201
|
Barawi M, Alfonso-González E, López-Calixto CG, García A, García-Sánchez A, Villar-García IJ, Liras M, de la Peña O'Shea VA. Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201351. [PMID: 35971163 DOI: 10.1002/smll.202201351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light-harvesting properties. Besides, their extended π-conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three-dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm-2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one-hour reaction.
Collapse
Affiliation(s)
- Mariam Barawi
- Photoactivated Processes Unit, Imdea Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid, 28935, Spain
| | - Elena Alfonso-González
- Photoactivated Processes Unit, Imdea Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid, 28935, Spain
| | - Carmen G López-Calixto
- Photoactivated Processes Unit, Imdea Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid, 28935, Spain
| | - Alberto García
- Photoactivated Processes Unit, Imdea Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid, 28935, Spain
| | - Alba García-Sánchez
- Photoactivated Processes Unit, Imdea Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid, 28935, Spain
| | - Ignacio J Villar-García
- Photoactivated Processes Unit, Imdea Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid, 28935, Spain
- NAPP Endstation, CIRCE Beamline, ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Marta Liras
- Photoactivated Processes Unit, Imdea Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid, 28935, Spain
| | - Victor A de la Peña O'Shea
- Photoactivated Processes Unit, Imdea Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid, 28935, Spain
| |
Collapse
|
202
|
Faraki Z, Bodaghifard MA. A Triazine-Based Cationic Covalent Organic Framework as a Robust Adsorbent for Removal of Methyl Orange. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Zahra Faraki
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, Iran
| |
Collapse
|
203
|
Chen Y, Xia L, Li G. The progress on porous organic materials for chiral separation. J Chromatogr A 2022; 1677:463341. [PMID: 35870277 DOI: 10.1016/j.chroma.2022.463341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Chiral compounds have similar structures and properties, but their pharmacological action is very different or even opposite. Therefore, the separation of chiral compounds has great significance in pharmaceutical and agriculture. Porous organic materials are novel crystalline porous materials, which possess high surface area, controllable pore size, and favorable functionalization. Therefore, porous organic materials are considered to be an ideal material for chiral separation. In this review, we summarized the progress of chiral porous organic materials for chiral separation in recent years. Furthermore, the applications of chiral porous organic materials as chiral separation medias (chromatography stationary phases and membrane materials) in enantioseparation were highlighted. Finally, the remaining challenges and future directions for porous organic materials in chiral separation were also briefly outlined further to promote the development of porous organic materials in chiral separation.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
204
|
Henrion M, Mohr Y, Janssens K, Smolders S, Bugaev AL, Usoltsev OA, Quadrelli EA, Wisser FM, De Vos DE, Canivet J. Reusable copper catechol‐based porous polymers for the highly efficient heterogeneous catalytic oxidation of secondary alcohols. ChemCatChem 2022. [DOI: 10.1002/cctc.202200649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mickaël Henrion
- KU Leuven: Katholieke Universiteit Leuven Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions BELGIUM
| | - Yorck Mohr
- IRCELYON: Institut de Recherches sur la Catalyse et l'Environnement de Lyon Catalyst and Process Engineering FRANCE
| | - Kwinten Janssens
- KU Leuven: Katholieke Universiteit Leuven Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions BELGIUM
| | - Simon Smolders
- KU Leuven: Katholieke Universiteit Leuven Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions BELGIUM
| | - Aram L. Bugaev
- Southern Federal University: Uznyj federal'nyj universitet The Smart Materials Research Institute RUSSIAN FEDERATION
| | - Oleg A. Usoltsev
- Southern Federal University: Uznyj federal'nyj universitet The Smart Materials Research Institute RUSSIAN FEDERATION
| | - Elsje Alessandra Quadrelli
