201
|
Ai J, Pascal LE, O'Malley KJ, Dar JA, Isharwal S, Qiao Z, Ren B, Rigatti LH, Dhir R, Xiao W, Nelson JB, Wang Z. Concomitant loss of EAF2/U19 and Pten synergistically promotes prostate carcinogenesis in the mouse model. Oncogene 2013; 33:2286-94. [PMID: 23708662 DOI: 10.1038/onc.2013.190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 12/15/2022]
Abstract
Multiple genetic alterations are associated with prostate carcinogenesis. Tumor-suppressor genes phosphatase and tensin homolog deleted on chromosome 10 (Pten) and androgen upregulated gene 19 (U19), which encodes ELL-associated factor 2 (EAF2), are frequently inactivated or downregulated in advanced prostate cancers. Previous studies showed that EAF2 knockout caused tumors in multiple organs and prostatic intraepithelial neoplasia (PIN) in mice. However, EAF2-knockout mice did not develop prostate cancer even at 2 years of age. To further define the roles of EAF2 in prostate carcinogenesis, we crossed the Pten+/- and EAF2+/- mice in the C57/BL6 background to generate EAF2-/-Pten+/-, Pten+/-, EAF2-/- and wild-type mice. The prostates from virgin male mice with the above four genotypes were analyzed at 7 weeks, 19 weeks and 12 months of age. Concomitant loss of EAF2 function and inactivation of one Pten allele induced spontaneous prostate cancer in 33% of the mice. Prostatic tissues from intact EAF2-/- Pten+/- mice exhibited higher levels of phospho-Akt, -p44/42 and microvessel density. Moreover, phospho-Akt remained high after castration. Consistently, there was a synergistic increase in prostate epithelial proliferation in both intact and castrated EAF2-/-Pten+/- mice. Using laser-capture microdissection coupled with real-time reverse transcription-PCR, we confirmed that co-downregulation of EAF2 and Pten occurred in >50% clinical prostate cancer specimens with Gleason scores of 8-9 (n=11), which is associated with poor prognosis. The above findings together demonstrated synergistic functional interactions and clinical relevance of concurrent EAF2 and Pten downregulation in prostate carcinogenesis.
Collapse
Affiliation(s)
- J Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - K J O'Malley
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J A Dar
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Isharwal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Z Qiao
- Department of Urology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - B Ren
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - J B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Z Wang
- 1] Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [3] University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
202
|
Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1673-96. [PMID: 23707412 DOI: 10.1016/j.bbadis.2013.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
203
|
Choorapoikayil S, Overvoorde J, den Hertog J. Deriving cell lines from zebrafish embryos and tumors. Zebrafish 2013; 10:316-25. [PMID: 23672287 DOI: 10.1089/zeb.2013.0866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the last two decades the zebrafish has emerged as a powerful model organism in science. The experimental accessibility, the broad range of zebrafish mutants, and the highly conserved genetic and biochemical pathways between zebrafish and mammals lifted zebrafish to become one of the most attractive vertebrate models to study gene function and to model human diseases. Zebrafish cell lines are highly attractive to investigate cell biology and zebrafish cell lines complement the experimental tools that are available already. We established a straightforward method to culture cells from a single zebrafish embryo or a single tumor. Here we describe the generation of fibroblast-like cell lines from wild-type and ptenb(-/-) embryos and an endothelial-like cell line from a tumor of an adult ptena(+/-)ptenb(-/-) zebrafish. This protocol can easily be adapted to establish stable cell lines from any mutant or transgenic zebrafish line and the average time to obtain a pro-stable cell line is 3-5 months.
Collapse
|
204
|
Foster JS, Fish LM, Phipps JE, Bruker CT, Lewis JM, Bell JL, Solomon A, Kestler DP. Odontogenic ameloblast-associated protein (ODAM) inhibits growth and migration of human melanoma cells and elicits PTEN elevation and inactivation of PI3K/AKT signaling. BMC Cancer 2013; 13:227. [PMID: 23648148 PMCID: PMC3651709 DOI: 10.1186/1471-2407-13-227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/25/2013] [Indexed: 12/17/2022] Open
Abstract
Background The Odontogenic Ameloblast-associated Protein (ODAM) is expressed in a wide range of normal epithelial, and neoplastic tissues, and we have posited that ODAM serves as a novel prognostic biomarker for breast cancer and melanoma. Transfection of ODAM into breast cancer cells yields suppression of cellular growth, motility, and in vivo tumorigenicity. Herein we have extended these studies to the effects of ODAM on cultured melanoma cell lines. Methods The A375 and C8161 melanoma cell lines were stably transfected with ODAM and assayed for properties associated with tumorigenicity including cell growth, motility, and extracellular matrix adhesion. In addition, ODAM–transfected cells were assayed for signal transduction via AKT which promotes cell proliferation and survival in many neoplasms. Results ODAM expression in A375 and C8161 cells strongly inhibited cell growth and motility in vitro, increased cell adhesion to extracellular matrix, and yielded significant cytoskeletal/morphologic rearrangement. Furthermore, AKT activity was downregulated by ODAM expression while an increase was noted in expression of the PTEN (phosphatase and tensin homolog on chromosome 10) tumor suppressor gene, an antagonist of AKT activation. Increased PTEN in ODAM-expressing cells was associated with increases in PTEN mRNA levels and de novo protein synthesis. Silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing melanoma cells. Similar PTEN elevation and inhibition of AKT by ODAM was observed in MDA-MB-231 breast cancer cells while ODAM expression had no effect in PTEN-deficient BT-549 breast cancer cells. Conclusions The apparent anti-neoplastic effects of ODAM in cultured melanoma and breast cancer cells are associated with increased PTEN expression, and suppression of AKT activity. This association should serve to clarify the clinical import of ODAM expression and any role it may serve as an indicator of tumor behavior.
Collapse
Affiliation(s)
- James S Foster
- Department of Medicine, Human Immunology and Cancer Program, University of Tennessee Health Sciences Center-Knoxville, Knoxville, TN 37920, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Danescu A, Herrero Gonzalez S, Di Cristofano A, Mai S, Hombach-Klonisch S. Three-dimensional nuclear telomere architecture changes during endometrial carcinoma development. Genes Chromosomes Cancer 2013; 52:716-32. [PMID: 23630056 DOI: 10.1002/gcc.22067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/21/2013] [Indexed: 01/06/2023] Open
Abstract
Endometrioid or type-I endometrial carcinoma (EC) develops from hyperproliferative glandular pathologies. Inactivation of the tumor suppressor gene PTEN is frequently associated with type-I EC. Using a previously characterized Pten heterozygous (Pten+/-) mouse model, this study investigates the three-dimensional (3D) telomere profiles during progression from hyperplastic lesions to EC to test the hypothesis that altered 3D telomere profiles can be detected prior to Pten loss in early hyperproliferative lesions. We used immunohistochemistry and 3D-telomere fluorescent in-situ hybridization to investigate Pten expression, telomere length and signal distribution, average number and spatial distribution of telomeres and formation of telomere aggregates in uterine glandular epithelial cells from wildtype and Pten+/- mice. Pten showed nuclear and cytoplasmic localization in WT, predominantly cytoplasmic staining in simple hyperplasia (SH) and was markedly reduced in atypical hyperplasia (AH). Telomere length in glandular epithelial cells does not shorten with age. The average number of telomeres per nucleus was not different in WT and Pten+/- mice indicating the lack of substantial numeric chromosome aberrations during EC development. We observed telomere aggregates in lesions of AH and EC. SH lesions in Pten+/- mice differed from normal glandular epithelium by an increased relative number of shorter telomeres and by a telomere signal distribution indicative of a heterogeneous cell population. Our study revealed that alterations in the nuclear 3D telomere architecture are present in early proliferative lesions of mouse uterine tissues indicative of EC development. The changes in telomere length distribution and nuclear signal distribution precede the loss of Pten.
