201
|
Alpaerts K, Buckinx R, Adriaensen D, Van Nassauw L, Timmermans JP. Identification and Putative Roles of Distinct Subtypes of Intestinal Dendritic Cells in Neuroimmune Communication: What can be Learned from Other Organ Systems? Anat Rec (Hoboken) 2015; 298:903-16. [DOI: 10.1002/ar.23106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/13/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Katrien Alpaerts
- Laboratory of Cell biology and Histology; Department of Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Roeland Buckinx
- Laboratory of Cell biology and Histology; Department of Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Dirk Adriaensen
- Laboratory of Cell biology and Histology; Department of Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Luc Van Nassauw
- Laboratory of Human Anatomy and Embryology; Faculty of Medicine and Health Sciences; University of Antwerp; Antwerp Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell biology and Histology; Department of Veterinary Sciences; University of Antwerp; Antwerp Belgium
| |
Collapse
|
202
|
Abstract
In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.
Collapse
Affiliation(s)
- Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329;
| |
Collapse
|
203
|
Fehres CM, Kalay H, Bruijns SCM, Musaafir SAM, Ambrosini M, van Bloois L, van Vliet SJ, Storm G, Garcia-Vallejo JJ, van Kooyk Y. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens. J Control Release 2015; 203:67-76. [PMID: 25656175 DOI: 10.1016/j.jconrel.2015.01.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/17/2022]
Abstract
Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based antigen targeting to both the human DC-specific C-type lectin receptor (CLR) DC-SIGN and the LC-specific CLR langerin. Since DC-SIGN and langerin are able to recognize the difucosylated oligosaccharide Lewis Y (Le(Y)), we prepared neoglycoconjugates bearing this glycan epitope to allow targeting of both lectins. Le(Y)-modified liposomes, with an approximate diameter of 200nm, were significantly endocytosed by DC-SIGN(+) DCs and mediated efficient antigen presentation to CD4(+) and CD8(+) T cells. Surprisingly, although langerin bound to Le(Y)-modified liposomes, LCs exposed to Le(Y)-modified liposomes could not endocytose liposomes nor mediate antigen presentation to T cells. However, LCs mediated an enhanced cross-presentation when antigen was delivered through langerin using Le(Y)-modified synthetic long peptides. In contrast, Le(Y)-modified synthetic long peptides were recognized by DC-SIGN, but did not trigger antigen internalization nor antigen cross-presentation. These data demonstrate that langerin and DC-SIGN have different size requirements for antigen uptake. Although using glycans remains an interesting option in the design of anti-cancer vaccines targeting multiple CLRs, aspects such as molecule size and conformation need to be taken in consideration.
Collapse
Affiliation(s)
- Cynthia M Fehres
- Department of Molecular Cell Biology and Immunology, VUmc, Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VUmc, Amsterdam, The Netherlands
| | - Sven C M Bruijns
- Department of Molecular Cell Biology and Immunology, VUmc, Amsterdam, The Netherlands
| | - Sara A M Musaafir
- Department of Molecular Cell Biology and Immunology, VUmc, Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, VUmc, Amsterdam, The Netherlands
| | - Louis van Bloois
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VUmc, Amsterdam, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VUmc, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VUmc, Amsterdam, The Netherlands.
| |
Collapse
|
204
|
Liu Y, Liu J, Pang X, Liu T, Ning Z, Cheng G. The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesis. Molecules 2015; 20:2272-95. [PMID: 25642837 PMCID: PMC6272511 DOI: 10.3390/molecules20022272] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/21/2015] [Indexed: 11/24/2022] Open
Abstract
Lectins are a group of proteins with carbohydrate recognition activity. Lectins are categorized into many families based on their different cellular locations as well as their specificities for a variety of carbohydrate structures due to the features of their carbohydrate recognition domain (CRD) modules. Many studies have indicated that the direct recognition of particular oligosaccharides on viral components by lectins is important for interactions between hosts and viruses. Herein, we aim to globally review the roles of this recognition by animal lectins in antiviral immune responses and viral pathogenesis. The different classes of mammalian lectins can either recognize carbohydrates to activate host immunity for viral elimination or can exploit those carbohydrates as susceptibility factors to facilitate viral entry, replication or assembly. Additionally, some arthropod C-type lectins were recently identified as key susceptibility factors that directly interact with multiple viruses and then facilitate infection. Summarization of the pleiotropic roles of direct viral recognition by animal lectins will benefit our understanding of host-virus interactions and could provide insight into the role of lectins in antiviral drug and vaccine development.
Collapse
Affiliation(s)
- Yang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Jianying Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiaojing Pang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Tao Liu
- Center for Reproductive Medicine, Tai'an Central Hospital, Tai'an 271000, China.
| | - Zhijie Ning
- Ji'nan Infectious Diseases Hospital, Ji'nan 250021, China.
| | - Gong Cheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
205
|
|
206
|
Shey MS, Garrett NJ, McKinnon LR, Passmore JAS. The role of dendritic cells in driving genital tract inflammation and HIV transmission risk: are there opportunities to intervene? Innate Immun 2015; 21:99-112. [PMID: 24282122 PMCID: PMC4033703 DOI: 10.1177/1753425913513815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Effective prevention of new HIV infections will require an understanding of the mechanisms involved in HIV acquisition. HIV transmission across the female genital tract is the major mode of new HIV infections in sub-Saharan Africa and involves complex processes, including cell activation, inflammation and recruitment of HIV target cells. Activated CD4(+) T-cells, dendritic cells (DC) and macrophages have been described as targets for HIV at the genital mucosa. Activation of these cells may occur in the presence of sexually-transmitted infections, disturbances of commensal flora and other inflammatory processes. In this review, we discuss causes and consequences of inflammation in the female genital tract, with a focus on DC. We describe the central role these cells may play in facilitating or preventing HIV transmission across the genital mucosa, and in the initial recognition of HIV and other pathogens, allowing activation of an adaptive immune response to infection. We discuss studies that investigate interventions to limit DC activation, inflammation and HIV transmission. This knowledge is essential in the development of novel strategies for effective HIV control, including microbicides and pre-exposure prophylaxis.
Collapse
Affiliation(s)
| | | | | | - Jo-Ann S Passmore
- CAPRISA, Durban, South Africa Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
207
|
van den Berg LM, Ribeiro CMS, Zijlstra-Willems EM, de Witte L, Fluitsma D, Tigchelaar W, Everts V, Geijtenbeek TBH. Caveolin-1 mediated uptake via langerin restricts HIV-1 infection in human Langerhans cells. Retrovirology 2014; 11:123. [PMID: 25551286 PMCID: PMC4301922 DOI: 10.1186/s12977-014-0123-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Human Langerhans cells (LCs) reside in foreskin and vaginal mucosa and are the first immune cells to interact with HIV-1 during sexual transmission. LCs capture HIV-1 through the C-type lectin receptor langerin, which routes the virus into Birbeck granules (BGs), thereby preventing HIV-1 infection. BGs are langerin-positive organelles exclusively present in LCs, however, their origin and function are unknown. Results Here, we not only show that langerin and caveolin-1 co-localize at the cell membrane and in vesicles but also that BGs are langerin/caveolin-1-positive vesicles are linked to the lysosomal degradation pathway in LCs. Moreover, inhibition of caveolar endocytosis in primary LCs abrogated HIV-1 sequestering into langerin+ caveolar structures. Notably, both inhibition of caveolar uptake and silencing of caveolar structure protein caveolin-1 resulted in increased HIV-1 integration and subsequent infection. In contrast, inhibition of clathrin-mediated endocytosis did not affect HIV-1 integration, even though HIV-1 uptake was decreased, suggesting that clathrin-mediated endocytosis is not involved in HIV-1 restriction in LCs. Conclusions Thus, our data strongly indicate that BGs belong to the caveolar endocytosis pathway and that caveolin-1 mediated HIV-1 uptake is an intrinsic restriction mechanism present in human LCs that prevents HIV-1 infection. Harnessing this particular internalization pathway has the potential to facilitate strategies to combat HIV-1 transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0123-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda M van den Berg
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Carla M S Ribeiro
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Esther M Zijlstra-Willems
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Lot de Witte
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Donna Fluitsma
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Wikky Tigchelaar
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Vincent Everts
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
208
|
Tumor necrosis factor-alpha and interleukin-17 differently affects Langerhans cell distribution and activation in an innovative three-dimensional model of normal human skin. Eur J Cell Biol 2014; 94:71-7. [PMID: 25596626 DOI: 10.1016/j.ejcb.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 11/24/2022] Open
Abstract
Among the several cytokines involved in the psoriasis pathogenesis, tumor necrosis factor (TNF)-alpha and interleukin (IL)-17 play a central role. Many biomolecular steps remain unknown due to difficulty to obtain psoriatic models. To investigate the effect of TNF-alpha and IL-17 on the ultrastructure, immunophenotype, and number of epidermal Langerhans cells (LCs), human skin explants (n=7) were cultured air-liquid interface in a Transwell system. Four different conditions were used: medium alone (control), medium added with 100 ng/ml TNF-alpha or 50 ng/ml IL-17 or a combination of both cytokines. Samples were harvested 24 and 48 h after cytokine addition and were frozen. Samples harvested at 24h were also processed for transmission electron microscopy (TEM). By immunofluorescence analysis with anti-human Langerin antibody (three experiments/sample) we calculated the percentage of LCs/mm(2) of living epidermis after 24 and 48 h of incubation (considering control as 100%). At 24h LC number was significantly higher in samples treated with both cytokines (216.71+15.10%; p<0.001) and in TNF-alpha (125.74+26.24%; p<0.05). No differences were observed in IL-17-treated samples (100.14+38.42%). After 48 h, the number of epidermal Langerin-positive cells in IL-17- and TNF-alpha treated samples slightly decreased (94.99+36.79% and 101.37+23% vs. their controls, respectively). With the combination of both cytokines epidermal LCs strongly decreased (120+13.36%). By TEM, upon TNF-alpha stimulus LCs appeared with few organelles, mostly mitochondria, lysosomes, and scattered peripherical BGs. Upon IL-17 stimulus, LCs showed a cytoplasm with many mitochondria and numerous BGs close to the perinuclear space and Golgi apparatus, but also at the periphery, at the beginning of the dendrites. The addition of both cytokines did not affect LC ultrastructure. Our study showed that IL-17 induced significant changes in LC ultrastructure, while the combination of both cytokines seems to have a strong chemo-attractant effect on epidermal LCs, supporting the relevance of investigating the interplay between LCs and pro-inflammatory cytokines in the ongoing of the disease.
