18Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Chad G Rusthoven
- 18Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Ronald E Warnick
- 19Gamma Knife Center, Jewish Hospital, Mayfield Clinic, Cincinnati, Ohio; and
| | - Jason P Sheehan
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
222
|
Khalladi N, Dejean C, Bosset M, Pointreau Y, Kinj R, Racadot S, Castelli J, Huguet F, Renard S, Guihard S, Tao Y, Rouvier JM, Johnson A, Bourhis J, Xu Shan S, Thariat J. A priori quality assurance using a benchmark case of the randomized phase 2 GORTEC 2014-14 in oligometastatic head and neck cancer patients. Cancer Radiother 2021; 25:755-762. [PMID: 34565664 DOI: 10.1016/j.canrad.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE A Benchmark Case (BC) was performed as part of the quality assurance process of the randomized phase 2 GORTEC 2014-14 OMET study, testing the possibility of multisite stereotactic radiation therapy (SBRT) alone in oligometastatic head and neck squamous cell carcinoma (HNSCC) as an alternative to systemic treatment and SBRT. MATERIAL AND METHODS Compliance of the investigating centers with the prescription, delineation, planning and evaluation recommendations available in the research protocol was assessed. In addition, classical dosimetric analysis was supplemented by quantitative geometric analysis using conformation indices. RESULTS Twenty centers participated in the BC analysis. Among them, four major deviations (MaD) were reported in two centers. Two (10%) centers in MaD had omitted the satellite tumor nodule and secondarily validated after revision. Their respective DICE indexes were 0.37 and 0 and use of extracranial SBRT devices suboptimal There were significant residual heterogeneities between participating centers, including those with a similar SBRT equipment, with impact of plan quality using standard indicators and geometric indices. CONCLUSION A priori QA using a BC conditioning the participation of the clinical investigation centers showed deviations from good SBRT practice and led to the exclusion of one out of the twenty participating centers. The majority of centers have demonstrated rigorous compliance with the research protocol. The use of quality indexes adds a complementary approach to improve assessment of plan quality.
Collapse
Affiliation(s)
- N Khalladi
- Centre François Baclesse, 3, avenue General Harris, 14076 Caen, France
| | - C Dejean
- Centre Antoine Lacassagne, Nice, France
| | - M Bosset
- Centre Marie Curie, Valence, France
| | | | - R Kinj
- Centre Antoine Lacassagne, Nice, France
| | | | | | - F Huguet
- Centre hospitalier et universitaire Tenon, Paris, France
| | - S Renard
- Institut de Cancérologie de Lorraine, Nancy, France
| | - S Guihard
- Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Y Tao
- Institut Gustave Roussy, Villejuif, France
| | - J M Rouvier
- Centre hospitalier régional et universitaire, Besançon-Montbéliard, France
| | - A Johnson
- Centre François Baclesse, 3, avenue General Harris, 14076 Caen, France
| | - J Bourhis
- Centre hospitalier universitaire vaudois, Lausanne, Switzerland
| | - S Xu Shan
- Centre hospitalier universitaire vaudois, Lausanne, Switzerland
| | - J Thariat
- Centre François Baclesse, 3, avenue General Harris, 14076 Caen, France; Corpuscular Physics Laboratory-Normandy University, Caen, France.
| |
Collapse
|
223
|
Duan Y, Cao H, Wu B, Wu Y, Liu D, Zhou L, Feng A, Wang H, Chen H, Gu H, Shao Y, Huang Y, Lin Y, Ma K, Fu X, Fu H, Kong Q, Xu Z. Dosimetric Comparison, Treatment Efficiency Estimation, and Biological Evaluation of Popular Stereotactic Radiosurgery Options in Treating Single Small Brain Metastasis. Front Oncol 2021; 11:716152. [PMID: 34540686 PMCID: PMC8447903 DOI: 10.3389/fonc.2021.716152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives This study aimed to show the advantages of each stereotactic radiosurgery (SRS) treatment option for single small brain metastasis among Gamma Knife (GK), Cone-based VMAT (Cone-VMAT), and MLC-based CRT (MLC-CRT) plans. Materials and Methods GK, Cone-VMAT, and MLC-CRT SRS plans were retrospectively generated for 11 patients with single small brain metastasis whose volume of gross tumor volume (GTV) ranged from 0.18 to 0.76 cc (median volume 0.60 cc). Dosimetric parameters, treatment efficiency, and biological parameters of the three techniques were compared and evaluated. The metric variation with the planning target volume (PTV) was also studied. Results The conformity index (CI) was similar in GK and MLC-CRT plans, higher than Cone-VMAT. Cone-VMAT achieved comparable volume covered by 12 Gy (V12) and gradient index (GI) as GK, lower than MLC-CRT. The heterogeneity index (HI) of GK, Cone-VMAT, and MLC-CRT decreased sequentially. GK gave the lowest volume covered by 3 Gy (V3) and 6 Gy (V6), while MLC-CRT got the highest. The beam-on time and treatment time of GK, Cone-VMAT, and MLC-CRT decreased in turn. Tumor control probability (TCP) of all three SRS plans was greater than 98%, and normal tissue complication probability (NTCP) of all organs at risk (OARs) was below 0.01%. GK and Cone-VMAT resulted in superior TCP and NTCP of the normal brain tissue than MLC-CRT. The relative value of Cone-VMAT and GK for all metrics hardly changed with the target volume. Except for the unchanged HI and TCP, the other results of MLC-CRT with respect to GK improved as the target volume increased. MLC-CRT could produce higher CI than GK and Cone-VMAT when the target volume increased above 2 and 1.44 cc, respectively. Conclusion For single small brain metastases, Cone-VMAT may be used as an alternative to GK-free centers. In addition to the advantage of short treatment time, MLC-CRT showed superiority in CI as the target volume increased. Treatment centers can choose appropriate SRS technique on a case-by-case basis according to institutional conditions and patients’ individual needs.
Collapse
Affiliation(s)
- Yanhua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbin Cao
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Boheng Wu
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinghui Wu
- Nuclear Protective Treatment Department of Radiation, Navy Specialty Medical Center, Shanghai, China
| | - Dong Liu
- Varian Medical Systems, Inc., Beijing, China
| | - Lijun Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Aihui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hengle Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Huang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Lin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Ma
- Varian Medical Systems, Inc., Beijing, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Fu
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
| | - Qing Kong
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
224
|
Myrehaug S, Hudson J, Soliman H, Ruschin M, Tseng CL, Detsky J, Husain Z, Keith J, Atenafu EG, Maralani P, Heyn C, Das S, Lipsman N, Sahgal A. Hypofractionated Stereotactic Radiation Therapy for Intact Brain Metastases in 5 Daily Fractions: Effect of Dose on Treatment Response. Int J Radiat Oncol Biol Phys 2021; 112:342-350. [PMID: 34537313 DOI: 10.1016/j.ijrobp.2021.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/13/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE Multileaf collimator (MLC) linear accelerator (Linac)-based hypofractionated stereotactic radiation therapy (HSRT) is increasingly used not only for large brain metastases or those adjacent to critical structures but also for those metastases that would otherwise be considered for single-fraction radiosurgery (SRS). However, data on outcomes in general are limited, and there is a lack of understanding regarding optimal dosing. Our aim was to report mature image-based outcomes for MLC-Linac HSRT with a focus on clinical and dosimetric factors associated with local failure (LF). METHODS AND MATERIALS A total of 220 patients with 334 brain metastases treated with HSRT were identified. All patients were treated using a 5-fraction daily regimen and were followed with clinical evaluation and volumetric magnetic resonance imaging every 2 to 3 months. Overall survival and progression-free survival were calculated using the Kaplan-Meier method, with LF determined using Fine and Gray's competing risk method. Predictive factors were identified using Cox regression multivariate analysis. RESULTS Median follow-up was 10.8 months. Median size of treated metastasis was 1.9 cm; 60% of metastases were <2 cm in size. The median total dose was 30 Gy in 5 fractions; 36% of the cohort received <30 Gy. The median time to LF and 12-month cumulative incidence of LF was 8.5 months and 23.8%, respectively. Median time to death and 12-month overall survival rates were 11.8 months and 48.2%, respectively. Fifty-two metastases (15.6%) had an adverse radiation effect, of which 32 (9.5%) were symptomatic necrosis. Multivariable analysis identified worse LF in patients who received a total dose of <30 Gy (hazard ratio, 1.62; P = .03), with LF at 6 and 12 months of 13% and 33% for patients treated with <30 Gy versus 5% and 19% for patients treated with >30 Gy. Exploratory analysis demonstrated a dose-response effect observed in all histologic types, including among breast cancer subtypes. CONCLUSION Optimal local control is achieved with HSRT of ≥30 Gy in 5 daily fractions, independent of tumor volume and histology, with an acceptable risk of radiation necrosis.