Collapse
Affiliation(s)
- Adrian Danescu
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
206
|
Genetically engineered mouse models of prostate cancer. Mol Oncol 2013; 7:190-205. [PMID: 23481269 DOI: 10.1016/j.molonc.2013.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022] Open
Abstract
Despite major improvement in treatment of early stage localised prostate cancer, the distinction between indolent tumors and those that will become aggressive, as well as the lack of efficient therapies of advanced prostate cancer, remain major health problems. Genetically engineered mice (GEM) have been extensively used to investigate the molecular and cellular mechanisms underlying prostate tumor initiation and progression, and to evaluate new therapies. Moreover, the recent development of conditional somatic mutagenesis in the mouse prostate offers the possibility to generate new models that more faithfully reproduce the human disease, and thus should contribute to improve diagnosis and treatments. The strengths and weaknesses of various models will be discussed, as well as future opportunities.
Collapse
|
207
|
Klarenbeek S, van Miltenburg MH, Jonkers J. Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol 2013; 7:146-64. [PMID: 23478237 DOI: 10.1016/j.molonc.2013.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common type of cancer in women. A substantial fraction of breast cancers have acquired mutations that lead to activation of the phosphoinositide 3-kinase (PI3K) signaling pathway, which plays a central role in cellular processes that are essential in cancer, such as cell survival, growth, division and motility. Oncogenic mutations in the PI3K pathway generally involve either activating mutation of the gene encoding PI3K (PIK3CA) or AKT (AKT1), or loss or reduced expression of PTEN. Several kinases involved in PI3K signaling are being explored as a therapeutic targets for pharmacological inhibition. Despite the availability of a range of inhibitors, acquired resistance may limit the efficacy of single-agent therapy. In this review we discuss the role of PI3K pathway mutations in human breast cancer and relevant genetically engineered mouse models (GEMMs), with special attention to the role of PI3K signaling in oncogenesis, in therapeutic response, and in resistance to therapy. Several sophisticated GEMMs have revealed the cause-and-effect relationships between PI3K pathway mutations and mammary oncogenesis. These GEMMs enable us to study the biology of tumors induced by activated PI3K signaling, as well as preclinical response and resistance to PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Sjoerd Klarenbeek
- Division of Molecular Pathology, Cancer Genomics Centre Netherlands and Cancer Systems Biology Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
208
|
Mirantes C, Eritja N, Dosil MA, Santacana M, Pallares J, Gatius S, Bergadà L, Maiques O, Matias-Guiu X, Dolcet X. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias. Dis Model Mech 2013; 6:710-20. [PMID: 23471917 PMCID: PMC3634654 DOI: 10.1242/dmm.011445] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.
Collapse
Affiliation(s)
- Cristina Mirantes
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
Genomic variation is a trend observed in various human diseases including cancer. Genetic studies have set out to understand how and why these variations result in cancer, why some populations are pre-disposed to the disease, and also how genetics affect drug responses. The melanoma incidence has been increasing at an alarming rate worldwide. The burden posed by melanoma has made it a necessity to understand the fundamental signaling pathways involved in this deadly disease. Signaling cascades such as mitogen-activated protein kinase and PI3K/AKT have been shown to be crucial in the regulation of processes that are commonly dysregulated during cancer development such as aberrant proliferation, loss of cell cycle control, impaired apoptosis, and altered drug metabolism. Understanding how these and other oncogenic pathways are regulated has been integral in our challenge to develop potent anti-melanoma drugs. With advances in technology and especially in next generation sequencing, we have been able to explore melanoma genomes and exomes leading to the identification of previously unknown genes with functions in melanomagenesis such as GRIN2A and PREX2. The therapeutic potential of these novel candidate genes is actively being pursued with some presenting as druggable targets while others serve as indicators of therapeutic responses. In addition, the analysis of the mutational signatures of melanoma tumors continues to cement the causative role of UV exposure in melanoma pathogenesis. It has become distinctly clear that melanomas from sun-exposed skin areas have distinct mutational signatures including C to T transitions indicative of UV-induced damage. It is thus necessary to continue spreading awareness on how to decrease the risk factors of developing the disease while at the same time working for a cure. Given the large amount of information gained from these sequencing studies, it is likely that in the future, treatment of melanoma will follow a highly personalized route that takes into account the differential mutational signatures of each individual’s cancer.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | | |
Collapse
|
210
|
Kwak MK, Johnson DT, Zhu C, Lee SH, Ye DW, Luong R, Sun Z. Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors. PLoS One 2013; 8:e53476. [PMID: 23308230 PMCID: PMC3540073 DOI: 10.1371/journal.pone.0053476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023] Open
Abstract
The PTEN tumor suppressor gene is frequently inactivated in human prostate cancer. Using Osr1 (odd skipped related 1)-Cre mice, we generated a novel conditional Pten knockout mouse strain, PtenLoxP:Osr1-Cre. Conditional biallelic and monoallelic Pten knockout mice were viable. Deletion of Pten expression was detected in the prostate of PtenLoxP/LoxP:Osr1-Cre mice as early as 2 weeks of age. Intriguingly, PtenLoxP/LoxP:Osr1-Cre mice develop high-grade prostatic intraepithelial neoplasms (PINs) with high penetrance as early as one-month of age, and locally invasive prostatic tumors after 12-months of age. PtenLoxP/+:Osr1-Cre mice show only mild oncogenic changes after 8-weeks of age. Castration of PtenLoxP/LoxP:Osr1-Cre mice shows no significant regression of prostate tumors, although a shift of androgen receptor (AR) staining from the nuclei to cytoplasm is observed in Pten null tumor cells of castrated mice. Enhanced Akt activity is observed in Pten null tumor cells of castrated PtenLoxP/LoxP:Osr1-Cre. This study provides a novel mouse model that can be used to investigate a primary role of Pten in initiating oncogenic transformation in the prostate and to examine other genetic and epigenetic changes that are required for tumor progression in the mouse prostate.
Collapse
Affiliation(s)
- Mi Kyung Kwak
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel T. Johnson
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chunfang Zhu
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Suk Hyung Lee
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ding-Wei Ye
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zijie Sun
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
211
|
Okal A, Reaz S, Lim CS. Cancer Biology: Some Causes for a Variety of Different Diseases. CANCER TARGETED DRUG DELIVERY 2013:121-159. [DOI: 10.1007/978-1-4614-7876-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
212
|
Role of phosphatidylinositol 3,4,5-trisphosphate in cell signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:105-39. [PMID: 23775693 DOI: 10.1007/978-94-007-6331-9_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many lipids present in cellular membranes are phosphorylated as part of signaling cascades and participate in the recruitment, localization, and activation of downstream protein effectors. Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) is one of the most important second messengers and is capable of interacting with a variety of proteins through specific PtdIns(3,4,5)P3 binding domains. Localization and activation of these effector proteins controls a myriad of cellular functions including cell survival, proliferation, cytoskeletal rearrangement, and gene expression. Aberrations in the production and metabolism of PtdIns(3,4,5)P3 have been implicated in many human diseases including cancer, diabetes, inflammation, and heart disease. This chapter provides an overview of the role of PtdIns(3,4,5)P3 in cellular regulation and the implications of PtdIns(3,4,5)P3 dysregulation in human diseases. Additionally, recent attempts at targeting PtdIns(3,4,5)P3 signaling via small molecule inhibitors are summarized.