Collapse
|
209
|
Abstract
Synthetic mRNAs can become biopharmaceutics allowing vaccination against cancer, bacterial and virus infections. Clinical trials with direct administration of synthetic mRNAs encoding tumor antigens demonstrated safety and induction of tumor-specific immune responses. Although immune responses are generated by naked mRNAs, their formulations with chemical carriers are expected to provide more specificity and internalization in dendritic cells (DCs) for better immune responses and dose reduction. This review reports lipid-based formulations (LBFs) that have proved preclinical efficacy. The selective delivery of mRNA LBFs to favor intracellular accumulation in DCs and reduction of the effective doses is discussed, notably to decorate LBFs with carbohydrates or glycomimetics allowing endocytosis in DCs. We also report how smart intracellular delivery is achieved using pH-sensitive lipids or polymers for an efficient mRNA escape from endosomes and limitations regarding cytosolic mRNA location for translation.
Collapse
Affiliation(s)
- Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and Université d'Orléans, Orléans, 45071, cedex 02, France
| | | |
Collapse
|
210
|
Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, Haniffa M, Collin M. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol 2014; 97:627-34. [PMID: 25516751 PMCID: PMC4370053 DOI: 10.1189/jlb.1hi0714-351r] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Langerin is not restricted to Langerhans cells, but expressed at low levels by
CD1c+ dendritic cells and is inducible by TGFβ in humans. Langerin is a C-type lectin expressed at high level by LCs of the epidermis. Langerin
is also expressed by CD8+/CD103+ XCR1+
cross-presenting DCs of mice but is not found on the homologous human
CD141high XCR1+ myeloid DC. Here, we show that langerin is
expressed at a low level on DCs isolated from dermis, lung, liver, and lymphoid
tissue and that langerin+ DCs are closely related to CD1c+
myeloid DCs. They are distinguishable from LCs by the level of expression of CD1a,
EpCAM, CD11b, CD11c, CD13, and CD33 and are found in tissues and tissue-draining LNs
devoid of LCs. They are unrelated to CD141high XCR1+ myeloid
DCs, lacking the characteristic expression profile of cross-presenting DCs, conserved
between mammalian species. Stem cell transplantation and DC deficiency models confirm
that dermal langerin+ DCs have an independent homeostasis to LCs. Langerin
is not expressed by freshly isolated CD1c+ blood DCs but is rapidly
induced on CD1c+ DCs by serum or TGF-β via an
ALK-3-dependent pathway. These results show that langerin is expressed outside of the
LC compartment of humans and highlight a species difference: langerin is expressed by
the XCR1+ "DC1" population of mice but is restricted to the
CD1c+ "DC2" population of humans (homologous to
CD11b+ DCs in the mouse).
Collapse
Affiliation(s)
- Venetia Bigley
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Naomi McGovern
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul Milne
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Dickinson
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah Pagan
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sharon Cookson
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
211
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 438] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
212
|
Zhu X, Wang D, Zhang H, Zhou Y, Luo R, Chen H, Xiao S, Fang L. Molecular cloning and functional characterization of porcine DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:191-196. [PMID: 25086295 DOI: 10.1016/j.dci.2014.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/26/2014] [Accepted: 07/26/2014] [Indexed: 06/03/2023]
Abstract
DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), a member of the DEXDc helicase family, was recently identified as an intracellular DNA sensor in mouse myeloid dendritic cells. In this study, porcine DDX41 (poDDX41) was cloned and its role in the type I interferon (IFN) signaling pathway was investigated in porcine kidney (PK-15) cells. Full-length poDDX41 cDNA encodes 622 amino acid residues and contains a DEADc domain and a HELICc domain. poDDX41 mRNA is widely expressed in different tissues, especially the stomach and liver. Overexpression of poDDX41 in PK-15 cells induced IFN-β by activating transcription factors IRF3 and NF-κB. Knockdown of poDDX41 with siRNA significantly reduced IFN-β expression induced by poly(dA:dT), a double-stranded DNA (dsDNA) analogue, or pseudorabies virus, a dsDNA swine virus. Therefore, poDDX41 is involved in the dsDNA- and dsDNA-virus-mediated type I IFN signaling pathway in porcine kidney cells.
Collapse
Affiliation(s)
- Xinyu Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
213
|
The role of human dendritic cells in HIV-1 infection. J Invest Dermatol 2014; 135:1225-1233. [PMID: 25407434 DOI: 10.1038/jid.2014.490] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/25/2014] [Accepted: 09/27/2014] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) and their subsets have multifaceted roles in the early stages of HIV-1 transmission and infection. DC studies have led to remarkable discoveries, including identification of restriction factors, cellular structures promoting viral transmission including the infectious synapse or the interplay of the C-type lectins, Langerin on Langerhans cells (LCs), and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin on other DC subsets, limiting or facilitating HIV transmission to CD4(+) T cells, respectively. LCs/DCs are also exposed to encountering HIV-1 and other sexually transmitted infections (herpes simplex virus-2, bacteria, fungi), which reprogram HIV-1 interaction with these cells. This review will summarize advances in the role of DCs during HIV-1 infection and discuss their potential involvement in the development of preventive strategies against HIV-1 and other sexually transmitted infections.
Collapse
|
214
|
Levin C, Perrin H, Combadiere B. Tailored immunity by skin antigen-presenting cells. Hum Vaccin Immunother 2014; 11:27-36. [PMID: 25483512 PMCID: PMC4514408 DOI: 10.4161/hv.34299] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
Skin vaccination aims at targeting epidermal and dermal antigen-presenting cells (APCs), indeed many subsets of different origin endowed with various functions populate the skin. The idea that the skin could represent a particularly potent site to induce adaptive and protective immune response emerged after the success of vaccinia virus vaccination by skin scarification. Recent advances have shown that multiple subsets of APCs coexist in the skin and participate in immunity to infectious diseases. Induction of an adaptive immune response depends on the initial recognition and capture of antigens by skin APCs and their transport to lymphoid organs. Innovative strategies of vaccination have thus been developed to target skin APCs for tailored immunity, hence this review will discuss recent insights into skin APC subsets characterization and how they can shape adaptive immune responses.
Collapse
Affiliation(s)
- Clement Levin
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| | - Helene Perrin
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| | - Behazine Combadiere
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| |
Collapse
|
215
|
Xie SM, Liu W, Xiang YY, Xiao ZA, Ren HM, Peng AQ, Wu WJ, Yang XM, Xie DH, Yin TF, Ren JH. A rare disorder mimics otitis media: Langerhans cell histiocytosis of the temporal bone in a child with interstitial pulmonary fibrosis. Am J Otolaryngol 2014; 35:816-21. [PMID: 25139821 DOI: 10.1016/j.amjoto.2014.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a rare disease ranging from a benign to a rapidly fatal condition affecting young children predominantly, and is characterized by an abnormal clonal proliferation of Langerhans cells. We report a case of a 3-year-old child presenting with a 1-year history of otorrhea and otorrhagia followed by a 6-month history of postauricular swelling in the right ear. Imaging demonstrated a large mass of organized tissue. A biopsy was conducted, and the diagnosis of LCH was confirmed by histopathological and immunohistochemical examination. The child was treated with a 12-month course of vinblastine chemotherapy with prednisolone. No clinical evidence of recurrence was noticed after 3 years of follow-up. This rare case highlights the importance for otolaryngologists to keep LCH in mind for differential diagnosis in very young patients with symptoms and signs suggestive of acute mastoiditis or chronic otitis media.