Collapse
Affiliation(s)
- Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada.
| | - John Hudson
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Mark Ruschin
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Zain Husain
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, Ontario, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Chris Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Sunit Das
- Department of Neurosurgery, St. Michaels Hospital, Ontario, Canada
| | - Nir Lipsman
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| |
Collapse
|
225
|
Lai YL, Kang JH, Hsu CY, Lee JI, Cheng WF, Chen YL, Lee YY. Gamma Knife Radiosurgery-Based Combination Treatment Strategies Improve Survival in Patients With Central Nervous System Metastases From Epithelial Ovarian Cancer: A Retrospective Analysis of Two Academic Institutions in Korea and Taiwan. Front Oncol 2021; 11:719936. [PMID: 34513698 PMCID: PMC8429898 DOI: 10.3389/fonc.2021.719936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) metastases from epithelial ovarian cancer (EOC) are rare. We investigated the clinico-pathological prognostic factors of patients with CNS metastases from EOC and compared the outcomes of various treatment modalities. We retrospectively reviewed the records of patients with CNS metastases from EOC between 2000 and 2020. Information on the clinical and pathological characteristics, treatment, and outcomes of these patients was retrieved from Samsung Medical Center and National Taiwan University Hospital. A total of 94 patients with CNS metastases were identified among 6,300 cases of EOC, resulting in an incidence of 1.49%. Serous histological type [hazard ratio (HR): 0.49 (95% confidence interval [CI] 0.25-0.95), p=0.03], progressive disease [HR: 2.29 (95% CI 1.16-4.54), p=0.01], CNS involvement in first disease relapse [HR: 0.36 (95% CI 0.18-0.70), p=0.002], and gamma knife radiosurgery (GKS)-based combination treatment for EOC patients with CNS lesions [HR: 0.59 (95% CI 0.44-0.79), p<0.001] significantly impacted survival after diagnosis of CNS metastases. In a subgroup analysis, superior survival was observed in patients with CNS involvement not in first tumor recurrence who underwent GKS-based combination therapeutic regimens. The survival benefit of GKS-based treatment was not significant in patients with CNS involvement in first disease relapse, but a trend for longer survival was still observed. In conclusion, GKS-based combination treatment can be considered for the treatment of EOC patients with CNS metastases. The patients with CNS involvement not in first disease relapse could significantly benefit from GKS-based combination strategies.
Collapse
Affiliation(s)
- Yen-Ling Lai
- Department of Obstetrics and Gynecology, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jun-Hyeok Kang
- Department of Obstetrics and Gynecology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si, South Korea
| | - Che-Yu Hsu
- Division of Radiation oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yoo-Young Lee
- Division of Gynecologic oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
226
|
Kennedy WR, DeWees TA, Acharya S, Mahmood M, Knutson NC, Goddu SM, Kavanaugh JA, Mitchell TJ, Rich KM, Kim AH, Leuthardt EC, Dowling JL, Dunn GP, Chicoine MR, Perkins SM, Huang J, Tsien CI, Robinson CG, Abraham CD. Internal dose escalation associated with increased local control for melanoma brain metastases treated with stereotactic radiosurgery. J Neurosurg 2021; 135:855-861. [PMID: 33307528 DOI: 10.3171/2020.7.jns192210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The internal high-dose volume varies widely for a given prescribed dose during stereotactic radiosurgery (SRS) to treat brain metastases (BMs). This may be altered during treatment planning, and the authors have previously shown that this improves local control (LC) for non-small cell lung cancer BMs without increasing toxicity. Here, they seek to identify potentially actionable dosimetric predictors of LC after SRS for melanoma BM. METHODS The records of patients with unresected melanoma BM treated with single-fraction Gamma Knife RS between 2006 and 2017 were reviewed. LC was assessed on a per-lesion basis, defined as stability or a decrease in lesion size. Outcome-oriented approaches were utilized to determine optimal dichotomization for dosimetric variables relative to LC. Univariable and multivariable Cox regression analysis was implemented to evaluate the impact of collected parameters on LC. RESULTS Two hundred eighty-seven melanoma BMs in 79 patients were identified. The median age was 56 years (range 31-86 years). The median follow-up was 7.6 months (range 0.5-81.6 months), and the median survival was 9.3 months (range 1.3-81.6 months). Lesions were optimally stratified by volume receiving at least 30 Gy (V30) greater than or equal to versus less than 25%. V30 was ≥ and < 25% in 147 and 140 lesions, respectively. For all patients, 1-year LC was 83% versus 66% for V30 ≥ and < 25%, respectively (p = 0.001). Stratifying by volume, lesions 2 cm or less (n = 215) had 1-year LC of 82% versus 70% (p = 0.013) for V30 ≥ and < 25%, respectively. Lesions > 2 to 3 cm (n = 32) had 1-year LC of 100% versus 43% (p = 0.214) for V30 ≥ and < 25%, respectively. V30 was still predictive of LC even after controlling for the use of immunotherapy and targeted therapy. Radionecrosis occurred in 2.8% of lesions and was not significantly associated with V30. CONCLUSIONS For a given prescription dose, an increased internal high-dose volume, as indicated by measures such as V30 ≥ 25%, is associated with improved LC but not increased toxicity in single-fraction SRS for melanoma BM. Internal dose escalation is an independent predictor of improved LC even in patients receiving immunotherapy and/or targeted therapy. This represents a dosimetric parameter that is actionable at the time of treatment planning and warrants further evaluation.
Collapse
Affiliation(s)
| | - Todd A DeWees
- 2Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona; and
| | - Sahaja Acharya
- 3Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | | | | - Keith M Rich
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Eric C Leuthardt
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Dowling
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gavin P Dunn
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | |
Collapse
|
227
|
Uezono H, Nam D, Kluger HM, Sznol M, Hurwitz M, Yu JB, Chiang VL. Outcomes of Stereotactic Radiosurgery and Immunotherapy in Renal Cell Carcinoma Patients With Brain Metastases. Am J Clin Oncol 2021; 44:495-501. [PMID: 34432667 DOI: 10.1097/coc.0000000000000849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The impact of immunotherapy and stereotactic radiosurgery (SRS) in treatment of brain metastases (BM) from renal cell carcinoma (RCC) has not been well investigated. MATERIALS AND METHODS Forty-eight patients with 372 RCC BM were treated with SRS and divided into those ever treated with immunotherapy versus those who never received immunotherapy. Survival and local control (LC) outcomes were studied. χ2 and Mann-Whitney U tests compared categorical and continuous variables, respectively. Kaplan-Meier curves were used to estimate survival and log-rank test was used to compare survival between groups. RESULTS Immunotherapy and nonimmunotherapy groups contained 29 and 19 patients, respectively. Median follow-up was 23.1 months (range, 6 to 93.8 mo). Demographic and treatment variables were similar except median prescribed margin dose was significantly lower in immunotherapy group (20 vs. 22 Gy, P<0.0001). Median overall survival (OS) was 27.2 months (immunotherapy) and 14.9 months (nonimmunotherapy), P=0.14. Furthermore, patients treated with immune checkpoint inhibitor (ICI) had even better median OS compared with those who never received ICI (33 vs. 16.7 mo, P=0.03). Factors associated with improved LC were use of ICI (P=0.002) and lesion size <1000 mm3 (P=0.046). There was no difference in incidence of radiation necrosis between the 2 groups (P=0.67). CONCLUSIONS Patients with RCC BM undergoing SRS can experience prolonged survival when treated with ICI. Equally effective LC of BM was achieved when treated with immunotherapy using a 2 Gy decrease in SRS dose without increasing the risk of central nervous system toxicity.
Collapse
Affiliation(s)
- Haruka Uezono
- Department of Radiation Oncology, Yale University School of Medicine
- Department of Radiation Oncology, Hyogo Cancer Center, Akashi, Japan
| | | | | | - Mario Sznol
- Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | | | - James B Yu
- Department of Radiation Oncology, Yale University School of Medicine
| | | |
Collapse
|
228
|
Bunevicius A, Suleiman M, Patel S, Martínez Álvarez R, Martinez Moreno NE, Liscak R, Hanuska J, Langlois AM, Mathieu D, Mau C, Caldwell C, Tuanquin LC, Zacharia BE, McInerney J, Lee CC, Yang HC, Peterson JL, Trifiletti DM, Ogino A, Kano H, Warnick RE, Saylany A, Buch LY, Lee JYK, Strickland BA, Zada G, Chang EL, Lunsford LD, Sheehan J. Stereotactic radiosurgery for treatment of radiation-induced meningiomas: a multiinstitutional study. J Neurosurg 2021; 135:862-870. [PMID: 33385995 DOI: 10.3171/2020.7.jns202064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Radiation-induced meningiomas (RIMs) are associated with aggressive clinical behavior. Stereotactic radiosurgery (SRS) is sometimes considered for selected RIMs. The authors investigated the effectiveness and safety of SRS for the management of RIMs. METHODS From 12 institutions participating in the International Radiosurgery Research Foundation, the authors pooled patients who had prior cranial irradiation and were subsequently clinically diagnosed with WHO grade I meningiomas that were managed with SRS. RESULTS Fifty-two patients underwent 60 SRS procedures for histologically confirmed or radiologically suspected WHO grade I RIMs. The median ages at initial cranial radiation therapy and SRS for RIM were 5.5 years and 39 years, respectively. The most common reasons for cranial radiation therapy were leukemia (21%) and medulloblastoma (17%). There were 39 multiple RIMs (35%), the mean target volume was 8.61 ± 7.80 cm3, and the median prescription dose was 14 Gy. The median imaging follow-up duration was 48 months (range 4-195 months). RIM progressed in 9 patients (17%) at a median duration of 30 months (range 3-45 months) after SRS. Progression-free survival at 5 years post-SRS was 83%. Treatment volume ≥ 5 cm3 predicted progression (HR 8.226, 95% CI 1.028-65.857, p = 0.047). Seven patients (14%) developed new neurological symptoms or experienced SRS-related complications or T2 signal change from 1 to 72 months after SRS. CONCLUSIONS SRS is associated with durable local control of RIMs in the majority of patients and has an acceptable safety profile. SRS can be considered for patients and tumors that are deemed suboptimal, poor surgical candidates, and those whose tumor again progresses after removal.