Collapse
|
213
|
Korpershoek E, Kloosterhof NK, Ziel-van der Made A, Korsten H, Oudijk L, Trapman J, Dinjens WNM, de Krijger RR. Trp53 inactivation leads to earlier phaeochromocytoma formation in pten knockout mice. Endocr Relat Cancer 2012; 19:731-40. [PMID: 22930559 DOI: 10.1530/erc-12-0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phaeochromocytomas (PCCs) are benign neuroendocrine tumours of the adrenal medulla. Approximately 10% of PCC patients develop metastases, but this frequency is much higher in specific subtypes of patients. The reliable diagnosis of malignant PCC can only be made after identification of a metastasis. To study the effect of Trp53 inactivation on PCC pathogenesis in Pten KO mice, we investigated the adrenals of a large cohort of mice with conditional monoallelic and biallelic inactivation of Trp53 and Pten. The adrenal weights were determined for all mice, and in a proportion of these mice, immunohistochemistry for tyrosine hydroxylase and dopamine β-hydroxylase was performed on the adrenals and corresponding lungs. Finally, comparative genomic hybridization (CGH) was performed. The histological and immunohistochemical results confirmed that the adrenal tumours were PCCs. Inactivation of one or both alleles of Trp53 resulted in earlier tumour occurrence in the Pten(loxP/loxP) mice as well as in the Pten(loxP/+) mice. In addition, lung metastases were found in up to 67% of mice. The CGH results showed that the most frequent genomic alterations were loss of chromosome 19 (86%) and gain of chromosome 15 (71%). In this study, we have shown that Pten/Trp53 KO mice showed metastatic PCC at high frequency and primary tumours occurred at younger ages in mice with Trp53 inactivation. Therefore, the present model appears to be a suitable model that might allow the preclinical study of new therapeutics for these tumours.
Collapse
Affiliation(s)
- Esther Korpershoek
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Centre, CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Delbridge ARD, Valente LJ, Strasser A. The role of the apoptotic machinery in tumor suppression. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008789. [PMID: 23125015 DOI: 10.1101/cshperspect.a008789] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multicellular organisms have evolved processes to prevent abnormal proliferation or inappropriate tissue infiltration of cells, and these tumor suppressive mechanisms serve to prevent tissue hyperplasia, tumor development, and metastatic spread of tumors. These include potentially reversible processes such as cell cycle arrest and cellular senescence, as well as apoptotic cell death, which in contrast eliminates dangerous cells that may initiate tumor development. Tumor suppressive processes are organized as complex, extensive signaling networks, controlled by central "nodes." These "nodes" are prominent tumor suppressors, such as P53 or PTEN, whose loss is responsible for the development of the majority of human cancers. In this review we discuss the processes by which some of these prominent tumor suppressors trigger apoptotic cell death and how this process protects us from cancer development.
Collapse
|
215
|
SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene 2012; 32:4052-6. [PMID: 22986535 DOI: 10.1038/onc.2012.407] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/29/2012] [Accepted: 07/23/2012] [Indexed: 01/25/2023]
Abstract
Current genetic evidence in mice indicates that SIRT1 has potent tumor suppressor activity in a variety of cancer models, with no evidence yet for SIRT1 oncogenic activity in vivo. We report here that transgenic Sirt1 expression is oncogenic in murine thyroid and prostate carcinogenesis initiated by Pten-deficiency. Based on mRNA expression analyses of pre-tumoral murine thyroids, we find that SIRT1 increases c-MYC transcriptional programs. Moreover, we show higher c-MYC protein levels in murine thyroid cancers from Sirt1 transgenic mice. Similarly, SIRT1 is overexpressed in human thyroid cancers and it is positively correlated with c-MYC protein levels. Finally, we show in cultured thyroid cancer cells that SIRT1 stabilizes c-MYC protein. These results implicate SIRT1 as a new candidate target for the treatment of thyroid carcinomas.
Collapse
|
216
|
Allard JE, Chandramouli GVR, Stagliano K, Hood BL, Litzi T, Shoji Y, Boyd J, Berchuck A, Conrads TP, Maxwell GL, Risinger JI. Analysis of PSPHL as a Candidate Gene Influencing the Racial Disparity in Endometrial Cancer. Front Oncol 2012; 2:65. [PMID: 22783543 PMCID: PMC3389395 DOI: 10.3389/fonc.2012.00065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/04/2012] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States. A well recognized disparity by race in both incidence and survival outcome exists for this cancer. Specifically Caucasians are about two times more likely to develop endometrial cancer than are African-Americans. However, African-American women are more likely to die from this disease than are Caucasians. The basis for this disparity remains unknown. Previous studies have identified differences in the types and frequencies of gene mutations among endometrial cancers from Caucasians and African-Americans suggesting that the tumors from these two groups might have differing underlying genetic defects. We performed a gene expression microarray study in an effort to identify differentially expressed transcripts between African-American and Caucasian women's endometrial cancers. Our gene expression screen identified a list of potential biomarkers that are differentially expressed between these two groups of cancers. Of these we identified a poorly characterized transcript with a region of homology to phospho serine phosphatase (PSPH) and designated phospho serine phosphatase like (PSPHL) as the most differentially over-expressed gene in cancers from African-Americans. We further clarified the nature of expressed transcripts. Northern blot analysis confirmed the message was limited to a transcript of under 1 kB. Sequence analysis of transcripts confirmed two alternate open reading frame (ORF) isoforms due to alternative splicing events. Splice specific primer sets confirmed both isoforms were differentially expressed in tissues from Caucasians and African-Americans. We further examined the expression in other tissues from women to include normal endometrium, normal and malignant ovary. In all cases PSPHL expression was more often present in tissues from African-Americans than Caucasians. Our data confirm the African-American based expression of the PSPHL transcript in endometrial cancer and also identify its expression in other tissues from African-Americans including ovary and ovarian cancer. PSPHL represents a candidate gene that might influence the observed racial disparity in endometrial and other cancers.
Collapse
Affiliation(s)
- Jay E Allard
- Walter Reed Army Medical Center Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Lai KP, Yamashita S, Huang CK, Yeh S, Chang C. Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol Med 2012; 4:791-807. [PMID: 22745041 PMCID: PMC3494077 DOI: 10.1002/emmm.201101140] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 03/05/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022] Open
Abstract
Stromal-epithelial interaction is crucial to mediate normal prostate and prostate cancer (PCa) development. The indispensable roles of mesenchymal/stromal androgen receptor (AR) for the prostate organogenesis have been demonstrated by using tissue recombination from wild-type and testicular feminized mice. However, the stromal AR functions in the tumour microenvironment and the underlying mechanisms governing the interactions between the epithelium and stroma are not completely understood. Here, we have established the first animal model with AR deletion in stromal fibromuscular cells (dARKO, AR knockout in fibroblasts and smooth muscle cells) in the Pten(+/-) mouse model that can spontaneously develop prostatic intraepithelial neoplasia (PIN). We found that loss of stromal fibromuscular AR led to suppression of PIN lesion development with alleviation of epithelium proliferation and tumour-promoting microenvironments, including extracellular matrix (ECM) remodelling, immune cell infiltration and neovasculature formation due, in part, to the modulation of pro-inflammatory cytokines/chemokines. Finally, targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, resulted in the reduction of PIN development/progression, which might provide a new approach to suppress PIN development.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- Departments of Pathology, Urology, and Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
218
|
Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 2012; 32:5880-90. [PMID: 22539849 DOI: 10.1523/jneurosci.5462-11.2012] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis persists throughout life in restricted brain regions in mammals and is affected by various physiological and pathological conditions. The tumor suppressor gene Pten is involved in adult neurogenesis and is mutated in a subset of autism patients with macrocephaly; however, the link between the role of PTEN in adult neurogenesis and the etiology of autism has not been studied before. Moreover, the role of hippocampus, one of the brain regions where adult neurogenesis occurs, in development of autism is not clear. Here, we show that ablating Pten in adult neural stem cells in the subgranular zone of hippocampal dentate gyrus results in higher proliferation rate and accelerated differentiation of the stem/progenitor cells, leading to depletion of the neural stem cell pool and increased differentiation toward the astrocytic lineage at later stages. Pten-deleted stem/progenitor cells develop into hypertrophied neurons with abnormal polarity. Additionally, Pten mutant mice have macrocephaly and exhibit impairment in social interactions and seizure activity. Our data reveal a novel function for PTEN in adult hippocampal neurogenesis and indicate a role in the pathogenesis of abnormal social behaviors.
