201
|
Darbinian N, Gomberg R, Mullen L, Garcia S, White MK, Khalili K, Amini S. Suppression of HIV-1 transcriptional elongation by a DING phosphatase. J Cell Biochem 2011; 112:225-32. [PMID: 21117063 DOI: 10.1002/jcb.22915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HIV-1 gene transcription is controlled by the cooperation of viral and host factors which bind to specific DNA sequences within the viral promoter spanning the long terminal repeat (LTR). Previously we showed that the St. John's Wort DING phosphatase, p27SJ, suppresses HIV-1 gene transcription by binding to the viral protein Tat and preventing its nuclear import. Here, we describe the inhibitory effect of p27SJ on the phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII). This inhibition leads to the suppression of the association of RNAPII with the LTR. Inhibition of binding of RNAPII to LTR by p27SJ resulted in the suppression of LTR transcription elongation and a decrease in LTR transcriptional activity. Another form of the St. John's Wort DING phosphatase, p38SJ, also suppressed binding of RNAPII to the LTR, reduced transcription elongation and was even more powerful than p27SJ in inhibiting the transcriptional activity of the LTR. Our data suggest a possible mechanism by which the p27SJ/p38SJ DING phosphatase can regulate HIV-1 LTR expression by inhibiting phosphorylation of the CTD of RNAPII and suppressing LTR transcription elongation.
Collapse
Affiliation(s)
- Nune Darbinian
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
PURPOSE OF REVIEW To discuss recent advances in our understanding of the diverse roles of NF-κB/Rel family members in HIV-1 latency. RECENT FINDINGS Various NF-κB/Rel family members can reinforce maintenance of HIV-1 latency. For example, p50 recruits histone deacetylase 1 to the HIV-1 long terminal repeat promoting chromatin condensation and reduced RNA Pol II recruitment. Low-level NF-κB activation during homeostatic proliferation of memory CD4 T cells induced by IL-7 and TCR signaling or OX40 action promotes expression of antiapoptotic gene targets such as BCL2 and BCLXL. Additionally, the IκB kinase phosphorylates FOXO3a transcription factor, blocking its induction of proapoptotic genes. These combined effects promote memory CD4 T-cell survival, thus maintaining the latent reservoir. Conversely, when the nontumorigenic phorbol ester prostratin is combined with histone deacetylase inhibitors, potent synergistic activation of latent HIV-1 occurs involving nuclear expression of NF-κB. SUMMARY These recent findings highlight both the antagonistic and agonistic effects of the NF-κB signaling pathway on HIV-1 latency. Synergistic inducers might be useful for flushing of latent virus from reservoirs in infected patients. The ultimate, albeit lofty, goal is to achieve full viral eradication. However, a more reasonable goal might be a functional cure where patients experience a drug-free remission.
Collapse
|
203
|
Choudhary SK, Margolis DM. Curing HIV: Pharmacologic approaches to target HIV-1 latency. Annu Rev Pharmacol Toxicol 2011; 51:397-418. [PMID: 21210747 DOI: 10.1146/annurev-pharmtox-010510-100237] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV-1 infection persists even after years of antiretroviral therapy (ART). Although ART can halt viral replication and thereby reduce viremia to clinically undetectable levels, proviral latency established within the host genome remains largely unaffected by ART and can replenish systemic infection following interruption of therapy. Pharmacologic strategies, which not only target viral replication but also deplete proviral infection, are required for successful clearance of HIV-1 infection. This review highlights the current understanding of molecular mechanisms that establish and maintain HIV-1 latency in its major reservoir, the resting memory CD4(+) T cell. We also identify the molecular targets that might be exploited to induce HIV-1 expression, remove epigenetic restrictions, or enhance effective transcription. Finally, we discuss the potential pharmacologic approaches toward targeting viral persistence in different cellular and anatomical reservoirs to achieve a cure of HIV-1 infection.
Collapse
Affiliation(s)
- Shailesh K Choudhary
- Departments of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
204
|
Qi T, Tang W, Wang L, Zhai L, Guo L, Zeng X. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J Biol Chem 2011; 286:15171-81. [PMID: 21378166 DOI: 10.1074/jbc.m110.184374] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin is a key regulator of RNA polymerase (Pol) II-dependent transcription. Positive transcription elongation factor b (P-TEFb), a Cdk9/cyclin T1 heterodimer, has been reported to play a critical role in transcription elongation. However, the relationship between actin and P-TEFb is still not clear. In this study, actin was found to interact with Cdk9, a catalytic subunit of P-TEFb, in elongation complexes. Using immunofluorescence and immunoprecipitation assays, Cdk9 was found to bind to G-actin through the conserved Thr-186 in the T-loop. Overexpression and in vitro kinase assays showed that G-actin promotes P-TEFb-dependent phosphorylation of the Pol II C-terminal domain. An in vitro transcription experiment revealed that the interaction between G-actin and Cdk9 stimulated Pol II transcription elongation. ChIP and immobilized template assays indicated that actin recruited Cdk9 to a transcriptional template in vivo and in vitro. Using cytokine IL-6-inducible p21 gene expression system, we revealed that actin recruited Cdk9 to endogenous gene. Moreover, overexpression of actin and Cdk9 increased histone H3 acetylation and acetylized histone H3 binding to a transcriptional template through the interaction with histone acetyltransferase, p300. Taken together, our results suggested that actin participates in transcription elongation by recruiting Cdk9 for phosphorylation of the Pol II C-terminal domain, and the actin-Cdk9 interaction promotes chromatin remodeling.
Collapse
Affiliation(s)
- Tianyang Qi
- Key Laboratory of Molecular Epigenetics of MOE and the Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | | | | | | | | | | |
Collapse
|
205
|
He N, Zhou Q. New insights into the control of HIV-1 transcription: when Tat meets the 7SK snRNP and super elongation complex (SEC). J Neuroimmune Pharmacol 2011; 6:260-8. [PMID: 21360054 PMCID: PMC3087102 DOI: 10.1007/s11481-011-9267-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/15/2011] [Indexed: 12/18/2022]
Abstract
Recent studies aimed at elucidating the mechanism controlling HIV-1 transcription have led to the identification and characterization of two multi-subunit complexes that both contain P-TEFb, a human transcription elongation factor and co-factor for activation of HIV-1 gene expression by the viral Tat protein. The first complex, termed the 7SK snRNP, acts as a reservoir where active P-TEFb can be withdrawn by Tat to stimulate HIV-1 transcription. The second complex, termed the super elongation complex (SEC), represents the form of P-TEFb delivered by Tat to the paused RNA polymerase II at the viral long terminal repeat during Tat transactivation. Besides P-TEFb, SEC also contains other elongation factors/co-activators, and they cooperatively stimulate HIV-1 transcription. Recent data also indicate SEC as a target for the mixed lineage leukemia (MLL) protein to promote the expression of MLL target genes and leukemogenesis. Given their roles in HIV-1/AIDS and cancer, further characterization of 7SK snRNP and SEC will help develop strategies to suppress aberrant transcriptional elongation caused by uncontrolled P-TEFb activation. As both complexes are also important for normal cellular gene expression, studying their structures and functions will elucidate the mechanisms that control metazoan transcriptional elongation in general.
Collapse
Affiliation(s)
- Nanhai He
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
206
|
Li J, Gilmour DS. Promoter proximal pausing and the control of gene expression. Curr Opin Genet Dev 2011; 21:231-5. [PMID: 21324670 DOI: 10.1016/j.gde.2011.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/18/2011] [Indexed: 12/18/2022]
Abstract
The advent of methods for mapping the location of specific proteins across genomes is substantially enlightening our understanding of gene regulation. One recent discovery is that Pol II is concentrated at the 5' end of thousands of genes in mammalian and Drosophila cells. Before this, much research had focused on understanding how sequence-specific, DNA-binding proteins orchestrate the actions of regulators of chromatin structure and the general transcriptional machinery to control transcription initiation. The concentration of Pol II at the 5' ends of genes indicates that key steps regulating transcription occur after Pol II has associated with a gene's promoter.
Collapse
Affiliation(s)
- Jian Li
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | | |
Collapse
|
207
|
Nechaev S, Adelman K. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:34-45. [PMID: 21081187 PMCID: PMC3021596 DOI: 10.1016/j.bbagrm.2010.11.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 01/12/2023]
Abstract
Proper regulation of gene expression is essential for the differentiation, development and survival of all cells and organisms. Recent work demonstrates that transcription of many genes, including key developmental and stimulus-responsive genes, is regulated after the initiation step, by pausing of RNA polymerase II during elongation through the promoter-proximal region. Thus, there is great interest in better understanding the events that follow transcription initiation and the ways in which the efficiency of early elongation can be modulated to impact expression of these highly regulated genes. Here we describe our current understanding of the steps involved in the transition from an unstable initially transcribing complex into a highly stable and processive elongation complex. We also discuss the interplay between factors that affect early transcript elongation and the potential physiological consequences for genes that are regulated through transcriptional pausing.