Collapse
Affiliation(s)
- Adomas Bunevicius
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Mohand Suleiman
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Samir Patel
- 2Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Roman Liscak
- 4Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jaromir Hanuska
- 4Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Anne-Marie Langlois
- 5Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - David Mathieu
- 5Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Christine Mau
- 6Penn State Health, Hershey Medical Center, Hershey, Pennsylvania
| | | | | | - Brad E Zacharia
- 6Penn State Health, Hershey Medical Center, Hershey, Pennsylvania
| | - James McInerney
- 6Penn State Health, Hershey Medical Center, Hershey, Pennsylvania
| | - Cheng-Chia Lee
- 7Neurological Institute, Taipei Veterans General Hospital, and National Yang-Ming University, Taipei, Taiwan
| | - Huai-Che Yang
- 7Neurological Institute, Taipei Veterans General Hospital, and National Yang-Ming University, Taipei, Taiwan
| | | | | | - Akiyoshi Ogino
- 9Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hideyuki Kano
- 9Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Anissa Saylany
- 11Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Love Y Buch
- 11Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - John Y K Lee
- 11Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | | | - Gabriel Zada
- 12University of Southern California, Los Angeles, California
| | - Eric L Chang
- 12University of Southern California, Los Angeles, California
| | - L Dade Lunsford
- 9Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jason Sheehan
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
229
|
Bunevicius A, Ahn J, Fribance S, Peker S, Hergunsel B, Sheehan D, Sheehan K, Nabeel AM, Reda WA, Tawadros SR, Abdelkarim K, El-Shehaby AMN, Emad RM, Chytka T, Liscak R, Alvarez RM, Moreno NM, Langlois AM, Mathieu D, Lee CC, Yang HC, Tripathi M, Warnick RE, Speckter H, Albert C, Picozzi P, Franzini A, Attuati L, Strickland BA, Zada G, Chang EL, Feliciano Valls CE, Carbini CH, Patel S, Sheehan J. Stereotactic Radiosurgery for Olfactory Groove Meningiomas: An International, Multicenter Study. Neurosurgery 2021; 89:784-791. [PMID: 34383951 DOI: 10.1093/neuros/nyab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/06/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is increasingly considered for selected olfactory groove meningiomas (OGMs). OBJECTIVE To investigate the safety and efficacy of SRS for OGMs. METHODS From 20 institutions participating in the International Radiosurgery Research Foundation, we pooled patients who underwent SRS for histologically confirmed or radiologically suspected WHO grade I OGMs and were followed for 6 mo or more after the SRS. RESULTS In total, 278 (median age 57 yr) patients underwent SRS for histologically confirmed (29%) or radiologically suspected (71%) WHO grade I OGMs Median treatment volume was 4.60 cm3 (range: 0.12-27.3 cm3), median prescription dose was 12 Gy, and median dose to the olfactory nerve was 11.20 Gy. During median post-SRS imaging follow-up of 39 mo (range: 6-240 mo), 43% of patients had partial or marginal response, 54% of patients had stable disease, and 3% of patients experienced progression. During median post-SRS clinical follow-up of 51 mo (range: 6-240 mo), 36 (13%) patients experienced clinical and/or radiological adverse radiation events (AREs). Elevated risk of AREs was associated with larger OGM volume (P = .009) and pre-SRS peritumoral T2/fluid-attenuated inversion-recovery signal abnormalities (P < .001). After the SRS, olfaction remained stable, improved, or deteriorated in 90%, 8%, and 2% of patients, respectively. Complete post-SRS anosmia was predicted by partial/complete anosmia before the SRS (odds ratio [OR] = 83.125; 95% CI [24.589-281.01], P < .001) and prior resection of OGM (OR = 3.919; 95% CI [1.713-8.970], P = .001). CONCLUSION SRS is associated with durable local control of the majority of OGM patients with acceptable safety profile. SRS allows preservation or improvement of olfactory function in the majority of OGM patients.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jungeun Ahn
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Fribance
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Selcuk Peker
- Department of Neurosurgery, Koç University School of Medicine, Istanbul, Turkey
| | - Batu Hergunsel
- Department of Neurosurgery, Koç University School of Medicine, Istanbul, Turkey
| | - Darrah Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Kimball Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Ahmed M Nabeel
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Neurosurgery Department, Benha University, Qalubya, Egypt
| | - Wael A Reda
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Sameh R Tawadros
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Khaled Abdelkarim
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Clinical Oncology Department, Ain Shams University, Cairo, Egypt
| | - Amr M N El-Shehaby
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Reem M Emad
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Radiation Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Tomas Chytka
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Roman Liscak
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | | | | | - Anne-Marie Langlois
- Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Canada
| | - David Mathieu
- Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Canada
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Manjul Tripathi
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ronald E Warnick
- Gamma Knife Center, Jewish Hospital, Mayfield Clinic, Cincinnati, Ohio, USA
| | - Herwin Speckter
- Gamma Knife, Radiology Department Dominican Gamma Knife Center and CEDIMAT, Santo Domingo, Dominican Republic
| | - Camilo Albert
- Gamma Knife, Radiology Department Dominican Gamma Knife Center and CEDIMAT, Santo Domingo, Dominican Republic
| | - Piero Picozzi
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Franzini
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Attuati
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ben A Strickland
- Department of Neurosurgery, University of Southern California, Los Angeles, California, USA
| | - Gabriel Zada
- Department of Neurosurgery, University of Southern California, Los Angeles, California, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Caleb E Feliciano Valls
- Department of Neurosurgery, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Carlos H Carbini
- Administración de Servicios Médicos de Puerto Rico, Centro Gamma Knife de Puerto Rico y El Caribe, San Juan, Puerto Rico
| | - Samir Patel
- Division of Radiation Oncology, University of Alberta, Edmonton, Canada
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
230
|
Bunevicius A, Fribance S, Pikis S, Lee JYK, Buch LY, Moran M, Yang AI, Bernstein K, Mathieu D, Perron R, Liscak R, Simonova G, Patel S, Trifiletti DM, Martínez Álvarez R, Martínez Moreno N, Lee CC, Yang HC, Strickland BA, Zada G, Chang EL, Kondziolka D, Sheehan J. Stereotactic Radiosurgery for Differentiated Thyroid Cancer Brain Metastases: An International, Multicenter Study. Thyroid 2021; 31:1244-1252. [PMID: 33978475 DOI: 10.1089/thy.2020.0947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Brain metastases (BM) from differentiated thyroid cancer are rare. Stereotactic radiosurgery (SRS) is commonly used for the treatment of BMs; however, the experience with SRS for thyroid cancer BMs remains limited. The goal of this international, multi-centered study was to evaluate the efficacy and safety of SRS for thyroid cancer BMs. Methods: From 10 institutions participating in the International Radiosurgery Research Foundation, we pooled patients with established papillary or follicular thyroid cancer diagnosis who underwent SRS for histologically confirmed or radiologically suspected BMs. We investigated patient overall survival (OS), local tumor control, and adverse radiation events (AREs). Results: We studied 42 (52% men) patients who underwent SRS for 122 papillary (83%) or follicular (17%) thyroid cancer BMs. The mean age at SRS was 59.86 ± 12.69 years. The mean latency from thyroid cancer diagnosis to SRS for BMs was 89.05 ± 105.49 months. The median number of BMs per patient was 2 (range: 1-10 BMs). The median SRS treatment volume was 0.79 cm3 (range: 0.003-38.18 cm3), and the median SRS prescription dose was 20 Gy (range: 8-24 Gy). The median survival after SRS for BMs was 14 months (range: 3-58 months). The OS was significantly shorter in patients harboring ≥2 BMs, when compared with patients with one BM (Log-rank = 5.452, p = 0.02). Two or more BMs (odds ratio [OR] = 3.688; confidence interval [CI]: 1.143-11.904; p = 0.03) and lower Karnofsky performance score at the time of SRS (OR = 0.807; CI: 0.689-0.945; p = 0.008) were associated with shorter OS. During post-SRS imaging follow-up of 25.21 ± 30.49 months, local failure (progression and/or radiation necrosis) of BMs treated with SRS was documented in five (4%) BMs at 7.2 ± 7.3 months after the SRS. At the last imaging follow-up, the majority of patients with available imaging data had stable intracranial disease (33%) or achieved complete (26%) or partial (24%) response. There were no clinical AREs. Post-SRS peritumoral T2/fluid attenuated inversion recovery signal hyperintensity was noted in 7% BMs. Conclusion: The SRS allows durable local control of papillary and follicular thyroid cancer BMs in the vast majority of patients. Higher number of BMs and worse functional status at the time of SRS are associated with shorter OS in patients with thyroid cancer BMs. The SRS is safe and is associated with a low risk of AREs.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Fribance
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Stylianos Pikis
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Love Y Buch
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Moran
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew I Yang
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth Bernstein
- Department of Radiation Oncology and NYU Langone Health, New York University, New York, New York, USA
| | - David Mathieu
- Department of Neurological Surgery, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Canada
| | - Rémi Perron
- Department of Neurological Surgery, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Canada
| | - Roman Liscak
- Department of Neurological Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - Gabriela Simonova
- Department of Neurological Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - Samir Patel
- Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Canada
| | | | - Roberto Martínez Álvarez
- Department of Functional Neurosurgery and Radiosurgery, Ruber International Hospital, Madrid, Spain
| | - Nuria Martínez Moreno
- Department of Functional Neurosurgery and Radiosurgery, Ruber International Hospital, Madrid, Spain
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Ben A Strickland
- Department of Neurosurgery and University of Southern California, Los Angeles, California, USA
| | - Gabriel Zada
- Department of Neurosurgery and University of Southern California, Los Angeles, California, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Douglas Kondziolka
- Department of Neurosurgery, NYU Langone Health, New York University, New York, New York, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
231
|
Possible Overcoming of Tumor Hypoxia with Adaptive Hypofractionated Radiosurgery of Large Brain Metastases: A Biological Modeling Study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021. [PMID: 34191066 DOI: 10.1007/978-3-030-69217-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
OBJECTIVE The present biological modeling study evaluated possible application of adaptive hypofractionated stereotactic radiosurgery (HSRS), which involves escalation of the prescription dose according to the gradual decrease in the tumor volume between treatment sessions separated by 2- to 3-week intervals, in the management of large brain metastases. METHODS To investigate the effects of dose escalation during three-stage adaptive HSRS, a generalized biologically effective dose (gBED) model was applied. Accounting for both a nonuniform dose distribution inside the target and tumor hypoxia was implemented, and normal brain radiation dose distributions were assessed. RESULTS In comparison with conventional three-stage HSRS (with an identical prescription dose of 10 Gy at each treatment session), adaptive HSRS resulted in a 30-40% increase in gBED. This effect was especially prominent in late-responding targets (with α/β ratios from 3 to 10 Gy) and in neoplasms containing a high percentage of hypoxic cells. Despite dose escalation in the target, irradiation of the adjacent normal brain tissue was kept within safe limits at a level similar to that applied in conventional three-stage HSRS. CONCLUSION Adaptive HSRS theoretically results in significant enhancement of gBED in the target and may possibly overcome resistance to irradiation, which is caused by tumor hypoxia. These advantages may translate into higher treatment efficacy in cases of large brain metastases.