- IRCELYON: Institut de Recherches sur la Catalyse et l'Environnement de Lyon Catalyst and Process Engineering FRANCE
| | - Florian Michael Wisser
- University of Regensburg: Universitat Regensburg Inorganic Chemistry Universitätsstraße 31 93053 Regensburg GERMANY
| | - Dirk E. De Vos
- KU Leuven: Katholieke Universiteit Leuven Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions BELGIUM
| | - Jérôme Canivet
- IRCELYON: Institut de Recherches sur la Catalyse et l'Environnement de Lyon Catalyst and Process Engineering FRANCE
| |
Collapse
|
205
|
Hao D, Wang DY, Dong B, Xi SC, Jiang G. Facile synthesis of a triazine-based porous organic polymer containing thiophene units for effective loading and releasing of temozolomide. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Suzuki cross-coupling reaction was employed to easily obtain a triazine-based porous organic polymer (2,4,6-tris(5-bromothiophene-2-yl)-1,3,5-triazine [TBrTh]–1,3,5-benzene-triyltriboronic acid pinacol ester [BTBPE]–covalent triazine framework [CTF]) containing thiophene units. The chemical structure of TBrTh–BTBPE–CTF was revealed by solid-state 13C NMR, Fourier-transform infrared, and X-ray photoelectron spectroscopy. TBrTh–BTBPE–CTF with an amorphous structure exhibited excellent thermal stability and intrinsic porosity (373 m2·g−1 of Brunauer–Emmett–Teller surface area). Consequently, temozolomide (TMZ) was used as an oral alkylating agent in melanoma treatment to explore the drug loading and releasing behavior of TBrTh–BTBPE–CTF as a result of the low cytotoxicity of thiophene-based polymers. The successful loading of TMZ within the polymeric structure was suggested by thermogravimetric analysis and N2 sorption isotherms. The release experiments were performed in phosphate-buffered saline at pH values of 5.5 and 7.4, exhibiting good controlled-release properties. These results suggest that the current porous organic polymer is expected to be a drug carrier for the delivery and release of TMZ.
Collapse
Affiliation(s)
- Di Hao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , China
- Department of Dermatology, Affiliated Xuzhou Children’s Hospital of Xuzhou Medical University , Xuzhou 221006 , China
| | - Dong-Yue Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology , Xuzhou 221116 , China
| | - Bin Dong
- School of Chemical Engineering and Technology, China University of Mining and Technology , Xuzhou 221116 , China
| | - Sun-Chang Xi
- School of Chemical Engineering and Technology, China University of Mining and Technology , Xuzhou 221116 , China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , China
| |
Collapse
|
206
|
Deng Z, Zhao H, Cao X, Xiong S, Li G, Deng J, Yang H, Zhang W, Liu Q. Enhancing Built-in Electric Field via Molecular Dipole Control in Conjugated Microporous Polymers for Boosting Charge Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35745-35754. [PMID: 35914116 DOI: 10.1021/acsami.2c08747] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The built-in electric field (BEF) has been considered as the key kinetic factor for facilitating efficient photoinduced carrier separation and migration of polymeric photocatalysts. Enhancing the BEF of the polymers could enable a directional migration of the photogenerated carriers to accelerate photogenerated charge separation and thus boost photocatalytic performances. However, achieving this approach remains a formidable challenge, which has never been realized in conjugated microporous polymers (CMPs). Herein, we developed a molecular dipole control strategy to modulate the BEF in CMPs by varying the nature of the core. As a result, a series of CMPs with a tunable BEF were designed and prepared via FeCl3-mediated coupling of bicarbazole with different acceptor cores. The optimized CbzCMP-9 featured the strongest BEF induced by its high molecular dipole, which grants it with a powerful driving force to accelerate exciton dissociation into electron-hole pairs and facilitates charge transfer along the backbone of CMPs to the surface, resulting in a remarkable photocatalytic performance toward thiocyano chromones and C-3 thiocyanation of indoles (up to 95 and 98% yields, respectively) and prominently surpassing many other reported photocatalysts. In brief, the proposed strategy highlights that enhancing the BEF by modulating molecular dipole can lead to a dramatic improvement in photocatalytic performance, which is expected to be employed for constructing other photocatalytic systems with high performance.