Collapse
Affiliation(s)
- Sergei Nechaev
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Karen Adelman
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
208
|
Kaichi S, Takaya T, Morimoto T, Sunagawa Y, Kawamura T, Ono K, Shimatsu A, Baba S, Heike T, Nakahata T, Hasegawa K. Cyclin-dependent kinase 9 forms a complex with GATA4 and is involved in the differentiation of mouse ES cells into cardiomyocytes. J Cell Physiol 2010; 226:248-54. [PMID: 20665673 DOI: 10.1002/jcp.22336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The treatment of ES cells with trichostatin A (TSA), an HDAC inhibitor, induces the acetylation of GATA4 as well as histones, and facilitates their differentiation into cardiomyocytes. Recently, we demonstrated that cyclin-dependent kinase 9 (Cdk9), a core component of positive elongation factor-b, is a novel GATA4-binding partner. The present study examined whether Cdk9 forms a complex with GATA4 in mouse ES cells and is involved in their differentiation into cardiomyocytes. Mouse ES cells and Nkx2.5/GFP ES cells, in which green fluorescent protein (GFP) is expressed under the control of the cardiac-specific Nkx2.5 promoter, were induced to differentiate on feeder-free gelatin-coated plates. Immunoprecipitation/Western blotting in nuclear extracts from mouse ES cells demonstrated that Cdk9 as well as cyclin T1 interact with GATA4 during myocardial differentiation. TSA treatment increased Nkx2.5/GFP-positive cells and endogenous mRNA levels of Nkx2.5 and atrial natriuretic factor. To determine the role of Cdk9 in myocardial cell differentiation, we examined the effects of a dominant-negative form of Cdk9 (DN-Cdk9), which loses its kinase activity, and a Cdk9 kinase inhibitor, 5,6-dichloro-1-β-ribofuranosyl-benzimidazole (DRB) on TSA-induced myocardial cell differentiation. The introduction of the DN-Cdk9 inhibited TSA-induced increase in GFP expression in Nkx2.5/GFP ES cells. The administration of DRB into ES cells significantly inhibited TSA-induced increase of endogenous Nkx2.5 mRNA levels in ES cells as well as GFP expression in Nkx2.5/GFP ES cells. These findings demonstrate that Cdk9 is involved in the differentiation of mouse ES cells into cardiomyocytes by interacting with GATA4.
Collapse
Affiliation(s)
- Shinji Kaichi
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Fushimi-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Schmerwitz UK, Sass G, Khandoga AG, Joore J, Mayer BA, Berberich N, Totzke F, Krombach F, Tiegs G, Zahler S, Vollmar AM, Fürst R. Flavopiridol protects against inflammation by attenuating leukocyte-endothelial interaction via inhibition of cyclin-dependent kinase 9. Arterioscler Thromb Vasc Biol 2010; 31:280-8. [PMID: 21088252 DOI: 10.1161/atvbaha.110.213934] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The cyclin-dependent kinase (CDK) inhibitor flavopiridol is currently being tested in clinical trials as anticancer drug. Beyond its cell death-inducing action, we hypothesized that flavopiridol affects inflammatory processes. Therefore, we elucidated the action of flavopiridol on leukocyte-endothelial cell interaction and endothelial activation in vivo and in vitro and studied the underlying molecular mechanisms. METHODS AND RESULTS Flavopiridol suppressed concanavalin A-induced hepatitis and neutrophil infiltration into liver tissue. Flavopiridol also inhibited tumor necrosis factor-α-induced leukocyte-endothelial cell interaction in the mouse cremaster muscle. Endothelial cells were found to be the major target of flavopiridol, which blocked the expression of endothelial cell adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin), as well as NF-κB-dependent transcription. Flavopiridol did not affect inhibitor of κB (IκB) kinase, the degradation and phosphorylation of IκBα, nuclear translocation of p65, or nuclear factor-κB (NF-κB) DNA-binding activity. By performing a cellular kinome array and a kinase activity panel, we found LIM domain kinase-1 (LIMK1), casein kinase 2, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), CDK4, CDK6, CDK8, and CDK9 to be influenced by flavopiridol. Using specific inhibitors, as well as RNA interference (RNAi), we revealed that only CDK9 is responsible for the action of flavopiridol. CONCLUSIONS Our study highlights flavopiridol as a promising antiinflammatory compound and inhibition of CDK9 as a novel approach for the treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Ulrike K Schmerwitz
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Eilebrecht S, Brysbaert G, Wegert T, Urlaub H, Benecke BJ, Benecke A. 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation. Nucleic Acids Res 2010; 39:2057-72. [PMID: 21087998 PMCID: PMC3064786 DOI: 10.1093/nar/gkq1153] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-coding (nc) RNAs are increasingly recognized to play important regulatory roles in eukaryotic gene expression. The highly abundant and essential 7SK ncRNA has been shown to negatively regulate RNA Polymerase II transcription by inactivating the positive transcription elongation factor b (P-TEFb) in cellular and Tat-dependent HIV transcription. Here, we identify a more general, P-TEFb-independent role of 7SK RNA in directly affecting the function of the architectural transcription factor and chromatin regulator HMGA1. An important regulatory role of 7SK RNA in HMGA1-dependent cell differentiation and proliferation regulation is uncovered with the identification of over 1500 7SK-responsive HMGA1 target genes. Elevated HMGA1 expression is observed in nearly every type of cancer making the use of a 7SK substructure in the inhibition of HMGA1 activity, as pioneered here, potentially useful in therapy. The 7SK-HMGA1 interaction not only adds an essential facet to the comprehension of transcriptional plasticity at the coupling of initiation and elongation, but also might provide a molecular link between HIV reprogramming of cellular gene expression-associated oncogenesis.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- Institut des Hautes Études Scientifiques & Centre National de la Recherche Scientifique USR3078, 35 route de Chartres, 91440 Bures sur Yvette, France
| | | | | | | | | | | |
Collapse
|
211
|
Human T-lymphotropic virus type 1 Tax protein complexes with P-TEFb and competes for Brd4 and 7SK snRNP/HEXIM1 binding. J Virol 2010; 84:12801-9. [PMID: 20926576 DOI: 10.1128/jvi.00943-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb) plays an important role in stimulating RNA polymerase II elongation for viral and cellular gene expression. P-TEFb is found in cells in either an active, low-molecular-weight (LMW) form or an inactive, high-molecular-weight (HMW) form. We report here that human T-lymphotropic virus type 1 (HTLV-1) Tax interacts with the cyclin T1 subunit of P-TEFb, forming a distinct Tax/P-TEFb LMW complex. We demonstrate that Tax can play a role in regulating the amount of HMW complex present in the cell by decreasing the binding of 7SK snRNP/HEXIM1 to P-TEFb. This is seen both in vitro using purified Tax protein and in vivo in cells transduced with Tax expression constructs. Further, we find that a peptide of cyclin T1 spanning the Tax binding domain inhibits the ability of Tax to disrupt HMW P-TEFb complexes. These results suggest that the direct interaction of Tax with cyclin T1 can dissociate P-TEFb from the P-TEFb/7SK snRNP/HEXIM1 complex for activation of the viral long terminal repeat (LTR). We also show that Tax competes with Brd4 for P-TEFb binding. Chromatin immunoprecipitation (ChIP) assays demonstrated that Brd4 and P-TEFb are associated with the basal HTLV-1 LTR, while Tax and P-TEFb are associated with the activated template. Furthermore, the knockdown of Brd4 by small interfering RNA (siRNA) activates the HTLV-1 LTR promoter, which results in an increase in viral expression and production. Our studies have identified Tax as a regulator of P-TEFb that is capable of affecting the balance between its association with the large inactive complex and the small active complex.
Collapse
|
212
|
Smallie T, Ricchetti G, Horwood NJ, Feldmann M, Clark AR, Williams LM. IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages. J Exp Med 2010; 207:2081-8. [PMID: 20805562 PMCID: PMC2947066 DOI: 10.1084/jem.20100414] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/04/2010] [Indexed: 11/22/2022] Open
Abstract
IL-10 plays a central nonredundant role in limiting inflammation in vivo. However, the mechanisms involved remain to be resolved. Using primary human macrophages, we found that IL-10 inhibits selected inflammatory genes, primarily at a level of transcription. At the TNF gene, this occurs not through an inhibition of RNA polymerase II (Pol II) recruitment and transcription initiation but through a mechanism targeting the stimulation of transcription elongation by cyclin-dependent kinase (CDK) 9. We demonstrated an unanticipated requirement for a region downstream of the TNF 3' untranslated region (UTR) that contains the nuclear factor κB (NF-κB) binding motif (κB4) both for induction of transcription by lipopolysaccharide (LPS) and its inhibition by IL-10. IL-10 not only inhibits the recruitment of RelA to regions containing κB sites at the TNF gene but also to those found at other LPS-induced genes. We show that although IL-10 elicits a general block in RelA recruitment to its genomic targets, the gene-specific nature of IL-10's actions are defined through the differential recruitment of CDK9 and the control of transcription elongation. At TNF, but not NFKBIA, the consequence of RelA recruitment inhibition is a loss of CDK9 recruitment, preventing the stimulation of transcription elongation.
