201
|
Decreased left hippocampal volumes in parents with or without posttraumatic stress disorder who lost their only child in China. J Affect Disord 2016; 197:223-30. [PMID: 27010578 DOI: 10.1016/j.jad.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 03/06/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Limbic structural changes have been found in people with post-traumatic stress disorder (PTSD). However, the results were controversial, and no study has examined the hippocampal and amygdala volume changes in parents with or without PTSD who had lost their only child and could no longer conceive in China. METHODS Hippocampal and amygdala volumes of 57 parents with PTSD (PTSD+), 11 trauma-exposed parents without PTSD (PTSD-) and 39 non-traumatized controls were examined using magnetic resonance imaging. Correlations of the volumes with the time since trauma, Clinician-Administered PTSD Scale (CAPS) scores, age, gender and intracranial volume (ICV) were investigated in the PTSD+ group. RESULTS left hippocampal volumes were significantly smaller in the PTSD+ and PTSD- groups than in the controls, but there were no significant differences between the PTSD+ and PTSD- groups. Furthermore, there was no significant difference in the right hippocampus or bilateral amygdala volumes. Additionally, the hippocampal and amygdala volumes showed no correlation with the time since trauma, CAPS score and gender, whereas the left hippocampal volumes were correlated with ICV, and the bilateral amygdala volumes were correlated with ICV and age in the PTSD+ group. LIMITATIONS The PTSD- group included only 11 participants. CONCLUSIONS left hippocampal volumes decreased in parents who lost their only child, with or without PTSD. Our results suggest a potentially unique role of the trauma of losing an only child, which is extremely painful and may induce a decrease in the left hippocampal volume independent of PTSD effects.
Collapse
|
202
|
Schreurs BG. Classical Conditioning and Modification of the Rabbit's (Oryctolagus Cuniculus) Unconditioned Nictitating Membrane Response. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1534582303002002001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fundamental tenet of behavior is that a reflex is automatic, unconscious, involuntary, and relatively invariant. However, we have discovered that a reflex can change dramatically as a function of classical conditioning, and this change can be demonstrated independently of the conditioned stimulus. We have termed this phenomenon conditioning-specific reflex modification (CRM). Although the behavioral laws and neural substrates of nonassociative reflex changes have been identified, the behavioral laws and neural substrates of CRM are only now being revealed. For example, CRM is similar to classical conditioning in that (a) it is a function of both the strength of conditioning and (b) the strength of the unconditioned stimulus, (c) it can be extinguished, and (d) it can be generalized from one unconditioned stimulus to another. Preliminary analysis suggests that CRM may have some features in common with post-traumatic stress disorder and may provide insights into treatment of the disorder.
Collapse
|
203
|
Peragine DE, Yousuf Y, Fu Y, Swift-Gallant A, Ginzberg K, Holmes MM. Contrasting effects of opposite- versus same-sex housing on hormones, behavior and neurogenesis in a eusocial mammal. Horm Behav 2016; 81:28-37. [PMID: 27018426 DOI: 10.1016/j.yhbeh.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/29/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
Competitive interactions can have striking and enduring effects on behavior, but the mechanisms underlying this experience-induced plasticity are unclear, particularly in females. Naked mole-rat (NMR) colonies are characterized by the strictest social and reproductive hierarchy among mammals, and represent an ideal system for studies of social competition. In large matriarchal colonies, breeding is monopolized by one female and 1-3 males, with other colony members being socially subordinate and reproductively suppressed. To date, competition for breeding status has been examined in-colony, with female, but not male, aggression observed following the death/removal of established queens. To determine whether this sex difference extends to colony-founding contexts, and clarify neural and endocrine mechanisms underlying behavioral change in females competing for status, we examined neurogenesis and steroid hormone concentrations in colony-housed subordinates, and NMRs given the opportunity to transition status via pair-housing. To this end, Ki-67 and doublecortin immunoreactivity were compared in the hippocampal dentate gyrus (DG) and basolateral amygdala (BLA) of colony-housed subordinates, and subordinates housed with a same-sex (SS) or opposite-sex (OS) conspecific. Results suggest that OS pairing in eusocial mammals promotes cooperation and enhances hippocampal plasticity, while SS pairing is stressful, resulting in enhanced HPA activation and muted hippocampal neurogenesis relative to OS pairs. Data further indicate that competition for status is confined to females, with female-female housing exerting contrasting effects on hippocampal and amygdalar neurogenesis. These findings advance understanding of social stress effects on neuroplasticity and behavior, and highlight the importance of including female-dominated species in research on aggression and intrasexual competition.
Collapse
Affiliation(s)
- Deane E Peragine
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Yusef Yousuf
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Yi Fu
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Ashlyn Swift-Gallant
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Keren Ginzberg
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
204
|
Marstaller L, Burianová H, Reutens DC. Dynamic competition between large-scale functional networks differentiates fear conditioning and extinction in humans. Neuroimage 2016; 134:314-319. [PMID: 27079532 DOI: 10.1016/j.neuroimage.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/04/2016] [Indexed: 11/16/2022] Open
Abstract
The high evolutionary value of learning when to respond to threats or when to inhibit previously learned associations after changing threat contingencies is reflected in dedicated networks in the animal and human brain. Recent evidence further suggests that adaptive learning may be dependent on the dynamic interaction of meta-stable functional brain networks. However, it is still unclear which functional brain networks compete with each other to facilitate associative learning and how changes in threat contingencies affect this competition. The aim of this study was to assess the dynamic competition between large-scale networks related to associative learning in the human brain by combining a repeated differential conditioning and extinction paradigm with independent component analysis of functional magnetic resonance imaging data. The results (i) identify three task-related networks involved in initial and sustained conditioning as well as extinction, and demonstrate that (ii) the two main networks that underlie sustained conditioning and extinction are anti-correlated with each other and (iii) the dynamic competition between these two networks is modulated in response to changes in associative contingencies. These findings provide novel evidence for the view that dynamic competition between large-scale functional networks differentiates fear conditioning from extinction learning in the healthy brain and suggest that dysfunctional network dynamics might contribute to learning-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lars Marstaller
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Science of Learning Research Centre, University of Queensland, Brisbane, Australia.
| | - Hana Burianová
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
| | - David C Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Science of Learning Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
205
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
206
|
Lamprecht R. The Role of Actin Cytoskeleton in Memory Formation in Amygdala. Front Mol Neurosci 2016; 9:23. [PMID: 27065800 PMCID: PMC4815361 DOI: 10.3389/fnmol.2016.00023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
The central, lateral and basolateral amygdala (BLA) nuclei are essential for the formation of long-term memories including emotional and drug-related memories. Studying cellular and molecular mechanisms of memory in amygdala may lead to better understanding of how memory is formed and of fear and addiction-related disorders. A challenge is to identify molecules activated by learning that subserve cellular changes needed for memory formation and maintenance in amygdala. Recent studies show that activation of synaptic receptors during fear and drug-related learning leads to alteration in actin cytoskeleton dynamics and structure in amygdala. Such changes in actin cytoskeleton in amygdala are essential for fear and drug-related memories formation. Moreover, the actin cytoskeleton subserves, after learning, changes in neuronal morphogenesis and glutamate receptors trafficking in amygdala. These cellular events are involved in fear and drug-related memories formation. Actin polymerization is also needed for the maintenance of drug-associated memories in amygdala. Thus, the actin cytoskeleton is a key mediator between receptor activation during learning and cellular changes subserving long-term memory (LTM) in amygdala. The actin cytoskeleton may serve as a target for pharmacological treatment of fear memory associated with fear and anxiety disorders and drug addiction to prevent the debilitating consequences of these diseases.
Collapse
|
207
|
Nasehi M, Zamanparvar M, Ebrahimi-Ghiri M, Zarrindast MR. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning. Behav Brain Res 2016; 300:114-22. [DOI: 10.1016/j.bbr.2015.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022]
|
208
|
Sanguedo FV, Dias CVB, Dias FRC, Samuels RI, Carey RJ, Carrera MP. Reciprocal activation/inactivation of ERK in the amygdala and frontal cortex is correlated with the degree of novelty of an open-field environment. Psychopharmacology (Berl) 2016; 233:841-50. [PMID: 26685992 DOI: 10.1007/s00213-015-4163-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
RATIONALE Phosphorylated extracellular signal-regulated kinase (ERK) has been used to identify brain areas activated by exogenous stimuli including psychostimulant drugs. OBJECTIVE Assess the role of the amygdala in emotional responses. METHODS Experimental manipulations were performed in which environmental familiarity was the variable. To provide the maximal degree of familiarity, ERK was measured after removal from the home cage and re-placement back into the same cage. To maximize exposure to an unfamiliar environment, ERK was measured following placement into a novel open field. To assess whether familiarity was the critical variable in the ERK response to the novel open field, ERK was also measured after either four or eight placements into the same environment. ERK quantification was carried out in the amygdala, frontal cortex, and the nucleus accumbens. RESULTS After home cage re-placement, ERK activation was found in the frontal cortex and nucleus accumbens but was absent in the amygdala. Following placement in a novel environment, ERK activation was more prominent in the amygdala than the frontal cortex or nucleus accumbens. In contrast, with habituation to the novel environment, ERK phosphors declined markedly in the amygdala but increased in the frontal cortex and nucleus accumbens to the level observed following home cage re-placement. CONCLUSIONS The differential responsiveness of the amygdala versus the frontal cortex and the nucleus accumbens to a novel versus a habituated environment is consistent with a reciprocal interaction between these neural systems and points to their important role in the mediation of behavioral activation to novelty and behavioral inactivation with habituation.