Collapse
|
219
|
Imamura M, Lin ZYC, Okano H. Cell-intrinsic reprogramming capability: gain or loss of pluripotency in germ cells. Reprod Med Biol 2012; 12:1-14. [PMID: 29699125 DOI: 10.1007/s12522-012-0131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 12/23/2022] Open
Abstract
In multicellular organisms, germ cells are an extremely specialized cell type with the vital function of transmitting genetic information across generations. In this respect, they are responsible for the perpetuity of species, and are separated from somatic lineages at each generation. Interestingly, in the past two decades research has shown that germ cells have the potential to proceed along two distinct pathways: gametogenesis or pluripotency. Unequivocally, the primary role of germ cells is to produce gametes, the sperm or oocyte, to produce offspring. However, under specific conditions germ cells can become pluripotent, as shown by teratoma formation in vivo or cell culture-induced reprogramming in vitro. This phenomenon seems to be a general propensity of germ cells, irrespective of developmental phase. Recent attempts at cellular reprogramming have resulted in the generation of induced pluripotent stem cells (iPSCs). In iPSCs, the intracellular molecular networks instructing pluripotency have been activated and override the exclusively somatic cell programs that existed. Because the generation of iPSCs is highly artificial and depends on gene transduction, whether the resulting machinery reflects any physiological cell-intrinsic programs is open to question. In contrast, germ cells can spontaneously shift their fate to pluripotency during in-vitro culture. Here, we review the two fates of germ cells, i.e., differentiation and reprogramming. Understanding the molecular mechanisms regulating differentiation versus reprogramming would provide invaluable insight into understanding the mechanisms of cellular reprogramming that generate iPSCs.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Zachary Yu-Ching Lin
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| |
Collapse
|
220
|
Abstract
Maternally expressed gene 3 (MEG3) is an imprinted gene belonging to the imprinted DLK1-MEG3 locus located at chromosome 14q32.3 in humans. Its mouse ortholog, Meg3, also known as gene trap locus 2 (Gtl2), is located at distal chromosome 12. The MEG3 gene encodes a long noncoding RNA (lncRNA) and is expressed in many normal tissues. MEG3 gene expression is lost in an expanding list of primary human tumors and tumor cell lines. Multiple mechanisms contribute to the loss of MEG3 expression in tumors, including gene deletion, promoter hypermethylation, and hypermethylation of the intergenic differentially methylated region. Re-expression of MEG3 inhibits tumor cell proliferation in culture and colony formation in soft agar. This growth inhibition is partly the result of apoptosis induced by MEG3. MEG3 induces accumulation of p53 (TP53) protein, stimulates transcription from a p53-dependent promoter, and selectively regulates p53 target gene expression. Maternal deletion of the Meg3 gene in mice results in skeletal muscle defects and perinatal death. Inactivation of Meg3 leads to a significant increase in expression of angiogenesis-promoting genes and microvessel formation in the brain. These lines of evidence strongly suggest that MEG3 functions as a novel lncRNA tumor suppressor.
Collapse
Affiliation(s)
- Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Bulfinch 457, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
221
|
van der Weyden L, Adams DJ. Using mice to unveil the genetics of cancer resistance. Biochim Biophys Acta Rev Cancer 2012; 1826:312-30. [PMID: 22613679 DOI: 10.1016/j.bbcan.2012.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/28/2022]
Abstract
In the UK, four in ten people will develop some form of cancer during their lifetime, with an individual's relative risk depending on many factors, including age, lifestyle and genetic make-up. Much research has gone into identifying the genes that are mutated in tumorigenesis with the overwhelming majority of genetically-modified (GM) mice in cancer research showing accelerated tumorigenesis or recapitulating key aspects of the tumorigenic process. Yet if six out of ten people will not develop some form of cancer during their lifetime, together with the fact that some cancer patients experience spontaneous regression/remission, it suggests there are ways of 'resisting' cancer. Indeed, there are wildtype, spontaneously-arising mutants and GM mice that show some form of 'resistance' to cancer. Identification of mice with increased resistance to cancer is a novel aspect of cancer research that is important in terms of providing both chemopreventative and therapeutic options. In this review we describe the different mouse lines that display a 'cancer resistance' phenotype and discuss the molecular basis of their resistance.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| | | |
Collapse
|
222
|
Soond DR, Garçon F, Patton DT, Rolf J, Turner M, Scudamore C, Garden OA, Okkenhaug K. Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. THE JOURNAL OF IMMUNOLOGY 2012; 188:5935-43. [PMID: 22611241 DOI: 10.4049/jimmunol.1102116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PTEN, one of the most commonly mutated or lost tumor suppressors in human cancers, antagonizes signaling by the PI3K pathway. Mice with thymocyte-specific deletion of Pten rapidly develop peripheral lymphomas and autoimmunity, which may be caused by failed negative selection of thymocytes or from dysregulation of postthymic T cells. We induced conditional deletion of Pten from CD4 Th cells using a Cre knocked into the Tnfrsf4 (OX40) locus to generate OX40(Cre)Pten(f) mice. Pten-deficient Th cells proliferated more and produced greater concentrations of cytokines. The OX40(Cre)Pten(f) mice had a general increase in the number of lymphocytes in the lymph nodes, but not in the spleen. When transferred into wild-type (WT) mice, Pten-deficient Th cells enhanced anti-Listeria responses and the clearance of tumors under conditions in which WT T cells had no effect. Moreover, inflammatory responses were exaggerated and resolved later in OX40(Cre)Pten(f) mice than in WT mice. However, in contrast with models of thymocyte-specific Pten deletion, lymphomas and autoimmunity were not observed, even in older OX40(Cre)Pten(f) mice. Hence loss of Pten enhances Th cell function without obvious deleterious effects.
Collapse
Affiliation(s)
- Dalya R Soond
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Young EF, Smilenov LB, Lieberman HB, Hall EJ. Combined haploinsufficiency and genetic control of the G2/M checkpoint in irradiated cells. Radiat Res 2012; 177:743-50. [PMID: 22607586 DOI: 10.1667/rr2875.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
When cells are exposed to a dose of radiation large enough to cause chromosome aberrations, they become arrested at the G(2)/M checkpoint, facilitating DNA repair. Defects in checkpoint control genes can impart radiosensitivity. Arrest kinetics were monitored in mouse embryo fibroblasts at doses ranging from 10 mGy to 5.0 Gy of γ radiation over a time course of 0 to 12 h. We observe no significant checkpoint engagement at doses below 100 mGy. The checkpoint is only fully activated at doses where most of the cells are either bound for mitotic catastrophe or are reproductively dead. Atm null cells with ablated checkpoint function exhibited no robust arrest. Surprisingly, haploinsufficiency for ATM alone or in combination with other radioresistance genes did not alter checkpoint activation. We have shown previously that haploinsufficiency for several radioresistance genes imparts intermediate phenotypes for several end points including apoptosis, transformation and survival. These findings suggest that checkpoint control does not contribute toward these intermediate phenotypes and that different biological processes can be activated at high doses compared to low doses.