Collapse
Affiliation(s)
- Tim Smallie
- Kennedy Institute of Rheumatology Division, Imperial College London, London W6 8LH, UK
| | | | | | | | | | | |
Collapse
|
213
|
Rom I, Darbinyan A, White MK, Rappaport J, Sawaya BE, Amini S, Khalili K. Activation of HIV-1 LTR by Rad51 in microglial cells. Cell Cycle 2010; 9:3715-22. [PMID: 20890127 DOI: 10.4161/cc.9.18.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Infection with HIV-1 induces a variety of biological alterations to the host that are beneficial to the life cycle of the virus but may have adverse effects on the host cell. Here we demonstrate that expression of Rad51, a major component of the homologous recombination-directed DNA repair (HRR) pathway, is induced upon HIV-1 infection of microglial cells. Activation of Rad51 expression positively impacts on HIV-1 LTR transcription through a region of the viral promoter known for binding the inducible transcription factor NFκB. Rad51 showed the ability to form a complex with the p65 subunit of NFκB and regulate the level of p65 interaction with LTR DNA encompassing the κB motif. This study provides evidence for reciprocal interaction of HIV-1 and a host DNA repair protein that impacts on expression of the viral genome. These results also point to the ability of HIV-1 to recruit proteins involved in DNA repair that are necessary for retroviral DNA integration, efficient replication and prevention of viral-induced cell death.
Collapse
Affiliation(s)
- Inna Rom
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Shah S, Nonnemacher MR, Pirrone V, Wigdahl B. Innate and adaptive factors regulating human immunodeficiency virus type 1 genomic activation. J Neuroimmune Pharmacol 2010; 5:278-93. [PMID: 20387125 PMCID: PMC3057210 DOI: 10.1007/s11481-010-9207-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/08/2010] [Indexed: 01/13/2023]
Abstract
Over the past decade, antiretroviral therapy targeting the viral entry process, reverse transcriptase, integrase, and protease, has prolonged the lives of people infected with human immunodeficiency virus type 1 (HIV-1). However, despite the development of more effective therapeutic strategies, reservoirs of viral infection remain. This review discusses molecular mechanisms surrounding the development of latency from the site of integration to pre- and post-integration maintenance of latency, including epigenetic factors. In addition, an overview of innate and adaptive cells important to HIV-1 infection are examined from the viewpoint of cytokines released and cytokines that act on these cells to explore an overall understanding of HIV-1 proviral genome activation. Finally, this review is discussed from the viewpoint of how an understanding of the interplay of all of these factors will help guide the next generation of therapies.
Collapse
Affiliation(s)
- Sonia Shah
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
215
|
Abstract
The HIV-1 Tat protein promotes viral transcription elongation by recruiting P-TEFb to RNA element TAR on the viral mRNA. Recent work from D'Orso and Frankel uncovers unexpected aspects of this process.
Collapse
|
216
|
The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. PLoS One 2010; 5:e12335. [PMID: 20808803 PMCID: PMC2925947 DOI: 10.1371/journal.pone.0012335] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/01/2010] [Indexed: 12/30/2022] Open
Abstract
Background The positive transcription elongation factor, P-TEFb, is required for the production of mRNAs, however the majority of the factor is present in the 7SK snRNP where it is inactivated by HEXIM1. Expression of HIV-1 Tat leads to release of P-TEFb and HEXIM1 from the 7SK snRNP in vivo, but the release mechanisms are unclear. Methodology/Principal Findings We developed an in vitro P-TEFb release assay in which the 7SK snRNP immunoprecipitated from HeLa cell lysates using antibodies to LARP7 was incubated with potential release factors. We found that P-TEFb was directly released from the 7SK snRNP by HIV-1 Tat or the P-TEFb binding region of the cellular activator Brd4. Glycerol gradient sedimentation analysis was used to demonstrate that the same Brd4 protein transfected into HeLa cells caused the release of P-TEFb and HEXIM1 from the 7SK snRNP in vivo. Although HEXIM1 binds tightly to 7SK RNA in vitro, release of P-TEFb from the 7SK snRNP is accompanied by the loss of HEXIM1. Using a chemical modification method, we determined that concomitant with the release of HEXIM1, 7SK underwent a major conformational change that blocks re-association of HEXIM1. Conclusions/Significance Given that promoter proximally paused polymerases are present on most human genes, understanding how activators recruit P-TEFb to those genes is critical. Our findings reveal that the two tested activators can extract P-TEFb from the 7SK snRNP. Importantly, we found that after P-TEFb is extracted a dramatic conformational change occurred in 7SK concomitant with the ejection of HEXIM1. Based on our findings, we hypothesize that reincorporation of HEXIM1 into the 7SK snRNP is likely the regulated step of reassembly of the 7SK snRNP containing P-TEFb.
Collapse
|
217
|
Li LL, Hu ST, Wang SH, Lee HH, Wang YT, Ping YH. Positive transcription elongation factor b (P-TEFb) contributes to dengue virus-stimulated induction of interleukin-8 (IL-8). Cell Microbiol 2010; 12:1589-603. [DOI: 10.1111/j.1462-5822.2010.01493.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
218
|
O'Brien SK, Cao H, Nathans R, Ali A, Rana TM. P-TEFb kinase complex phosphorylates histone H1 to regulate expression of cellular and HIV-1 genes. J Biol Chem 2010; 285:29713-20. [PMID: 20551309 DOI: 10.1074/jbc.m110.125997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of HIV-1 genes depends on the RNA polymerase II kinase and elongation factor positive transcription elongation factor b (P-TEFb), the complex of cyclin T1 and CDK9. Recent evidence suggests that regulation of transcription by P-TEFb involves chromatin binding and modifying factors. To determine how P-TEFb may connect chromatin remodeling to transcription, we investigated the relationship between P-TEFb and histone H1. We identify histone H1 as a substrate for P-TEFb involved in cellular and HIV-1 transcription. We show that P-TEFb interacts with H1 and that P-TEFb inhibition by RNAi, flavopiridol, or dominant negative CDK9 expression correlates with loss of phosphorylation and mobility of H1 in vivo. Importantly, P-TEFb directs H1 phosphorylation in response to wild-type HIV-1 infection, but not Tat-mutant HIV-1 infection. Our results show that P-TEFb phosphorylates histone H1 at a specific C-terminal phosphorylation site. Expression of a mutant H1.1 that cannot be phosphorylated by P-TEFb also disrupts Tat transactivation in an HIV reporter cell line as well as transcription of the c-fos and hsp70 genes in HeLa cells. We identify histone H1 as a novel P-TEFb substrate, and our results suggest new roles for P-TEFb in both cellular and HIV-1 transcription.
Collapse
Affiliation(s)
- Siobhan K O'Brien
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
219
|
Cell death induction in resting lymphocytes by pan-Cdk inhibitor, but not by Cdk4/6 selective inhibitor. Invest New Drugs 2010; 29:921-31. [PMID: 20524038 DOI: 10.1007/s10637-010-9448-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
Abstract
Immunosuppression is one of the common side effects of many anti-tumor agents targeting proliferating cells. We previously reported the development of a new class of pan-cyclin-dependent kinase (Cdk) inhibitor compounds that induce immunosuppression in rodents. Here, we demonstrated that a pan-Cdk inhibitor, Compound 1 very rapidly reduced white blood cells in mice, only 8 h after administration. Compound 1 induced death of peripheral blood cells or purified resting (non-stimulated) lymphocytes ex vivo. Cell death was induced very rapidly, after 4 h of incubation, suggesting that acute immunosuppression observed in rodents might be, at least in part, due to direct cytotoxic effects of Compound 1 on resting lymphocytes. While cell cycle-related Cdks were not activated, the carboxyl terminal domain (CTD) of the largest subunit of RNA polymerase II was phosphorylated, indicating activation of Cdk7 or Cdk9, which phosphorylates this domain, in resting lymphocytes. Indeed, the pan-Cdk inhibitor suppressed CTD phosphorylation in resting cells at the dose required for cell death induction. Inhibition of Cdk7 or Cdk9 by Compound 1 was also confirmed by suppression of nuclear factor-kappa B (NF-κB)-dependent transcription activity in the human cancer cell line U2OS. Interestingly, a Cdk4/6 inhibitor with selectivity against Cdk7 and Cdk9 did not induce cell death in resting lymphocytes. These results suggest that CTD phosphorylation possibly by Cdk7 or Cdk9 might be important for survival of resting lymphocytes and that Cdk inhibitors without inhibitory activity on these kinases might be an attractive agent for cancer chemotherapy.