Collapse
Affiliation(s)
- Frederico Velasco Sanguedo
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | - Caio Vitor Bueno Dias
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | - Flavia Regina Cruz Dias
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Robert J Carey
- Research and Development (151), VA Medical Center and SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY, 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil.
| |
Collapse
|
209
|
Canto-de-Souza L, Mattioli R. The consolidation of inhibitory avoidance memory in mice depends on the intensity of the aversive stimulus: The involvement of the amygdala, dorsal hippocampus and medial prefrontal cortex. Neurobiol Learn Mem 2016; 130:44-51. [PMID: 26851130 DOI: 10.1016/j.nlm.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 01/10/2023]
Abstract
Several studies using inhibitory avoidance models have demonstrated the importance of limbic structures, such as the amygdala, dorsal hippocampus and medial prefrontal cortex, in the consolidation of emotional memory. However, we aimed to investigate the role of the amygdala (AMG), dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) of mice in the consolidation of step-down inhibitory avoidance and whether this avoidance would be conditioned relative to the intensity of the aversive stimulus. To test this, we bilaterally infused anisomycin (ANI-40μg/μl, a protein synthesis inhibitor) into one of these three brain areas in mice. These mice were then exposed to one of two different intensities (moderate: 0.5mA or intense: 1.5mA) in a step-down inhibitory avoidance task. We found that consolidation of both of the aversive experiences was mPFC dependent, while the AMG and DH were only required for the consolidation of the intense experience. We suggest that in moderately aversive situations, which do not represent a severe physical risk to the individual, the consolidation of aversive experiences does not depend on protein synthesis in the AMG or the DH, but only the mPFC. However, for intense aversive stimuli all three of these limbic structures are essential for the consolidation of the experience.
Collapse
Affiliation(s)
- L Canto-de-Souza
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, Km 235, 13565-905 São Carlos, Brazil; Programa de Pós-Graduação em Psicobiologia, Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Psicologia, Avenida Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil; INeC, Instituto de Neurociências e Comportamento, Avenida Bandeirantes, 3900, CEP 14040-901, Monte Alegre, Ribeirão Preto, SP, Brazil.
| | - R Mattioli
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, Km 235, 13565-905 São Carlos, Brazil; Programa de Pós-Graduação em Psicobiologia, Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Psicologia, Avenida Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
210
|
Koe AS, Ashokan A, Mitra R. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation. Transl Psychiatry 2016; 6:e729. [PMID: 26836417 PMCID: PMC4872421 DOI: 10.1038/tp.2015.217] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/18/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022] Open
Abstract
Maternal separation during early childhood results in greater sensitivity to stressors later in adult life. This is reflected as greater propensity to develop stress-related disorders in humans and animal models, including anxiety and depression. Environmental enrichment (EE) reverses some of the damaging effects of maternal separation in rodent models when provided during peripubescent life, temporally proximal to the separation. It is presently unknown if EE provided outside this critical window can still rescue separation-induced anxiety and neural plasticity. In this report we use a rat model to demonstrate that a single short episode of EE in adulthood reduced anxiety-like behaviour in maternally separated rats. We further show that maternal separation resulted in hypertrophy of dendrites and increase in spine density of basolateral amygdala neurons in adulthood, long after initial stress treatment. This is congruent with prior observations showing centrality of basolateral amygdala hypertrophy in anxiety induced by stress during adulthood. In line with the ability of the adult enrichment to rescue stress-induced anxiety, we show that enrichment renormalized stress-induced structural expansion of the amygdala neurons. These observations argue that behavioural plasticity induced by early adversity can be rescued by environmental interventions much later in life, likely mediated by ameliorating effects of enrichment on basolateral amygdala plasticity.
Collapse
Affiliation(s)
- A S Koe
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - A Ashokan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - R Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore. E-mail:
| |
Collapse
|
211
|
Ma DL, Qu JQ, Goh ELK, Tang FR. Reorganization of Basolateral Amygdala-Subiculum Circuitry in Mouse Epilepsy Model. Front Neuroanat 2016; 9:167. [PMID: 26834577 PMCID: PMC4712303 DOI: 10.3389/fnana.2015.00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/21/2015] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the reorganized basolateral amygdala (BLA)-subiculum pathway in a status epilepticus (SE) mouse model with epileptic episodes induced by pilocarpine. We have previously observed a dramatic loss of neurons in the CA1-3 fields of the hippocampus in epileptic mice. Herein, we observed a 43-57% reduction in the number of neurons in the BLA of epileptic mice. However, injection of an anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L) into the BLA indicated 25.63% increase in the number of PHA-L-immunopositive terminal-like structures in the ventral subiculum (v-Sub) of epileptic mice as compared to control mice. These data suggest that the projections from the basal nucleus at BLA to the vSub in epileptic mice are resistant to epilepsy-induced damage. Consequently, these epileptic mice exhibit partially impairment but not total loss of context-dependent fear memory. Epileptic mice also show increased c-Fos expression in the BLA and vSub when subjected to contextual memory test, suggesting the participation of these two brain areas in foot shock-dependent fear conditioning. These results indicate the presence of functional neural connections between the BLA-vSub regions that participate in learning and memory in epileptic mice.
Collapse
Affiliation(s)
- Dong Liang Ma
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Jian Qiang Qu
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Eyleen L K Goh
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical SchoolSingapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore; KK Research Center, KK Women's and Children's HospitalSingapore, Singapore
| | - Feng Ru Tang
- Temasek Laboratories, National University of SingaporeSingapore, Singapore; Singapore Nuclear Research and Safety Initiative, National University of SingaporeSingapore, Singapore
| |
Collapse
|
212
|
Campese VD, Sears RM, Moscarello JM, Diaz-Mataix L, Cain CK, LeDoux JE. The Neural Foundations of Reaction and Action in Aversive Motivation. Curr Top Behav Neurosci 2016; 27:171-195. [PMID: 26643998 DOI: 10.1007/7854_2015_401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Much of the early research in aversive learning concerned motivation and reinforcement in avoidance conditioning and related paradigms. When the field transitioned toward the focus on Pavlovian threat conditioning in isolation, this paved the way for the clear understanding of the psychological principles and neural and molecular mechanisms responsible for this type of learning and memory that has unfolded over recent decades. Currently, avoidance conditioning is being revisited, and with what has been learned about associative aversive learning, rapid progress is being made. We review, below, the literature on the neural substrates critical for learning in instrumental active avoidance tasks and conditioned aversive motivation.
Collapse
Affiliation(s)
| | - Robert M Sears
- Emotional Brain Institute at NYU and Nathan Kline Institute, New York, USA
| | | | | | - Christopher K Cain
- Emotional Brain Institute at NYU and Nathan Kline Institute, New York, USA
| | - Joseph E LeDoux
- Center for Neural Science, NYU, New York, USA
- Emotional Brain Institute at NYU and Nathan Kline Institute, New York, USA
| |
Collapse
|
213
|
Using executive control training to suppress amygdala reactivity to aversive information. Neuroimage 2016; 125:1022-1031. [DOI: 10.1016/j.neuroimage.2015.10.069] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/17/2015] [Accepted: 10/24/2015] [Indexed: 01/15/2023] Open
|
214
|
Perusini JN, Meyer EM, Long VA, Rau V, Nocera N, Avershal J, Maksymetz J, Spigelman I, Fanselow MS. Induction and Expression of Fear Sensitization Caused by Acute Traumatic Stress. Neuropsychopharmacology 2016; 41:45-57. [PMID: 26329286 PMCID: PMC4677128 DOI: 10.1038/npp.2015.224] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 02/08/2023]
Abstract
Fear promotes adaptive responses to threats. However, when the level of fear is not proportional to the level of threat, maladaptive fear-related behaviors characteristic of anxiety disorders result. Post-traumatic stress disorder develops in response to a traumatic event, and patients often show sensitized reactions to mild stressors associated with the trauma. Stress-enhanced fear learning (SEFL) is a rodent model of this sensitized responding, in which exposure to a 15-shock stressor nonassociatively enhances subsequent fear conditioning training with only a single trial. We examined the role of corticosterone (CORT) in SEFL. Administration of the CORT synthesis blocker metyrapone prior to the stressor, but not at time points after, attenuated SEFL. Moreover, CORT co-administered with metyrapone rescued SEFL. However, CORT alone without the stressor was not sufficient to produce SEFL. In these same animals, we then looked for correlates of SEFL in terms of changes in excitatory receptor expression. Western blot analysis of the basolateral amygdala (BLA) revealed an increase in the GluA1 AMPA receptor subunit that correlated with SEFL. Thus, CORT is permissive to trauma-induced changes in BLA function.