Collapse
Affiliation(s)
- Erik F Young
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
224
|
Romano C, Schepis C. PTEN gene: a model for genetic diseases in dermatology. ScientificWorldJournal 2012; 2012:252457. [PMID: 22623890 PMCID: PMC3353286 DOI: 10.1100/2012/252457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/04/2012] [Indexed: 01/04/2023] Open
Abstract
PTEN gene is considered one of the most mutated tumor suppressor genes in human cancer, and it's likely to become the first one in the near future. Since 1997, its involvement in tumor suppression has smoothly increased, up to the current importance. Germline mutations of PTEN cause the PTEN hamartoma tumor syndrome (PHTS), which include the past-called Cowden, Bannayan-Riley-Ruvalcaba, Proteus, Proteus-like, and Lhermitte-Duclos syndromes. Somatic mutations of PTEN have been observed in glioblastoma, prostate cancer, and brest cancer cell lines, quoting only the first tissues where the involvement has been proven. The negative regulation of cell interactions with the extracellular matrix could be the way PTEN phosphatase acts as a tumor suppressor. PTEN gene plays an essential role in human development. A recent model sees PTEN function as a stepwise gradation, which can be impaired not only by heterozygous mutations and homozygous losses, but also by other molecular mechanisms, such as transcriptional regression, epigenetic silencing, regulation by microRNAs, posttranslational modification, and aberrant localization. The involvement of PTEN function in melanoma and multistage skin carcinogenesis, with its implication in cancer treatment, and the role of front office in diagnosing PHTS are the main reasons why the dermatologist should know about PTEN.
Collapse
Affiliation(s)
- Corrado Romano
- Unit of Pediatrics and Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | | |
Collapse
|
225
|
Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13:283-96. [PMID: 22473468 DOI: 10.1038/nrm3330] [Citation(s) in RCA: 1508] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the physiological function of phosphatase and tensin homologue (PTEN) is illustrated by its frequent disruption in cancer. By suppressing the phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) pathway through its lipid phosphatase activity, PTEN governs a plethora of cellular processes including survival, proliferation, energy metabolism and cellular architecture. Consequently, mechanisms regulating PTEN expression and function, including transcriptional regulation, post-transcriptional regulation by non-coding RNAs, post-translational modifications and protein-protein interactions, are all altered in cancer. The repertoire of PTEN functions has recently been expanded to include phosphatase-independent activities and crucial functions within the nucleus. Our increasing knowledge of PTEN and pathologies in which its function is altered will undoubtedly inform the rational design of novel therapies.
Collapse
Affiliation(s)
- Min Sup Song
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Harvard Medical School, Boston, Massachuchetts 02215, USA.
| | | | | |
Collapse
|
226
|
Both p110α and p110β isoforms of PI3K can modulate the impact of loss-of-function of the PTEN tumour suppressor. Biochem J 2012; 442:151-9. [PMID: 22150431 PMCID: PMC3268223 DOI: 10.1042/bj20111741] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/07/2011] [Accepted: 12/07/2011] [Indexed: 12/26/2022]
Abstract
The PI3K (phosphoinositide 3-kinase) pathway is commonly activated in cancer as a consequence of inactivation of the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K signalling. In line with this important role of PTEN, mice that are heterozygous for a PTEN-null allele (PTEN+/− mice) spontaneously develop a variety of tumours in multiple organs. PTEN is a phosphatase with selectivity for PtdIns(3,4,5)P3, which is produced by the class I isoforms of PI3K (p110α, p110β, p110γ and p110δ). Previous studies indicated that PTEN-deficient cancer cell lines mainly depend on p110β, and that p110β, but not p110α, controls mouse prostate cancer development driven by PTEN loss. In the present study, we investigated whether the ubiquitously expressed p110α can also functionally interact with PTEN in cancer. Using genetic mouse models that mimic systemic administration of p110α- or p110β-selective inhibitors, we confirm that inactivation of p110β, but not p110α, inhibits prostate cancer development in PTEN+/− mice, but also find that p110α inactivation protects from glomerulonephritis, pheochromocytoma and thyroid cancer induced by PTEN loss. This indicates that p110α can modulate the impact of PTEN loss in disease and tumourigenesis. In primary and immortalized mouse fibroblast cell lines, both p110α and p110β controlled steady-state PtdIns(3,4,5)P3 levels and Akt signalling induced by heterozygous PTEN loss. In contrast, no correlation was found in primary mouse tissues between PtdIns(3,4,5)P3 levels, PI3K/PTEN genotype and cancer development. Taken together, our results from the present study show that inactivation of either p110α or p110β can counteract the impact of PTEN inactivation. The potential implications of these findings for PI3K-targeted therapy of cancer are discussed.
Collapse
|
227
|
Nongenomic Mechanisms of PTEN Regulation. Int J Cell Biol 2012; 2012:379685. [PMID: 22536248 PMCID: PMC3320059 DOI: 10.1155/2012/379685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/21/2022] Open
Abstract
A large amount of data supports the view that PTEN is a bona fide tumor suppressor gene. However, recent evidence suggests that derailment of cellular localization and expression levels of functional nonmutated PTEN is a determining force in inducing abnormal cellular and tissue outcomes. As the cellular mechanisms that regulate normal PTEN enzymatic activity resolve, it is evident that deregulation of these mechanisms can alter cellular processes and tissue architecture and ultimately lead to oncogenic transformation. Here we discuss PTEN ubiquitination, PTEN complex formation with components of the adherens junction, PTEN nuclear localization, and microRNA regulation of PTEN as essential regulatory mechanisms that determine PTEN function independent of gene mutations and epigenetic events.
Collapse
|
228
|
|
229
|
Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Muñoz-Martin M, Gómez-López G, Cañamero M, Mulero F, Pastor J, Martinez S, Romanos E, Mar Gonzalez-Barroso M, Rial E, Valverde AM, Bischoff JR, Serrano M. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 2012; 15:382-94. [PMID: 22405073 DOI: 10.1016/j.cmet.2012.02.001] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/16/2011] [Accepted: 01/20/2012] [Indexed: 01/15/2023]
Abstract
Aging in worms and flies is regulated by the PI3K/Akt/Foxo pathway. Here we extend this paradigm to mammals. Pten(tg) mice carrying additional genomic copies of Pten are protected from cancer and present a significant extension of life span that is independent of their lower cancer incidence. Interestingly, Pten(tg) mice have an increased energy expenditure and protection from metabolic pathologies. The brown adipose tissue (BAT) of Pten(tg) mice is hyperactive and presents high levels of the uncoupling protein Ucp1, which we show is a target of Foxo1. Importantly, a synthetic PI3K inhibitor also increases energy expenditure and hyperactivates the BAT in mice. These effects can be recapitulated in isolated brown adipocytes and, moreover, implants of Pten(tg) fibroblasts programmed with Prdm16 and Cebpβ form subcutaneous brown adipose pads more efficiently than wild-type fibroblasts. These observations uncover a role of Pten in promoting energy expenditure, thus decreasing nutrient storage and its associated damage.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid E28029, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VCJ, Anastasiou D, Ito K, Sasaki AT, Rameh L, Carracedo A, Vander Heiden MG, Cantley LC, Pinton P, Haigis MC, Pandolfi PP. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 2012; 149:49-62. [PMID: 22401813 DOI: 10.1016/j.cell.2012.02.030] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 11/23/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
Abstract
Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial artificial chromosome (BAC)-mediated transgenesis. The "Super-PTEN" mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake and increased mitochondrial oxidative phosphorylation and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and -independent pathways and negatively impacting two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect.