Collapse
|
220
|
Burnett JC, Lim KI, Calafi A, Rossi JJ, Schaffer DV, Arkin AP. Combinatorial latency reactivation for HIV-1 subtypes and variants. J Virol 2010; 84:5958-74. [PMID: 20357084 PMCID: PMC2876650 DOI: 10.1128/jvi.00161-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/24/2010] [Indexed: 12/11/2022] Open
Abstract
The eradication of HIV-1 will likely require novel clinical approaches to purge the reservoir of latently infected cells from a patient. We hypothesize that this therapy should target a wide range of latent integration sites, act effectively against viral variants that have acquired mutations in their promoter regions, and function across multiple HIV-1 subtypes. By using primary CD4(+) and Jurkat cell-based in vitro HIV-1 latency models, we observe that single-agent latency reactivation therapy is ineffective against most HIV-1 subtypes. However, we demonstrate that the combination of two clinically promising drugs-namely, prostratin and suberoylanilide hydroxamic acid (SAHA)-overcomes the limitations of single-agent approaches and can act synergistically for many HIV-1 subtypes, including A, B, C, D, and F. Finally, by identifying the proviral integration position of latent Jurkat cell clones, we demonstrate that this drug combination does not significantly enhance the expression of endogenous genes nearest to the proviral integration site, indicating that its effects may be selective.
Collapse
Affiliation(s)
- John C. Burnett
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Kwang-il Lim
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Arash Calafi
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - John J. Rossi
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - David V. Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Adam P. Arkin
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
221
|
Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 2010; 38:439-51. [PMID: 20471949 PMCID: PMC3595998 DOI: 10.1016/j.molcel.2010.04.012] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/17/2010] [Accepted: 04/08/2010] [Indexed: 01/16/2023]
Abstract
HIV-1 transactivator Tat has greatly contributed to our understanding of transcription elongation by RNAPII. We purified HIV-1 Tat-associated factors from HeLa nuclear extract and show that Tat forms two distinct and stable complexes. Tatcom1 consists of the core active P-TEFb, MLL-fusion partners involved in leukemia (AF9, AFF4, AFF1, ENL, and ELL), and PAF1 complex. Importantly, Tatcom1 formation relies on P-TEFb while optimal CDK9 CTD-kinase activity is AF9 dependent. MLL-fusion partners and PAF1 are required for Tat transactivation. Tatcom2 is composed of CDK9, CycT1, and 7SK snRNP lacking HEXIM. Tat remodels 7SK snRNP by interacting directly with 7SK RNA, leading to the formation of a stress-resistant 7SK snRNP particle. Besides the identification of factors required for Tat transactivation and important for P-TEFb function, our data show a coordinated control of RNAPII elongation by different classes of transcription elongation factors associated in a single complex and acting at the same promoter.
Collapse
Affiliation(s)
- Bijan Sobhian
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | - Nadine Laguette
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | - Ahmad Yatim
- INSERM U955, Faculté de Médecine de Créteil, Université Paris-Est, Hôpital Henri Mondor, Créteil, France
| | - Mirai Nakamura
- Laboratoire de Régulation de L’Expression des Gènes, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | - Yves Levy
- INSERM U955, Faculté de Médecine de Créteil, Université Paris-Est, Hôpital Henri Mondor, Créteil, France
| | - Rosemary Kiernan
- Laboratoire de Régulation de L’Expression des Gènes, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| |
Collapse
|
222
|
Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA. c-Myc regulates transcriptional pause release. Cell 2010; 141:432-45. [PMID: 20434984 PMCID: PMC2864022 DOI: 10.1016/j.cell.2010.03.030] [Citation(s) in RCA: 1033] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/14/2010] [Accepted: 02/21/2010] [Indexed: 12/30/2022]
Abstract
Recruitment of the RNA polymerase II (Pol II) transcription initiation apparatus to promoters by specific DNA-binding transcription factors is well recognized as a key regulatory step in gene expression. We report here that promoter-proximal pausing is a general feature of transcription by Pol II in mammalian cells and thus an additional step where regulation of gene expression occurs. This suggests that some transcription factors recruit the transcription apparatus to promoters, whereas others effect promoter-proximal pause release. Indeed, we find that the transcription factor c-Myc, a key regulator of cellular proliferation, plays a major role in Pol II pause release rather than Pol II recruitment at its target genes. We discuss the implications of these results for the role of c-Myc amplification in human cancer.
Collapse
Affiliation(s)
- Peter B. Rahl
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Charles Y. Lin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Amy C. Seila
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Ryan A. Flynn
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Scott McCuine
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Christopher B. Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Phillip A. Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
223
|
Sánchez-Álvarez M, Montes M, Sánchez-Hernández N, Hernández-Munain C, Suñé C. Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1). J Biol Chem 2010; 285:15220-15233. [PMID: 20215116 DOI: 10.1074/jbc.m109.063750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of proteins by small ubiquitin-like modifier (SUMO) is emerging as an important control of transcription and RNA processing. The human factor TCERG1 (also known as CA150) participates in transcriptional elongation and alternative splicing of pre-mRNAs. Here, we report that SUMO family proteins modify TCERG1. Furthermore, TCERG1 binds to the E2 SUMO-conjugating enzyme Ubc9. Two lysines (Lys-503 and Lys-608) of TCERG1 are the major sumoylation sites. Sumoylation does not affect localization of TCERG1 to the splicing factor-rich nuclear speckles or the alternative splicing function of TCERG1. However, mutation of the SUMO acceptor lysine residues enhanced TCERG1 transcriptional activity, indicating that SUMO modification negatively regulates TCERG1 transcriptional activity. These results reveal a regulatory role for sumoylation in controlling the activity of a transcription factor that modulates RNA polymerase II elongation and mRNA alternative processing, which are discriminated differently by this post-translational modification.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain; Departments of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra," Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Marta Montes
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Noemí Sánchez-Hernández
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Cristina Hernández-Munain
- Departments of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra," Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Carlos Suñé
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain.
| |
Collapse
|
224
|
Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 2010; 17:194-201. [PMID: 20098423 PMCID: PMC2920286 DOI: 10.1038/nsmb.1752] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 11/25/2009] [Indexed: 01/13/2023]
Abstract
The Mediator complex allows communication between transcription factors and RNA polymerase II (RNAPII). CDK8, the kinase found in some variants of Mediator, has been characterized mostly as a transcriptional repressor. Recently, CDK8 was demonstrated to be a potent oncoprotein. Here we show that CDK8 is a positive regulator of genes within the serum response network, including several members of the AP-1 and EGR family of oncogenic transcription factors. Mechanistic studies demonstrate that CDK8 is not required for RNAPII recruitment or promoter escape. Instead, CDK8 depletion leads to the appearance of slower elongation complexes carrying hypophosphorylated RNAPII. CDK8-Mediator regulates precise steps in the assembly of the RNAPII elongation complex, including the recruitment of P-TEFb and BRD4. Furthermore, CDK8-Mediator specifically interacts with P-TEFb. Thus, we uncovered a novel role for CDK8 in transcriptional regulation that may contribute to its oncogenic effects.
Collapse
Affiliation(s)
- Aaron J Donner
- Howard Hughes Medical Institute, The University of Colorado at Boulder, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
225
|
Sunagawa Y, Morimoto T, Takaya T, Kaichi S, Wada H, Kawamura T, Fujita M, Shimatsu A, Kita T, Hasegawa K. Cyclin-dependent kinase-9 is a component of the p300/GATA4 complex required for phenylephrine-induced hypertrophy in cardiomyocytes. J Biol Chem 2010; 285:9556-9568. [PMID: 20081228 DOI: 10.1074/jbc.m109.070458] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A zinc finger protein GATA4 is one of the hypertrophy-responsive transcription factors and forms a complex with an intrinsic histone acetyltransferase, p300. Disruption of this complex results in the inhibition of cardiomyocyte hypertrophy and heart failure in vivo. By tandem affinity purification and mass spectrometric analyses, we identified cyclin-dependent kinase-9 (Cdk9) as a novel GATA4-binding partner. Cdk9 also formed a complex with p300 as well as GATA4 and cyclin T1. We showed that p300 was required for the interaction of GATA4 with Cdk9 and for the kinase activity of Cdk9. Conversely, Cdk9 kinase activity was required for the p300-induced transcriptional activities, DNA binding, and acetylation of GATA4. Furthermore, the kinase activity of Cdk9 was required for the phosphorylation of p300 as well as for cardiomyocyte hypertrophy. These findings demonstrate that Cdk9 forms a functional complex with the p300/GATA4 and is required for p300/GATA4- transcriptional pathway during cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| | - Tatsuya Morimoto
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555.