Collapse
Affiliation(s)
- Zhaozhang Deng
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hongwei Zhao
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xinxiu Cao
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shaohui Xiong
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Gen Li
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiyong Deng
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Hai Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Qingquan Liu
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
207
|
Zhang W, Li Y, Wang S, Wu Y, Chen S, Fu Y, Ma W, Zhang Z, Ma H. Fluorine-Induced Electric Field Gradient in 3D Porous Aromatic Frameworks for Highly Efficient Capture of Xe and F-Gases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35126-35137. [PMID: 35866627 DOI: 10.1021/acsami.2c10050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of robust and efficient porous adsorbents is essential for capturing xenon (Xe) and perfluorinated electron specialty gases (F-gases) in semiconductor exhaust gases, as toxic and corrosive gases coexist in high-temperature plasma degradation off-gases. Herein, two three-dimensional (3D) fluorinated porous aromatic frameworks (PAFs) with abundant fluorine (labeled PAF-4F and PAF-8F) were synthesized. The two PAFs exhibit high IAST selectivity in capturing Xe and F-gases from semiconductor off-gases, as well as excellent physicochemical stability and reusability, which have been collaboratively verified by single-component gas adsorption and regeneration tests, etc. Density functional theory (DFT) simulation revealed that the entry of strongly electronegative fluorine atoms into PAFs causes localized charge separation on the polymer pore surface, resulting in the preferential adsorption of high-polarizability Xe and F-gases via induced electric field gradients. Systematic studies have sufficiently manifested the great potential of fluorine-functionalized porous materials to effectively capture Xe and F-gases, which provides practical insights into the fabrication of highly stable porous adsorbents for harsh operating conditions.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yinhui Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shanshan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yue Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shuhui Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wuju Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhonghui Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
208
|
Fluorine-functionalized conjugated microporous polymer as adsorbents for solid-phase extraction of nine perfluorinated alkyl substances. J Chromatogr A 2022; 1681:463457. [DOI: 10.1016/j.chroma.2022.463457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
|
209
|
Sheng X, Ding X, You D, Peng M, Dai Z, Hu X, Shi H, Yang L, Shao P, Luo X. Perfluorinated conjugated microporous polymer for targeted capture of Ag(I) from contaminated water. ENVIRONMENTAL RESEARCH 2022; 211:113007. [PMID: 35227673 DOI: 10.1016/j.envres.2022.113007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The maximum targeted capture silver from contaminated water is urgently necessary for sustainable development. Herein, the perfluorination conjugated microporous polymer adsorbent (F-CMP) has been fabricated by Sonogashira-Hagihara coupling reaction and employed to remove Ag(I) ions. Characterizations of NMR, XPS and FT-IR indicate the successful synthesis of F-CMP adsorbent. The influence factors of F-CMP on Ag(I) adsorption behavior are studied, and the adsorption capacity of Ag(I) reaches 251.3 mg/g. The experimental results of isothermal adsorption and kinetic adsorption are consistent with the Freundlich model and pseudo-second-order isothermal adsorption model, which follows a multilayer adsorption behavior on the uniform surface of the adsorbent, and the chemical adsorption becomes the main rate-limiting step. Combined with DFT calculation, the adsorption mechanism of Ag(I) by F-CMP is elucidated. The peaks shift of sp before and after adsorption is larger than that of F1s, suggesting that the -CC- on the F-CMP becomes the dominant chelation site of Ag(I). Furthermore, F-CMP exhibits specific adsorption for Ag(I) in polymetallic complex water, with the maximum selectivity coefficient of 31.5. Our study may provide a new possibility of perfluorinated CMPs for effective capture of Ag(I) ions to address environmental issues.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xuan Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Deng You
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Mingming Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhenxi Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xingyu Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
210
|
|
211
|
Bang S, Jang JY, Ko YJ, Lee SM, Kim HJ, Son SU. Hydroboration of Hollow Microporous Organic Polymers: A Promising Postsynthetic Modification Method for Functional Materials. ACS Macro Lett 2022; 11:1034-1040. [DOI: 10.1021/acsmacrolett.2c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sohee Bang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - June Young Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, NCIRF, Seoul National University, Seoul 08826, Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute, Daejeon 34133, Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