Collapse
Affiliation(s)
- S M Xie
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - W Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Y Y Xiang
- Department of Human Anatomy, University of South China, Hengyang, PR China
| | - Z A Xiao
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - H M Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - A Q Peng
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - W J Wu
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - X M Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - D H Xie
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - T F Yin
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - J H Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China.
| |
Collapse
|
216
|
Kim TG, Kim DS, Kim HP, Lee MG. The pathophysiological role of dendritic cell subsets in psoriasis. BMB Rep 2014; 47:60-8. [PMID: 24411465 PMCID: PMC4163895 DOI: 10.5483/bmbrep.2014.47.2.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory disorder characterized by an erythematous scaly plaque of the skin and is occasionally accompanied by systemic complications. In the psoriatic lesions, an increased number of cytokine-producing dendritic cells and activated T cells are observed, which indicate that psoriasis is a prototype of an immune-mediated dermatosis. During the last decade, emerging studies demonstrate novel roles for the dendritic cell subsets in the process of disease initiation and maintenance of psoriasis. In addition, recently discovered anti-psoriatic therapies, which specifically target inflammatory cytokines produced by lesional dendritic cells, bring much better clinical improvement compared to conventional treatments. These new therapies implicate the crucial importance of dendritic cells in psoriasis pathogenesis. This review will summarize and discuss the dendritic cell subsets of the human skin and their pathophysiological involvement in psoriasis based on mouse- and patient-oriented studies. [BMB Reports 2014; 47(2): 60-68]
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Dae Suk Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min-Geol Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
217
|
Campbell DM, Rappocciolo G, Jenkins FJ, Rinaldo CR. Dendritic cells: key players in human herpesvirus 8 infection and pathogenesis. Front Microbiol 2014; 5:452. [PMID: 25221546 PMCID: PMC4148009 DOI: 10.3389/fmicb.2014.00452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) is an oncogenic gammaherpesvirus that primarily infects cells of the immune and vascular systems. HHV-8 interacts with and targets professional antigen presenting cells and influences their function. Infection alters the maturation, antigen presentation, and immune activation capabilities of certain dendritic cells (DC) despite non-robust lytic replication in these cells. DC sustains a low level of antiviral functionality during HHV-8 infection in vitro. This may explain the ability of healthy individuals to effectively control this virus without disease. Following an immune compromising event, such as organ transplantation or human immunodeficiency virus type 1 infection, a reduced cellular antiviral response against HHV-8 compounded with skewed DC cytokine production and antigen presentation likely contributes to the development of HHV-8 associated diseases, i.e., Kaposi's sarcoma and certain B cell lymphomas. In this review we focus on the role of DC in the establishment of HHV-8 primary and latent infection, the functional state of DC during HHV-8 infection, and the current understanding of the factors influencing virus-DC interactions in the context of HHV-8-associated disease.
Collapse
Affiliation(s)
- Diana M Campbell
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | - Giovanna Rappocciolo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | - Frank J Jenkins
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA ; Department of Pathology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA ; Department of Pathology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
218
|
Petersen TR, Knight DA, Tang CW, Osmond TL, Hermans IF. Batf3-independent langerin- CX3CR1- CD8α+ splenic DCs represent a precursor for classical cross-presenting CD8α+ DCs. J Leukoc Biol 2014; 96:1001-10. [PMID: 25170118 DOI: 10.1189/jlb.1a0314-130r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study tests the hypothesis that CD8α(+) DCs in the spleen of mice contain an immature precursor for functionally mature, "classical" cross-presenting CD8α(+) DCs. The lymphoid tissues contain a network of phenotypically distinct DCs with unique roles in surveillance and immunity. Splenic CD8α(+) DCs have been shown to exhibit a heightened capacity for phagocytosis of cellular material, secretion of IL-12, and cross-priming of CD8(+) T cells. However, this population can be subdivided further on the basis of expression of both langerin/CD207 and CX(3)CR1. We therefore evaluated the functional capacities of these different subsets. The CX(3)CR1(+) CD8α(+) DC subset does not express langerin and does not exhibit the classical features above. The CX(3)CR1(-) CD8α(+) DC can be divided into langerin-positive and negative populations, both of which express DEC205, Clec9A, and high basal levels of CD86. However, the langerin(+) CX(3)CR1(-) CD8α(+) subset has a superior capacity for acquiring cellular material and producing IL-12 and is more susceptible to activation-induced cell death. Significantly, following purification and adoptive transfer into new hosts, the langerin(-) CX(3)CR1(-) CD8α(+) subset survives longer, up-regulates expression of langerin, and becomes more susceptible to activation-induced cell death. Last, in contrast to langerin(+) CX(3)CR1(-) CD8α(+), the langerin(-) CX(3)CR1(-) CD8α(+) are still present in Batf3(-/-) mice. We conclude that the classical attributes of CD8α(+) DC are confined primarily to the langerin(+) CX(3)CR1(-) CD8α(+) DC population and that the langerin(-) CX(3)CR1(-) subset represents a Batf3-independent precursor to this mature population.
Collapse
Affiliation(s)
- Troels R Petersen
- Malaghan Institute of Medical Research, Wellington, New Zealand; and
| | - Deborah A Knight
- Malaghan Institute of Medical Research, Wellington, New Zealand; and
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand; and
| | - Taryn L Osmond
- Malaghan Institute of Medical Research, Wellington, New Zealand; and School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand; and School of Biological Sciences, Victoria University of Wellington, New Zealand
| |
Collapse
|
219
|
Stojadinovic O, Yin N, Lehmann J, Pastar I, Kirsner RS, Tomic-Canic M. Increased number of Langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunol Res 2014; 57:222-8. [PMID: 24277309 DOI: 10.1007/s12026-013-8474-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Langerhans cells (LCs) are a specialized subset of epidermal dendritic cells. They represent one of the first cells of immunologic barrier and play an important role during the inflammatory phase of acute wound healing. Despite considerable progress in our understanding of the immunopathology of diabetes mellitus and its associated comorbidities such as diabetic foot ulcers (DFUs), considerable gaps in our knowledge exist. In this study, we utilized the human ex vivo wound model and confirmed the increased epidermal LCs at wound edges during early phases of wound healing. Next, we aimed to determine differences in quantity of LCs between normal human and diabetic foot skin and to learn if the presence of LCs correlates with the healing outcome in DFUs. We utilized immunofluorescence to detect CD207+ LCs in specimens from normal and diabetic foot skin and DFU wound edges. Specimens from DFUs were collected at the initial visit and 4 weeks later at the time when the healing outcome was determined. DFUs that decreased in size by >50 % were considered to be healing, while DFUs with a size reduction of <50 % were considered non-healing. Quantitative assessment of LCs showed a higher number of LCs in healing when compared to non-healing DFU's. Our findings provide evidence that LCs are present in higher number in diabetic feet than normal foot skin. Healing DFUs show a higher number of LCs compared to non-healing DFUs. These findings indicate that the epidermal immune barrier plays an important role in the DFU healing outcome and may offer new therapeutic avenues targeting LC in non-healing DFUs.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL, 33136, USA
| | | | | | | | | | | |
Collapse
|
220
|
Nasr N, Lai J, Botting RA, Mercier SK, Harman AN, Kim M, Turville S, Center RJ, Domagala T, Gorry PR, Olbourne N, Cunningham AL. Inhibition of two temporal phases of HIV-1 transfer from primary Langerhans cells to T cells: the role of langerin. THE JOURNAL OF IMMUNOLOGY 2014; 193:2554-64. [PMID: 25070850 DOI: 10.4049/jimmunol.1400630] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epidermal Langerhans cells (eLCs) uniquely express the C-type lectin receptor langerin in addition to the HIV entry receptors CD4 and CCR5. They are among the first target cells to encounter HIV in the anogenital stratified squamous mucosa during sexual transmission. Previous reports on the mechanism of HIV transfer to T cells and the role of langerin have been contradictory. In this study, we examined HIV replication and langerin-mediated viral transfer by authentic immature eLCs and model Mutz-3 LCs. eLCs were productively infected with HIV, whereas Mutz-3 LCs were not susceptible because of a lack of CCR5 expression. Two successive phases of HIV viral transfer to T cells via cave/vesicular trafficking and de novo replication were observed with eLCs as previously described in monocyte-derived or blood dendritic cells, but only first phase transfer was observed with Mutz-3 LCs. Langerin was expressed as trimers after cross-linking on the cell surface of Mutz-3 LCs and in this form preferentially bound HIV envelope protein gp140 and whole HIV particles via the carbohydrate recognition domain (CRD). Both phases of HIV transfer from eLCs to T cells were inhibited when eLCs were pretreated with a mAb to langerin CRD or when HIV was pretreated with a soluble langerin trimeric extracellular domain or by a CRD homolog. However, the langerin homolog did not inhibit direct HIV infection of T cells. These two novel soluble langerin inhibitors could be developed to prevent HIV uptake, infection, and subsequent transfer to T cells during early stages of infection.