| | - Tomohide Takaya
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555; Department of Cardiovascular Medicine, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Kaichi
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555; Department of Pediatrics, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Wada
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| | - Teruhisa Kawamura
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| | - Masatoshi Fujita
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Shimatsu
- Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| | - Toru Kita
- Department of Cardiovascular Medicine, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koji Hasegawa
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| |
Collapse
|
226
|
Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 2009; 6:118. [PMID: 20030845 PMCID: PMC2805609 DOI: 10.1186/1742-4690-6-118] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/23/2009] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has been shown to replicate productively in cells of the monocyte-macrophage lineage, although replication occurs to a lesser extent than in infected T cells. As cells of the monocyte-macrophage lineage become differentiated and activated and subsequently travel to a variety of end organs, they become a source of infectious virus and secreted viral proteins and cellular products that likely initiate pathological consequences in a number of organ systems. During this process, alterations in a number of signaling pathways, including the level and functional properties of many cellular transcription factors, alter the course of HIV-1 long terminal repeat (LTR)-directed gene expression. This process ultimately results in events that contribute to the pathogenesis of HIV-1 infection. First, increased transcription leads to the upregulation of infectious virus production, and the increased production of viral proteins (gp120, Tat, Nef, and Vpr), which have additional activities as extracellular proteins. Increased viral production and the presence of toxic proteins lead to enhanced deregulation of cellular functions increasing the production of toxic cellular proteins and metabolites and the resulting organ-specific pathologic consequences such as neuroAIDS. This article reviews the structural and functional features of the cis-acting elements upstream and downstream of the transcriptional start site in the retroviral LTR. It also includes a discussion of the regulation of the retroviral LTR in the monocyte-macrophage lineage during virus infection of the bone marrow, the peripheral blood, the lymphoid tissues, and end organs such as the brain. The impact of genetic variation on LTR-directed transcription during the course of retrovirus disease is also reviewed.
Collapse
Affiliation(s)
- Evelyn M Kilareski
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Sonia Shah
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Michael R Nonnemacher
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
227
|
Colin L, Van Lint C. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009; 6:111. [PMID: 19961595 PMCID: PMC2797771 DOI: 10.1186/1742-4690-6-111] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.
Collapse
Affiliation(s)
- Laurence Colin
- Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | | |
Collapse
|
228
|
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30:830-82. [PMID: 19890091 PMCID: PMC2818158 DOI: 10.1210/er.2009-0013] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
229
|
Garriga J, Xie H, Obradovic Z, Graña X. Selective control of gene expression by CDK9 in human cells. J Cell Physiol 2009; 222:200-8. [PMID: 19780058 DOI: 10.1002/jcp.21938] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 associates with T-type cyclins and positively regulates transcriptional elongation by phosphorylating RNA polymerase II (RNAPII) and negative elongation factors. However, it is unclear whether CDK9 is required for transcription of most genes by RNAPII or alternatively plays a role regulating the expression of restricted subsets of genes. We have investigated the direct effects of inhibiting cellular CDK9 activity in global gene expression in human cells by using a dominant-negative form of CDK9 (dnCDK9). We have also compared direct inhibition of cellular CDK9 activity to pharmacological inhibition with flavopiridol (FVP), a CDK inhibitor that potently inhibits CDK9 and cellular transcription. Because of its presumed selectivity for CDK9, FVP has been previously used as a tool to infer the role of CDK9 on global gene expression. DNA microarray analyses described here show that inhibition of gene expression by FVP is consistent with global inhibition of transcription. However, specific inhibition of CDK9 activity with dnCDK9 leads to a distinctive pattern of changes in gene expression, with more genes being specifically upregulated (122) than downregulated (84). Indeed, the expression of many short-lived transcripts downregulated by FVP is not modulated by dnCDK9. Nevertheless, consistently with FVP inhibiting CDK9 activity, a significant number of the genes downregulated/upregulated by dnCDK9 are modulated with a similar trend by FVP. Our data suggests that the potent effects of FVP on transcription are likely to involve inhibition of CTD kinases in addition to CDK9. Our data also suggest complex and gene-specific modulation of gene expression by CDK9.
Collapse
Affiliation(s)
- Judit Garriga
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
230
|
CHARLES SHARROYA, AMMOSOVA TATYANA, CARDENAS JESSICA, FOSTER ALTREISHA, ROTIMI JAMIE, JEREBTSOVA MARINA, AYODEJI ABISOLAA, NIU XIAOMEI, RAY PATRICIOE, GORDEUK VICTORR, KASHANCHI FATAH, NEKHAI SERGEI. Regulation of HIV-1 transcription at 3% versus 21% oxygen concentration. J Cell Physiol 2009; 221:469-79. [PMID: 19626680 PMCID: PMC2778305 DOI: 10.1002/jcp.21882] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HIV transcription is induced by the HIV-1 Tat protein, in concert with cellular co-factors including CDK9, CDK2, NF-kappaB, and others. The cells of most of the body's organs are exposed to approximately 3-6% oxygen, but most in vitro studies of HIV replication are conducted at 21% oxygen. We hypothesized that activities of host cell factors involved in HIV-1 replication may differ at 3% versus 21% O(2), and that such differences may affect HIV-1 replication. Here we show that Tat-induced HIV-1 transcription was reduced at 3% O(2) compared to 21% O(2). HIV-1 replication was also reduced in acutely or chronically infected cells cultured at 3% O(2) compared to 21% O(2). This reduction was not due the decreased cell growth or increased cellular toxicity and also not due to the induction of hypoxic response. At 3% O(2), the activity of CDK9/cyclin T1 was inhibited and Sp1 activity was reduced, whereas the activity of other host cell factors such as CDK2 or NF-kappaB was not affected. CDK9-specific inhibitor ARC was much less efficient at 3% compared to 21% O(2) and also expression of CDK9/cyclin T1-dependent IkappaB inhibitor alpha was repressed. Our results suggest that lower HIV-1 transcription at 3% O(2) compared to 21% O(2) may be mediated by lower activity of CDK9/cyclin T1 and Sp1 at 3% O(2) and that additional host cell factors such as CDK2 and NF-kappaB might be major regulators of HIV-1 transcription at low O(2) concentrations.
Collapse
Affiliation(s)
- SHARROYA CHARLES
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - TATYANA AMMOSOVA
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - JESSICA CARDENAS
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, District of Columbia
| | - ALTREISHA FOSTER
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - JAMIE ROTIMI
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - MARINA JEREBTSOVA
- Center for Molecular Physiology, Children’s National Medical Center, Washington, District of Columbia
| | - ABISOLA A. AYODEJI
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - XIAOMEI NIU
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - PATRICIO E. RAY
- Center for Molecular Physiology, Children’s National Medical Center, Washington, District of Columbia
| | - VICTOR R. GORDEUK
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - FATAH KASHANCHI
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, District of Columbia
| | - SERGEI NEKHAI
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| |
Collapse
|
231
|
Dahl V, Josefsson L, Palmer S. HIV reservoirs, latency, and reactivation: prospects for eradication. Antiviral Res 2009; 85:286-94. [PMID: 19808057 DOI: 10.1016/j.antiviral.2009.09.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/24/2009] [Accepted: 09/30/2009] [Indexed: 12/11/2022]
Abstract
Current antiretroviral therapy effectively suppresses but does not eradicate HIV-1 infection. During therapy patients maintain a persistent low-level viremia requiring lifelong adherence to antiretroviral therapies. This viremia may arise from latently infected reservoirs such as resting memory CD4+ T-cells or sanctuary sites where drug penetration is suboptimal. Understanding the mechanisms of HIV latency will help efforts to eradicate the infection. This review examines the dynamics of persistent viremia, viral reservoirs, the mechanisms behind viral latency, and methods to purge the viral reservoirs. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010.
Collapse
Affiliation(s)
- Viktor Dahl
- Swedish Institute for Infectious Disease Control, Karolinska Institutet, Nobels väg 18, SE-171 82 Solna, Sweden
| | | | | |
Collapse
|
232
|
Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 2009; 138:1122-36. [PMID: 19766566 DOI: 10.1016/j.cell.2009.07.031] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/13/2009] [Accepted: 07/16/2009] [Indexed: 12/21/2022]
Abstract
The phosphorylation of the serine 10 at histone H3 has been shown to be important for transcriptional activation. Here, we report the molecular mechanism through which H3S10ph triggers transcript elongation of the FOSL1 gene. Serum stimulation induces the PIM1 kinase to phosphorylate the preacetylated histone H3 at the FOSL1 enhancer. The adaptor protein 14-3-3 binds the phosphorylated nucleosome and recruits the histone acetyltransferase MOF, which triggers the acetylation of histone H4 at lysine 16 (H4K16ac). This histone crosstalk generates the nucleosomal recognition code composed of H3K9acS10ph/H4K16ac determining a nucleosome platform for the bromodomain protein BRD4 binding. The recruitment of the positive transcription elongation factor b (P-TEFb) via BRD4 induces the release of the promoter-proximal paused RNA polymerase II and the increase of its processivity. Thus, the single phosphorylation H3S10ph at the FOSL1 enhancer triggers a cascade of events which activate transcriptional elongation.