Collapse
|
232
|
Tonse R, Tom MC, Mehta MP, Ahluwalia MS, Kotecha R. Integration of Systemic Therapy and Stereotactic Radiosurgery for Brain Metastases. Cancers (Basel) 2021; 13:cancers13153682. [PMID: 34359583 PMCID: PMC8345095 DOI: 10.3390/cancers13153682] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In the multi-modal treatment of brain metastasis (BM), the role of systemic therapy has undergone a recent revolution. Due to the development of multiple agents with modest central nervous system penetration of the blood-brain barrier, targeted therapies and immune checkpoint inhibitors are increasingly being utilized alone or in combination with radiation therapy. However, the adoption of sequential or concurrent strategies varies considerably, and treatment strategies employed in clinical practice have rapidly outpaced evidence development. Therefore, this review critically analyzes the data regarding combinatorial approaches for a variety of systemic therapeutics with stereotactic radiosurgery and provides an overview of ongoing clinical trials. Abstract Brain metastasis (BM) represents a common complication of cancer, and in the modern era requires multi-modal management approaches and multi-disciplinary care. Traditionally, due to the limited efficacy of cytotoxic chemotherapy, treatment strategies are focused on local treatments alone, such as whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and resection. However, the increased availability of molecular-based therapies with central nervous system (CNS) penetration now permits the individualized selection of tailored systemic therapies to be used alongside local treatments. Moreover, the introduction of immune checkpoint inhibitors (ICIs), with demonstrated CNS activity has further revolutionized the management of BM patients. The rapid introduction of these cancer therapeutics into clinical practice, however, has led to a significant dearth in the published literature about the optimal timing, sequencing, and combination of these systemic therapies along with SRS. This manuscript reviews the impact of tumor biology and molecular profiles on the management paradigm for BM patients and critically analyzes the current landscape of SRS, with a specific focus on integration with systemic therapy. We also discuss emerging treatment strategies combining SRS and ICIs, the impact of timing and the sequencing of these therapies around SRS, the effect of corticosteroids, and review post-treatment imaging findings, including pseudo-progression and radiation necrosis.
Collapse
Affiliation(s)
- Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (R.T.); (M.C.T.); (M.P.M.)
| | - Martin C. Tom
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (R.T.); (M.C.T.); (M.P.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (R.T.); (M.C.T.); (M.P.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Manmeet S. Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (R.T.); (M.C.T.); (M.P.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
- Correspondence: ; Tel.: +1-(786)-596-2000
| |
Collapse
|
233
|
Radiotherapy versus combination radiotherapy-bevacizumab for the treatment of recurrent high-grade glioma: a systematic review. Acta Neurochir (Wien) 2021; 163:1921-1934. [PMID: 33796887 PMCID: PMC8195900 DOI: 10.1007/s00701-021-04794-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Background High-grade gliomas (HGG) comprise the most common primary adult brain cancers and universally recur. Combination of re-irradiation therapy (reRT) and bevacizumab (BVZ) therapy for recurrent HGG is common, but its reported efficacy is mixed. Objective To assess clinical outcomes after reRT ± BVZ in recurrent HGG patients receiving stereotactic radiosurgery (SRS), hypofractionated radiosurgery (HFSRT), or fully fractionated radiotherapy (FFRT). Methods We performed a systematic review of PubMed, Web of Science, Scopus, Embase, and Cochrane databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We identified studies reporting outcomes for patients with recurrent HGG treated via reRT ± BVZ. Cohorts were stratified by BVZ treatment status and re-irradiation modality (SRS, HFSRT, and FFRT). Outcome variables were overall survival (OS), progression-free survival (PFS), and radiation necrosis (RN). Results Data on 1399 patients was analyzed, with 954 patients receiving reRT alone and 445 patients receiving reRT + BVZ. All patients initially underwent standard-of-care therapy for their primary HGG. In a multivariate analysis that adjusted for median patient age, WHO grade, RT dosing, reRT fractionation regimen, time between primary and re-irradiation, and re-irradiation target volume, BVZ therapy was associated with significantly improved OS (2.51, 95% CI [0.11, 4.92] months, P = .041) but no significant improvement in PFS (1.40, 95% CI [− 0.36, 3.18] months, P = .099). Patients receiving BVZ also had significantly lower rates of RN (2.2% vs 6.5%, P < .001). Conclusions Combination of reRT + BVZ may improve OS and reduce RN rates in recurrent HGG, but further controlled studies are needed to confirm these effects. Supplementary Information The online version contains supplementary material available at 10.1007/s00701-021-04794-3.
Collapse
|
234
|
Dohm AE, Nickles TM, Miller CE, Bowers HJ, Miga MI, Attia A, Chan MD, Weis JA. Clinical assessment of a biophysical model for distinguishing tumor progression from radiation necrosis. Med Phys 2021; 48:3852-3859. [PMID: 34042188 DOI: 10.1002/mp.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The efficacy of an imaging-driven mechanistic biophysical model of tumor growth for distinguishing radiation necrosis from tumor progression in patients with enhancing lesions following stereotactic radiosurgery (SRS) for brain metastasis is validated. METHODS We retrospectively assessed the model using 73 patients with 78 lesions and histologically confirmed radiation necrosis or tumor progression. Postcontrast T1-weighted MRI images were used to extract parameters for a mechanistic reaction-diffusion logistic growth model mechanically coupled to the surrounding tissue. The resulting model was then used to estimate mechanical stress fields, which were then compared with edema visualized on FLAIR imaging using DICE similarity coefficients. DICE, model, and standard radiographic morphometric analysis parameters were evaluated using a receiver operating characteristic (ROC) curve for prediction of radiation necrosis or tumor progression. Multivariate logistic regression models were then constructed using mechanistic model parameters or advanced radiomic features. An independent validation was performed to evaluate predictive performance. RESULTS Tumor cell proliferation rate resulted in ROC AUC = 0.86, 95% CI: 0.76-0.95, P < 0.0001, 74% sensitivity and 95% specificity) and DICE similarity coefficient associated with high stresses demonstrated an ROC AUC = 0.93, 95% CI: 0.86-0.99, P < 0.0001, 81% sensitivity and 95% specificity. In a multivariate logistic regression model using an independent validation dataset, mechanistic modeling parameters had an ROC AUC of 0.95, with 94% sensitivity and 96% specificity. CONCLUSIONS Imaging-driven biophysical modeling of tumor growth represents a novel method for accurately predicting clinically significant tumor behavior.
Collapse
Affiliation(s)
- Ammoren E Dohm
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tanner M Nickles
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Caroline E Miller
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Haley J Bowers
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael I Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Albert Attia
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,Bon Secours Mercy Health St. Francis Cancer Center, Greenville, SC, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
235
|
Chen YL, Huang APH, Wang CC, Chen HY, Chen YF, Xiao F, Lu SL, Cheng JCH, Hsu FM. Peri-radiosurgical administration of bevacizumab improves radiographic response to single and fractionated stereotactic radiosurgery for large brain metastasis. J Neurooncol 2021; 153:455-465. [PMID: 34100178 DOI: 10.1007/s11060-021-03782-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Stereotactic radiosurgery (SRS) is a standard of care for brain metastases (BM) patients, yet large BM are at a greater risk for radionecrosis and local progression (LP). Concomitant bevacizumab and radiotherapy has been shown to improve outcomes in primary and metastatic brain tumors. This retrospective study investigated the efficacy and safety of concurrent bevacizumab and SRS for large BM. METHODS From 2015 to 2019, patients with a BM diameter ≥ 2 cm who received either combination therapy (n = 49, SRS + BVZ group), or SRS alone (n = 73, SRS group) were enrolled. Bevacizumab was given peri-radiosurgically with a 2-week interval. Radiographic response was assessed using the RECIST version 1.1. Competing risk and logistic regression analysis were performed to evaluate prognostic factors. RESULTS Radiographic response was achieved in 41 patients (84%) in the SRS + BVZ group and 37 patients (51%) in the SRS group (p = 0.001). In the multivariate regression analysis, concurrent bevacizumab was independently associated with a better radiographic response (p = 0.003). The cumulative incidences of LP and ≥ grade 2 radionecrosis at 12 months between the SRS + BVZ group and SRS group were 2% versus 6.8%, and 14.3% versus 14.6%, respectively. For patients with BM size ≥ 3 cm, the cumulative incidence of LP was significantly lower in the SRS + BVZ group (p = 0.03). No ≥ grade 4 toxicity was observed in either group. CONCLUSIONS Concurrent bevacizumab and SRS for large BM is highly effective, with a better radiographic response and minimal excessive treatment-related toxicities. Peri-radiosurgical bevacizumab preferentially reduced the risk of LP, especially for BM size ≥ 3 cm.