212
|
Qi JX, Zhang CR, Chen XJ, Yi SM, Niu CP, Liu JL, Zhang L, Liang RP, Qiu JD. 3D Ionic Olefin-Linked Conjugated Microporous Polymers for Selective Detection and Removal of TcO 4-/ReO 4- from Wastewater. Anal Chem 2022; 94:10850-10856. [PMID: 35857436 DOI: 10.1021/acs.analchem.2c01932] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Technetium (99Tc) is a highly toxic radioactive nuclear wastewater contaminant. Real-time detection of 99Tc is very difficult due to its difficult-to-complex nature. Herein, a novel three-dimensional ionic olefin-linked conjugated microporous polymer (TFPM-EP-Br) is constructed using tetrakis(4-aldehyde phenyl)methane (TFPM) as the central monomer. The unique cationic cavity and highly hydrophobic framework enable TFPM-EP-Br to act as a fluorescent sensor for TcO4-. The fluorophores of TFPM-EP-Br can be quenched due to electron transfer from TFPM-EP-Br to TcO4- and the formation of strongly nonfluorescent complexes. Meanwhile, the regular pore channels are beneficial for the fast mass transfer of TcO4-, resulting in an ultrafast response time (less than 2 s) with an ultralow detection limit (33.3 nM). In addition, the ultrahigh specific surface area enables TFPM-EP-Br to combine the ability to synergistically detect and remove radioactive 99Tc. From this perspective, the novel conjugated microporous polymer has made a breakthrough in the detection and extraction of radioactive contaminants.
Collapse
Affiliation(s)
- Jia-Xin Qi
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Xiao-Juan Chen
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shun-Mo Yi
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Cheng-Peng Niu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jin-Lan Liu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China.,State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
213
|
Gao Y, Dong C, Zhang F, Leng X, Li Y. The synthesis, characterization and carbon dioxide adsorption of polyimide aerogels containing Tröger’s base units. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microporous polymers with uniform pores and large specific surface areas have been extensively studied in the field of CO2 adsorption and separation. However, the synthesis of these microporous materials is quite complex and difficult to achieve large-scale production and application. In this study, we have successfully synthesized a novel mesoporous polyimide aerogel containing Tröger’s base using a facile and mild method at room temperature. Thermal decomposition temperature of the obtained polyimide aerogels was above 420°C, which exhibited outstanding thermal stability. The maximum adsorption capacity of CO2 is 24.08 cm3/g. The high CO2 adsorptions are attributed to the abundance of nitrogen-rich heteroatoms in the polyimide networks. The mild and convenient preparation method and high CO2 adsorptive capacity indicate that the mesoporous polyimide aerogels with Tröger’s base can also be suitable as an adsorbent for CO2 capture in industrial applications.
Collapse
Affiliation(s)
- Yangfeng Gao
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Chao Dong
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Fan Zhang
- Weifang Hongrun New Materials Co., Ltd, Weifang, China
| | - Xuefei Leng
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yang Li
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
214
|
Chiral self-sorting and guest recognition of porous aromatic cages. Nat Commun 2022; 13:4011. [PMID: 35817768 PMCID: PMC9273608 DOI: 10.1038/s41467-022-31785-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of ultra-stable chiral porous organic cages (POCs) and their controllable chiral self-sorting at the molecular and supramolecular level remains challening. Herein, we report the design and synthesis of a serial of axially chiral porous aromatic cages (PAC 1-S and 1-R) with high chemical stability. The theoretical and experimental studies on the chiral self-sorting reveal that the exclusive self-recognition on cage formation is an enthalpy-driven process while the chiral narcissistic and self-sorting on supramolecular assembly of racemic cages can be precisely regulated by π–π and C–H…π interactions from different solvents. Regarding the chemical stability, the crystallinity of PAC 1 is maintained in aqueous solvents, such as boiling water, high-concentrated acid and alkali; mixtures of solvents, such as 1 M H2SO4/MeOH/H2O solution, are also tolerated. Investigations on the chiral sensing performance show that PAC 1 enables enantioselective recognition of axially chiral biaryl molecules. The synthesis of stable chiral porous organic cages and the study of their chiral self-sorting properties is challenging. Here, the authors report axially chiral porous aromatic cages with high stability and solvent-controlled chiral self-sorting.