Collapse
Affiliation(s)
- Isabel Garcia-Cao
- Cancer Genetics Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Xiong S, Parker-Thornburg J, Lozano G. Developing genetically engineered mouse models to study tumor suppression. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2012; 2:9-24. [PMID: 22582146 DOI: 10.1002/9780470942390.mo110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since the late 1980s, the tools to generate mice with deletions of tumor suppressors have made it possible to study such deletions in the context of a whole animal. Deletion of some tumor suppressors results in viable mice while deletion of others yield embryo lethal phenotypes cementing the concept that genes that often go awry in cancer are also of developmental importance. More sophisticated mouse models were subsequently developed to delete a gene in a specific cell type at a specific time point. Additionally, incorporation of point mutations in a specific gene as observed in human tumors has also revealed their contributions to tumorigenesis. On the other hand, some models never develop cancer unless combined with other deletions suggesting a modifying role in tumorigenesis. This review will describe the technical aspects of generating these mice and provide examples of the outcomes obtained from alterations of different tumor suppressors.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030
| | | | | |
Collapse
|
232
|
Bloomekatz J, Grego-Bessa J, Migeotte I, Anderson KV. Pten regulates collective cell migration during specification of the anterior-posterior axis of the mouse embryo. Dev Biol 2012; 364:192-201. [PMID: 22342906 DOI: 10.1016/j.ydbio.2012.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 01/23/2023]
Abstract
Pten, the potent tumor suppressor, is a lipid phosphatase that is best known as a regulator of cell proliferation and cell survival. Here we show that mouse embryos that lack Pten have a striking set of morphogenetic defects, including the failure to correctly specify the anterior-posterior body axis, that are not caused by changes in proliferation or cell death. The majority of Pten null embryos express markers of the primitive streak at ectopic locations around the embryonic circumference, rather than at a single site at the posterior of the embryo. Epiblast-specific deletion shows that Pten is not required in the cells of the primitive streak; instead, Pten is required for normal migration of cells of the Anterior Visceral Endoderm (AVE), an extraembryonic organizer that controls the position of the streak. Cells of the wild-type AVE migrate within the visceral endoderm epithelium from the distal tip of the embryo to a position adjacent to the extraembryonic region. In all Pten null mutants, AVE cells move a reduced distance and disperse in random directions, instead of moving as a coordinated group to the anterior of the embryo. Aberrant AVE migration is associated with the formation of ectopic F-actin foci, which indicates that absence of Pten disrupts the actin-based migration of these cells. After the initiation of gastrulation, embryos that lack Pten in the epiblast show defects in the migration of mesoderm and/or endoderm. The findings suggest that Pten has an essential and general role in the control of mammalian collective cell migration.
Collapse
Affiliation(s)
- Joshua Bloomekatz
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
233
|
Akca H, Demiray A, Aslan M, Acikbas I, Tokgun O. Tumour suppressor PTEN enhanced enzyme activity of GPx, SOD and catalase by suppression of PI3K/AKT pathway in non-small cell lung cancer cell lines. J Enzyme Inhib Med Chem 2012; 28:539-44. [PMID: 22299584 DOI: 10.3109/14756366.2011.654114] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphates and tensin homologue deleted on chromosome 10 (PTEN) is a tumour suppressor gene which dephosphorilates phosphoinositol 3,4,5 triphosphates. Therefore PTEN can regulate PI3K/AKT pathway in cells. Because of promoter methylation or gene deletion, PTEN expression is commonly decreased or lost in non-small cell lung cancer (NSCLC) cell lines. Therefore, we hypothesized that PTEN could regulate the activity of superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx) and catalase. We first recreated PTENwt, G129R and G129E expressions in lung cell lines, in which endogenous PTEN expression was not detected. Then, we showed that PTEN could suppress AKT activity by its lipid phosphatase domain. We then examined the effect of recreated PTEN expressions in NSCLC cells. While PTENwt expression caused enhanced activity of SOD, GPx and catalase in transfected cells lines, neither G129R nor G129E expression effected enzyme activities. These results suggest that PTEN can up-regulate SOD, GPx and catalase activity by inhibition of PI3K/AKT pathway in NSCLC cell lines.
Collapse
Affiliation(s)
- Hakan Akca
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey.
| | | | | | | | | |
Collapse
|
234
|
Ke B, Shen XD, Ji H, Kamo N, Gao F, Freitas MCS, Busuttil RW, Kupiec-Weglinski JW. HO-1-STAT3 axis in mouse liver ischemia/reperfusion injury: regulation of TLR4 innate responses through PI3K/PTEN signaling. J Hepatol 2012; 56:359-66. [PMID: 21756853 PMCID: PMC3444295 DOI: 10.1016/j.jhep.2011.05.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/21/2011] [Accepted: 05/17/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Signal transducer and activator of transcription 3 (STAT3), a key mediator of anti-inflammatory cytokine signaling, is essential for heme oxygenase-1 (HO-1)-induced cytoprotection. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog delete on chromosome 10 (PTEN) pathways regulate diverse innate immune responses. This study was designed to investigate the role of STAT3 in the regulation of PI3K/PTEN cascade after HO-1 induction in a mouse model of innate immune-dominated liver ischemia/reperfusion injury (IRI). METHODS Partial warm ischemia was produced in the left and middle hepatic lobes of C57BL/6 mice for 90 min, followed by 6h of reperfusion. RESULTS Mice subjected to Ad-HO-1 transfer were resistant to liver IRI, and this cytoprotective effect correlated with increased intrahepatic PI3K/Akt and diminished PTEN expression. In contrast, mice undergoing adjunctive Ad-HO-1 treatment and STAT3 knockdown (siRNA) remained susceptible to IR-mediated local inflammatory response and hepatocellular damage. Consistent with decreased cell apoptosis and inhibited TLR4 expression after PI3K/Akt activation, treatment with specific PI3k inhibitor increased local inflammation and recreated liver IRI despite Ad-HO-1 gene transfer. Parallel in vitro studies with bone marrow derived-macrophages have confirmed that HO-1-STAT3 axis-induced PI3K/Akt negatively regulated PTEN expression in TLR4-dependent fashion. CONCLUSIONS These findings underscore the role of HO-1 induced STAT3 in modulating PI3K/PTEN in liver IRI cascade. Activating PI3K/Akt provides negative feedback mechanism for TLR4-driven inflammation. Identifying molecular pathways of STAT3 modulation in the innate immune system provides the rationale for novel therapeutic approaches for the management of liver inflammation and IRI in transplant patients.
Collapse
Affiliation(s)
- Bibo Ke
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Box 957054, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
Intestinal polyposis syndromes are relatively rare. However, it is important for clinicians to recognize the potential risks of these syndromes. Based on histology, these syndromes can be classified mainly into hamartomatous polyposis syndromes and familial adenomatous polyposis (FAP), which affects mainly the large intestine. This review discusses the clinical manifestations and underlying genetics of the most common small intestinal polyposis syndromes: Peutz-Jeghers syndrome (PJS), juvenile polyposis (JP), PTEN hamartoma tumor syndrome (PHTS), and the small intestinal implications of familial adenomatous polyposis (FAP).