Collapse
Affiliation(s)
- Jennifer N Perusini
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edward M Meyer
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Virginia A Long
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vinuta Rau
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nathaniel Nocera
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacob Avershal
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - James Maksymetz
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Michael S Fanselow
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
215
|
Keil MF, Briassoulis G, Stratakis CA, Wu TJ. Protein Kinase A and Anxiety-Related Behaviors: A Mini-Review. Front Endocrinol (Lausanne) 2016; 7:83. [PMID: 27445986 PMCID: PMC4925668 DOI: 10.3389/fendo.2016.00083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 01/13/2023] Open
Abstract
This review focuses on the anxiety related to cyclic AMP/protein kinase A (PKA) signaling pathway that regulates stress responses. PKA regulates an array of diverse signals that interact with various neurotransmitter systems associated with alertness, mood, and acute and social anxiety-like states. Recent mouse studies support the involvement of the PKA pathway in common neuropsychiatric disorders characterized by heightened activation of the amygdala. The amygdala is critical for adaptive responses leading to fear learning and aberrant fear memory and its heightened activation is widely thought to underpin various anxiety disorders. Stress-induced plasticity within the amygdala is involved in the transition from normal vigilance responses to emotional reactivity, fear over-generalization, and deficits in fear inhibition resulting in pathological anxiety and conditions, such as panic and depression. Human studies of PKA signaling defects also report an increased incidence of psychiatric disorders, including anxiety, depression, bipolar disorder, learning disorders, and attention deficit hyperactivity disorder. We speculate that the PKA system is uniquely suited for selective, molecularly targeted intervention that may be proven effective in anxiolytic therapy.
Collapse
Affiliation(s)
- Margaret F. Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- *Correspondence: Margaret F. Keil, ; T. John Wu,
| | - George Briassoulis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Pediatric Intensive Care, University of Crete, Heraklion, Greece
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - T. John Wu
- Department of Obstetrics and Gynecology, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- *Correspondence: Margaret F. Keil, ; T. John Wu,
| |
Collapse
|
216
|
Posluszny A, Liguz-Lecznar M, Turzynska D, Zakrzewska R, Bielecki M, Kossut M. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission. PLoS One 2015; 10:e0144415. [PMID: 26641862 PMCID: PMC4671550 DOI: 10.1371/journal.pone.0144415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022] Open
Abstract
Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.
Collapse
Affiliation(s)
- Anna Posluszny
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Danuta Turzynska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Renata Zakrzewska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maksymilian Bielecki
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Malgorzata Kossut
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
- * E-mail:
| |
Collapse
|
217
|
Kim E, Kim EJ, Yeh R, Shin M, Bobman J, Krasne FB, Kim JJ. Amygdaloid and non-amygdaloid fear both influence avoidance of risky foraging in hungry rats. Proc Biol Sci 2015; 281:rspb.2013.3357. [PMID: 25056616 DOI: 10.1098/rspb.2013.3357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Considerable evidence seems to show that emotional and reflex reactions to feared situations are mediated by the amygdala. It might therefore seem plausible to expect that amygdala-coded fear should also influence decisions when animals make choices about instrumental actions. However, there is not good evidence of this. In particular, it appears, though the literature is conflicted, that once learning is complete, the amygdala may often not be involved in instrumental avoidance behaviours. It is therefore of interest that we have found in rats living for extended periods in a semi-naturalistic 'closed economy', where they were given random shocks in regions that had to be entered to obtain food, choices about feeding behaviour were in fact influenced by amygdala-coded fear, in spite of the null effect of amygdalar lesions on fear of dangerous location per se. We suggest that avoidance of highly motivated voluntary behaviour does depend in part on fear signals originating in the amygdala. Such signalling may be one role of well-known projections from amygdala to cortico-striate circuitry.
Collapse
Affiliation(s)
- Earnest Kim
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Regina Yeh
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Minkyung Shin
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Jake Bobman
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Franklin B Krasne
- Department of Psychology, University of California, Los Angeles, CA 90095-1563, USA
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195-1525, USA
| |
Collapse
|
218
|
Giustino TF, Maren S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front Behav Neurosci 2015; 9:298. [PMID: 26617500 PMCID: PMC4637424 DOI: 10.3389/fnbeh.2015.00298] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD). As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex (mPFC) regulate the expression and suppression of fear in rodents, respectively. Here, we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| | - Stephen Maren
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
219
|
Fanselow MS, Wassum KM. The Origins and Organization of Vertebrate Pavlovian Conditioning. Cold Spring Harb Perspect Biol 2015; 8:a021717. [PMID: 26552417 PMCID: PMC4691796 DOI: 10.1101/cshperspect.a021717] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pavlovian conditioning is the process by which we learn relationships between stimuli and thus constitutes a basic building block for how the brain constructs representations of the world. We first review the major concepts of Pavlovian conditioning and point out many of the pervasive misunderstandings about just what conditioning is. This brings us to a modern redefinition of conditioning as the process whereby experience with a conditional relationship between stimuli bestows these stimuli with the ability to promote adaptive behavior patterns that did not occur before the experience. Working from this framework, we provide an in-depth analysis of two examples, fear conditioning and food-based appetitive conditioning, which include a description of the only partially overlapping neural circuitry of each. We also describe how these circuits promote the basic characteristics that define Pavlovian conditioning, such as error-correction-driven regulation of learning.
Collapse
Affiliation(s)
- Michael S Fanselow
- Department of Psychology, University of California Los Angeles, Los Angeles, California 90095-1563
| | - Kate M Wassum
- Department of Psychology, University of California Los Angeles, Los Angeles, California 90095-1563
| |
Collapse
|
220
|
Dysfunction in amygdala-prefrontal plasticity and extinction-resistant avoidance: A model for anxiety disorder vulnerability. Exp Neurol 2015; 275 Pt 1:59-68. [PMID: 26546833 DOI: 10.1016/j.expneurol.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/17/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Individuals exhibiting an anxiety disorder are believed to possess an innate vulnerability that makes them susceptible to the disorder. Anxiety disorders are also associated with abnormalities in the interconnected brain regions of the amygdala and prefrontal cortex (PFC). However, the link between anxiety vulnerability and amygdala-PFC dysfunction is currently unclear. Accordingly, the present study sought to determine if innate dysfunction within the amygdala to PFC projection underlies the susceptibility to develop anxiety-like behavior, using an anxiety vulnerable rodent model. The inbred Wistar Kyoto (WKY) rat was used to model vulnerability, as this strain naturally expresses extinction-resistant avoidance; a behavior that models the symptom of avoidance present in anxiety disorders. Synaptic plasticity was assessed within the projection from the basolateral nucleus of the amygdala (BLA) to the prelimbic cortical subdivision of the PFC in WKY and Sprague Dawley (SD) rats. While WKY rats exhibited normal paired-pulse plasticity, they did not maintain long-term potentiation (LTP) as SD rats. Thus, impaired plasticity within the BLA-PL cortex projection may contribute to extinction resistant avoidance of WKY, as lesions of the PL cortex in SD rats impaired extinction of avoidance similar to WKY rats. Treatment with d-cycloserine to reverse the impaired LTP in WKY rats was unsuccessful. The lack of LTP in WKY rats was associated with a significant reduction of NMDA receptors containing NR2A subunits in the PL cortex. Thus, dysfunction in amygdala-PFC plasticity is innate in anxiety vulnerable rats and may promote extinction-resistant avoidance by disrupting communication between the amygdala and prefrontal cortex.
Collapse
|
221
|
Kim N, Kong MS, Jo KI, Kim EJ, Choi JS. Increased tone-offset response in the lateral nucleus of the amygdala underlies trace fear conditioning. Neurobiol Learn Mem 2015; 126:7-17. [PMID: 26524504 DOI: 10.1016/j.nlm.2015.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Accumulating evidence suggests that the lateral nucleus of the amygdala (LA) stores associative memory in the form of enhanced neural response to the sensory input following classical fear conditioning in which the conditioned stimulus (CS) and the unconditioned stimulus (US) are presented in a temporally continuous manner. However, little is known about the role of the LA in trace fear conditioning where the CS and the US are separated by a temporal gap. Single-unit recordings of LA neurons before and after trace fear conditioning revealed that the short-latency activity to the CS offset, but not that to the onset, increased significantly and accompanied the conditioned fear response. The increased short-latency activity was evident in two aspects: the number of offset-responsive neurons was increased and the latency of the neuronal response to the CS offset was shortened. On the contrary, changes in the firing rate to either the onset or the offset were negligible following unpaired presentations of the CS and US. In sum, our results suggest that increased synaptic efficacy in the CS offset pathway in the LA might underlie the association between temporally distant stimuli in trace fear conditioning.