Collapse
Affiliation(s)
- Yi-Lun Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chun Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
| | - Hung-Yi Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Furen Xiao
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shao-Lun Lu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan.
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
236
|
Vellayappan BA, McGranahan T, Graber J, Taylor L, Venur V, Ellenbogen R, Sloan AE, Redmond KJ, Foote M, Chao ST, Suh JH, Chang EL, Sahgal A, Lo SS. Radiation Necrosis from Stereotactic Radiosurgery-How Do We Mitigate? Curr Treat Options Oncol 2021; 22:57. [PMID: 34097171 DOI: 10.1007/s11864-021-00854-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Intracranial stereotactic radiosurgery (SRS) is an effective and convenient treatment for many brain conditions. Data regarding safety come mostly from retrospective single institutional studies and a small number of prospective studies. Variations in target delineation, treatment delivery, imaging follow-up protocols and dose prescription limit the interpretation of this data. There has been much clinical focus on radiation necrosis (RN) in particular, as it is being increasingly recognized on follow-up imaging. Symptomatic RN may be treated with medical therapy (such as corticosteroids and bevacizumab) with surgical resection being reserved for refractory patients. Nevertheless, RN remains a challenging condition to manage, and therefore upfront patient selection for SRS remains critical to provide complication-free control. Mitigation strategies need to be considered in situations where the baseline risk of RN is expected to be high-such as large target volume or re-irradiation. These may involve reduction in the prescribed dose or hypofractionated stereotactic radiation therapy (HSRT). Recently published guidelines and international meta-analysis report the benefit of HSRT in larger lesions, without compromising control rates. However, careful attention to planning parameters and SRS techniques still need to be adhered, even with HSRT. In cases where the risk is deemed to be high despite mitigation, a combination approach of surgery with or without post-operative radiation should be considered.
Collapse
Affiliation(s)
- Balamurugan A Vellayappan
- Department of Radiation oncology, National University Cancer Institute, 1E Kent Ridge Road, Level 7 Tower block, Singapore, 119228, Singapore.
| | - Tresa McGranahan
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jerome Graber
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Lynne Taylor
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Vyshak Venur
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Richard Ellenbogen
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, Seidman Cancer Center and University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Samuel T Chao
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
237
|
Ibrahim A, Fortin B, Bujold A, Kaouam N, Sylvestre A, Boukaram C. Frameless Stereotactic Radiosurgery With Linear Accelerator (LINAC)-Based Technology for Brain Metastases: Outcomes Analysis in 141 Patients. Cureus 2021; 13:e15475. [PMID: 34262813 PMCID: PMC8259533 DOI: 10.7759/cureus.15475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives Brain metastases (BM) are the most common intracranial tumors in adults. Surgery and frame-based stereotactic radiosurgery (SRS) are well-described treatment options. Frameless SRS is an emerging BM treatment option offering fewer side effects. The aim of this study was to describe the therapeutic outcomes and toxicity of frameless SRS with linear accelerator (LINAC)-based technology for BM treatment in our institution. Materials and methods We performed a retrospective study including all adult patients treated with frameless SRS with LINAC-based technology for BM between October 2010 and July 2016. Patients were followed routinely with MRI scans at three-month intervals. Primary endpoints were progression-free survival, local control, overall survival, and toxicity related to the treatment. All survival times were computed with the Kaplan-Meier method. All cumulative incidences were computed using competing risk analyses. Results A total of 194 metastatic lesions in 141 patients were treated in a 69-month interval. At the time of analysis, 33 patients were still alive, with a median follow-up time of 25.1 months. The overall median survival was 8.7 months. The median progression-free survival was 5.3 months. Local recurrence as a first event was 25% and 38% at one and two years, respectively, while distant brain recurrence as a first event was 18% and 21%. Death before any brain event occurred in 31% of patients. The cumulative incidence of radiation necrosis as a first brain event was 2% at one and two years. Conclusions The treatment of BM with LINAC-based frameless SRS in our institution had an overall and progression-free survival comparable with the literature for frameless SRS and for conventional frame-based SRS while being less invasive and more comfortable for the patient. In our study, frameless SRS with LINAC technology seems to be safe for BM treatment with minimal rates of radiation necrosis.
Collapse
Affiliation(s)
- Aisin Ibrahim
- Department of Diagnostic Radiology, McGill University, Montréal, CAN
| | - Bernard Fortin
- Department of Radiation Oncology, Maisonneuve-Rosemont Hospital, Université de Montréal, Montréal, CAN
| | - Alexis Bujold
- Department of Radiation Oncology, Maisonneuve-Rosemont Hospital, Université de Montréal, Montréal, CAN
| | - Nader Kaouam
- Department of Radiation Oncology, Maisonneuve-Rosemont Hospital, Université de Montréal, Montréal, CAN
| | - Alma Sylvestre
- Department of Radiation Oncology, Maisonneuve-Rosemont Hospital, Université de Montréal, Montréal, CAN
| | - Christian Boukaram
- Department of Radiation Oncology, Maisonneuve-Rosemont Hospital, Université de Montréal, Montréal, CAN
| |
Collapse
|
238
|
Yu F, Ni J, Zeng W, Zhou Y, Guo T, Zeng Y, Zhao Y, Li S, Li Y, Yang X, Zou L, Wang S, Liu Q, Li Y, Chu L, Chu X, Ye L, Yu W, Zhu Z. Clinical Value of Upfront Cranial Radiation Therapy in Osimertinib-Treated Epidermal Growth Factor Receptor-Mutant Non-Small Cell Lung Cancer With Brain Metastases. Int J Radiat Oncol Biol Phys 2021; 111:804-815. [PMID: 34058255 DOI: 10.1016/j.ijrobp.2021.05.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE As a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimertinib has a powerful ability to penetrate the blood-brain barrier and a high potency for controlling brain metastases (BMs) from EGFR-mutant non-small cell lung cancer (NSCLC). The clinical value of cranial radiation therapy in osimertinib-treated NSCLC with BMs remains largely unknown. METHODS AND MATERIALS Patients with NSCLC and BMs and receiving osimertinib treatment as the standard of care were retrospectively enrolled from 2 institutions. Cranial radiation therapy (RT; whole-brain radiation therapy [WBRT] or/and stereotactic radiosurgery [SRS]) performed before disease progression (PD) to osimertinib was categorized as upfront cranial radiation therapy (ucRT group), excluding those treatments performed during prior EGFR-TKI treatment. Overall survival (OS), progression-free survival (PFS), and the time to intracranial progression (iTTP) were compared between the 2 groups, with adjustment by covariates in propensity-score matched (PSM) analyses. The state of having 1 to 3 BM lesions, with a maximal size of ≤3 cm, was defined as having oligo-BM; otherwise; the cases were defined as having multiple BMs. RESULTS Of the 205 patients enrolled, osimertinib was used as first-line therapy in 74 and second-line therapy in 131. There were 48 patients who received ucRTs, including WBRT in 24 and SRS in 24. All patients with oligo-BM in the ucRT group received SRS alone (n = 17), whereas most (n = 28; 90.3%) patients with multiple BMs received WBRT. Failure pattern analyses indicated that in the non-ucRT group, 40.2% of the initial PD involved the brain and 76.9% of the cranial PD involved the original sites, indicating the potential roles of ucRT. Indeed, the iTTP was significantly prolonged (P = .010) in the ucRT group among the whole population. In the PSM oligo-BM cohort, the ucRT group showed superior PFS (P = .033) and OS (P = .026) compared with the non-ucRT group, and the differences remained after multivariate Cox analyses. No such differences were observed in the subpopulation with multiple BMs. CONCLUSIONS In osimertinib-treated NSCLC patients with BMs, oligo-BM status could be used as a potential factor to select patients for upfront cranial RT. Further investigation by well-designed clinical trials is warranted.
Collapse
Affiliation(s)
- Fan Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wanqin Zeng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya Zeng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuyan Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengping Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quan Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luxi Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China.
| |
Collapse
|
239
|
Mills MN, Naz A, Thawani C, Walker C, Figura NB, Kushchayev S, Oliver DE, Etame AB, Yu HHM, Robinson TJ, Liu JKC, Vogelbaum MA, Forsyth PA, Czerniecki BJ, Soliman HH, Han HS, Ahmed KA. Capecitabine and stereotactic radiation in the management of breast cancer brain metastases. BMC Cancer 2021; 21:552. [PMID: 33992087 PMCID: PMC8126143 DOI: 10.1186/s12885-021-08302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Little is known about the safety and efficacy of concurrent capecitabine and stereotactic radiotherapy in the setting of breast cancer brain metastases (BCBM). Methods Twenty-three patients with BCBM underwent 31 stereotactic sessions to 90 lesions from 2005 to 2019 with receipt of capecitabine. The Kaplan-Meier method was used to calculate overall survival (OS), local control (LC), and distant intracranial control (DIC) from the date of stereotactic radiation. Imaging was independently reviewed by a neuro-radiologist. Results Median follow-up from stereotactic radiation was 9.2 months. Receptor types of patients treated included triple negative (n = 7), hormone receptor (HR)+/HER2- (n = 7), HR+/HER2+ (n = 6), and HR−/HER2+ (n = 3). Fourteen patients had stage IV disease prior to BCBM diagnosis. The median number of brain metastases treated per patient was 3 (1 to 12). The median dose of stereotactic radiosurgery (SRS) was 21 Gy (range: 15–24 Gy) treated in a single fraction and for lesions treated with fractionated stereotactic radiation therapy (FSRT) 25 Gy (24–30 Gy) in a median of 5 fractions (range: 3–5). Of the 31 stereotactic sessions, 71% occurred within 1 month of capecitabine. No increased toxicity was noted in our series with no cases of radionecrosis. The 1-year OS, LC, and DIC were 46, 88, and 30%, respectively. Conclusions In our single institution experience, we demonstrate stereotactic radiation and capecitabine to be a safe treatment for patients with BCBM with adequate LC. Further study is needed to determine the potential synergy between stereotactic radiation and capecitabine in the management of BCBM.