Collapse
Affiliation(s)
- Najla Nasr
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Joey Lai
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Rachel A Botting
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Sarah K Mercier
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Andrew N Harman
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Min Kim
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Stuart Turville
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Rob J Center
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Teresa Domagala
- Apollo Life Sciences Pty, Beaconsfield, New South Wales 2015, Australia
| | - Paul R Gorry
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; and
| | - Norman Olbourne
- Sydney Institute of Plastic and Reconstructive Surgery, Chatswood, New South Wales 2067, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia;
| |
Collapse
|
221
|
Probert F, Mitchell DA, Dixon AM. NMR evidence for oligosaccharide release from the dendritic-cell specific intercellular adhesion molecule 3-grabbing non-integrin-related (CLEC4M) carbohydrate recognition domain at low pH. FEBS J 2014; 281:3739-50. [PMID: 24976257 PMCID: PMC7164107 DOI: 10.1111/febs.12899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/02/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
Dendritic cell‐specific intercellular adhesion molecule 3‐grabbing non‐integrin‐related (DC‐SIGNR), also known as liver/lymph node‐specific intercellular adhesion molecule 3‐grabbing non‐integrin, CLEC4M, CD209L, and CD299, is a Ca2+‐dependent lectin that has been implicated in increasing the infection rates of several viruses, including HIV, but the physiological role of DC‐SIGNR in healthy cells is currently not known with certainty. A close homologue of DC‐SIGNR, dendritic‐cell specific intercellular adhesion molecule 3‐grabbing non‐integrin, has been shown to act as a recycling endocytic receptor, which binds pathogens at the cell's surface and then releases them in the low pH environment of endosomal compartments. However, it is currently under debate in the literature as to whether DC‐SIGNR plays a similar role. In this work, we used NMR to explore whether the DC‐SIGNR carbohydrate recognition domain (CRD) shows any pH dependence in its ability to bind carbohydrates and Ca2+. We found clear evidence of reduced or abolished CRD‐binding affinities for three different glycans at low pH (4.2) as compared to neutral pH (6.8). We also report the assignment of the DC‐SIGNR CRD in the apo form, and use these new results to characterize the degree of structural rearrangement upon binding (or release) of Ca2+. Finally, we report a differential effect of pH on the affinities of glycans containing mannose exclusively versus glycans containing GlcNAc moieties. Our results lead us to propose that the DC‐SIGNR CRD rapidly and reversibly releases glycan ligands and Ca2+ at reduced pH (behaviour that would be expected for an endocytic receptor), and that the binding of mannose‐containing oligosaccharides is more strongly affected by pH than the binding of GlcNAc‐containing oligosaccharides.
Collapse
Affiliation(s)
- Fay Probert
- MOAC Doctoral Training Centre, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
222
|
Langerhans cells regulate cutaneous innervation density and mechanical sensitivity in mouse footpad. Neurosci Lett 2014; 578:55-60. [PMID: 24970748 DOI: 10.1016/j.neulet.2014.06.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/26/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022]
Abstract
Langerhans cells are epidermal dendritic cells responsible for antigen presentation during an immune response. Langerhans cells associate intimately with epidermal sensory axons. While there is evidence that Langerhans cells may produce neurotrophic factors, a role in regulating cutaneous innervation has not been established. We used genetically engineered mice in which the diphtheria toxin (DT) receptor is targeted to Langerhans cells (Lang-DTR mice) to assess sensory axon-dendritic cell interactions. Diphtheria toxin administration to wild type mice did not affect epidermal structure, Langerhans cell content, or innervation density. A DT administration regimen supramaximal for completely ablating epidermal Langerhans cells in Lang-DTR mice reduced PGP 9.5-immunoreactive total innervation and calcitonin gene related peptide-immunoreactive peptidergic nociceptor innervation. Quantitative real-time polymerase chain reaction showed that epidermal gene expression of brain derived neurotrophic factor was unchanged, but nerve growth factor and glial cell line-derived neurotrophic factor mRNAs were reduced. Behavioral testing showed that, while thermal sensitivity was unaffected, mice depleted of Langerhans cells displayed mechanical hypersensitivity. These findings provide evidence that Langerhans cells play an important role in determining cutaneous sensory innervation density and mechanical sensitivity. This may involve alterations in neurotrophin production by Langerhans or other epidermal cells, which in turn may affect mechanical sensitivity directly or as a result of neuropathic changes.
Collapse
|
223
|
Berres ML, Lim KPH, Peters T, Price J, Takizawa H, Salmon H, Idoyaga J, Ruzo A, Lupo PJ, Hicks MJ, Shih A, Simko SJ, Abhyankar H, Chakraborty R, Leboeuf M, Beltrão M, Lira SA, Heym KM, Bigley V, Collin M, Manz MG, McClain K, Merad M, Allen CE. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. ACTA ACUST UNITED AC 2014; 211:669-83. [PMID: 24638167 PMCID: PMC3978272 DOI: 10.1084/jem.20130977] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a clonal disorder with elusive etiology, characterized by the accumulation of CD207(+) dendritic cells (DCs) in inflammatory lesions. Recurrent BRAF-V600E mutations have been reported in LCH. In this study, lesions from 100 patients were genotyped, and 64% carried the BRAF-V600E mutation within infiltrating CD207(+) DCs. BRAF-V600E expression in tissue DCs did not define specific clinical risk groups but was associated with increased risk of recurrence. Strikingly, we found that patients with active, high-risk LCH also carried BRAF-V600E in circulating CD11c(+) and CD14(+) fractions and in bone marrow (BM) CD34(+) hematopoietic cell progenitors, whereas the mutation was restricted to lesional CD207(+) DC in low-risk LCH patients. Importantly, BRAF-V600E expression in DCs was sufficient to drive LCH-like disease in mice. Consistent with our findings in humans, expression of BRAF-V600E in BM DC progenitors recapitulated many features of the human high-risk LCH, whereas BRAF-V600E expression in differentiated DCs more closely resembled low-risk LCH. We therefore propose classification of LCH as a myeloid neoplasia and hypothesize that high-risk LCH arises from somatic mutation of a hematopoietic progenitor, whereas low-risk disease arises from somatic mutation of tissue-restricted precursor DCs.
Collapse
Affiliation(s)
- Marie-Luise Berres
- Department of Oncological Sciences, 2 Tisch Cancer Institute, and 3 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Preza GC, Tanner K, Elliott J, Yang OO, Anton PA, Ochoa MT. Antigen-presenting cell candidates for HIV-1 transmission in human distal colonic mucosa defined by CD207 dendritic cells and CD209 macrophages. AIDS Res Hum Retroviruses 2014; 30:241-9. [PMID: 24134315 DOI: 10.1089/aid.2013.0145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common route for HIV-1 infection is sexual transmission across colorectal mucosa, which is thought to be 10-2,000 times more vulnerable to infection than that of the female genital tract. Mucosal surfaces are the first line of defense against many pathogens but the antigen-presenting cells (APCs), key regulators of innate immunity and determinants of adaptive immunity, are not well defined in these target tissues. Using immunohistochemistry, dendritic cells expressing Langerin (CD207(+)), a lectin known to bind and internalize HIV-1, were detected in the periphery of colonic glands and sparsely scattered in the submucosa similarly in colorectal mucosa. This cell type, well known in skin, has generally not been reported in colonic/rectal mucosa. Unexpectedly, the largest APC population observed was a macrophage-like population expressing the well-characterized tissue macrophage markers CD68 and CD163. Confocal microscopy of these cells revealed colocalization of CD209 (DC-SIGN), a presumed dendritic cell marker believed to facilitate HIV-1 transmission, but not other dendritic cell markers. These results show evidence of the unconfirmed presence of Langerhans cells in colorectal mucosa and a predominance of macrophage-like APCs that express CD209 (DC-SIGN). These findings define potential target cells in the pathogenesis of HIV-1 transmission, which may have key implications for the study of early transmission events in normal colorectal mucosa, as well as other infectious diseases and primary immune diseases involving the gut.
Collapse
Affiliation(s)
- Gloria C Preza
- 1 Department of Dermatology, Keck School of Medicine, University of Southern California , Los Angeles, California
| | | | | | | | | | | |
Collapse
|
225
|
Rattanapak T, Birchall JC, Young K, Kubo A, Fujimori S, Ishii M, Hook S. Dynamic visualization of dendritic cell-antigen interactions in the skin following transcutaneous immunization. PLoS One 2014; 9:e89503. [PMID: 24586830 PMCID: PMC3933627 DOI: 10.1371/journal.pone.0089503] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC) residing in the skin including Langerhans cells (LC) and dermal dendritic cells (DDC). However, the main obstacle for transcutaneous immunization (TCI) is the effective delivery of the vaccine through the stratum corneum (SC) barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN) and a lipid-based colloidal delivery system (cubosomes) as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP) 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207⁺ DC. No uptake of antigen or any response to immunisation by LC could be detected.