Collapse
|
215
|
Luo M, Yukawa H, Baba Y. Fluorescent/magnetic nano-aggregation via electrostatic force between modified quantum dot and iron oxide nanoparticles for bimodal imaging of U87MG tumor cells. ANAL SCI 2022; 38:1141-1147. [PMID: 35819752 DOI: 10.1007/s44211-022-00153-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 01/31/2023]
Abstract
Imaging technology based on novel nanomaterials is burgeoning as a potential tool for exploring various physiological processes. We herein report a fluorescent and magnetic nanoprobe (QMNP-RGD) for bimodal imaging of in vitro tumor cells. The preparation of this multifunctional nanomaterial is divided into three steps. First, commercial quantum dots (QDs) with high fluorescence intensity are covalently modified with an RGD peptide, which can facilitate the tumor cell uptake by αvβ3 integrin-induced active recognition. Superparamagnetic iron oxide (SPIO) nanoparticles (NPs) are then capped using a cationic polysaccharide to improve stability. Integration is finally achieved by convenient electrostatic binding. We successfully demonstrated that QMNP-RGD can be efficiently delivered into U87MG cells and used for fluorescence/magnetic resonance (MR) bimodal imaging. Other multimodal probes may be able to be designed for imaging based on this strategy of electrostatic binding.
Collapse
Affiliation(s)
- Minchuan Luo
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroshi Yukawa
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan. .,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan. .,Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inageku, Chiba, 263-8555, Japan. .,Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, B3 Unit, Tsurumai 65, Showa-ku, Nagoya, 466-8550, Japan. .,Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yoshinobu Baba
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan. .,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan. .,Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inageku, Chiba, 263-8555, Japan.
| |
Collapse
|
216
|
Li Q, Li J, Wang W, Liu L, Xu Z, Xie G, Li J, Yao J, Li W. Tuning Acceptor Length in Photocatalytic
Donor‐Acceptor
Conjugated Polymers for Efficient
Solar‐to‐Hydrogen
Energy Conversion. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qian Li
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Normal University Shanghai 200234 China
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Jia Li
- CAS Key laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Wen‐Rui Wang
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Li‐Na Liu
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| | - Zi‐Wen Xu
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Guanghui Xie
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| | - Jingjing Li
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| | - Jianhua Yao
- CAS Key laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| | - Wei‐Shi Li
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Normal University Shanghai 200234 China
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| |
Collapse
|
217
|
Han C, Xiang S, Ge M, Xie P, Zhang C, Jiang JX. An Efficient Electron Donor for Conjugated Microporous Polymer Photocatalysts with High Photocatalytic Hydrogen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202072. [PMID: 35689304 DOI: 10.1002/smll.202202072] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Conjugated microporous polymers (CMPs) with donor-acceptor (D-A) molecular structure show high photocatalytic activity for hydrogen evolution due to the efficient light-induced electron/hole separation, which is mostly determined by the nature of electron donor and acceptor units. Therefore, the selection of electron donor and acceptor holds the key point to construct high performance polymer photocatalysts. Herein, two dibenzo[b,d]thiophene-S,S-dioxide (BTDO) containing CMP photocatalysts using tetraphenylethylene (TPE) or dibenzo[g,p]chrysene (DBC) as the electron donor to investigate the influence of the geometry of electron donor on the photocatalytic activity are design and synthesized. Compared with the twisted TPE donor, DBC has a planar molecular structure with extended π-conjugation, which promotes the charges transmission and light-induced electron/hole separation. As a result, the polymer DBC-BTDO produced from DBC donor shows a remarkable photocatalytic hydrogen evolution rate (HER) of 104.86 mmol h-1 g-1 under full arc light (λ > 300 nm), which is much higher than that of the polymer TPE-BTDO (1.80 mmol h-1 g-1 ), demonstrating that DBC can be an efficient electron donor for constructing D-A polymer photocatalysts with high photocatalytic activity for hydrogen evolution.