Collapse
Affiliation(s)
- Namsoo Kim
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mi-Seon Kong
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea; Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kyeong Im Jo
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Eun Joo Kim
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea; Department of Psychology, University of Washington, Seattle, WA, USA
| | - June-Seek Choi
- Department of Psychology, Korea University, 5-1, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
222
|
Ganea DA, Dines M, Basu S, Lamprecht R. The Membrane Proximal Region of AMPA Receptors in Lateral Amygdala is Essential for Fear Memory Formation. Neuropsychopharmacology 2015; 40:2727-35. [PMID: 25915472 PMCID: PMC4864648 DOI: 10.1038/npp.2015.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/16/2015] [Accepted: 04/17/2015] [Indexed: 11/09/2022]
Abstract
The membrane proximal region (MPR) of AMPA receptor (AMPAR) is needed for receptor trafficking and synaptic plasticity. However, its roles in long-term memory formation are not known. To assess the possible roles of AMPAR-MPR in rat lateral amygdala (LA) in short- and long-term fear memory formation, we used glutamate receptors (GluAs)-MPR competitive peptides MPR(DD) and MPR(AA). The MPR(DD) peptide is derived from GluA1 MPR and was previously shown to impair synaptic plasticity and to inhibit GluA1 containing AMPAR insertion into the synapse in an activity-dependent manner. The MPR(AA) peptide is derived from GluA2/4 MPR, and this receptor fragment was shown to be essential for GluA4 protein interaction needed for its insertion into the neuronal membrane and synapse. The peptides were linked to a TAT peptide (TAT-MPR(DD) and TAT-MPR(AA)) to facilitate internalization into LA cells. Infusion of the TAT-MPR(DD) peptide into LA 30 min before fear conditioning led to a significant impairment of long-term fear memory formation. Injection of TAT-MPR(DD) peptide into LA 30 min before fear conditioning impaired short-term fear memory formation. The TAT-MPR(DD) peptide had no effect on memory retrieval when injected into LA 30 min before fear memory test. Infusion of the TAT-MPR(AA) peptide into LA 30 min before fear conditioning led to a significant impairment of long-term fear memory formation. In contrast, the TAT-MPR(AA) had no effect on short-term fear memory formation. A TAT-control peptide had no effect on short- or long-term fear memory. These results show that the AMPAR-MPR in LA is needed for fear memory formation and that the MPR region of GluA1 is essential for acquisition of memory, whereas the MPR region of GluA4 is essential for long-term fear memory consolidation.
Collapse
Affiliation(s)
- Dan A Ganea
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Monica Dines
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sreetama Basu
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel, Tel: +972 4828 8786, Fax: +972 4824 0339, E-mail:
| |
Collapse
|
223
|
Ehrlich DE, Josselyn SA. Plasticity-related genes in brain development and amygdala-dependent learning. GENES BRAIN AND BEHAVIOR 2015; 15:125-43. [PMID: 26419764 DOI: 10.1111/gbb.12255] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.
Collapse
Affiliation(s)
- D E Ehrlich
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Department of Otolaryngology, NYU Langone School of Medicine, New York, NY, USA
| | - S A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
224
|
Dines M, Grinberg S, Vassiliev M, Ram A, Tamir T, Lamprecht R. The roles of Eph receptors in contextual fear conditioning memory formation. Neurobiol Learn Mem 2015; 124:62-70. [DOI: 10.1016/j.nlm.2015.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/19/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022]
|
225
|
Sullivan RM, Perry RE. Mechanisms and functional implications of social buffering in infants: Lessons from animal models. Soc Neurosci 2015; 10:500-11. [PMID: 26324338 DOI: 10.1080/17470919.2015.1087425] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Social buffering, which is the attenuation of stress hormone release by a social partner, occurs in many species throughout the lifespan. Social buffering of the infant by the caregiver is particularly robust, and animal models using infant rodents are uncovering the mechanisms and neural circuitry supporting social buffering. At birth, the hypothalamic-pituitary-adrenal (HPA) stress system is functional but is suppressed via extended social buffering by the mother: the profound social buffering effects of the mother can last for 1-2 hours when pups are removed from the mother. At 10 days of age, pups begin to mount a stress response immediately when separated from the mother. The stimuli from the mother supporting social buffering are broad, for tactile stimulation, milk, and an anesthetized mother (no maternal behavior) all sufficiently support social buffering. The mother appears to produce social buffering by blocking norepinephrine (NE) release into the hypothalamic paraventricular nucleus (PVN), which blocks HPA activation. Since the infant amygdala relies on the presence of corticosterone (CORT), this suggests that social buffering of pups by the mother attenuates the neurobehavioral stress response in infancy and prevents pups from learning about threat within mother-infant interactions.
Collapse
Affiliation(s)
- Regina M Sullivan
- a Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine , New York , NY , USA.,b Department of Child and Adolescent Psychiatry , NYU School of Medicine , New York , NY , USA
| | - Rosemarie E Perry
- a Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine , New York , NY , USA.,b Department of Child and Adolescent Psychiatry , NYU School of Medicine , New York , NY , USA.,c Neuroscience and Physiology , NYU Sackler Institute , New York , NY , USA
| |
Collapse
|
226
|
Wassum KM, Izquierdo A. The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev 2015; 57:271-83. [PMID: 26341938 DOI: 10.1016/j.neubiorev.2015.08.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alicia Izquierdo
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
227
|
High-resolution genetic mapping of complex traits from a combined analysis of F2 and advanced intercross mice. Genetics 2015; 198:103-16. [PMID: 25236452 DOI: 10.1534/genetics.114.167056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic influences on anxiety disorders are well documented; however, the specific genes underlying these disorders remain largely unknown. To identify quantitative trait loci (QTL) for conditioned fear and open field behavior, we used an F2 intercross (n = 490) and a 34th-generation advanced intercross line (AIL) (n = 687) from the LG/J and SM/J inbred mouse strains. The F2 provided strong support for several QTL, but within wide chromosomal regions. The AIL yielded much narrower QTL, but the results were less statistically significant, despite the larger number of mice. Simultaneous analysis of the F2 and AIL provided strong support for QTL and within much narrower regions. We used a linear mixed-model approach, implemented in the program QTLRel, to correct for possible confounding due to familial relatedness. Because we recorded the full pedigree, we were able to empirically compare two ways of accounting for relatedness: using the pedigree to estimate kinship coefficients and using genetic marker estimates of "realized relatedness." QTL mapping using the marker-based estimates yielded more support for QTL, but only when we excluded the chromosome being scanned from the marker-based relatedness estimates. We used a forward model selection procedure to assess evidence for multiple QTL on the same chromosome. Overall, we identified 12 significant loci for behaviors in the open field and 12 significant loci for conditioned fear behaviors. Our approach implements multiple advances to integrated analysis of F2 and AILs that provide both power and precision, while maintaining the advantages of using only two inbred strains to map QTL.
Collapse
|
228
|
Wang J, Bast T, Wang YC, Zhang WN. Hippocampus and two-way active avoidance conditioning: Contrasting effects of cytotoxic lesion and temporary inactivation. Hippocampus 2015; 25:1517-31. [PMID: 25926084 DOI: 10.1002/hipo.22471] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2015] [Indexed: 11/11/2022]
Abstract
Hippocampal lesions tend to facilitate two-way active avoidance (2WAA) conditioning, where rats learn to cross to the opposite side of a conditioning chamber to avoid a tone-signaled footshock. This classical finding has been suggested to reflect that hippocampus-dependent place/context memory inhibits 2WAA (a crossing response to the opposite side is inhibited by the memory that this is the place where a shock was received on the previous trial). However, more recent research suggests other aspects of hippocampal function that may support 2WAA learning. More specifically, the ventral hippocampus has been shown to contribute to behavioral responses to aversive stimuli and to positively modulate the meso-accumbens dopamine system, whose activation has been implicated in 2WAA learning. Permanent hippocampal lesions may not reveal these contributions because, following complete and permanent loss of hippocampal output, other brain regions may mediate these processes or because deficits could be masked by lesion-induced extra-hippocampal changes, including an upregulation of accumbal dopamine transmission. Here, we re-examined the hippocampal role in 2WAA learning in Wistar rats, using permanent NMDA-induced neurotoxic lesions and temporary functional inhibition by muscimol or tetrodotoxin (TTX) infusion. Complete hippocampal lesions tended to facilitate 2WAA learning, whereas ventral (VH) or dorsal hippocampal (DH) lesions had no effect. In contrast, VH or DH muscimol or TTX infusions impaired 2WAA learning. Ventral infusions caused an immediate impairment, whereas after dorsal infusions rats showed intact 2WAA learning for 40-50 min, before a marked deficit emerged. These data show that functional inhibition of ventral hippocampus disrupts 2WAA learning, while the delayed impairment following dorsal infusions may reflect the time required for drug diffusion to ventral hippocampus. Overall, using temporary functional inhibition, our study shows that the ventral hippocampus contributes to 2WAA learning. Permanent lesions may not reveal these contributions due to functional compensation and extra-hippocampal lesion effects.