Collapse
Affiliation(s)
| | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Katherine Young
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Atsuko Kubo
- Laboratory of Cellular Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Sayumi Fujimori
- Laboratory of Cellular Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences and Laboratory of Cellular Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
226
|
Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging: morphological, radiological, and functional overview. AGE (DORDRECHT, NETHERLANDS) 2014; 36:313-51. [PMID: 23877171 PMCID: PMC3889907 DOI: 10.1007/s11357-013-9564-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Aging is a continuous process that induces many alterations in the cytoarchitecture of different organs and systems both in humans and animals. Moreover, it is associated with increased susceptibility to infectious, autoimmune, and neoplastic processes. The thymus is a primary lymphoid organ responsible for the production of immunocompetent T cells and, with aging, it atrophies and declines in functions. Universality of thymic involution in all species possessing thymus, including human, indicates it as a long-standing evolutionary event. Although it is accepted that many factors contribute to age-associated thymic involution, little is known about the mechanisms involved in the process. The exact time point of the initiation is not well defined. To address the issue, we report the exact age of thymus throughout the review so that readers can have a nicely pictured synoptic view of the process. Focusing our attention on the different stages of the development of the thymus gland (natal, postnatal, adult, and old), we describe chronologically the morphological changes of the gland. We report that the thymic morphology and cell types are evolutionarily preserved in several vertebrate species. This finding is important in understanding the similar problems caused by senescence and other diseases. Another point that we considered very important is to indicate the assessment of the thymus through radiological images to highlight its variability in shape, size, and anatomical conformation.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, Viale Europa 11, 25123, Brescia, Italy,
| | | | | | | | | |
Collapse
|
227
|
Gondak R, Mauad T, Schultz L, Soares F, Kowalski LP, Vargas PA. Decreased CD1a(+) , CD83(+) and factor XIIIa(+) dendritic cells in cervical lymph nodes and palatine tonsils of AIDS patients. Histopathology 2014; 64:234-41. [PMID: 24192235 DOI: 10.1111/his.12256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022]
Abstract
AIMS The purpose of this study was to quantify and compare the density of dendritic cells (DCs) in cervical lymph nodes (LNs) and palatine tonsils (PTs) of AIDS and non-AIDS patients. METHODS AND RESULTS Factor XIIIa, CD1a and CD83 antibodies were used to identify migratory DCs by immunohistochemistry in LNs and PTs of 32 AIDS patients and 21 HIV-negative control patients. Quantification was performed by the positive pixel count analytical method. AIDS patients presented a lower density of factor XIIIa(+) cells (P < 0.001), CD1a(+) cells (P < 0.05) and CD83(+) cells (P < 0.001) in cervical LNs and PTs compared to the non-AIDS control group. CONCLUSION Overall depletion of DCs in lymphoid tissues of AIDS patients may be predictive of the immune system's loss of disease control.
Collapse
Affiliation(s)
- Rogério Gondak
- Department of Pathology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
228
|
Skountzou I, Compans RW. Skin immunization with influenza vaccines. Curr Top Microbiol Immunol 2014; 386:343-69. [PMID: 25038939 DOI: 10.1007/82_2014_407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Problems with existing influenza vaccines include the strain specificity of the immune response, resulting in the need for frequent reformulation in response to viral antigenic drift. Even in years when the same influenza strains are prevalent, the duration of immunity is limited, and results in the need for annual revaccination. The immunogenicity of the present split or subunit vaccines is also lower than that observed with whole inactivated virus, and the vaccines are not very effective in high risk groups such as the young or the elderly. Vaccine coverage is incomplete, due in part to concerns about the use of hypodermic needles for delivery. Alternative approaches for vaccination are being developed which address many of these concerns. Here we review new approaches which focus on skin immunization, including the development of needle-free delivery systems which use stable dry formulations and induce stronger and longer-lasting immune responses.
Collapse
Affiliation(s)
- Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, CNR Building, 1518 Clifton Road, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
229
|
Abstract
The skin provides an effective physical and biological barrier against environmental and pathogenic insults whilst ensuring tolerance against commensal microbes. This protection is afforded by the unique anatomy and cellular composition of the skin, particularly the vast network of skin-associated immune cells. These include the long-appreciated tissue-resident macrophages, dendritic cells, and mast cells, as well as the more recently described dermal γδ T cells and innate lymphoid cells. Collectively, these cells orchestrate the defense against a wide range of pathogens and environmental challenges, but also perform a number of homeostatic functions. Here, we review recent developments in our understanding of the various roles that leukocyte subsets play in cutaneous immunobiology, and introduce the newer members of the skin immune system. Implications for human disease are discussed.
Collapse
|
230
|
Yamamoto-Kasai E, Yasui K, Shichijo M, Sakata T, Yoshioka T. Impact of TRPV3 on the development of allergic dermatitis as a dendritic cell modulator. Exp Dermatol 2013; 22:820-4. [DOI: 10.1111/exd.12273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Erika Yamamoto-Kasai
- Department of Biology; Graduate School of Science; Kobe University; Kobe Japan
- Shionogi Medicinal Research Laboratories; Shionogi & Co., Ltd.; Osaka Japan
| | - Kiyoshi Yasui
- Shionogi Medicinal Research Laboratories; Shionogi & Co., Ltd.; Osaka Japan
| | - Michitaka Shichijo
- Shionogi Medicinal Research Laboratories; Shionogi & Co., Ltd.; Osaka Japan
| | - Tsuneaki Sakata
- Department of Biology; Graduate School of Science; Kobe University; Kobe Japan
- Shionogi Medicinal Research Laboratories; Shionogi & Co., Ltd.; Osaka Japan
| | - Takeshi Yoshioka
- Shionogi Medicinal Research Laboratories; Shionogi & Co., Ltd.; Osaka Japan
| |
Collapse
|
231
|
Feinberg H, Rowntree TJW, Tan SLW, Drickamer K, Weis WI, Taylor ME. Common polymorphisms in human langerin change specificity for glycan ligands. J Biol Chem 2013; 288:36762-71. [PMID: 24217250 PMCID: PMC3873535 DOI: 10.1074/jbc.m113.528000] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Langerin, a C-type lectin on Langerhans cells, mediates carbohydrate-dependent uptake of pathogens in the first step of antigen presentation to the adaptive immune system. Langerin binds a diverse range of carbohydrates including high mannose structures, fucosylated blood group antigens, and glycans with terminal 6-sulfated galactose. Mutagenesis and quantitative binding assays indicate that salt bridges between the sulfate group and two lysine residues compensate for the nonoptimal binding of galactose at the primary Ca2+ site. A commonly occurring single nucleotide polymorphism (SNP) in human langerin results in change of one of these lysine residues, Lys-313, to isoleucine. Glycan array screening reveals that this amino acid change abolishes binding to oligosaccharides with terminal 6SO4-Gal and enhances binding to oligosaccharides with terminal GlcNAc residues. Structural analysis shows that enhanced binding to GlcNAc may result from Ile-313 packing against the N-acetyl group. The K313I polymorphism is tightly linked to another SNP that results in the change N288D, which reduces affinity for glycan ligands by destabilizing the Ca2+-binding site. Langerin with Asp-288 and Ile-313 shows no binding to 6SO4-Gal-terminated glycans and increased binding to GlcNAc-terminated structures, but overall decreased binding to glycans. Altered langerin function in individuals with the linked N288D and K313I polymorphisms may affect susceptibility to infection by microorganisms.
Collapse
Affiliation(s)
- Hadar Feinberg
- From the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom and
| | | | | | | | | | | |
Collapse
|
232
|
Ng SSY, Koh MJA, Tay YK. Cutaneous Langerhans cell histiocytosis: study of Asian children shows good overall prognosis. Acta Paediatr 2013; 102:e514-8. [PMID: 23909818 DOI: 10.1111/apa.12376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/08/2023]
Abstract
AIM To describe an Asian population with isolated cutaneous Langerhans cell histiocytosis (LCH), presenting a review on previous studies on this subgroup of patients and comparing our cohort with other studies of cutaneous LCH with systemic involvement. METHODS All patients diagnosed as LCH with cutaneous involvement presenting to a tertiary paediatric hospital (KK Women's & Children's Hospital) between January 2001 and December 2011 were reviewed. Information recorded included clinical presentation, investigation results, treatment and outcome. RESULTS We identified 10 patients with cutaneous manifestations of LCH. Six had isolated cutaneous LCH with no visceral or bony involvement, while four had cutaneous lesions with involvement of other organ systems. Of the patients with isolated skin involvement, three were treated with surgical excision, one with topical corticosteroids and two with multi-agent chemotherapy. The four patients with concomitant systemic involvement were treated with multi-agent chemotherapy. None of our patients with isolated cutaneous LCH progressed to multisystem disease during the follow-up period. CONCLUSION Cutaneous LCH, with or without other organ involvement at diagnosis has a good overall prognosis. However, long-term follow-up is recommended in view of possible recurrence.