Collapse
Affiliation(s)
- Matthew N Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Afrin Naz
- Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chetna Thawani
- Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chelsea Walker
- Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Nicholas B Figura
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Sergiy Kushchayev
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Daniel E Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Arnold B Etame
- Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Timothy J Robinson
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - James K C Liu
- Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Michael A Vogelbaum
- Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Peter A Forsyth
- Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Brian J Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hatem H Soliman
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hyo S Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA.
| |
Collapse
|
240
|
Bunevicius A, Anand RK, Suleiman M, Nabeel AM, Reda WA, Tawadros SR, Abdelkarim K, El-Shehaby AMN, Emad RM, Chytka T, Liscak R, Sheehan K, Sheehan D, Caceres MP, Mathieu D, Lee CC, Yang HC, Picozzi P, Franzini A, Attuati L, Speckter H, Olivo J, Patel S, Cifarelli CP, Cifarelli DT, Hack JD, Strickland BA, Zada G, Chang EL, Fakhoury KR, Rusthoven CG, Warnick RE, Sheehan J. Stereotactic Radiosurgery for Perioptic Meningiomas: An International, Multicenter Study. Neurosurgery 2021; 88:828-837. [PMID: 33475718 DOI: 10.1093/neuros/nyaa544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/10/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is increasingly used for management of perioptic meningiomas. OBJECTIVE To study the safety and effectiveness of SRS for perioptic meningiomas. METHODS From 12 institutions participating in the International Radiosurgery Research Foundation (IRRF), we retrospectively assessed treatment parameters and outcomes following SRS for meningiomas located within 3 mm of the optic apparatus. RESULTS A total of 438 patients (median age 51 yr) underwent SRS for histologically confirmed (29%) or radiologically suspected (71%) perioptic meningiomas. Median treatment volume was 8.01 cm3. Median prescription dose was 12 Gy, and median dose to the optic apparatus was 8.50 Gy. A total of 405 patients (93%) underwent single-fraction SRS and 33 patients (7%) underwent hypofractionated SRS. During median imaging follow-up of 55.6 mo (range: 3.15-239 mo), 33 (8%) patients experienced tumor progression. Actuarial 5-yr and 10-yr progression-free survival was 96% and 89%, respectively. Prescription dose of ≥12 Gy (HR: 0.310; 95% CI [0.141-0.679], P = .003) and single-fraction SRS (HR: 0.078; 95% CI [0.016-0.395], P = .002) were associated with improved tumor control. A total of 31 (10%) patients experienced visual decline, with actuarial 5-yr and 10-yr post-SRS visual decline rates of 9% and 21%, respectively. Maximum dose to the optic apparatus ≥10 Gy (HR = 2.370; 95% CI [1.086-5.172], P = .03) and tumor progression (HR = 4.340; 95% CI [2.070-9.097], P < .001) were independent predictors of post-SRS visual decline. CONCLUSION SRS provides durable tumor control and quite acceptable rates of vision preservation in perioptic meningiomas. Margin dose of ≥12 Gy is associated with improved tumor control, while a dose to the optic apparatus of ≥10 Gy and tumor progression are associated with post-SRS visual decline.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | | | - Mohanad Suleiman
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Ahmed M Nabeel
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Neurosurgery Department, Benha University, Qalubya, Egypt
| | - Wael A Reda
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Sameh R Tawadros
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Khaled Abdelkarim
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Clinical Oncology Department, Ain Shams University, Cairo, Egypt
| | - Amr M N El-Shehaby
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Neurosurgery Department, Ain Shams University, Cairo, Egypt
| | - Reem M Emad
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt.,Radiation Oncology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Tomas Chytka
- Stereotactic and Radiation Neurosurgery Department, Na Homolce Hospital, Prague, Czech Republic
| | - Roman Liscak
- Stereotactic and Radiation Neurosurgery Department, Na Homolce Hospital, Prague, Czech Republic
| | - Kimball Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Darrah Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Marco Perez Caceres
- Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - David Mathieu
- Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Piero Picozzi
- Department of Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Andrea Franzini
- Department of Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Luca Attuati
- Department of Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Herwin Speckter
- Centro Gamma Knife Dominicano and CEDIMAT Radiology Department, Santo Domingo, Dominican Republic
| | - Jeremy Olivo
- Centro Gamma Knife Dominicano and CEDIMAT Radiology Department, Santo Domingo, Dominican Republic
| | - Samir Patel
- Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Canada
| | - Christopher P Cifarelli
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia.,Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia
| | - Daniel T Cifarelli
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia
| | - Joshua D Hack
- Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia
| | - Ben A Strickland
- Department of Neurosurgery, University of Southern California, Los Angeles, California
| | - Gabriel Zada
- Department of Neurosurgery, University of Southern California, Los Angeles, California
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Kareem R Fakhoury
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Denver, Colorado
| | - Ronald E Warnick
- Gamma Knife Center, Jewish Hospital, Mayfield Clinic, Cincinnati, Ohio
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
241
|
Lee CY, Soliman H, Bragagnolo ND, Sahgal A, Geraghty BJ, Chen AP, Endre R, Perks WJ, Detsky JS, Leung E, Chan M, Heyn C, Cunningham CH. Predicting response to radiotherapy of intracranial metastases with hyperpolarized
13
C MRI. J Neurooncol 2021; 152:551-557. [PMID: 33740165 PMCID: PMC8084843 DOI: 10.1007/s11060-021-03725-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is used to manage intracranial metastases in a significant fraction of patients. Local progression after SRS can often only be detected with increased volume of enhancement on serial MRI scans which may lag true progression by weeks or months. METHODS Patients with intracranial metastases (N = 11) were scanned using hyperpolarized13 C MRI prior to treatment with stereotactic radiosurgery (SRS). The status of each lesion was then recorded at six months post-treatment follow-up (or at the time of death). RESULTS The positive predictive value of13 C-lactate signal, measured pre-treatment, for prediction of progression of intracranial metastases at six months post-treatment with SRS was 0.8p < 0.05 , and the AUC from an ROC analysis was 0.77p < 0.05 . The distribution of13 C-lactate z-scores was different for intracranial metastases from different primary cancer types (F = 2.46,p = 0.1 ). CONCLUSIONS Hyperpolarized13 C imaging has potential as a method for improving outcomes for patients with intracranial metastases, by identifying patients at high risk of treatment failure with SRS and considering other therapeutic options such as surgery.
Collapse
Affiliation(s)
- Casey Y Lee
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nadia D Bragagnolo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Arjun Sahgal
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | | | - Ruby Endre
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - William J Perks
- Pharmacy, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jay S Detsky
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Eric Leung
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael Chan
- Radiology, Trillium Health Partners, Mississauga, ON, Canada
| | - Chris Heyn
- Radiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
242
|
Julie DA, Lazow SP, Vanderbilt DB, Taube S, Yondorf MZ, Sabbas A, Pannullo S, Schwartz TH, Wernicke AG. A matched-pair analysis of clinical outcomes after intracavitary cesium-131 brachytherapy versus stereotactic radiosurgery for resected brain metastases. J Neurosurg 2021; 134:1447-1454. [PMID: 32413856 DOI: 10.3171/2020.3.jns193419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Adjuvant radiation therapy (RT), such as cesium-131 (Cs-131) brachytherapy or stereotactic radiosurgery (SRS), reduces local recurrence (LR) of brain metastases (BM). However, SRS is less efficacious for large cavities, and the delay between surgery and SRS may permit tumor repopulation. Cs-131 has demonstrated improved local control, with reduced radiation necrosis (RN) compared to SRS. This study represents the first comparison of outcomes between Cs-131 brachytherapy and SRS for resected BM. METHODS Patients with BM treated with Cs-131 and SRS following gross-total resection were retrospectively identified. Thirty patients who underwent Cs-131 brachytherapy were compared to 60 controls who received SRS. Controls were selected from a larger cohort to match the patients treated with Cs-131 in a 2:1 ratio according to tumor size, histology, performance status, and recursive partitioning analysis class. Overall survival (OS), LR, regional recurrence, distant recurrence (DR), and RN were compared. RESULTS With a median follow-up of 17.5 months for Cs-131-treated and 13.0 months for SRS-treated patients, the LR rate was significantly lower with brachytherapy; 10% for the Cs-131 cohort compared to 28.3% for SRS patients (OR 0.281, 95% CI 0.082-0.949; p = 0.049). Rates of regional recurrence, DR, and OS did not differ significantly between the two cohorts. Kaplan-Meier analysis with log-rank testing showed a significantly higher likelihood of freedom from LR (p = 0.027) as well as DR (p = 0.018) after Cs-131 compared to SRS treatment (p = 0.027), but no difference in likelihood of OS (p = 0.093). Six (10.0%) patients who underwent SRS experienced RN compared to 1 (3.3%) patient who received Cs-131 (p = 0.417). CONCLUSIONS Postresection patients with BM treated with Cs-131 brachytherapy were more likely to achieve local control compared to SRS-treated patients. This study provides preliminary evidence of the potential of Cs-131 to reduce LR following gross-total resection of single BM, with minimal toxicity, and suggests the need for a prospective study to address this question.