Collapse
Affiliation(s)
- Jia Wang
- School of Medicine, JiangSu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Tobias Bast
- School of Psychology, Neuroscience@Nottingham and Brain & Body Centre, University of Nottingham, University Park, Nottingham, Ng7 2RD, United Kingdom
| | - Yu-Cong Wang
- School of Medicine, JiangSu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Wei-Ning Zhang
- School of Medicine, JiangSu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| |
Collapse
|
229
|
Mobbs D, Kim JJ. Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Curr Opin Behav Sci 2015; 5:8-15. [PMID: 29984261 DOI: 10.1016/j.cobeha.2015.06.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prey are relentlessly faced with a series of survival problems to solve. One enduring problem is predation, where the prey's answers rely on the complex interaction between actions cultivated during its life course and defense reactions passed down by descendants. To understand the proximate neural responses to analogous threats, affective neuroscientists have favored well-controlled associative learning paradigms, yet researchers are now creating semi-realistic environments that examine the dynamic flow of decision-making and escape calculations that mimic the prey's real world choices. In the context of research from the field of ethology and behavioral ecology, we review some of the recent literature in rodent and human neuroscience and discuss how these studies have the potential to provide new insights into the behavioral expression, computations, and the neural circuits that underlie healthy and pathological fear and anxiety.
Collapse
Affiliation(s)
- Dean Mobbs
- Department of Psychology, Columbia University, New York, NY 10027. U.S.A
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195. U.S.A
| |
Collapse
|
230
|
Krasne FB, Cushman JD, Fanselow MS. A Bayesian context fear learning algorithm/automaton. Front Behav Neurosci 2015; 9:112. [PMID: 26074792 PMCID: PMC4445248 DOI: 10.3389/fnbeh.2015.00112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/16/2015] [Indexed: 01/10/2023] Open
Abstract
Contextual fear conditioning is thought to involve the synaptic plasticity-dependent establishment in hippocampus of representations of to-be-conditioned contexts which can then become associated with USs in the amygdala. A conceptual and computational model of this process is proposed in which contextual attributes are assumed to be sampled serially and randomly during contextual exposures. Given this assumption, moment-to-moment information about such attributes will often be quite different from one exposure to another and, in particular, between exposures during which representations are created, exposures during which conditioning occurs, and during recall sessions. This presents challenges to current conceptual models of hippocampal function. In order to meet these challenges, our model's hippocampus was made to operate in different modes during representation creation and recall, and non-hippocampal machinery was constructed that controlled these hippocampal modes. This machinery uses a comparison between contextual information currently observed and information associated with existing hippocampal representations of familiar contexts to compute the Bayesian Weight of Evidence that the current context is (or is not) a known one, and it uses this value to assess the appropriateness of creation or recall modes. The model predicts a number of known phenomena such as the immediate shock deficit, spurious fear conditioning to contexts that are absent but similar to actually present ones, and modulation of conditioning by pre-familiarization with contexts. It also predicts a number of as yet unknown phenomena.
Collapse
Affiliation(s)
- Franklin B Krasne
- Department of Psychology, University of California Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California Los Angeles Los Angeles, CA, USA
| | - Jesse D Cushman
- Department of Psychology, University of California Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California Los Angeles Los Angeles, CA, USA
| | - Michael S Fanselow
- Department of Psychology, University of California Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California Los Angeles Los Angeles, CA, USA ; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles Los Angeles, CA, USA
| |
Collapse
|
231
|
Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, Holden SS, Mertens KL, Anahtar M, Felix-Ortiz AC, Wickersham IR, Gray JM, Tye KM. A circuit mechanism for differentiating positive and negative associations. Nature 2015; 520:675-8. [PMID: 25925480 PMCID: PMC4418228 DOI: 10.1038/nature14366] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
The ability to differentiate stimuli predicting positive or negative outcomes is critical for survival, and perturbations of emotional processing underlie many psychiatric disease states. Synaptic plasticity in the basolateral amygdala complex (BLA) mediates the acquisition of associative memories, both positive and negative. Different populations of BLA neurons may encode fearful or rewarding associations, but the identifying features of these populations and the synaptic mechanisms of differentiating positive and negative emotional valence have remained unknown. Here we show that BLA neurons projecting to the nucleus accumbens (NAc projectors) or the centromedial amygdala (CeM projectors) undergo opposing synaptic changes following fear or reward conditioning. We find that photostimulation of NAc projectors supports positive reinforcement while photostimulation of CeM projectors mediates negative reinforcement. Photoinhibition of CeM projectors impairs fear conditioning and enhances reward conditioning. We characterize these functionally distinct neuronal populations by comparing their electrophysiological, morphological and genetic features. Overall, we provide a mechanistic explanation for the representation of positive and negative associations within the amygdala.
Collapse
Affiliation(s)
- Praneeth Namburi
- 1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Neuroscience Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Anna Beyeler
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Suzuko Yorozu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 356, Boston, Massachusetts 02115, USA
| | - Gwendolyn G Calhoon
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sarah A Halbert
- 1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Undergraduate Program in Neuroscience, Wellesley College, Wellesley, Massachusetts 02481, USA
| | - Romy Wichmann
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Stephanie S Holden
- 1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Undergraduate Program in Neuroscience, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kim L Mertens
- 1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Master's Program in Biomedical Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Melodi Anahtar
- 1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Undergraduate Program in Neuroscience, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ada C Felix-Ortiz
- 1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Neuroscience Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jesse M Gray
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 356, Boston, Massachusetts 02115, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
232
|
Rihm JS, Rasch B. Replay of conditioned stimuli during late REM and stage N2 sleep influences affective tone rather than emotional memory strength. Neurobiol Learn Mem 2015; 122:142-51. [PMID: 25933506 DOI: 10.1016/j.nlm.2015.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 01/25/2023]
Abstract
Emotional memories are reprocessed during sleep, and it is widely assumed that this reprocessing occurs mainly during rapid eye movement (REM) sleep. In support for this notion, vivid emotional dreams occur mainly during REM sleep, and several studies have reported emotional memory enhancement to be associated with REM sleep or REM sleep-related parameters. However, it is still unknown whether reactivation of emotional memories during REM sleep strengthens emotional memories. Here, we tested whether re-presentation of emotionally learned stimuli during REM sleep enhances emotional memory. In a split-night design, participants underwent Pavlovian conditioning after the first half of the night. Neutral sounds served as conditioned stimuli (CS) and were either paired with a negative odor (CS+) or an odorless vehicle (CS-). During sound replay in subsequent late REM or N2 sleep, half of the CS+ and half of the CS- were presented again. In contrast to our hypothesis, replay during sleep did not affect emotional memory as measured by the differentiation between CS+ and CS- in expectancy, arousal and valence ratings. However, replay unspecifically decreased subjective arousal ratings of both emotional and neutral sounds and increased positive valence ratings also for both CS+ and CS- sounds, respectively. These effects were slightly more pronounced for replay during REM sleep. Our results suggest that re-exposure to previously conditioned stimuli during late sleep does not affect emotional memory strength, but rather influences the affective tone of both emotional and neutral memories.