Collapse
|
233
|
Distinct molecular signature of human skin Langerhans cells denotes critical differences in cutaneous dendritic cell immune regulation. J Invest Dermatol 2013; 134:695-703. [PMID: 24005050 DOI: 10.1038/jid.2013.375] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 12/17/2022]
Abstract
Langerhans cells (LCs) are professional antigen-presenting cells (APCs) residing in the epidermis. Despite their high potential to activate T lymphocytes, current understanding of human LC biology is limited. Genome-wide comparison of the transcriptional profiles of human skin migratory CD1a+ LCs and CD11c+ dermal dendritic cells (DDCs) demonstrated significant differences between these "dendritic cell (DC)" types, including preferential expression of 625 genes (P<0.05) in LC and 914 genes (P<0.05) in DDC. Analysis of the temporal regulation of molecular networks activated after stimulation with tumor necrosis factor-α (TNF-α) confirmed the unique molecular signature of LCs. Although LCs conformed to the phenotype of professional APC, inflammatory signaling activated primarily genes associated with cellular metabolism and mitochondrial activation (e.g., CYB561 and MRPS35), cell membrane re-organization, and antigen acquisition and degradation (CAV1 and PSMD14; P<0.05-P<0.0001). Conversely, TNF-α induced classical activation in DDCs with early downregulation of surface receptors (mannose receptor-1 (MRC1) and C-type lectins), and subsequent upregulation of cytokines, chemokines (IL1a, IL1b, and CCL18), and matrix metalloproteinases (MMP1, MMP3, and MMP9; P<0.05-P<0.0001). Functional interference of caveolin abrogated LCs superior ability to cross-present antigens to CD8+ T lymphocytes, highlighting the importance of these networks to biological function. Taken together, these observations support the idea of distinct biological roles of cutaneous DC types.
Collapse
|
234
|
Abstract
Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy. [BMB Reports 2013; 46(1): 17-24]
Collapse
Affiliation(s)
- Mi-Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea.
| | | | | |
Collapse
|
235
|
Pusztaszeri MP, Sauder KJ, Cibas ES, Faquin WC. Fine-needle aspiration of primary Langerhans cell histiocytosis of the thyroid gland, a potential mimic of papillary thyroid carcinoma. Acta Cytol 2013; 57:406-12. [PMID: 23860349 DOI: 10.1159/000348801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND The clinical presentation of Langerhans cell histiocytosis (LCH) as a primary solitary nodule in the thyroid gland is rare. As a result, there are few reports of its cytologic features in thyroid aspirates where it can pose a diagnostic pitfall. CASE AND CONCLUSION: To foster familiarity with its cytomorphology, we report the fine-needle aspiration biopsy (FNAB) findings of 3 specimens from 2 patients with LCH presenting as a solitary thyroid nodule. All aspirates contained numerous dispersed cells with prominent nuclear grooves, and the background showed a mixed pattern of chronic inflammation including scattered eosinophils. The aspirate from patient 1 raised a differential diagnosis that included chronic lymphocytic thyroiditis and a thyroglossal duct cyst, while the aspirate from patient 2 was interpreted as 'suspicious for papillary thyroid carcinoma'. The diagnosis of LCH was confirmed in both patients after lobectomy and immunohistochemical studies that revealed positive reactivity for CD1a and S-100. LCH of the thyroid gland is rare and can pose significant diagnostic challenges, but increased familiarity with its characteristic cytomorphology can help in avoiding diagnostic pitfalls.
Collapse
Affiliation(s)
- Marc P Pusztaszeri
- Department of Pathology, Geneva University Hospital, Geneva, Switzerland
| | | | | | | |
Collapse
|
236
|
Wevers BA, Geijtenbeek TBH, Gringhuis SI. C-type lectin receptors orchestrate antifungal immunity. Future Microbiol 2013; 8:839-54. [DOI: 10.2217/fmb.13.56] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fungal infections are an emerging threat for human health. A coordinated host immune response is fundamental for successful elimination of an invading fungal microbe. A panel of C-type lectin receptors expressed on antigen-presenting dendritic cells enable innate recognition of fungal cell wall carbohydrates and tailors adaptive responses via the instruction of CD4+ T helper cell fates. Well-balanced T helper cell type 1 and IL-17-producing T helper cell responses are crucial in antifungal immunity and facilitate phagocytic clearance of fungal encounters. Strikingly, different classes of fungi trigger distinct sets of C-type lectin receptors to evoke a pathogen-specific T helper response. In this review, we outline the key roles of several C-type lectin receptors during the generation of protective antifungal immunity, with particular emphasis on the distinct signaling pathways and transcriptional programs triggered by these receptors, which collaborate to orchestrate polarization of the T helper response.
Collapse
Affiliation(s)
- Brigitte A Wevers
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sonja I Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
237
|
The adult penile urethra is a novel entry site for HIV-1 that preferentially targets resident urethral macrophages. Mucosal Immunol 2013; 6:776-86. [PMID: 23187317 DOI: 10.1038/mi.2012.116] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The penile urethra is routinely targeted by sexually transmitted bacterial and viral pathogens, and also represents a probable site for HIV type-1 (HIV-1) entry. Yet, the mechanisms of urethral HIV-1 transmission are unknown. To describe the initial steps of penile HIV-1 entry, we obtained whole penile tissues from individuals undergoing elective gender reassignment and developed ex vivo polarized explants of different penile epithelia, as well as in vitro immunocompetent reconstructed urethra. In penile explants, 1 h exposure to cell-associated HIV-1 results in higher HIV-1 entry into the urethra, whereas the fossa navicularis and glans are relatively resistant to HIV-1. CCR5+/CD4+ urethral macrophages are the initial cells infected by HIV-1, which exit the epithelial compartment following inoculation with cell-associated HIV-1 that induces decreased CCL2/MCP-1 production. Urethral T cells are mostly CD8+ or naive CD4+, and not infected by HIV-1 on its early entry. In urethral reconstructions, efficient translocation of cell-associated HIV-1 depends on viral tropism (R5>X4) and can be decreased by gp41-specific IgAs. Cell-free HIV-1 is inefficient at urethral penetration. Our results identify the male urethra as a novel entry site for HIV-1 that targets resident urethral macrophages. These results might explain the incomplete prophylactic efficacy of male circumcision in reducing HIV-1 transmission.
Collapse
|
238
|
George KT, Anand R, Ganasalingam S, Zain RB. Multisystem Langerhans cell histiocytosis presenting as an oral lesion. J Oral Maxillofac Pathol 2013; 17:106-9. [PMID: 23798841 PMCID: PMC3687163 DOI: 10.4103/0973-029x.110694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
UNLABELLED Langerhans cell histiocytosis (LCH) is a rare proliferative disorder in which the pathologic Langerhans cells infiltrate and destroy the tissues. Patients with LCH present varied clinical manifestations. Cutaneous lesions in LCH manifest as vesiculopapular eruptions that often mimic various infectious diseases particularly in infants. We present a case of a female infant with an ulcerative lesion intraorally. The baby was asymptomatic otherwise. A detailed history revealed the presence of cutaneous lesions that was overlooked by her parents. CONCLUSION This report tries to briefly discuss the current concepts regarding the etiology of LCH. An attempt has been made to emphasis the need for a through systemic examination. The protocol of investigative procedures to be adopted in LCH is also discussed.
Collapse
Affiliation(s)
- Kallarakkal Thomas George
- Department of Oral Pathology, Oral Medicine and Periodontology, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
239
|
Xu YP, Qi RQ, Chen W, Shi Y, Cui ZZ, Gao XH, Chen HD, Zhou L, Mi QS. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile. Aging (Albany NY) 2013. [PMID: 23178507 PMCID: PMC3560442 DOI: 10.18632/aging.100501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunosenescence is a result of progressive decline in immune system function with advancing age. Epidermal Langerhans cells (LCs), belonging to the dendritic cell (DC) family, act as sentinels to play key roles in the skin immune responses. However, it has not been fully elucidated how aging affects development and function of LCs. Here, we systemically analyzed LC development and function during the aging process in C57BL/6J mice, and performed global microRNA (miRNA) gene expression profiles in aged and young LCs. We found that the frequency and maturation of epidermal LCs were significantly reduced in aged mice starting at 12 months of age, while the Langerin expression and ability to phagocytose Dextran in aged LCs were increased compared to LCs from < 6 month old mice. The migration of LCs to draining lymph nodes was comparable between aged and young mice. Functionally, aged LCs were impaired in their capacity to induce OVA-specific CD4+ and CD8+ T cell proliferation. Furthermore, the expression of miRNAs in aged epidermal LCs showed a distinct profile compared to young LCs. Most interestingly, aging-regulated miRNAs potentially target TGF-β-dependent and non- TGF-β-dependent signal pathways related to LCs. Overall, our data suggests that aging affects LCs development and function, and that age-regulated miRNAs may contribute to the LC developmental and functional changes in aging.