Collapse
Affiliation(s)
- Changzhi Han
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Sihui Xiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Mantang Ge
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Peixuan Xie
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| |
Collapse
|
218
|
A core-shell structured magnetic sulfonated covalent organic framework for the extraction of benzoylureas insecticides from water, pear juice and honey samples. J Chromatogr A 2022; 1679:463387. [DOI: 10.1016/j.chroma.2022.463387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022]
|
219
|
Wang R, Liu Q, Peng Q, Yang X, Zhao H, Fan H, Liu H, Cao X. A novel strategy to improve gas capture performance of metal-free azo-bridged porphyrin porous organic polymers: The design of traps. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
220
|
Xuan M, Schumacher C, Bolm C, Göstl R, Herrmann A. The Mechanochemical Synthesis and Activation of Carbon-Rich π-Conjugated Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105497. [PMID: 35048569 PMCID: PMC9259731 DOI: 10.1002/advs.202105497] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Indexed: 05/14/2023]
Abstract
Mechanochemistry uses mechanical force to break, form, and manipulate chemical bonds to achieve functional transformations and syntheses. Over the last years, many innovative applications of mechanochemistry have been developed. Specifically for the synthesis and activation of carbon-rich π-conjugated materials, mechanochemistry offers reaction pathways that either are inaccessible with other stimuli, such as light and heat, or improve reaction yields, energy consumption, and substrate scope. Therefore, this review summarizes the recent advances in this research field combining the viewpoints of polymer and trituration mechanochemistry. The highlighted mechanochemical transformations include π-conjugated materials as optical force probes, the force-induced release of small dye molecules, and the mechanochemical synthesis of polyacetylene, carbon allotropes, and other π-conjugated materials.
Collapse
Affiliation(s)
- Mingjun Xuan
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| | - Christian Schumacher
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| |
Collapse
|
221
|
Cao Y, Sun W, Guo C, Zheng L, Yao M, Wang Y. Rational Construction of Yolk-Shell Bimetal-Modified Quinonyl-Rich Covalent Organic Polymers with Ultralong Lithium-Storage Mechanism. ACS NANO 2022; 16:9830-9842. [PMID: 35658409 DOI: 10.1021/acsnano.2c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent organic polymers are attracting more and more attention for energy storage devices due to their lightweight, molecular viable design, stable structure, and environmental benignity. However, low charge-carrier mobility of pristine covalent organic materials is the main drawback for their application in lithium-ion batteries. Herein, a yolk-shell bimetal-modified quinonyl-rich covalent organic material, Co@2AQ-MnO2, has been designed and synthesized by in situ loading of petal-like nanosized MnO2 and coordinating with Co centers, with the aim to improve the charge conductivity of the covalent organic polymer and activate its Li-storage sites. As investigated by in situ FT-IR, ex situ XPS, and electrochemical probing, the quinonyl-rich structure provides abundant redox sites (carbonyl groups and π electrons from the benzene ring) for lithium reaction, and the introduction of two types of metallic species promotes the charge transfer and facilitates more efficient usage of active energy-storage sites in Co@2AQ-MnO2. Thus, the Co@2AQ-MnO2 electrode exhibits good cycling performance with large reversible capacity and excellent rate performance (1534.4 mA h g-1 after 200 cycles at 100 mA g-1 and 596.0 mA h g-1 after 1000 cycles at 1000 mA g-1).