Collapse
Affiliation(s)
- Diana A Julie
- 1Stich Radiation Oncology, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
| | - Stefanie P Lazow
- 2Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts; and
| | - Daniel B Vanderbilt
- 1Stich Radiation Oncology, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
| | - Shoshana Taube
- 1Stich Radiation Oncology, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
| | - Menachem Z Yondorf
- 1Stich Radiation Oncology, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
| | - Albert Sabbas
- 1Stich Radiation Oncology, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
| | - Susan Pannullo
- 3Department of Neurosurgery, Brain and Spine Center, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
| | - Theodore H Schwartz
- 3Department of Neurosurgery, Brain and Spine Center, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
| | - A Gabriella Wernicke
- 1Stich Radiation Oncology, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
- 3Department of Neurosurgery, Brain and Spine Center, Weill Cornell Medical College/NewYork-Presbyterian Hospital, New York, New York
| |
Collapse
|
243
|
Fractionated Stereotactic Radiation Therapy Using Volumetric Modulated Arc Therapy in Patients with Solitary Brain Metastases. BIOMED RESEARCH INTERNATIONAL 2021; 2020:6342057. [PMID: 32964040 PMCID: PMC7501556 DOI: 10.1155/2020/6342057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/21/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022]
Abstract
Purpose To analyze retrospectively the clinical efficacy and safety for patients treated with fractionated stereotactic radiation therapy (FSRT) using volumetric modulated arc therapy. Methods Between 2016 and 2017, 46 patients with solitary brain metastasis who underwent FSRT consisting of 25-40 Gy/5 fractions were recruited in this study. All targets within the same course received different prescriptions according to size. Toxicities were graded according to the Common Terminology Criteria for Adverse Events version 4.0. Results The median follow-up was 11 months (3-53 months). The 6-month and 12-month local control rate calculated by Kaplan-Meier estimate was, respectively, 95% and 86%. Tumor diameter < 2.5 cm obtained 100% improved 12-month local control rate compared with 66% in those with ≥2.5 cm (P < 0.001). The 12-month local control calculated by Kaplan-Meier estimate was 95% in tumors with >30 Gy treatment and only 60% in tumors with ≤30 Gy treatment (P = 0.001). Multivariate analysis revealed that the prescription dose ≤ 30 Gy resulted in increased local failure (hazard ratio (HR), 0.14 (range, 0.019-0.95; P = .046)). Grade 3 or worse toxic effects were found in 5 (11%) patients, and no patient experienced surgical resection for symptomatic radioactive necrosis. Conclusions FSRT for solid brain metastasis appears to have the advantages of a high rate of local control with a minimal risk of severe toxicity and deserves application in the clinical practice.
Collapse
|
244
|
Redmond KJ, De Salles AAF, Fariselli L, Levivier M, Ma L, Paddick I, Pollock BE, Regis J, Sheehan J, Suh J, Yomo S, Sahgal A. Stereotactic Radiosurgery for Postoperative Metastatic Surgical Cavities: A Critical Review and International Stereotactic Radiosurgery Society (ISRS) Practice Guidelines. Int J Radiat Oncol Biol Phys 2021; 111:68-80. [PMID: 33891979 DOI: 10.1016/j.ijrobp.2021.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE The purpose of this critical review is to summarize the literature specific to single-fraction stereotactic radiosurgery (SRS) and multiple-fraction stereotactic radiation therapy (SRT) for postoperative brain metastases resection cavities and to present practice recommendations on behalf of the ISRS. METHODS AND MATERIALS The Medline and Embase databases were used to apply the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach to search for manuscripts reporting SRS/SRT outcomes for postoperative brain metastases tumor bed resection cavities with a search end date of July 20, 2018. Prospective studies, consensus guidelines, and retrospective series that included exclusively postoperative brain metastases and had at minimum 100 patients were considered eligible. RESULTS The Embase search revealed 157 manuscripts, of which 77 were selected for full-text screening. PubMed yielded 55 manuscripts, of which 23 were selected for full text screening. We deemed 8 retrospective series, 1 phase 2 prospective study, 3 randomized controlled trials, and 1 consensus contouring paper appropriate for inclusion. The data suggest that SRS/SRT to surgical cavities with prescription doses of 30 to 50 Gy equivalent effective dose (EQD) 210, 50 to 70 Gy EQD25, and 70 to 90 EQD22 are associated with rates of local control ranging from 60.5% to 91% (median, 80.5%). Randomized data suggest improved local control with single-fraction SRS compared with observation and improved cognitive outcomes compared with whole-brain radiation therapy (WBRT). The toxicity of SRS/SRT in the postoperative setting was limited and is reviewed herein. CONCLUSIONS Although randomized data raise concern for poorer local control after resection cavity SRS than WBRT, these findings may be driven by factors such as conservative prescription doses used in the SRS arm. Retrospective studies suggest high rates of local control after single-fraction SRS and hypofractionated SRT for postoperative brain metastases. With a superior neurocognitive profile and no survival disadvantage to withholding WBRT, the ISRS recommends SRS as first-line treatment for eligible postoperative patients. Emerging data suggest that fractionated SRT may provide superior local control compared with single-fraction SRS, in particular, for large tumor cavity volumes/diameters and potentially for patients with a preoperative diameter greater than 2.5 cm.
Collapse
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.
| | | | - Laura Fariselli
- Department of Neurosurgery, Unit of Radiotherapy, Fondazione IRCCS Istituto Neurologico C Besta, Milano, Italy
| | - Marc Levivier
- Neurosurgery Service and Gamma Knife Center Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Faculty of Biology and Medicine (FBM), University of Lausanne, Lausanne, Switzerland
| | - Lijun Ma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Ian Paddick
- Medical Physics Ltd, Queen Square Radiosurgery Centre, London, United Kingdom
| | - Bruce E Pollock
- Department of Radiation Oncology and Department of Neurologic Surgery, Mayo Clinic School of Medicine, Rochester, Minnesota
| | - Jean Regis
- Aix-Marseille University, INSERM, UMR 1106, Timone University Hospital, Functional Neurosurgery and Radiosurgery Department, Marseille, France
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - John Suh
- Department of Radiation Oncology, Taussing Cancer Institute Cleveland Clinic, Cleveland, Ohio
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| |
Collapse
|
245
|
De Maria L, Terzi di Bergamo L, Conti A, Hayashi K, Pinzi V, Murai T, Lanciano R, Burneikiene S, Buglione di Monale M, Magrini SM, Fontanella MM. CyberKnife for Recurrent Malignant Gliomas: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:652646. [PMID: 33854978 PMCID: PMC8039376 DOI: 10.3389/fonc.2021.652646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Possible treatment strategies for recurrent malignant gliomas include surgery, chemotherapy, radiotherapy, and combined treatments. Among different reirradiation modalities, the CyberKnife System has shown promising results. We conducted a systematic review of the literature and a meta-analysis to establish the efficacy and safety of CyberKnife treatment for recurrent malignant gliomas. METHODS We searched PubMed, MEDLINE, and EMBASE from 2000 to 2021 for studies evaluating the safety and efficacy of CyberKnife treatment for recurrent WHO grade III and grade IV gliomas of the brain. Two independent reviewers selected studies and abstracted data. Missing information was requested from the authors via email correspondence. The primary outcomes were median Overall Survival, median Time To Progression, and median Progression-Free Survival. We performed subgroup analyses regarding WHO grade and chemotherapy. Besides, we analyzed the relationship between median Time To Recurrence and median Overall Survival from CyberKnife treatment. The secondary outcomes were complications, local response, and recurrence. Data were analyzed using random-effects meta-analysis. RESULTS Thirteen studies reporting on 398 patients were included. Median Overall Survival from initial diagnosis and CyberKnife treatment was 22.6 months and 8.6 months. Median Time To Progression and median Progression-Free Survival from CyberKnife treatment were 6.7 months and 7.1 months. Median Overall Survival from CyberKnife treatment was 8.4 months for WHO grade IV gliomas, compared to 11 months for WHO grade III gliomas. Median Overall Survival from CyberKnife treatment was 4.4 months for patients who underwent CyberKnife treatment alone, compared to 9.5 months for patients who underwent CyberKnife treatment plus chemotherapy. We did not observe a correlation between median Time To Recurrence and median Overall Survival from CyberKnife. Rates of acute neurological and acute non-neurological side effects were 3.6% and 13%. Rates of corticosteroid dependency and radiation necrosis were 18.8% and 4.3%. CONCLUSIONS Reirradiation of recurrent malignant gliomas with the CyberKnife System provides encouraging survival rates. There is a better survival trend for WHO grade III gliomas and for patients who undergo combined treatment with CyberKnife plus chemotherapy. Rates of complications are low. Larger prospective studies are warranted to provide more accurate results.