Collapse
Affiliation(s)
- Julia S Rihm
- Department of Psychology, Division of Biopsychology, University of Zurich, Zurich, Switzerland; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland; Zurich Center for Interdisciplinary Sleep Research (ZiS), Zurich, Switzerland.
| |
Collapse
|
233
|
Not only … but also: REM sleep creates and NREM Stage 2 instantiates landmark junctions in cortical memory networks. Neurobiol Learn Mem 2015; 122:69-87. [PMID: 25921620 DOI: 10.1016/j.nlm.2015.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022]
Abstract
This article argues both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep contribute to overnight episodic memory processes but their roles differ. Episodic memory may have evolved from memory for spatial navigation in animals and humans. Equally, mnemonic navigation in world and mental space may rely on fundamentally equivalent processes. Consequently, the basic spatial network characteristics of pathways which meet at omnidirectional nodes or junctions may be conserved in episodic brain networks. A pathway is formally identified with the unidirectional, sequential phases of an episodic memory. In contrast, the function of omnidirectional junctions is not well understood. In evolutionary terms, both animals and early humans undertook tours to a series of landmark junctions, to take advantage of resources (food, water and shelter), whilst trying to avoid predators. Such tours required memory for emotionally significant landmark resource-place-danger associations and the spatial relationships amongst these landmarks. In consequence, these tours may have driven the evolution of both spatial and episodic memory. The environment is dynamic. Resource-place associations are liable to shift and new resource-rich landmarks may be discovered, these changes may require re-wiring in neural networks. To realise these changes, REM may perform an associative, emotional encoding function between memory networks, engendering an omnidirectional landmark junction which is instantiated in the cortex during NREM Stage 2. In sum, REM may preplay associated elements of past episodes (rather than replay individual episodes), to engender an unconscious representation which can be used by the animal on approach to a landmark junction in wake.
Collapse
|
234
|
Yoder KJ, Porges EC, Decety J. Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample. Hum Brain Mapp 2015; 36:1417-28. [PMID: 25557777 PMCID: PMC4837469 DOI: 10.1002/hbm.22712] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/28/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023] Open
Abstract
Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy.
Collapse
Affiliation(s)
- Keith J. Yoder
- Department of PsychologyUniversity of ChicagoChicagoIllinois
| | - Eric C. Porges
- Department of PsychologyUniversity of ChicagoChicagoIllinois
| | - Jean Decety
- Department of PsychologyUniversity of ChicagoChicagoIllinois
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Chicago MedicineChicagoIllinois
| |
Collapse
|
235
|
Yonelinas AP, Ritchey M. The slow forgetting of emotional episodic memories: an emotional binding account. Trends Cogn Sci 2015; 19:259-67. [PMID: 25836045 DOI: 10.1016/j.tics.2015.02.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
Emotional events are remembered better than neutral events, and this emotion advantage becomes particularly pronounced over time. The time-dependent effects of emotion impact upon recollection rather than on familiarity-based recognition, and they influence the recollection of item-specific details rather than contextual details. Moreover, the amygdala, but not the hippocampus, is crucial for producing these effects. Time-dependent effects of emotion have been attributed to an emotional consolidation process whereby the amygdala gradually facilitates the storage of emotional memories by other medial temporal lobe regions. However, we propose that these effects can be better understood by an emotional binding account whereby the amygdala mediates the recollection of item-emotion bindings that are forgotten more slowly than item-context bindings supported by the hippocampus.
Collapse
Affiliation(s)
| | - Maureen Ritchey
- Center for Neuroscience, University of California, Davis, USA.
| |
Collapse
|
236
|
Arias N, Méndez M, Arias JL. The importance of the context in the hippocampus and brain related areas throughout the performance of a fear conditioning task. Hippocampus 2015; 25:1242-9. [PMID: 25675878 DOI: 10.1002/hipo.22430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 11/10/2022]
Abstract
The importance context has been broadly studied in the management of phobias and in the drug addiction literature. The way in which changes to a context influence behavior after the simple acquisition of a passive avoidance task remains unclear. The hippocampus has long been implicated in the contextual and spatial processing required for contextual fear, but its role in encoding the aversive component of a contextual fear memory is still inconclusive. Our work tries to elucidate whether a change in context, represented as differences in the load of the stimuli, is critical for learning about the context-shock association and whether this manipulation of the context could be linked to any change in metabolic brain activity requirements. For this purpose, we used an avoidance conditioning task. Animals were divided into three different experimental conditions. In one group, acquisition was performed in an enriched stimuli environment and retention was performed in a typically lit chamber (the PA-ACQ-CONTX group). In another group, acquisition was performed in the typically lit chamber and retention was undertaken in the highly enriched chamber (the PA-RET-CONTX group). Finally, for the control group, PA-CN-CONTX, acquisition, and retention were performed in the enriched stimuli environment. Our results showed that the PA-ACQ-CONTX group had longer escape latencies and poorer retention than the PA-RET-CONTX and PA-CN-CONTX groups after 24 h of acquisition under contextual changes. To study metabolic brain activity, histochemical labelling of cytochrome c-oxidase (CO) was performed. CO results suggested a neural circuit including the hippocampus, amygdala, thalamus, parahippocampal cortices, and mammillary nuclei that is involved in the learning and memory processes that enable context-dependent behavior. These results highlight how dysfunction in this network may be involved in the contextualization of fear associations that underlie several forms of psychopathology, including post-traumatic stress disorder, schizophrenia, and substance abuse disorders.
Collapse
Affiliation(s)
- Natalia Arias
- Laboratorio De Neurociencias, Departamento De Psicología, Universidad De Oviedo, Oviedo, Spain.,INEUROPA, Instituto De Neurociencias Del Principado De Asturias, Spain
| | - Marta Méndez
- Laboratorio De Neurociencias, Departamento De Psicología, Universidad De Oviedo, Oviedo, Spain.,INEUROPA, Instituto De Neurociencias Del Principado De Asturias, Spain
| | - Jorge L Arias
- Laboratorio De Neurociencias, Departamento De Psicología, Universidad De Oviedo, Oviedo, Spain.,INEUROPA, Instituto De Neurociencias Del Principado De Asturias, Spain
| |
Collapse
|
237
|
Presynaptic NR2A-Containing NMDARs Are Required for LTD between the Amygdala and the Perirhinal Cortex: A Potential Mechanism for the Emotional Modulation of Memory? eNeuro 2015; 2:eN-NWR-0046-14. [PMID: 26464970 PMCID: PMC4586924 DOI: 10.1523/eneuro.0046-14.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/10/2015] [Accepted: 02/23/2015] [Indexed: 12/19/2022] Open
Abstract
Visual recognition memory relies on long-term depression-like mechanisms within the perirhinal cortex and the activation of the lateral amygdala can enhance visual recognition memory. How the lateral amygdala regulates recognition memory is not known, but synaptic plasticity at amygdala-perirhinal synapses may provide a mechanism for the emotional enhancement of recognition memory. In this study, we investigate the mechanisms of long-term depression (LTD) at the amygdala-perirhinal synapse in male Lister Hooded rats. We demonstrate that LTD at this input relies on NR2A-containing NMDARs, located presynaptically. Therefore, the underlying mechanisms of LTD, at the amygdala-perirhinal input, which may regulate the emotional context for recognition memory, are different to previously described postsynaptic NR2B-NMDAR mechanisms of intraperirhinal LTD that subserve recognition memory.
Collapse
|
238
|
Mobbs D, Hagan CC, Dalgleish T, Silston B, Prévost C. The ecology of human fear: survival optimization and the nervous system. Front Neurosci 2015; 9:55. [PMID: 25852451 PMCID: PMC4364301 DOI: 10.3389/fnins.2015.00055] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/07/2015] [Indexed: 01/04/2023] Open
Abstract
We propose a Survival Optimization System (SOS) to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i) predicting the sensory landscape by simulating possible encounters with threat and selecting the appropriate pre-encounter action and (ii) prevention strategies in which the organism manufactures safe environments. When a potential threat is encountered the (iii) threat orienting system is engaged to determine whether the organism ignores the stimulus or switches into a process of (iv) threat assessment, where the organism monitors the stimulus, weighs the threat value, predicts the actions of the threat, searches for safety, and guides behavioral actions crucial to directed escape. When under imminent attack, (v) defensive systems evoke fast reflexive indirect escape behaviors (i.e., fight or flight). This cascade of responses to threat of increasing magnitude are underwritten by an interconnected neural architecture that extends from cortical and hippocampal circuits, to attention, action and threat systems including the amygdala, striatum, and hard-wired defensive systems in the midbrain. The SOS also includes a modulatory feature consisting of cognitive appraisal systems that flexibly guide perception, risk and action. Moreover, personal and vicarious threat encounters fine-tune avoidance behaviors via model-based learning, with higher organisms bridging data to reduce face-to-face encounters with predators. Our model attempts to unify the divergent field of human affective science, proposing a highly integrated nervous system that has evolved to increase the organism's chances of survival.