Collapse
Affiliation(s)
- Yingnan Cao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Chaofei Guo
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Lu Zheng
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Mengyao Yao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| |
Collapse
|
222
|
Zhang Z, Wang Q, Liu H, Li T, Ren Y. Ultramicroporous Organophosphorus Polymers via Self-Accelerating P-C Coupling Reactions: Kinetic Effects on Crosslinking Environments and Porous Structures. J Am Chem Soc 2022; 144:11748-11756. [PMID: 35734875 DOI: 10.1021/jacs.2c03759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous organic polymers (POPs) have drawn significant attention in diverse applications. However, factors affecting the heterogeneous polymerization and porosity of POPs are still not well understood. Herein, we report a new strategy to construct porous organophosphorus polymers (POPPs) with high surface areas (1283 m2/g) and ultramicroporous structures (0.67 nm). The strategy harnesses an efficient transition-metal-catalyzed phosphorus-carbon (P-C) coupling reaction at the trigonal pyramidal P-center, which is distinct from the typical carbon-carbon coupling reaction utilized in the synthesis of POPs. As the first kinetic study on the coupling reaction of POPs, we uncovered a self-accelerating reaction characteristic, which is controlled by the choice of bases and catalysts. The self-accelerating characteristic of the P-C coupling reaction is beneficial for the high surface area and uniform ultramicroporosity of POPPs. The direct crosslinking of the P-centers allows 31P solid-state (ss)NMR experiments to unambiguously reveal the crosslinking environments of POPPs. Leveraging on the kinetic studies and 31P ssNMR studies, we were able to reveal the kinetic effects of the P-C coupling reaction on both the crosslinking environments and the porous structures of POPPs. Furthermore, our studies show that the CO2 uptake capacity of POPPs is highly dependent on their porous structures. Overall, our studies paves the way to design new POPs with better controlled chemical and ultramicroporous structures, which have potential applications for CO2 capture and separation.
Collapse
Affiliation(s)
- Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
223
|
Zhou Z, Chen IC, Rehman LM, Aboalsaud AM, Shinde DB, Cao L, Zhang Y, Lai Z. Conjugated microporous polymer membranes for light-gated ion transport. SCIENCE ADVANCES 2022; 8:eabo2929. [PMID: 35714184 PMCID: PMC9205585 DOI: 10.1126/sciadv.abo2929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 05/28/2023]
Abstract
Inspired by the light-gated ion channels in cell membranes that play important roles in many biological activities, herein, we developed an artificial light-gated ion channel membrane out of conjugated microporous polymers. Through bottom-up design of the monomer molecular structure and by the electropolymerization method, the membrane pore size and thickness were precisely controlled on the molecular level. The obtained membrane exhibited uniform pore size and highly sensitive light-switchable response. The photoisomerization of the polymer chain resulted in a reversible "on and off" light control over the pore size and subsequently led to light-gated ion transport across the membrane for a series of ions including hydrogen, potassium, sodium, lithium, calcium, magnesium, and aluminum ions.
Collapse
|
224
|
Li Z, Yang Z, Zhang Y, Yang B, Yang YW. Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone‐Linked Pillararene Framework by a Macrocycle‐To‐Framework Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheng Li
- Jilin University College of Chemistry CHINA
| | | | | | - Bing Yang
- Jilin University College of Chemistry CHINA
| | - Ying-Wei Yang
- Jilin University College of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
225
|
Weng C, Li X, Yang Z, Long H, Lu C, Dong L, Zhao S, Tan L. A directly linked COF-like conjugated microporous polymer based on naphthalene diimides for high performance supercapacitors. Chem Commun (Camb) 2022; 58:6809-6812. [PMID: 35612549 DOI: 10.1039/d2cc02097a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, single bond directly linked COF-like conjugated microporous polymer NDTT is constructed via Stille coupling with thiophene-substituted naphthalene diimides and triazine, showing fair crystallinity. NDTT is utilized as an electrode for supercapacitor applications, exhibiting promising performance with excellent capacitance reaching 425.3 F g-1 under a current of 0.2 A g-1.