Collapse
Affiliation(s)
- Lucio De Maria
- Unit of Neurosurgery, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | | | - Alfredo Conti
- Unit of Neurosurgery, Alma Mater Studiorum University of Bologna and IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Kazuhiko Hayashi
- Unit of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Valentina Pinzi
- Unit of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Taro Murai
- Unit of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | - Stefano Maria Magrini
- Unit of Radiation Oncology, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | | |
Collapse
|
246
|
Liao G, Khan M, Zhao Z, Arooj S, Yan M, Li X. Bevacizumab Treatment of Radiation-Induced Brain Necrosis: A Systematic Review. Front Oncol 2021; 11:593449. [PMID: 33842309 PMCID: PMC8027305 DOI: 10.3389/fonc.2021.593449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Radiation brain necrosis (RBN) is a serious complication in patients receiving radiotherapy for intracranial disease. Many studies have investigated the efficacy and safety of bevacizumab in patients with RBN. In the present study, we systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab, as well as for studies comparing bevacizumab with corticosteroids. MATERIALS AND METHODS We searched PubMed, Cochrane library, EMBASE, and ClinicalTrials.gov from their inception through 1 March, 2020 for studies that evaluated the efficacy and safety of bevacizumab in patients with RBN. Two investigators independently performed the study selection, data extraction, and data synthesis. RESULTS Overall, the present systematic review included 12 studies (eight retrospective, two prospective, and two randomized control trials [RCTs]) involving 236 patients with RBN treated who were treated with bevacizumab. The two RCTs also had control arms comprising patients with RBN who were treated with corticosteroids/placebo (n=57). Radiographic responses were recorded in 84.7% (200/236) of patients, and radiographic progression was observed in 15.3% (36/236). Clinical improvement was observed in 91% (n=127) of responding patients among seven studies (n=113). All 12 studies reported volume reduction on T1 gadolinium enhancement MRI (median: 50%, range: 26%-80%) and/or T2 FLAIR MRI images (median: 59%, range: 48%-74%). In total, 46 responding patients (34%) had recurrence. The two RCTs revealed significantly improved radiographic response in patients treated with bevacizumab (Levin et al.: p = 0.0013; Xu et al.: p < 0.001). Both also showed clinical improvement (Levin et al.: NA; Xu et al.: p = 0.039) and significant reduction in edema volume on both T1 gadolinium enhancement MRI (Levin et al.: p=0.0058; Xu et al.: p=0.027) and T2 FLAIR MRI (Levin et al.: p=0.0149; Xu et al.: p < 0.001). Neurocognitive improvement was significantly better after 2 months of treatment in patients receiving bevacizumab than in those given corticosteroids, as assessed by the MoCA scale (p = 0.028). The recurrence rate and side effects of the treatments showed no significant differences. CONCLUSIONS Patients with RBN respond to bevacizumab, which can improve clinical outcomes and cognitive function. Bevacizumab appears to be more efficacious than corticosteroid-based treatment. The safety profile was comparable to that of the corticosteroids.
Collapse
Affiliation(s)
- Guixiang Liao
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Muhammad Khan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People’s Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Maosheng Yan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
247
|
Clinical outcome after CyberKnife® radiosurgery re-irradiation for recurrent brain metastases. Cancer Radiother 2021; 25:457-462. [PMID: 33752961 DOI: 10.1016/j.canrad.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE The objective of this study was to elucidate the impact on clinical outcomes resulting from re-irradiation for locally recurrent (LR) brain metastases (BM) using CyberKnife® stereotactic radiosurgery (SRS). MATERIALS AND METHODS Seventy-seven patients with 254 LR BM lesions treated using SRS re-irradiation between January 2014 and December 2018 were analysed in this retrospective study. The local control (LC), overall survival (OS) rates, and adverse events were assessed. The adverse events were classified according to the Common terminology for adverse event (CTCAE) v5.0. RESULTS The median follow-up duration was 8.9 months. The median age of the patients was 55 years (IQR: 47-62). The 3, 6, and 9-month LC and OS rates were 92.2%, 73.4%, and 73.4% and 79.2%, 61.0%, and 48.1%, respectively. On multivariate analysis the gender (male vs. female; HR, 1.79; 95% CI, 1.06-3.01; P=0.028), type of first brain radiation (WBI vs. SRS) followed by re-irradiation using SRS (HR, 9.32; 95% CI, 2.77-15.27; P<0.001) tumour volume (>12cc vs. ≤12cc; HR, 1.84; 95% CI, 1.10-3.11; P=0.02), and recursive partitioning analysis (RPA) (I vs. II & III; HR, 0.38; 95% CI, 0.19-0.70; P=0.001) were independent predictive factor for OS. Radionecrosis was reported in 3 patients. CONCLUSION With acceptable toxicity, SRS re-irradiation for LR BM showed a favourable rate for LC and OS and reported better OS for the female gender, a patient undergoing first brain radiation with SRS, tumour volume ≤12cc, and RPA-I. This result needs to be further evaluated in future clinical studies.
Collapse
|
248
|
Mendel JT, Schroeder S, Plitt A, Patel A, Joo M, Stojadinovic S, Dan T, Timmerman R, Patel TR, Wardak Z. Expanded Radiosurgery Capabilities Utilizing Gamma Knife Icon™. Cureus 2021; 13:e13998. [PMID: 33758727 PMCID: PMC7978152 DOI: 10.7759/cureus.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The indications and techniques for the treatment of intracranial lesions continue to evolve with the advent of novel technologies. The Gamma Knife Icon™ (GK Icon™) is the most recent model available from Elekta, providing a frameless solution for stereotactic radiosurgery. At our institution, 382 patients with 3,213 separate intracranial lesions have been treated with frameless stereotactic radiotherapy using the GK Icon. The wide range of diagnoses include brain metastases, meningiomas, arteriovenous malformations, acoustic neuromas, pituitary adenomas, and several other histologies. The ability to perform both frame and frameless treatments on the GK Icon has significantly increased our daily volume by almost 50% on a single machine. Although the frameless approach allows one to take advantage of the precision in radiosurgery, the intricacies regarding treatment with this frameless system are not well established. Our initial experience will help to serve as a guide to those wishing to implement this novel technology in their practice.
Collapse
Affiliation(s)
| | | | - Aaron Plitt
- Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ankur Patel
- Neurosurgery, Baylor Scott & White Health, Dallas, USA
| | - Mindy Joo
- Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, USA
| | | | - Tu Dan
- Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Robert Timmerman
- Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Toral R Patel
- Neurosurgery, University of Texas Southwestern Medical Center, Dallas, USA
| | - Zabi Wardak
- Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
249
|
Breast cancer subtype predicts clinical outcomes after stereotactic radiation for brain metastases. J Neurooncol 2021; 152:591-601. [PMID: 33742358 DOI: 10.1007/s11060-021-03735-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We investigated the prognostic ability of tumor subtype for patients with breast cancer brain metastases (BCBM) treated with stereotactic radiation (SRT). METHODS This is a retrospective review of 181 patients who underwent SRT to 664 BCBM from 2004 to 2019. Patients were stratified by subtype: hormone receptor (HR)-positive, HER2-negative (HR+/HER2-), HR-positive, HER2-positive (HR+/HER2+), HR-negative, HER2-positive (HR-/HER2+), and triple negative (TN). The Kaplan-Meier method was used to calculate overall survival (OS), local control (LC), and distant intracranial control (DIC) from the date of SRT. Multivariate analysis (MVA) was conducted using the Cox proportional hazards model. RESULTS Median follow up from SRT was 11.4 months. Of the 181 patients, 47 (26%) were HR+/HER2+, 30 (17%) were HR-/HER2+, 60 (33%) were HR+/HER2-, and 44 (24%) were TN. Of the 664 BCBMs, 534 (80%) received single fraction stereotactic radiosurgery (SRS) with a median dose of 21 Gy (range 12-24 Gy), and 130 (20%) received fractionated stereotactic radiation therapy (FSRT), with a median dose of 25 Gy (range 12.5-35 Gy) delivered in 3 to 5 fractions. One-year LC was 90%. Two-year DIC was 35%, 23%, 27%, and 16% (log rank, p = 0.0003) and 2-year OS was 54%, 47%, 24%, and 12% (log rank, p < 0.0001) for HR+/HER2+, HR-/HER2+, HR+/HER2-, and TN subtypes, respectively. On MVA, the TN subtype predicted for inferior DIC (HR 1.62, 95% CI 1.00-2.60, p = 0.049). The modified breast-Graded Prognostic Assessment (GPA) significantly predicted DIC and OS (both p < 0.001). CONCLUSIONS Subtype is prognostic for OS and DIC for patients with BCBM treated with SRT.
Collapse
|
250
|
Samanci Y, Karakose F, Senyurek S, Peker S. Single-fraction versus hypofractionated gamma knife radiosurgery for small metastatic brain tumors. Clin Exp Metastasis 2021; 38:305-320. [PMID: 33733707 DOI: 10.1007/s10585-021-10086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Stereotactic radiosurgery (SRS) has become a standard of care for the treatment of metastatic brain tumors (METs). Although a better balance of tumor control and toxicity of hypofractionated SRS (hfSRS) compared with single-fraction SRS (sfSRS) was demonstrated in large METs, there is no data comparing two approaches for small METs (< 4 cm3). It was aimed to compare clinical outcomes between sfSRS versus hfSRS Gamma Knife radiosurgery (GKRS) in a series of patients with unresected, small METs. Patients (n = 208) treated with sfGKRS or hfGKRS between June 2017 and May 2020 were retrospectively examined in a single center. The co-primary endpoints of local control (LC) and toxicity were estimated by applying the Kaplan-Meier method. Multivariate analysis using Cox proportional hazards (HR) modeling was used to assess the effect of independent variables on the outcomes. The actuarial LC rate was 99.7% at six months and 98.8% at 18 months in the sfGKRS group, and 99.4% and 94.3% in the hfGKRS group (p = 0.089), respectively. In multivariate analysis, MET volume (p = 0.023, HR 2.064) and biologically effective dose (BED10) (p < 0.0001, HR 0.753) was associated with LC. In total, treatment-related toxicity was observed in 13 (8.7%) patients during a median period of 10 weeks (range 1-31). Radiation necrosis was observed in four patients (1.9%), and all patients were in the sfGKRS group (p = 0.042). Only the maximum dose was associated with toxicity (p = 0.032, HR 1.047). Our current results suggest that hfGKRS is advantageous and beneficial also in patients with unresected, small METs.
Collapse
Affiliation(s)
- Yavuz Samanci
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | - Fatih Karakose
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Sukran Senyurek
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Selcuk Peker
- Department of Neurosurgery, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|