Collapse
Affiliation(s)
- Dean Mobbs
- Department of Psychology, Columbia University New York, NY, USA
| | - Cindy C Hagan
- Department of Psychology, Columbia University New York, NY, USA
| | - Tim Dalgleish
- Medical Research Council-Cognition and Brain Sciences Unit Cambridge, UK
| | - Brian Silston
- Department of Psychology, Columbia University New York, NY, USA
| | | |
Collapse
|
239
|
Rosen HR, Rich BA. Neurocognitive Correlates of Emotional Stimulus Processing in Pediatric Bipolar Disorder: A Review. Postgrad Med 2015; 122:94-104. [PMID: 20675973 DOI: 10.3810/pgm.2010.07.2177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
240
|
Kunwar PS, Zelikowsky M, Remedios R, Cai H, Yilmaz M, Meister M, Anderson DJ. Ventromedial hypothalamic neurons control a defensive emotion state. eLife 2015; 4. [PMID: 25748136 PMCID: PMC4379496 DOI: 10.7554/elife.06633] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/05/2015] [Indexed: 12/26/2022] Open
Abstract
Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers. DOI:http://dx.doi.org/10.7554/eLife.06633.001 Animals have evolved a large number of ‘defensive behaviors’ to deal with the threat of predators. Examples include reptiles camouflaging themselves to avoid discovery, fish and birds swarming to confuse predators, insects releasing toxic chemicals, and humans readying themselves to fight or flee. In mammals, defensive behaviors are thought to be mediated by a region of the brain called the amygdala. This structure, which is known as the brain's ‘emotion center’, receives and processes information from the senses about impending threats. It then sends instructions on how to deal with these threats to other regions of the brain including the hypothalamus, which pass them on to the brain regions that control the behavioral, endocrine and involuntary responses of the mammal. For many years it has been thought that the role of the hypothalamus is to serve simply as a relay for emotion states encoded in the amygdala, rather than as an emotion center itself. However, Kunwar et al. have now challenged this assumption with the aid of a technique called optogenetics, in which light is used to activate specific populations of genetically labeled neurons. When light was used to directly activate neurons within the ventromedial hypothalamus in awake mice, the animals instantly froze and/or fled, just as they would when faced with a predator. Given that the optical stimulation had completely bypassed the amygdala, this suggested that the hypothalamus must be capable of generating this defensive response without any input from the amygdala. The freezing and fleeing responses resembled the responses to a predator in a number of key ways. Mice chose to avoid areas of their cage in which they had received the stimulation, suggesting that—like a predator—these areas induced an unpleasant emotional state, perhaps akin to anxiety or fear. Freezing and fleeing persisted for several seconds after the stimulation had stopped, just as freezing and fleeing responses to predators do not immediately cease after the threat has gone. And finally, destroying the neurons targeted by the stimulation made mice less likely to avoid one of their main predators, the rat. It also made the animals less anxious. Overall the results suggest that the hypothalamus may be more than simply a relay for the amygdala, and that ‘amygdala-centric’ views of emotion processing may need to be re-visited. DOI:http://dx.doi.org/10.7554/eLife.06633.002
Collapse
Affiliation(s)
- Prabhat S Kunwar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Moriel Zelikowsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ryan Remedios
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Haijiang Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Melis Yilmaz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
241
|
Bowers ME, Ressler KJ. Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention. Neuropsychopharmacology 2015; 40:688-700. [PMID: 25176168 PMCID: PMC4289957 DOI: 10.1038/npp.2014.225] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/10/2014] [Accepted: 08/02/2014] [Indexed: 01/29/2023]
Abstract
Post-traumatic stress disorder (PTSD) is thought to develop, in part, from improper inhibition of fear. Accordingly, one of the most effective treatment strategies for PTSD is exposure-based psychotherapy. Ideally, neuroscience would inform adjunct therapies that target the neurotransmitter systems involved in extinction processes. Separate studies have implicated the cholecystokinin (CCK) and endocannabinoid systems in fear; however, there is a high degree of anatomical colocalization between the cannabinoid 1 receptor (Cnr1) and CCK in the basolateral amygdala (BLA), a brain region critical for emotion regulation. Although most research has focused on GABA and GABAergic plasticity as the mechanism by which Cnr1 mediates fear inhibition, we hypothesize that a functional interaction between Cnr1 and CCKB receptor (CCKBR) is critical for fear extinction processes. In this study, systemic pharmacological manipulation of the cannabinoid system modulated cued fear expression in C57BL/6J mice after consolidation of auditory fear conditioning. Knockout of the CCKBR, however, had no effect on fear- or anxiety-like behaviors. Nonetheless, administration of a Cnr1 antagonist increased freezing behavior during a cued fear expression test in wild-type subjects, but had no effect on freezing behavior in CCKBR knockout littermates. In addition, we found that Cnr1-positive fibers form perisomatic clusters around CCKBR-positive cell bodies in the BLA. These CCKBR-positive cells comprise a molecularly heterogenous population of excitatory and inhibitory neurons. These findings provide novel evidence that Cnr1 contributes to cued fear expression via an interaction with the CCK system. Dysfunctional Cnr1-CCKBR interactions might contribute to the etiology of, or result from, fear-related psychiatric disease.
Collapse
Affiliation(s)
- Mallory E Bowers
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Emory University, Yerkes Research Center, Atlanta, GA, USA
| | - Kerry J Ressler
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Emory University, Yerkes Research Center, Atlanta, GA, USA,Howard Hughes Medical Institute, Emory University, Atlanta, GA, USA,Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Emory University, Yerkes Research Center, 954 Gatewood Dr, NE Atlanta, GA 30329, USA, Tel: +1 404 727 7739, Fax: +1 404 727 8070, E-mail:
| |
Collapse
|
242
|
Abstract
Numerous investigations have definitively shown amygdalar involvement in delay and contextual fear conditioning. However, much less is known about amygdala contributions to trace fear conditioning, and what little evidence exists is conflicting as noted in previous studies. This discrepancy may result from selective targeting of individual nuclei within the amygdala. The present experiments further examine the contributions of amygdalar subnuclei to trace, delay, and contextual fear conditioning. Rats were trained using a 10-trial trace, delay, or unpaired fear conditioning procedure. Pretraining lesions targeting the entire basolateral amygdala (BLA) resulted in a deficit in trace, delay, and contextual fear conditioning. Immediate post-training infusions of the protein synthesis inhibitor, cycloheximide, targeting the basal nucleus of the amygdala (BA) attenuated trace and contextual fear memory expression, but had no effect on delay fear conditioning. However, infusions targeting the lateral nucleus of the amygdala (LA) immediately following conditioning attenuated contextual fear memory expression, but had no effect on delay or trace fear conditioning. In follow-up experiments, rats were trained using a three-trial delay conditioning procedure. Immediate post-training infusions targeting the LA produced deficits in both delay tone and context fear, while infusions targeting the BA produced deficits in context but not delay tone fear. These data fully support a role for the BLA in trace, delay, and contextual fear memories. Specifically, these data suggest that the BA may be more critical for trace fear conditioning, whereas the LA may be more critical for delay fear memories.
Collapse
|
243
|
Brande-Eilat N, Golumbic YN, Zaidan H, Gaisler-Salomon I. Acquisition of conditioned fear is followed by region-specific changes in RNA editing of glutamate receptors. Stress 2015; 18:309-18. [PMID: 26383032 DOI: 10.3109/10253890.2015.1073254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification process that can affect synaptic function. Transcripts encoding the kainate GRIK1 and AMPA GluA2 glutamate receptor subunits undergo editing that leads to a glycine/arginine (Q/R) exchange and reduced Ca(2+) permeability. We hypothesized that editing at these sites could be experience-dependent, temporally dynamic and region-specific. We trained C57/Bl6 mice in trace and contextual fear conditioning protocols, and examined editing levels at GRIK1 and GluA2 Q/R sites in the amygdala (CeA) and hippocampus (CA1 and CA3), at two time points after training. We also examined experience-dependent changes in the expression of RNA editing enzymes and editing targets. Animals trained in the trace fear conditioning protocol exhibited a transient increase in unedited GRIK1 RNA in the amygdala, and their learning efficiency correlated with unedited RNA levels in CA1. In line with previous reports, GluA2 RNA editing levels were nearly 100%. Additionally, we observed experience-dependent changes in mRNA expression of the RNA editing enzymes ADAR2 and ADAR1 in amygdala and hippocampus, and a learning-dependent increase in the alternatively spliced inactive form of ADAR2 in the amygdala. Since unedited transcripts code for Ca(2+)-permeable receptor subunits, these findings suggest that RNA editing at Q/R sites of glutamate receptors plays an important role in experience-dependent synaptic modification processes.
Collapse
Affiliation(s)
- Noa Brande-Eilat
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Yaela N Golumbic
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Hiba Zaidan
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Inna Gaisler-Salomon
- a Psychology Department , University of Haifa , Haifa , Israel and
- b Department of Psychiatry , Columbia University , New York , NY , USA
| |
Collapse
|
244
|
Abstract
Social cognition is a major problem underlying deficiencies in interpersonal relationships in several psychiatric populations. And yet there is currently no gold standard for pharmacological treatment of psychiatric illness that directly targets these social cognitive areas. This chapter serves to illustrate some of the most innovative attempts at pharmacological modulation of social cognition in psychiatric illnesses including schizophrenia, borderline personality disorder, autism spectrum disorders, antisocial personality disorder and psychopathy, social anxiety disorder, and posttraumatic stress disorder. Pharmacological modulation includes studies administering oxytocin, ecstasy (MDMA), modafinil, methylphenidate, and D-cycloserine. Furthermore, some background on social cognition research in healthy individuals, which could be helpful in developing future treatments, is provided as well as the potential for each drug as a long-term treatment option.