Collapse
|
233
|
Abstract
Regulation of gene expression is essential to all aspects of physiological processes in single-cell as well as multicellular organisms. It gives ultimately cells the ability to efficiently respond to extra- and intracellular stimuli participating in cell cycle, growth, differentiation and survival. Regulation of gene expression is executed primarily at the level of transcription of specific mRNAs by RNA polymerase II (RNAPII), typically in several distinct phases. Among them, transcription elongation is positively regulated by the positive transcription elongation factor b (P-TEFb), consisting of CDK9 and cyclin T1, T2 or K. P-TEFb enables transition from abortive to productive transcription elongation by phosphorylating carboxyl-terminal domain (CTD) in RNAPII and negative transcription elongation factors. Over the years, we have learned a great deal about molecular composition of P-TEFb complexes, their assembly and their role in transcription of specific genes, but function of P-TEFb in other physiological processes was not apparent until just recently. In light of emerging discoveries connecting P-TEFb to regulation of cell cycle, development and several diseases, I would like to discuss these observations as well as future perspectives.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| |
Collapse
|
234
|
Węsierska-Gądek J, Kryštof V. Selective Cyclin-Dependent Kinase Inhibitors Discriminating between Cell Cycle and Transcriptional Kinases. Ann N Y Acad Sci 2009; 1171:228-41. [DOI: 10.1111/j.1749-6632.2009.04726.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
235
|
Li Q, Peterlin BM. Genetic analysis of P-TEFb function via heterologous nucleic acid tethering systems. Methods 2009; 48:375-80. [PMID: 19398004 PMCID: PMC2745987 DOI: 10.1016/j.ymeth.2009.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 01/19/2023] Open
Abstract
Recent global genetic analyses demonstrated that the regulation of gene expression at the level of transcription elongation is a common feature in eukaryotes. The positive transcription elongation factor P-TEFb plays a critical role in this process. P-TEFb is a cyclin-dependent kinase, which controls the fraction of RNA polymerase II (RNAP II) that can enter productive elongation. While the biochemical properties of P-TEFb and its associated factors have been characterized extensively in vitro, its function in vivo remains less well understood. In this paper, we describe various heterologous nucleic acid tethering systems that can be used to examine transcription factors that function via P-TEFb.
Collapse
Affiliation(s)
- Qintong Li
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
236
|
Hargreaves DC, Horng T, Medzhitov R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 2009; 138:129-45. [PMID: 19596240 PMCID: PMC2828818 DOI: 10.1016/j.cell.2009.05.047] [Citation(s) in RCA: 530] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/13/2009] [Accepted: 05/19/2009] [Indexed: 11/25/2022]
Abstract
Most inducible transcriptional programs consist of primary and secondary response genes (PRGs and SRGs) that differ in their kinetics of expression and in their requirements for new protein synthesis and chromatin remodeling. Here we show that many PRGs, in contrast to SRGs, have preassembled RNA polymerase II (Pol II) and positive histone modifications at their promoters in the basal state. Pol II at PRGs generates low levels of full-length unspliced transcripts but fails to make mature, protein-coding transcripts in the absence of stimulation. Induction of PRGs is controlled at the level of transcriptional elongation and mRNA processing, through the signal-dependent recruitment of P-TEFb. P-TEFb is in turn recruited by the bromodomain-containing protein Brd4, which detects H4K5/8/12Ac inducibly acquired at PRG promoters. Our findings suggest that the permissive structure of PRGs both stipulates their unique regulation in the basal state by corepressor complexes and enables their rapid induction in multiple cell types.
Collapse
Affiliation(s)
- Diana C. Hargreaves
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Tiffany Horng
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
237
|
Kohoutek J, Li Q, Blazek D, Luo Z, Jiang H, Peterlin BM. Cyclin T2 is essential for mouse embryogenesis. Mol Cell Biol 2009; 29:3280-5. [PMID: 19364821 PMCID: PMC2698739 DOI: 10.1128/mcb.00172-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/07/2009] [Accepted: 03/29/2009] [Indexed: 11/20/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) is essential for the elongation of transcription and cotranscriptional processing by RNA polymerase II. In mammals, it contains predominantly the C-type cyclin cyclin T1 (CycT1) or CycT2 and cyclin-dependent kinase 9 (Cdk9). To determine if these cyclins have redundant functions or affect distinct sets of genes, we genetically inactivated the CycT2 gene (Ccnt2) using the beta-galactosidase-neomycin gene (beta-geo) gene trap technology in the mouse. Visualizing beta-galactosidase during mouse embryogenesis revealed that CycT2 is expressed abundantly during embryogenesis and throughout the organism in the adult. This finding was reflected in the expression of CycT2 in all adult tissues and organs. However, despite numerous matings of heterozygous mice, we observed no CycT2(-/-) embryos, pups, or adult mice. This early lethality could have resulted from decreased expression of critical genes, which were revealed by short interfering RNAs against CycT2 in embryonic stem cells. Thus, CycT1 and CycT2 are not redundant, and these different P-TEFb complexes regulate subsets of distinct genes that are important for embryonic development.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
238
|
Zhu H, Doherty JR, Kuliyev E, Mead PE. CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/mixer. Dev Dyn 2009; 238:1346-57. [PMID: 19347956 PMCID: PMC2832930 DOI: 10.1002/dvdy.21920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mix-related homeodomain proteins are involved in endoderm formation in the early vertebrate embryo. We used a yeast two-hybrid screen to identify proteins that interact with Mix.3/mixer to regulate endoderm induction. We demonstrate that cyclin-dependent kinase 9 (CDK9) interacts with the carboxyl terminal domain of Mix.3. CDK9 is the catalytic subunit of the PTEF-b transcription elongation complex that phosphorylates the C-terminal domain of RNA polymerase II to promote efficient elongation of nascent transcripts. Using whole embryo transcription reporter and animal pole explant assays, we show that Mix.3 activity is regulated by CDK9/cyclin complexes. Co-expression of cyclin T2 and cyclin K had different effects on Mix.3 transcriptional activity and endoderm induction. Our data suggest that binding of CDK9, and the recruitment of different cyclin partners, can modulate the endoderm-inducing activity of Mix.3 during embryonic development. Developmental Dynamics 238:1346-1357, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Haiqing Zhu
- Department of Pathology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Joanne R. Doherty
- Department of Pathology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Emin Kuliyev
- Department of Pathology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Paul E. Mead
- Department of Pathology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| |
Collapse
|
239
|
Acetylation of cyclin T1 regulates the equilibrium between active and inactive P-TEFb in cells. EMBO J 2009; 28:1407-17. [PMID: 19387490 DOI: 10.1038/emboj.2009.99] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 03/20/2009] [Indexed: 12/23/2022] Open
Abstract
The elongation competence of the RNA polymerase II complex is critically dependent on the positive transcription elongation factor b (P-TEFb). P-TEFb exists in two forms in cells, an active form composed of cyclin T1 and CDK9 and an inactive form, in which cyclin T1/CDK9 is sequestered by Hexim1 and 7SK snRNA. Here, we report that partitioning of active and inactive P-TEFb is regulated by acetylation of cyclin T1. Cyclin T1 acetylation triggers dissociation of Hexim1 and 7SK snRNA from cyclin T1/CDK9 and activates the transcriptional activity of P-TEFb. This activation is lost in P-TEFb complexes containing cyclin T1 that can no longer be acetylated. An acetylation-deficient cyclin T1 mutant dominantly suppresses NF-kappaB-mediated activation of the interleukin-8 promoter but continues to synergize normally with the HIV Tat protein to transactivate the HIV long terminal repeat. These findings support the model that acetylation of cyclin T1 serves as a physiological switch that liberates P-TEFb from its endogenous inhibitors Hexim1 and 7SK snRNA, but is not required for the cooperative action with HIV Tat.
Collapse
|
240
|
Bélanger F, Baigude H, Rana TM. U30 of 7SK RNA forms a specific photo-cross-link with Hexim1 in the context of both a minimal RNA-binding site and a fully reconstituted 7SK/Hexim1/P-TEFb ribonucleoprotein complex. J Mol Biol 2009; 386:1094-107. [PMID: 19244621 PMCID: PMC2754221 DOI: 10.1016/j.jmb.2009.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic transcription by RNA polymerase II is a highly regulated process and divided into three major steps: initiation, elongation, and termination. Each step of transcription is controlled by a number of cellular factors. Positive transcription factor b, P-TEFb, is composed of cyclin-dependent kinase 9 and a regulatory cyclin (T1/T2). P-TEFb promotes transcriptional elongation of RNA polymerase II by using the catalytic function of CDK9 to phosphorylate various substrates during transcription. P-TEFb is inactivated by sequestration in a complex with the Hexim1 protein and 7SK RNA. The structure of this inactive P-TEFb complex and the mechanisms controlling its equilibrium with the active complex are poorly understood. Here, we used a photoactive nucleotide, 4-thioU, to study the interactions between 7SK RNA and Hexim1. We identified a specific cross-link between nucleotide U30 of 7SK RNA and amino acids 210-220 of Hexim1, in the context of both a minimal RNA-binding site and a fully reconstituted 7SK/Hexim1/P-TEFb ribonucleoprotein complex. We show also that a minimal 7SK RNA hairpin comprising nucleotides 24-87 can bind specifically to Hexim1 in vivo. Our results demonstrate directly that the Hexim1 binding site is located in the 24-87 region of 7SK RNA and that the protein residues outside the basic domain of Hexim1 are involved in specific RNA interactions.