Collapse
|
236
|
PTEN in DNA damage repair. Cancer Lett 2012; 319:125-129. [PMID: 22266095 DOI: 10.1016/j.canlet.2012.01.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/31/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023]
Abstract
The ability of DNA repair in a cell is vital to its genomic integrity and thus to the normal functioning of an organism. Phosphatase and tensin homolog (PTEN) is a well-established tumor suppressor gene that induces apoptosis and controls cell growth by inhibiting the PI3K/AKT pathway. In various human cancers, PTEN is frequently found to be mutated, deleted, or epigenetically silenced. Recent new findings have demonstrated that PTEN also plays a critical role in DNA damage repair and DNA damage response. This review summarizes the recent progress in the function of PTEN in DNA damage repair, especially in double strand break repair and nucleotide excision repair. In addition, we will discuss the role of PTEN in DNA damage response through its interaction with the Chk1 and p53 pathways. We will focus on the newly discovered mechanisms and the potential implications in cancer prevention and therapeutic intervention.
Collapse
|
237
|
Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS One 2012; 7:e30012. [PMID: 22253859 PMCID: PMC3254642 DOI: 10.1371/journal.pone.0030012] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/11/2011] [Indexed: 12/29/2022] Open
Abstract
Secondary damage following primary spinal cord injury extends pathology beyond the site of initial trauma, and effective management is imperative for maximizing anatomical and functional recovery. Bisperoxovanadium compounds have proven neuroprotective effects in several central nervous system injury/disease models, however, no mechanism has been linked to such neuroprotection from bisperoxovanadium treatment following spinal trauma. The goal of this study was to assess acute bisperoxovanadium treatment effects on neuroprotection and functional recovery following cervical unilateral contusive spinal cord injury, and investigate a potential mechanism of the compound's action. Two experimental groups of rats were established to 1) assess twice-daily 7 day treatment of the compound, potassium bisperoxo (picolinato) vanadium, on long-term recovery of skilled forelimb activity using a novel food manipulation test, and neuroprotection 6 weeks following injury and 2) elucidate an acute mechanistic link for the action of the drug post-injury. Immunofluorescence and Western blotting were performed to assess cellular signaling 1 day following SCI, and histochemistry and forelimb functional analysis were utilized to assess neuroprotection and recovery 6 weeks after injury. Bisperoxovanadium promoted significant neuroprotection through reduced motorneuron death, increased tissue sparing, and minimized cavity formation in rats. Enhanced forelimb functional ability during a treat-eating assessment was also observed. Additionally, bisperoxovanadium significantly enhanced downstream Akt and mammalian target of rapamycin signaling and reduced autophagic activity, suggesting inhibition of the phosphatase and tensin homologue deleted on chromosome ten as a potential mechanism of bisperoxovanadium action following traumatic spinal cord injury. Overall, this study demonstrates the efficacy of a clinically applicable pharmacological therapy for rapid initiation of neuroprotection post-spinal cord injury, and sheds light on the signaling involved in its action.
Collapse
|
238
|
McGonnell IM, Grigoriadis AE, Lam EWF, Price JS, Sunters A. A specific role for phosphoinositide 3-kinase and AKT in osteoblasts? Front Endocrinol (Lausanne) 2012; 3:88. [PMID: 22833734 PMCID: PMC3400941 DOI: 10.3389/fendo.2012.00088] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/29/2012] [Indexed: 12/25/2022] Open
Abstract
The phosphoinositide 3-kinase and AKT (protein kinase B) signaling pathway (PI3K/AKT) plays a central role in the control of cell survival, growth, and proliferation throughout the body. With regard to bone, and particularly in osteoblasts, there is an increasing amount of evidence that the many signaling molecules exert some of their bone-specific effects in part via selectively activating some of the generic effects of the PI3K/AKT pathway in osteoblasts. There is further data demonstrating that PI3K/AKT has the capacity to specifically cross-talk with other signaling pathways and transcriptional networks controlling bone cells' development in order to fine-tune the osteoblast phenotype. There is also evidence that perturbations in the PI3K/AKT pathway may well be responsible for certain bone pathologies. In this review, we discuss some of these findings and suggest that the PI3K/AKT pathway is a central nexus in the extensive network of extracellular signaling pathways that control the osteoblast.
Collapse
Affiliation(s)
- Imelda M. McGonnell
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
| | - Agamemnon E. Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Hospital,London, UK
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital,London, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol,Bristol, UK
| | - Andrew Sunters
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
- *Correspondence: Andrew Sunters, Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, Camden, London NW1 0TU, UK. e-mail:
| |
Collapse
|
239
|
Abstract
Phosphoinositides (PIs) are minor components of cellular membranes that play critical regulatory roles in several intracellular functions. This chapter describes the main enzymes regulating the turnover of each of the seven PIs in mammalian cells and introduces to some of their intracellular functions and to some evidences of their involvement in human diseases. Due to the complex interrelation between the distinct PIs and the plethora of functions that they can regulate inside a cell, this chapter is not meant to be a comprehensive coverage of all aspects of PI signalling but rather an introduction to this complex signalling field. For more details of their regulation/functions and extensive description of their intracellular roles, more detailed reviews are suggested on each single topic.
Collapse
Affiliation(s)
- Tania Maffucci
- Centre for Diabetes, Blizard Institute, Inositide Signalling Group, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, UK.
| |
Collapse
|
240
|
Abstract
Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
241
|
Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR. The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. Subcell Biochem 2012; 58:281-336. [PMID: 22403079 DOI: 10.1007/978-94-007-3012-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.
Collapse
Affiliation(s)
- Elizabeth M Davies
- Division of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, United Kingdom,
| | | | | | | | | | | |
Collapse
|
242
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control cell growth, proliferation, cell survival, metabolic activity, vesicular trafficking, degranulation, and migration. Through these processes, PI3Ks modulate vital physiology. When over-activated in disease, PI3K promotes tumor growth, angiogenesis, metastasis or excessive immune cell activation in inflammation, allergy and autoimmunity. This chapter will introduce molecular activation and signaling of PI3Ks, and connections to target of rapamycin (TOR) and PI3K-related protein kinases (PIKKs). The focus will be on class I PI3Ks, and extend into current developments to exploit mechanistic knowledge for therapy.
Collapse
Affiliation(s)
- Matthias Wymann
- Institute Biochemistry & Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland,
| |
Collapse
|
243
|
Li H, Cotton JL, Guertin DA. Evaluating the therapeutic potential of mTOR inhibitors using mouse genetics. Methods Mol Biol 2012; 821:329-47. [PMID: 22125076 DOI: 10.1007/978-1-61779-430-8_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extensive efforts are underway to develop small-molecule inhibitors of the mammalian target of rapamycin (mTOR) kinase. It is hoped that these inhibitors will have widespread clinical impact in oncology because mTOR is a major downstream effector of PI3K signaling, one of the most frequently activated pathways in cancer. In cells, mTOR is the catalytic core subunit of two distinct complexes, mTORC1 and mTORC2, which are defined by unique mTOR-interacting proteins and have unique functions downstream of PI3K. Two classes of mTOR inhibitors are currently being evaluated as cancer therapeutics: rapamycin and its analogs, which partially inhibit mTORC1 and in some cell types mTORC2, and the recently described ATP-competitive inhibitors, which inhibit the kinase activity of both complexes. Although small molecules that selectively target mTORC2 do not yet exist, experiments using mouse genetics suggest that a theoretical mTORC2 inhibitor may have significant therapeutic value. Here, we discuss an approach to model mTOR complex specific inhibitors using mouse genetics and how it can be applied to other gene products involved in oncogenic signaling to which inhibitors do not exist.
Collapse
Affiliation(s)
- Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | |
Collapse
|
244
|
Abstract
AbstractPTEN (phosphatase and tensin homologue deleted in chromosome 10) was first identified as a candidate tumour suppressor gene located on chromosome 10q23. It is considered as one of the most frequently mutated genes in human malignancies. Emerging evidence shows that the biological function of PTEN extends beyond its tumour suppressor activity. In the central nervous system PTEN is a crucial regulator of neuronal development, neuronal survival, axonal regeneration and synaptic plasticity. Furthermore, PTEN has been linked to the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Recently increased attention has been focused on PTEN as a potential target for the treatment of brain injury and neurodegeneration. In this review we discuss the essential functions of PTEN in the central nervous system and its involvement in neurodegeneration.