Collapse
Affiliation(s)
- Alexandra Patin
- Department of Psychiatry, University of Bonn, 53105, Bonn, Germany
| | | |
Collapse
|
245
|
Reichelt AC, Maniam J, Westbrook RF, Morris MJ. Dietary-induced obesity disrupts trace fear conditioning and decreases hippocampal reelin expression. Brain Behav Immun 2015; 43:68-75. [PMID: 25043993 DOI: 10.1016/j.bbi.2014.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 12/23/2022] Open
Abstract
Both obesity and over-consumption of palatable high fat/high sugar "cafeteria" diets in rats has been shown to induce cognitive deficits in executive function, attention and spatial memory. Adult male Sprague-Dawley rats were fed a diet that supplemented standard lab chow with a range of palatable foods eaten by people for 8 weeks, or regular lab chow. Memory was assessed using a trace fear conditioning procedure, whereby a conditioned stimulus (CS) is presented for 10s and then 30s after its termination a foot shock (US) is delivered. We assessed freezing to the CS (flashing light) in a neutral context, and freezing in the context associated with footshock. A dissociation was observed between levels of freezing in the context and to the CS associated with footshock. Cafeteria diet fed rats froze less than control chow fed rats in the context associated with footshock (P<0.01), indicating that encoding of a hippocampus-dependent context representation was impaired in these rats. Conversely, cafeteria diet fed rats froze more (P<0.05) to the CS than chow fed rats, suggesting that when hippocampal function was compromised the cue was the best predictor of footshock, as contextual information was not encoded. Dorsal hippocampal mRNA expression of inflammatory and neuroplasticity markers was analysed at the end of the experiment, 10 weeks of diet. Of these, mRNA expression of reelin, which is known to be important in long term potentiation and neuronal plasticity, was significantly reduced in cafeteria diet fed rats (P=0.003). This implicates reductions in hippocampal plasticity in the contextual fear memory deficits seen in the cafeteria diet fed rats.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Medical Sciences, The University of New South Wales, Sydney, Australia; School of Psychology, The University of New South Wales, Sydney, Australia
| | - Jayanthi Maniam
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | | | - Margaret J Morris
- School of Medical Sciences, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
246
|
Wallace TL, Ballard TM, Glavis-Bloom C. Animal paradigms to assess cognition with translation to humans. Handb Exp Pharmacol 2015; 228:27-57. [PMID: 25977079 DOI: 10.1007/978-3-319-16522-6_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cognition is a complex brain function that represents processes such as learning and memory, attention, working memory, and executive functions amongst others. Impairments in cognition are prevalent in many neuropsychiatric and neurological disorders with few viable treatment options. The development of new therapies is challenging, and poor efficacy in clinical development continues to be one of the most consistent reasons compounds fail to advance, suggesting that traditional animal models are not predictive of human conditions and behavior. An effort to improve the construct validity of neuropsychological testing across species with the intent of facilitating therapeutic development has been strengthening over recent years. With an emphasis on understanding the underlying biology, optimizing the use of appropriate systems (e.g., transgenic animals) to model targeted disease states, and incorporating non-rodent species (e.g., non-human primates) that may enable a closer comparison to humans, an improvement in the translatability of the results will be possible. This chapter focuses on some promising translational cognitive paradigms for use in rodents, non-human primates, and humans.
Collapse
Affiliation(s)
- Tanya L Wallace
- Center for Neuroscience, SRI International, Menlo Park, CA, USA,
| | | | | |
Collapse
|
247
|
Klumpers F, Morgan B, Terburg D, Stein DJ, van Honk J. Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Soc Cogn Affect Neurosci 2014; 10:1161-8. [PMID: 25552573 DOI: 10.1093/scan/nsu164] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/24/2014] [Indexed: 01/03/2023] Open
Abstract
Based on studies in rodents, the basolateral amygdala (BLA) is considered a key site for experience-dependent neural plasticity underlying the acquisition of conditioned fear responses. In humans, very few studies exist of subjects with selective amygdala lesions and those studies have only implicated the amygdala more broadly leaving the role of amygdala sub-regions underexplored. We tested a rare sample of subjects (N = 4) with unprecedented focal bilateral BLA lesions due to a genetic condition called Urbach-Wiethe disease. In a classical delay fear conditioning experiment, these subjects showed impaired acquisition of conditioned fear relative to a group of matched control subjects (N = 10) as measured by fear-potentiation of the defensive eye-blink startle reflex. After the experiment, the BLA-damaged cases showed normal declarative memory of the conditioned association. Our findings provide new evidence that the human BLA is essential to drive fast classically conditioned defensive reflexes.
Collapse
Affiliation(s)
- Floris Klumpers
- Department of Experimental Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands,
| | - Barak Morgan
- Department of Human Biology, MRC Medical Imaging Research Unit, University of Cape Town, 7700 Cape Town, South Africa
| | - David Terburg
- Department of Experimental Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands, Department of Psychiatry and Mental Health, University of Cape Town, 7925 Cape Town, South Africa, and
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, 7925 Cape Town, South Africa, and
| | - Jack van Honk
- Department of Experimental Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands, Department of Psychiatry and Mental Health, University of Cape Town, 7925 Cape Town, South Africa, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
248
|
Abstract
Stress is a powerful modulator of brain structure and function. While stress is beneficial for survival, inappropriate stress dramatically increases the risk of physical and mental health problems, particularly when experienced during early developmental periods. Here we focus on the neurobiology of the infant rat's odor learning system that enables neonates to learn and approach the maternal odor and describe the unique role of the stress hormone corticosterone in modulating this odor approach learning across development. During the first nine postnatal days, this odor approach learning of infant rats is supported by a wide range of sensory stimuli and ensures attachment to the mother's odor, even when interactions with her are occasionally associated with pain. With maturation and the emergence of a stress- or pain-induced corticosterone response, this odor approach learning terminates and a more adult-like amygdala-dependent fear/avoidance learning emerges. Strikingly, the odor approach and attenuated fear learning of older pups can be re-established by the presence of the mother, due to her ability to suppress her pups' corticosterone release and amygdala activity. This suggests that developmental changes in stress responsiveness and the stimuli that produce a stress response might be critically involved in optimally adapting the pup's attachment system to its respective ecological niche.
Collapse
|
249
|
The functional profile of the human amygdala in affective processing: Insights from intracranial recordings. Cortex 2014; 60:10-33. [DOI: 10.1016/j.cortex.2014.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/30/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
|
250
|
Balakathiresan NS, Chandran R, Bhomia M, Jia M, Li H, Maheshwari RK. Serum and amygdala microRNA signatures of posttraumatic stress: fear correlation and biomarker potential. J Psychiatr Res 2014; 57:65-73. [PMID: 24998397 DOI: 10.1016/j.jpsychires.2014.05.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/21/2014] [Accepted: 05/29/2014] [Indexed: 12/11/2022]
Abstract
Exposure to acute traumatic stress can cause permanent changes in neurological circuitry and may lead to the development of an anxiety disorder known as posttraumatic stress disorder (PTSD). Current diagnosis of PTSD is based on clinical or behavioral symptom assessment, however, these are not definitive due to overlapping symptoms with other psychiatric disorders or mild traumatic brain injury (mTBI). No FDA approved diagnostic tests or biomarkers are currently available for diagnosis of PTSD. Recently, circulating miRNAs have emerged as novel biomarkers of many diseases. In this study, we have examined the altered expression of serum and amygdala miRNAs in an animal model of PTSD. Differentially expressed and statistically significant miRNAs in serum were validated for their presence in amygdala of corresponding animals. A panel of nine stress-responsive miRNAs viz., miR-142-5p, miR-19b, miR-1928, miR-223-3p, miR-322∗, miR-324, miR-421-3p and miR-463∗ and miR-674∗ were identified, and may have potential as biomarker(s) for PTSD. Further validations by bioinformatics and system biology approaches indicate that five miRNAs such as miR-142-5p, miR-19b, miR-1928, miR-223 and miR-421-3p may play a potential role in the regulation of genes associated with delayed and exaggerated fear. To the best of our knowledge, this is the first report demonstrating the plausibility of using circulating miRNAs as biomarkers of PTSD.
Collapse
Affiliation(s)
- Nagaraja S Balakathiresan
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Raghavendar Chandran
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Biological Sciences Group, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Min Jia
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - He Li
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Radha K Maheshwari
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|