Collapse
Affiliation(s)
| | - Huricha Baigude
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324
| | | |
Collapse
|
241
|
Michel N, Goffinet C, Ganter K, Allespach I, Kewalramani VN, Saifuddin M, Littman DR, Greene WC, Goldsmith MA, Keppler OT. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo. Retrovirology 2009; 6:2. [PMID: 19144136 PMCID: PMC2631513 DOI: 10.1186/1742-4690-6-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 01/13/2009] [Indexed: 12/20/2022] Open
Abstract
Background Cells derived from native rodents have limits at distinct steps of HIV replication. Rat primary CD4 T-cells, but not macrophages, display a profound transcriptional deficit that is ameliorated by transient trans-complementation with the human Tat-interacting protein Cyclin T1 (hCycT1). Results Here, we generated transgenic rats that selectively express hCycT1 in CD4 T-cells and macrophages. hCycT1 expression in rat T-cells boosted early HIV gene expression to levels approaching those in infected primary human T-cells. hCycT1 expression was necessary, but not sufficient, to enhance HIV transcription in T-cells from individual transgenic animals, indicating that endogenous cellular factors are critical co-regulators of HIV gene expression in rats. T-cells from hCD4/hCCR5/hCycT1-transgenic rats did not support productive infection of prototypic wild-type R5 HIV-1 strains ex vivo, suggesting one or more significant limitation in the late phase of the replication cycle in this primary rodent cell type. Remarkably, we identify a replication-competent HIV-1 GFP reporter strain (R7/3 YU-2 Env) that displays characteristics of a spreading, primarily cell-to-cell-mediated infection in primary T-cells from hCD4/hCCR5-transgenic rats. Moreover, the replication of this recombinant HIV-1 strain was significantly enhanced by hCycT1 transgenesis. The viral determinants of this so far unique replicative ability are currently unknown. Conclusion Thus, hCycT1 expression is beneficial to de novo HIV infection in a transgenic rat model, but additional genetic manipulations of the host or virus are required to achieve full permissivity.
Collapse
Affiliation(s)
- Nico Michel
- Department of Virology, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Burnett JC, Miller-Jensen K, Shah PS, Arkin AP, Schaffer DV. Control of stochastic gene expression by host factors at the HIV promoter. PLoS Pathog 2009; 5:e1000260. [PMID: 19132086 PMCID: PMC2607019 DOI: 10.1371/journal.ppat.1000260] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 12/09/2008] [Indexed: 12/21/2022] Open
Abstract
The HIV promoter within the viral long terminal repeat (LTR) orchestrates many aspects of the viral life cycle, from the dynamics of viral gene expression and replication to the establishment of a latent state. In particular, after viral integration into the host genome, stochastic fluctuations in viral gene expression amplified by the Tat positive feedback loop can contribute to the formation of either a productive, transactivated state or an inactive state. In a significant fraction of cells harboring an integrated copy of the HIV-1 model provirus (LTR-GFP-IRES-Tat), this bimodal gene expression profile is dynamic, as cells spontaneously and continuously flip between active (Bright) and inactive (Off) expression modes. Furthermore, these switching dynamics may contribute to the establishment and maintenance of proviral latency, because after viral integration long delays in gene expression can occur before viral transactivation. The HIV-1 promoter contains cis-acting Sp1 and NF-κB elements that regulate gene expression via the recruitment of both activating and repressing complexes. We hypothesized that interplay in the recruitment of such positive and negative factors could modulate the stability of the Bright and Off modes and thereby alter the sensitivity of viral gene expression to stochastic fluctuations in the Tat feedback loop. Using model lentivirus variants with mutations introduced in the Sp1 and NF-κB elements, we employed flow cytometry, mRNA quantification, pharmacological perturbations, and chromatin immunoprecipitation to reveal significant functional differences in contributions of each site to viral gene regulation. Specifically, the Sp1 sites apparently stabilize both the Bright and the Off states, such that their mutation promotes noisy gene expression and reduction in the regulation of histone acetylation and deacetylation. Furthermore, the NF-κB sites exhibit distinct properties, with κB site I serving a stronger activating role than κB site II. Moreover, Sp1 site III plays a particularly important role in the recruitment of both p300 and RelA to the promoter. Finally, analysis of 362 clonal cell populations infected with the viral variants revealed that mutations in any of the Sp1 sites yield a 6-fold higher frequency of clonal bifurcation compared to that of the wild-type promoter. Thus, each Sp1 and NF-κB site differentially contributes to the regulation of viral gene expression, and Sp1 sites functionally “dampen” transcriptional noise and thereby modulate the frequency and maintenance of this model of viral latency. These results may have biomedical implications for the treatment of HIV latency. After HIV genome integration into the host chromosome, the viral promoter coordinates a complex set of inputs to control the establishment of viral latency, the onset of viral gene expression, and the ensuing gene expression levels. Among these inputs are chromatin structure at the site of integration, host transcription factors, and the virally encoded transcriptional regulator Tat. Importantly, transcriptional noise from host and viral transcriptional regulators may play a critical role in the decision between replication versus latency, because stochastic fluctuations in gene expression are amplified by a Tat-mediated positive transcriptional feedback loop. To evaluate the individual contributions of key transcription factor binding elements in gene expression dynamics, we employ model HIV viruses with mutations introduced into numerous promoter elements. Extensive analysis of gene expression dynamics and transcription factor recruitment to the viral promoter reveals that each site differentially contributes to viral gene expression and to the establishment of a low expression state that may contribute to viral latency. This systems-level approach elucidates the synergistic contributions of host and viral factors to the dynamics, magnitudes, and stochastic effects in viral gene expression, as well as provides insights into mechanisms that contribute to proviral latency.
Collapse
Affiliation(s)
- John C Burnett
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | | | | | | | | |
Collapse
|
243
|
Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol 2008; 29:1375-87. [PMID: 19103749 DOI: 10.1128/mcb.01365-08] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetylation of the RelA subunit of NF-kappaB, especially at lysine-310, is critical for the transcriptional activation of NF-kappaB and the expression of inflammatory genes. In this study, we demonstrate that bromodomains of Brd4 bind to acetylated lysine-310. Brd4 enhances transcriptional activation of NF-kappaB and the expression of a subset of NF-kappaB-responsive inflammatory genes in an acetylated lysine-310-dependent manner. Bromodomains of Brd4 and acetylated lysine-310 of RelA are both required for the mutual interaction and coactivation function of Brd4. Finally, we demonstrate that Brd4 further recruits CDK9 to phosphorylate C-terminal domain of RNA polymerase II and facilitate the transcription of NF-kappaB-dependent inflammatory genes. Our results identify Brd4 as a novel coactivator of NF-kappaB through specifically binding to acetylated lysine-310 of RelA. In addition, these studies reveal a mechanism by which acetylated RelA stimulates the transcriptional activity of NF-kappaB and the NF-kappaB-dependent inflammatory response.
Collapse
|
244
|
Charital YM, van Haasteren G, Massiha A, Schlegel W, Fujita T. A functional NF-kappaB enhancer element in the first intron contributes to the control of c-fos transcription. Gene 2008; 430:116-22. [PMID: 19026727 DOI: 10.1016/j.gene.2008.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 11/28/2022]
Abstract
Eukaryotic gene transcription is controlled not only by gene promoters but also by intragenic cis-elements. Such regulation is important for the transcription of immediate early genes (IEGs) and in particular for the c-fos gene, the first intron of which contains many potential transcription factor binding elements. In the present study, we addressed the intronic control of c-fos transcription by the NF-kappaB signalling pathway in the neuroendocrine cell line GH4C1. Tumour necrosis factor alpha (TNFalpha) activating the NF-kappaB signalling pathway induced transcription of the c-fos gene and enhanced thyrotropin-releasing hormone-stimulated (TRH-stimulated) c-fos transcription. To examine the effects of NF-kappaB, the presumed NF-kappaB binding sequence in the first intron was mutated or deleted from c-fos reporter gene constructs. When GH4C1 cells transfected with the reporter constructs were stimulated by TNFalpha, the induced expression was significantly diminished. Double-stranded short DNA with the intronic NF-kappaB binding consensus sequence interacted directly with NF-kappaB p50 protein in vitro; mutation of 3 nucleotides destroying the consensus abolished the in vitro interaction. The importance of NF-kappaB for c-fos expression was also supported by RNA interference experiments; knock-down of NF-kappaB p50 suppressed TNFalpha-induced c-fos expression. In addition, chromatin immunoprecipitation indicated that NF-kappaB occupied the first intron of the c-fos gene in vivo. In conclusion, NF-kappaB enhances c-fos transcription via the direct binding to a response element situated in the first intron.