Collapse
Affiliation(s)
- Ying-Ping Xu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Langerhans Cell Histiocytosis: a Case Report. SERBIAN JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2013. [DOI: 10.2478/sjdv-2013-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Langerhans cell histiocytosis is a disease which results from accumulation or proliferation of a clonal population of cells with the phenotype of Langerhans cells arrested at an early stage of activation that are functionally deficient. The etiology and pathogenesis of the disorder are still unknown. There are ongoing investigations to determine whether it is a reactive or a neoplastic disease. The fact is that neoplastic and reactive processes may have many clinical and pathological similarities. Some emphasize the role of “cytokine storm” in Langerhans cells. Further studies are necessary in all areas, from the etiology and pathogenesis to diagnosis and therapy. Langerhans cell histiocytosis primarily affects bones, but less commonly it may involve other organ systems, or present as a multisystem disease. The clinical course is variable, from benign forms with spontaneous resolution, to chronic disseminated forms with fatal outcome. This is a report of a 29-year-old man with Langerhans cell histiocytosis with an onset at the age of 8, which later progressed to a multisystem disease. Apart from lesions on the skin and exposed mucous membranes, the patient also presented with: diabetes insipidus, granuloma of the right femur and slight bulbar protrusion of the right eye. The patient experienced spontaneous pneumothorax on two occasions. The diagnosis of Langerhans cell histiocytosis was histologically confirmed using electron microscopy by presence of Birbeck granules in the histiocytes. A favorable therapeutic response was obtained after systemic corticosteroid therapy.
Collapse
|
241
|
Girschikofsky M, Arico M, Castillo D, Chu A, Doberauer C, Fichter J, Haroche J, Kaltsas GA, Makras P, Marzano AV, de Menthon M, Micke O, Passoni E, Seegenschmiedt HM, Tazi A, McClain KL. Management of adult patients with Langerhans cell histiocytosis: recommendations from an expert panel on behalf of Euro-Histio-Net. Orphanet J Rare Dis 2013; 8:72. [PMID: 23672541 PMCID: PMC3667012 DOI: 10.1186/1750-1172-8-72] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/02/2013] [Indexed: 02/06/2023] Open
Abstract
Langerhans Cell Histiocytosis (LCH) is an orphan disease of clonal dendritic cells which may affect any organ of the body. Most of the knowledge about the diagnosis and therapy is based on pedriatic studies. Adult LCH patients are often evaluated by physicians who focus on only the most obviously affected organ without sufficient evaluation of other systems, resulting in patients being underdiagnosed and/or incompletely staged. Furthermore they may be treated with pediatric-based therapies which are less effective and sometimes more toxic for adults. The published literature on adult LCH cases lacks a comprehensive discussion on the differences between pediatric and adult patients and there are no recommendations for evaluation and comparative therapies. In order to fill this void, a number of experts in this field cooperated to develop the first recommendations for management of adult patients with LCH. Key questions were selected according to the clinical relevance focusing on diagnostic work up, therapy, and follow up. Based on the available literature up to December 2012, recommendations were established, drafts were commented by the entire group, and redrafted by the executive editor. The quality of evidence of the recommendations is predominantly attributed to the level of expert opinion. Final agreement was by consensus.
Collapse
Affiliation(s)
- Michael Girschikofsky
- Department of Medicine I, Center of Hematology an Stem Cell Transplantation, Hemostasis and Medical Oncology Internal Medicine I, Elisabethinen Hospital, Fadinger Str, 1 4010, Linz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Lenormand C, Spiegelhalter C, Cinquin B, Bardin S, Bausinger H, Angénieux C, Eckly A, Proamer F, Wall D, Lich B, Tourne S, Hanau D, Schwab Y, Salamero J, de la Salle H. Birbeck granule-like "organized smooth endoplasmic reticulum" resulting from the expression of a cytoplasmic YFP-tagged langerin. PLoS One 2013; 8:e60813. [PMID: 23577166 PMCID: PMC3618057 DOI: 10.1371/journal.pone.0060813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 03/04/2013] [Indexed: 11/22/2022] Open
Abstract
Langerin is required for the biogenesis of Birbeck granules (BGs), the characteristic organelles of Langerhans cells. We previously used a Langerin-YFP fusion protein having a C-terminal luminal YFP tag to dynamically decipher the molecular and cellular processes which accompany the traffic of Langerin. In order to elucidate the interactions of Langerin with its trafficking effectors and their structural impact on the biogenesis of BGs, we generated a YFP-Langerin chimera with an N-terminal, cytosolic YFP tag. This latter fusion protein induced the formation of YFP-positive large puncta. Live cell imaging coupled to a fluorescence recovery after photobleaching approach showed that this coalescence of proteins in newly formed compartments was static. In contrast, the YFP-positive structures present in the pericentriolar region of cells expressing Langerin-YFP chimera, displayed fluorescent recovery characteristics compatible with active membrane exchanges. Using correlative light-electron microscopy we showed that the coalescent structures represented highly organized stacks of membranes with a pentalaminar architecture typical of BGs. Continuities between these organelles and the rough endoplasmic reticulum allowed us to identify the stacks of membranes as a form of “Organized Smooth Endoplasmic Reticulum” (OSER), with distinct molecular and physiological properties. The involvement of homotypic interactions between cytoplasmic YFP molecules was demonstrated using an A206K variant of YFP, which restored most of the Langerin traffic and BG characteristics observed in Langerhans cells. Mutation of the carbohydrate recognition domain also blocked the formation of OSER. Hence, a “double-lock” mechanism governs the behavior of YFP-Langerin, where asymmetric homodimerization of the YFP tag and homotypic interactions between the lectin domains of Langerin molecules participate in its retention and the subsequent formation of BG-like OSER. These observations confirm that BG-like structures appear wherever Langerin accumulates and confirm that membrane trafficking effectors dictate their physiology and, illustrate the importance of molecular interactions in the architecture of intracellular membranes.
Collapse
Affiliation(s)
- Cédric Lenormand
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Coralie Spiegelhalter
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Bertrand Cinquin
- Molecular Mechanisms of Intracellular Transport Laboratory, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
- Cell and Tissue Imaging Facility, BioImaging Cell-Institut Curie and Tissue Core Facility & Nikon Imaging Center, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
- Soleil Synchrotron, Gif-sur-Yvette, France
| | - Sabine Bardin
- Molecular Mechanisms of Intracellular Transport Laboratory, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - Huguette Bausinger
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Catherine Angénieux
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Anita Eckly
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Unité Mixte de Recherche Santé 949, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
| | - Fabienne Proamer
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | | | - Ben Lich
- FEI Company, Eindhoven, The Netherlands
| | - Sylvie Tourne
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Daniel Hanau
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
| | - Yannick Schwab
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Jean Salamero
- Molecular Mechanisms of Intracellular Transport Laboratory, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
- Cell and Tissue Imaging Facility, BioImaging Cell-Institut Curie and Tissue Core Facility & Nikon Imaging Center, Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - Henri de la Salle
- Unité Mixte de Recherche Santé 725, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, Strasbourg, France
- * E-mail:
| |
Collapse
|
243
|
Felipe-Silva A, Assef MS, Rodrigues RA, Pagliari C. Adult Langerhans cell histiocytosis presenting as metachronous colonic polyps. AUTOPSY AND CASE REPORTS 2013; 3:39-44. [PMID: 31528596 PMCID: PMC6671878 DOI: 10.4322/acr.2013.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/04/2013] [Indexed: 11/23/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare disease characterized by proliferation of Langerhans-type cells that express CD1a, Langerin (CD207) and S100 protein. Birbeck granules are a hallmark by ultrastructural examination. LCH presents with a wide clinical spectrum, ranging from solitary lesions of a single site (usually bone or skin) to multiple or disseminated multisystemic lesions, which can lead to severe organ dysfunction. Most cases occur in children. Gastrointestinal tract involvement is rare and has been associated with systemic illness and poor prognosis especially in children under the age of 2 years. Adult gastrointestinal LCH is very rare. We report a case of a previously healthy, nonsmoking 48-year-old male who was referred for routine screening colonoscopy. Two sessile, smooth, firm and yellowish LCH polyps measuring 0.2 cm and 0.3 cm were detected in the sigmoid colon. Fifteen months later a second colonoscopy found two histologically confirmed hyperplastic polyps at the sigmoid colon. No other LCH lesions were seen. A third colonoscopy after 28 months of follow-up found a submucosal 0.5 cm infiltrated and ulcerated LCH polyp in the cecum, close to the ostium of the appendix. The patient had been asymptomatic for all this period. Imaging investigation for systemic or multiorgan disease did not find any sign of extracolonic involvement. On histology all lesions showed typical LCH features and immunohistochemical analysis showed strong and diffuse staining for CD1a and CD207. This case illustrates two distinct clinicopathologic features not previously reported in this particular clinical setting: metachronous colonic involvement and positivity for CD207.