Collapse
|
245
|
Abstract
The PI3K-Akt pathway is a major survival pathway activated in cancer. Efforts to develop targeted therapies have not been fully successful, mainly because of extensive internal intrapathway or external interpathway negative feedback loops or because of networking between pathway suppressors. The PTEN tumor suppressor is the major brake of the pathway and a common target for inactivation in somatic cancers. This review will highlight the networking of PTEN with other inhibitors of the pathway, relevant to cancer progression. PTEN constitutes the main node of the inhibitory network, and a series of convergences at different levels in the PI3K-Akt pathway, starting from those with growth factor receptors, will be described. As PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) phosphatase, thus opposing the activity of PI3K, the concerted actions to increase the availability of PIP(3) in cancer cells, relying either on other phosphoinositide enzymes or on the intrinsic regulation of PTEN activity by other molecules, will be discussed. In particular, the synergy between PTEN and the circle of its direct interacting proteins will be brought forth in an attempt to understand both the activation of the PI3K-Akt pathway and the connections with other parallel oncogenic pathways. The understanding of the interplay between the modulators of the PI3K-Akt pathway in cancer should eventually lead to the design of therapeutic approaches with increased efficacy in the clinic.
Collapse
|
246
|
Choorapoikayil S, Kuiper RV, de Bruin A, den Hertog J. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma. Dis Model Mech 2011; 5:241-7. [PMID: 22071262 PMCID: PMC3291645 DOI: 10.1242/dmm.008326] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena+/−ptenb−/− or ptena−/−ptenb+/−) are viable and fertile. ptena+/−ptenb−/− fish develop tumors at a relatively high incidence (10.2%) and most tumors developed close to the eye (26/30). Histopathologically, the tumor masses were associated with the retrobulbar vascular network and diagnosed as hemangiosarcomas. A single tumor was identified in 42 ptena−/−ptenb+/− fish and was also diagnosed as hemangiosarcoma. Immunohistochemistry indicated that the tumor cells in ptena+/−ptenb−/− and ptena−/−ptenb+/− fish proliferated rapidly and were of endothelial origin. Akt/PKB signaling was activated in the tumors, whereas Ptena was still detected in tumor tissue from ptena+/−ptenb−/− zebrafish. We conclude that haploinsufficiency of the genes encoding Pten predisposes to hemangiosarcoma in zebrafish.
Collapse
Affiliation(s)
- Suma Choorapoikayil
- Hubrecht Institute-KNAW and University Medical Center, CT, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
247
|
α-Mannosidase 2C1 attenuates PTEN function in prostate cancer cells. Nat Commun 2011; 2:307. [PMID: 21556061 DOI: 10.1038/ncomms1309] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/13/2011] [Indexed: 12/29/2022] Open
Abstract
PTEN dephosphorylates the 3-position phosphate of phosphatidylinositol 3,4,5 triphosphate (PIP(3)), thereby inhibiting AKT activation. Although attenuation of PTEN function has a major role in tumourigenesis, the underlying mechanisms remain unclear. Here we show that α-mannosidase 2C1 (MAN2C1) inhibits PTEN function in prostate cancer (PC) cells and is associated with a reduction in PTEN function in primary PC. MAN2C1 activates AKT and promotes the formation of PTEN-positive DU145 cell-derived xenograft tumours by imparing endogenous PTEN function. In 659 PC patients who were examined, ~60% of tumours were PTEN positive with elevated AKT activation. Of these, 80% display MAN2C1 overexpression that co-localizes with PTEN. Increases in MAN2C1 were detected only in PTEN-positive prostatic intraepithelial neoplasia and carcinomas, and showed a significant association with PC recurrence only in patients with PTEN-positive PCs. Mechanistically, MAN2C1 binds PTEN thereby inhibiting its PIP(3) phosphatase activity. These findings show that MAN2C1 function as a PTEN-negative regulator in PC cells.
Collapse
|
248
|
Saito F, Tashiro H, To Y, Ohtake H, Ohba T, Suzuki A, Katabuchi H. Mutual contribution of Pten and estrogen to endometrial carcinogenesis in a PtenloxP/loxP mouse model. Int J Gynecol Cancer 2011; 21:1343-9. [PMID: 21989218 DOI: 10.1097/igc.0b013e31822d2a8a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE An association between estrogen and the risk of type 1 endometrial carcinoma, which shows frequent mutations in the Pten tumor suppressor gene, has consistently been found in many studies. However, such tumors usually arise in perimenopausal or postmenopausal women with decreased serum estrogen levels. This study aimed to reveal the contributions of estrogen to endometrial carcinogenesis in a mouse model of endometrial carcinoma initiated by conditional targeting of Pten. METHODS The Cre-loxP system was used to achieve Pten inactivation within mouse endometrial epithelium. We delivered a recombinant adenovirus vector expressing Cre recombinase to the endometrial cavity of the Pten mice that had been ovariectomized at 10 weeks old. Mice were subcutaneously injected with 17β-estradiol (E2) or vehicle, followed by injection of the adenovirus. Two weeks after adenovirus injection, the entire endometrium was analyzed. RESULTS Mice that did not receive E2 injection notably developed endometrial neoplasia, complex atypical hyperplasia, or carcinoma (7/8, 87.5%). In contrast, hyperplastic but nonneoplastic endometrium was observed in E2-treated mice. In these E2-treated mice, immunohistochemistry revealed that Pten-null glandular epithelial cells clonally proliferate among the hyperplastic endometrium. CONCLUSIONS The results of this study suggest that estrogen clonally proliferates Pten-null epithelial cells together with surrounding cells, and depletion of estrogen induces predominant growth of Pten-null cells with estrogen-independent capabilities, resulting in abnormal structure of the glandular cells and subsequent neoplasia. This phenomenon might explain why the incidence of human endometrial carcinoma increases with perimenopausal or postmenopausal status, which represents declining ovarian function. Our model mice have partially resolved the issue of endometrial Pten- and estrogen-related carcinogenesis and have potential to represent a valuable tool for developing novel therapies against this carcinoma.
Collapse
Affiliation(s)
- Fumitaka Saito
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
249
|
Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P. Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011; 2011:329098. [PMID: 21904669 PMCID: PMC3166778 DOI: 10.4061/2011/329098] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 06/08/2011] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation controls many aspects of cell fate and is often deregulated in pathological conditions. Several recent findings have provided an intriguing insight into the spatial regulation of protein phosphorylation across different subcellular compartments and how this can be finely orchestrated by specific kinases and phosphatases. In this review, the focus will be placed on (i) the phosphoinositide 3-kinase (PI3K) pathway, specifically on the kinases Akt and mTOR and on the phosphatases PP2a and PTEN, and on (ii) the PKC family of serine/threonine kinases. We will look at general aspects of cell physiology controlled by these kinases and phosphatases, highlighting the signalling pathways that drive cell division, proliferation, and apoptosis.
Collapse
Affiliation(s)
- Angela Bononi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI) and LTTA Center, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Invasiveness and anchorage independent growth ability augmented by PTEN inactivation through the PI3K/AKT/NFkB pathway in lung cancer cells. Lung Cancer 2011; 73:302-9. [DOI: 10.1016/j.lungcan.2011.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/11/2011] [Accepted: 01/18/2011] [Indexed: 01/05/2023]
|