Collapse
|
245
|
Shimizu N, Yoshikawa N, Wada T, Handa H, Sano M, Fukuda K, Suematsu M, Sawai T, Morimoto C, Tanaka H. Tissue- and context-dependent modulation of hormonal sensitivity of glucocorticoid-responsive genes by hexamethylene bisacetamide-inducible protein 1. Mol Endocrinol 2008; 22:2609-23. [PMID: 18801933 DOI: 10.1210/me.2008-0101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Physiological and pharmacological processes mediated by glucocorticoids involve tissue- and context-specific regulation of glucocorticoid-responsive gene expression via glucocorticoid receptor (GR). However, the molecular mechanisms underlying such highly coordinated regulation of glucocorticoid actions remain to be studied. We here addressed this issue using atp1a1 and scnn1a, both of which are up-regulated in response to corticosteroids in human embryonic kidney-derived 293 cells, but resistant in liver-derived HepG2 cells. Hexamethylene bisacetamide-inducible protein 1 (HEXIM1) represses gene expression via, at least, two distinct mechanisms, i.e. positive transcription elongation factor b sequestration and direct interaction with GR, and is relatively high in HepG2 cells compared with 293 cells. Given this, we focused on the role of HEXIM1 in transcriptional regulation of these GR target genes. In HepG2 cells, hormone resistance of atp1a1 and scnn1a was diminished by either knockdown of HEXIM1 or overexpression of GR. Such a positive effect of exogenous expression of GR was counteracted by concomitant overexpression of HEXIM1, indicating the balance between GR and HEXIM1 modulates hormonal sensitivity of these genes. In support of this, the hormone-dependent recruitment of RNA polymerase II onto atp1a1 promoter was in parallel with that of GR. Moreover, we revealed that not positive transcription elongation factor b-suppressing activity but direct interaction with GR of HEXIM1 plays a major role in suppression of promoter recruitment of the receptor and subsequent atp1a1 and scnn1a gene activation. Collectively, we may conclude that HEXIM1 may participate in tissue-selective determination of glucocorticoid sensitivity via direct interaction with GR at least in certain gene sets including atp1a1 and scnn1a.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Division of Clinical Immunology, Advanced Clinical Research Center, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 2008; 28:6632-45. [PMID: 18779315 DOI: 10.1128/mcb.00697-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The NF-kappaB family mediates immune and inflammatory responses. In many cancers, NF-kappaB is constitutively activated and induces the expression of genes that facilitate tumorigenesis. ING4 is a tumor suppressor that is absent or mutated in several cancers. Herein, we demonstrate that in human gliomas, NF-kappaB is constitutively activated, ING4 expression is negligible, and NF-kappaB-regulated gene expression is elevated. We demonstrate that an ING4 and NF-kappaB interaction exists but does not prevent NF-kappaB activation, nuclear translocation, or DNA binding. Instead, ING4 and NF-kappaB bind simultaneously at NF-kappaB-regulated promoters, and this binding correlates with reductions in p65 phosphorylation, p300, and the levels of acetylated histones and H3-Me3K4, while enhancing the levels of HDAC-1 at these promoters. Using a knockdown approach, we correlate reductions in ING4 protein levels with increased basal and inducible NF-kappaB target gene expression. Collectively, these data suggest that ING4 may specifically regulate the activity of NF-kappaB molecules that are bound to target gene promoters.
Collapse
|
247
|
Abstract
The Positive Transcriptional Elongation Factor b (P-TEFb), a heterodimer of CDK9 and Cyclin T1, is widely implicated in control of basal gene expression. Here, P-TEFb is involved in transitioning paused RNA polymerase II to enter productive transcriptional elongation mode by phosphorylating negative elongation factors and Ser(2) of the heptad repeat in the RNA Pol II COOH terminal domain (CTD). This perspective will examine recent work in two unrelated inducible signaling pathways that illustrate the central role of P-TEFb in mediating cytokine inducible transcription networks. Specifically, P-TEFb has been recently discovered to play a key role in TNF-inducible NFkappaB activation and IL-6-inducible STAT3 signaling. In these signaling cascades, P-TEFb forms protein complexes with the activated nuclear RelA and STAT3 transcription factor in the cellular nucleoplasm, an association important for P-TEFb's promoter targeting. Studies using siRNA-mediated knockdown and/or selective CDK inhibitors show that P-TEFb plays a functional role in activation of a subset of NFkappaB-dependent targets and all STAT3-dependent genes studied to date. Interestingly, cytokine inducible genes that are sensitive to P-TEFb inhibition share an induction mechanism requiring inducible RNA Pol II recruitment. Chromatin immunoprecipitation studies have preliminarily indicated that this recruitment is dependent on CDK enzymatic activity. The potential of inhibiting P-TEFb as an anti-inflammatory therapy in innate immunity and systemic inflammation will be discussed.
Collapse
Affiliation(s)
- Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA.
| |
Collapse
|
248
|
Nojima M, Huang Y, Tyagi M, Kao HY, Fujinaga K. The positive transcription elongation factor b is an essential cofactor for the activation of transcription by myocyte enhancer factor 2. J Mol Biol 2008; 382:275-87. [PMID: 18662700 DOI: 10.1016/j.jmb.2008.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 01/12/2023]
Abstract
The positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1, stimulates the elongation of transcription by hyperphosphorylating the C-terminal region of RNA polymerase II. Aberrant activation of P-TEFb results in manifestations of cardiac hypertrophy in mice, suggesting that P-TEFb is an essential factor for cardiac myocyte function and development. Here, we present evidence that P-TEFb selectively activates transcription mediated by the myocyte enhancer factor 2 (MEF2) family of transcription factors, key regulatory factors for myocyte development. Knockdown of endogenous cyclin T1 in murine C2C12 cells abolishes MEF2-dependent reporter gene expression as well as transcription of endogenous MEF2 target genes, whereas overexpression of P-TEFb enhances MEF2-dependent transcription. P-TEFb interacts with MEF2 both in vitro and in vivo. Activation of MEF2-dependent transcription induced by serum starvation is mediated by a rapid dissociation of P-TEFb from its inhibitory subunit, HEXIM1, and a subsequent recruitment of P-TEFb to MEF2 binding sites in the promoter region of MEF2 target genes. These results indicate that recruitment of P-TEFb is a critical step for stimulation of MEF2-dependent transcription, therefore providing a fundamentally important regulatory mechanism underlying the transcriptional program in muscle cells.
Collapse
Affiliation(s)
- Masanori Nojima
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
249
|
Annibaldi A, Sajeva A, Muscolini M, Ciccosanti F, Corazzari M, Piacentini M, Tuosto L. CD28 ligation in the absence of TCR promotes RelA/NF-kappaB recruitment and trans-activation of the HIV-1 LTR. Eur J Immunol 2008; 38:1446-51. [PMID: 18389481 DOI: 10.1002/eji.200737854] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. CD28 can act as a TCR-independent signalling unit by delivering specific signals which may induce HIV transcription and replication. However, the mechanisms by which CD28 regulates HIV expression remain largely unknown. Here we show that the TCR-independent CD28 signals lead to the trans-activation of HIV-1 LTR in an NF-kappaB-dependent manner. In particular, we found that CD28 engagement by B7 induces the specific recruitment of RelA/NF-kappaB subunit to the HIV-1 LTR promoter both in vitro and in ex vivo infected cells. The results obtained by mutating specific tyrosine residues within the CD28 cytoplasmic tail as well as by using LY294002 inhibitory drug evidenced that the recruitment and activation of the phosphatidylinositol 3-kinase/Akt signalling pathway is crucial in mediating CD28-induced HIV transcription through RelA/NF-kappaB.
Collapse
Affiliation(s)
- Alessandro Annibaldi
- Department of Cellular and Developmental Biology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
Triptolide, an active component of the medicinal herb lei gong teng, is a potent anticancer and anti-inflammatory therapeutic. It potently inhibits nuclear factor-kappaB transcriptional activation after DNA binding, although a precise mechanism is as yet unknown. Here, we report that triptolide also induces distinct nuclear substructural changes in HeLa cells. These changes in the nucleolus and nuclear speckles are reversible and dependent on both time and concentration. Furthermore, nuclear changes occurred within hours of triptolide treatment and were calcium and caspase independent. Rounding of nuclear speckles, an indication of transcriptional arrest, was evident and was associated with a decrease in RNA polymerase II (RNA Pol II) COOH-terminal domain Ser(2) phosphorylation. Additionally, the nucleolus disassembled and RNA Pol I activity declined after RNA Pol II inhibition. We therefore conclude that triptolide causes global transcriptional arrest as evidenced by inactivity of RNA Pol I and II and the subsequent alteration in nuclear substructure.
Collapse
Affiliation(s)
- Stephanie J. Leuenroth
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | - Craig M. Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|