Collapse
Affiliation(s)
- Aloísio Felipe-Silva
- Fleury Medicina e Saúde, São Paulo/SP - Brazil.,Anatomic Pathology Service - Hospital Universitário - Universidade de São Paulo, São Paulo/SP - Brazil
| | - Mauricio Saab Assef
- Fleury Medicina e Saúde, São Paulo/SP - Brazil.,Endoscopy Service - Santa Casa de São Paulo, São Paulo/SP - Brazil
| | - Rodrigo Azevedo Rodrigues
- Fleury Medicina e Saúde, São Paulo/SP - Brazil.,Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Carla Pagliari
- Department of Pathology - Faculdade de Medicina - Universidade de São Paulo, São Paulo/SP - Brazil
| |
Collapse
|
244
|
Doss ALN, Smith PG. Nerve-Langerhans cell interactions in diabetes and aging. Histol Histopathol 2013; 27:1589-98. [PMID: 23059889 DOI: 10.14670/hh-27.1589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cutaneous infections are a leading cause of hospitalization of diabetic patients. Langerhans cells (LCs) are antigen-presenting cutaneous dendritic cells that protect against infections, and effects of diabetes and aging on these cells are unclear. We examined LCs in footpads of rats with streptozotocin-induced diabetes at 3 months of age following 4 weeks of diabetes, and at 6 months following 16 weeks of diabetes. Immunostaining of LCs using the selective marker protein langerin showed cutaneous LC composition increased between 3 and 6 months of age owing to increased LC numbers and size in control rats. In diabetic rats, LC numbers increased with age but, unlike 6 month old controls, cell size did not, suggesting that diabetes impairs the increase in cell size that is a hallmark of LC maturation. Diabetes reduced LC numbers after 4 weeks and numbers and sizes following 16 weeks. We examined the relation between LC and innervation and found that, while axon density decreased with aging, it was not affected by 16 weeks of diabetes. However, LCs expressing the neuronal marker PGP9.5 represented a source of error in axonal counts. These findings support the hypothesis that diabetes substantially impacts LC proliferation and maturation independent of effects on cutaneous innervation. Accordingly, the interactions of diabetes and aging on LCs may be important factors in predisposing diabetic patients to cutaneous ulcers and infections.
Collapse
Affiliation(s)
- A L N Doss
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
245
|
Thépaut M, Guzzi C, Sutkeviciute I, Sattin S, Ribeiro-Viana R, Varga N, Chabrol E, Rojo J, Bernardi A, Angulo J, Nieto PM, Fieschi F. Structure of a Glycomimetic Ligand in the Carbohydrate Recognition Domain of C-type Lectin DC-SIGN. Structural Requirements for Selectivity and Ligand Design. J Am Chem Soc 2013; 135:2518-29. [DOI: 10.1021/ja3053305] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Cinzia Guzzi
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Ieva Sutkeviciute
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Sara Sattin
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Renato Ribeiro-Viana
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Norbert Varga
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Eric Chabrol
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Anna Bernardi
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Jesus Angulo
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Pedro M. Nieto
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- Institut Universitaire de France, 103 boulevard Saint-Michel 75005 Paris, France
| |
Collapse
|
246
|
Seré K, Baek JH, Ober-Blöbaum J, Müller-Newen G, Tacke F, Yokota Y, Zenke M, Hieronymus T. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 2013; 37:905-16. [PMID: 23159228 DOI: 10.1016/j.immuni.2012.07.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 07/30/2012] [Indexed: 11/20/2022]
Abstract
Langerhans cells (LCs), the dendritic cells (DCs) in skin epidermis, possess an exceptional life cycle and developmental origin. Here we identified two types of LCs, short-term and long-term LCs, which transiently or stably reconstitute the LC compartment, respectively. Short-term LCs developed from Gr-1(hi) monocytes under inflammatory conditions and occurred independently of the transcription factor Id2. Long-term LCs arose from bone marrow in steady state and were critically dependent on Id2. Surface marker and gene expression analysis positioned short-term LCs close to Gr-1(hi) monocytes, which is indicative of their monocytic origin. We also show that LC reconstitution after UV light exposure occurs in two waves: an initial fast and transient wave of Gr-1(hi) monocyte-derived short-term LCs is followed by a second wave of steady-state precursor-derived long-term LCs. Our data demonstrate the presence of two types of LCs that develop through different pathways in inflammation and steady state.
Collapse
Affiliation(s)
- Kristin Seré
- Institute for Biomedical Engineering, Department of Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Haupt R, Minkov M, Astigarraga I, Schäfer E, Nanduri V, Jubran R, Egeler RM, Janka G, Micic D, Rodriguez-Galindo C, Van Gool S, Visser J, Weitzman S, Donadieu J, for the Euro Histio Network. Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr Blood Cancer 2013; 60:175-84. [PMID: 23109216 PMCID: PMC4557042 DOI: 10.1002/pbc.24367] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/18/2012] [Indexed: 12/15/2022]
Abstract
These guidelines for the management of patients up to 18 years with Langerhans cell histiocytosis (LCH) have been set up by a group of experts involved in the Euro Histio Net project who participated in national or international studies and in peer reviewed publications. Existing guidelines were reviewed and changed where new evidence was available in the literature up to 2012. Data and publications have been ranked according to evidence based medicine and when there was a lack of published data, consensus between experts was sought. Guidelines for diagnosis, initial clinical work-up, and treatment and long-term follow-up of LCH patients are presented.
Collapse
Affiliation(s)
- Riccardo Haupt
- Department of Hematology and Oncology, Epidemiology and Biostatistics Section, Istituto G. GasliniGenova, Italy
| | - Milen Minkov
- Children's Cancer Research Institute, St. Anna Children's HospitalVienna, Austria
| | | | - Eva Schäfer
- Reference Centre for Histiocytosis at Hopital Trousseau, Assistance Publique – Hopitaux de ParisFrance
| | | | - Rima Jubran
- Children's Hospital of Los AngelesLos Angeles, California
| | | | - Gritta Janka
- University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Dragan Micic
- Mother and Child Health Institute of Serbia “Dr Vukan Cupic,” BelgradeSerbia
| | | | | | - Johannes Visser
- University Hospitals of Leicester, Leicester Children's HospitalLeicester, UK
| | | | - Jean Donadieu
- Reference Centre for Histiocytosis at Hopital Trousseau, Assistance Publique – Hopitaux de ParisFrance,*Correspondence to: Jean Donadieu, MD, PhD, Service d'Hémato Oncologie Pédiatrique, Hopital Trousseau, 26 avenue du Dr Netter, F 75012 Paris, France. E-mail:
| | | |
Collapse
|
248
|
Abstract
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- Gianna Elena Hammer
- Department of Medicine, University of California, San Francisco, California 94143
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, California 94143
| |
Collapse
|
249
|
Lundberg K, Albrekt AS, Nelissen I, Santegoets S, de Gruijl TD, Gibbs S, Lindstedt M. Transcriptional profiling of human dendritic cell populations and models--unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS One 2013; 8:e52875. [PMID: 23341914 PMCID: PMC3544800 DOI: 10.1371/journal.pone.0052875] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/22/2012] [Indexed: 01/12/2023] Open
Abstract
Background Dendritic cells (DCs) comprise heterogeneous populations of cells, which act as central orchestrators of the immune response. Applicability of primary DCs is restricted due to their scarcity and therefore DC models are commonly employed in DC-based immunotherapy strategies and in vitro tests assessing DC function. However, the interrelationship between the individual in vitro DC models and their relative resemblance to specific primary DC populations remain elusive. Objective To describe and assess functionality and applicability of the available in vitro DC models by using a genome-wide transcriptional approach. Methods Transcriptional profiling was performed with four commonly used in vitro DC models (MUTZ-3-DCs, monocyte-derived DCs, CD34-derived DCs and Langerhans cells (LCs)) and nine primary DC populations (dermal DCs, LCs, blood and tonsillar CD123+, CD1c+ and CD141+ DCs, and blood CD16+ DCs). Results Principal Component Analysis showed that transcriptional profiles of each in vitro DC model most closely resembled CD1c+ and CD141+ tonsillar myeloid DCs (mDCs) among primary DC populations. Thus, additional differentiation factors may be required to generate model DCs that more closely resemble other primary DC populations. Also, no model DC stood out in terms of primary DC resemblance. Nevertheless, hierarchical clustering showed clusters of differentially expressed genes among individual DC models as well as primary DC populations. Furthermore, model DCs were shown to differentially express immunologically relevant transcripts and transcriptional signatures identified for each model DC included several immune-associated transcripts. Conclusion The unique transcriptional profiles of in vitro DC models suggest distinct functionality in immune applications. The presented results will aid in the selection of an appropriate DC model for in vitro assays and assist development of DC-based immunotherapy.
Collapse
|
250
|
Koutsonanos DG, Compans RW, Skountzou I. Targeting the skin for microneedle delivery of influenza vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 785:121-32. [PMID: 23456844 PMCID: PMC6525635 DOI: 10.1007/978-1-4614-6217-0_13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza infection represents a major socioeconomic burden worldwide. Skin represents a new target that has gained much attention in recent years for delivery of influenza vaccine as an alternative to the conventional intramuscular route of immunization. In this review we describe different microneedle vaccination approaches used in vivo, including metal and dissolving microneedle patches that have demonstrated promising results. Additionally we analyze the immunological basis for microneedle skin immunization and targeting of the skin's dense population of antigen presenting cells, their role, characterization, and function. Additionally we analyze the importance of inflammatory signaling in the skin after microneedle delivery.
Collapse
Affiliation(s)
- Dimitrios G. Koutsonanos
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Richard W. Compans
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Ioanna Skountzou
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| |
Collapse
|