Collapse
Affiliation(s)
- Changyu Weng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Xianglan Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Zhiwei Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Beibei, Chongqing, 400714, China
| | - Haijun Long
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Beibei, Chongqing, 400714, China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Shuo Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| |
Collapse
|
226
|
Mane ST, Kanase DG, Mohite S. Role of aromatic ring spacer in homo‐coupled conjugated microporous polymers in selective
CO
2
separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sachin Tanaji Mane
- Department of Chemistry Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya Sangli Maharashtra India
| | - D. G. Kanase
- Department of Chemistry Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya Sangli Maharashtra India
| | - Suhas Mohite
- Department of Chemistry Bharati Vidyapeeth Deemed University, Yashwantrao Mohite College Pune Maharashtra India
| |
Collapse
|
227
|
Giri A, Patra A. Porous Organic Polymers: Promising Testbed for Heterogeneous Reactive Oxygen Species Mediated Photocatalysis and Nonredox CO 2 Fixation. CHEM REC 2022; 22:e202200071. [PMID: 35675959 DOI: 10.1002/tcr.202200071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/07/2022]
Abstract
Catalysts play a pivotal role in achieving the global need for food and energy. In this context, porous organic polymers (POPs) with high surface area, robust architecture, tunable pore size, and chemical functionalities have emerged as promising testbeds for heterogeneous catalysis. Amorphous POPs having functionalized interconnected hierarchical porous structures activate a diverse range of substrates through covalent/non-covalent interactions or act as a host matrix to encapsulate catalytically active metal centers. On the other hand, conjugated POPs have been explored for photoinduced chemical transformations. In this personal account, we have delineated the evolution of various POPs and the specific role of pores and pore functionalities in heterogeneous catalysis. Subsequently, we retrospect our journey over the last ten years towards designing and fabricating amorphous POPs for heterogeneous catalysis, specifically photocatalytic reactive oxygen species (ROS)-mediated organic transformations and nonredox chemical fixation of CO2 . We have also outlined some of the future avenues of POPs and POP-based hybrid materials for diverse catalytic applications.
Collapse
Affiliation(s)
- Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Madhya Pradesh, India
| |
Collapse
|
228
|
Ahmadi Y, Kim KH. Recent Progress in the Development of Hyper-Cross-Linked Polymers for Adsorption of Gaseous Volatile Organic Compounds. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2082470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Younes Ahmadi
- Department of Analytical Chemistry, Kabul University, Kabul, Afghanistan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
229
|
Wu JR, Wu G, Li D, Dai D, Yang YW. Guest-induced amorphous-to-crystalline transformation enables sorting of haloalkane isomers with near-perfect selectivity. SCIENCE ADVANCES 2022; 8:eabo2255. [PMID: 35658045 PMCID: PMC9166396 DOI: 10.1126/sciadv.abo2255] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The separation of haloalkane isomers with distillation-free strategies is one of the most challenging research topics in fundamental research and also gave high guiding values to practical industrial applications. Here, this contribution provides a previously unidentified solid supramolecular adsorption material based on a leggero pillararene derivative BrP[5]L, which can separate 1-/2-bromoalkane isomers with near-ideal selectivity. Activated solids of BrP[5]L with interesting amorphous and nonporous features could adsorb 1-bromopropane and 1-bromobutane from the corresponding equal volume mixtures of 1-/2-positional isomers with purities of 98.1 and 99.0%, respectively. Single-crystal structures incorporating theoretical calculation reveal that the high selectivity originates from the higher thermostability of 1-bromoalkane-loaded structures compared to its corresponding isomer-loaded structures, which could be further attributed to the perfect size/shape match between BrP[5]L and 1-bromoalkanes. Moreover, control experiments using its counterpart macrocycle of traditional pillararene demonstrate that BrP[5]L has better adsorptive selectivity, benefiting from the intrinsic free-rotation phenylene subunit on its backbone.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Dongxia Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Dihua Dai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
230
|
Wang Y, Su Y, Yang L, Su M, Niu Y, Liu Y, Sun H, Zhu Z, Liang W, Li A. Highly efficient removal of PM and VOCs from air by a self-supporting bifunctional conjugated microporous polymers membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
231
|
Meng X, Liu Y, Wang S, Ye Y, Song X, Liang Z. Post-crosslinking of conjugated microporous polymers using vinyl polyhedral oligomeric silsesquioxane for enhancing surface areas and organic micropollutants removal performance from water. J Colloid Interface Sci 2022; 615:697-706. [DOI: 10.1016/j.jcis.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
232
|
Wang G, Chen Y, Pan C, Chen H, Ding S, Chen X. Rapid synthesis of self-standing covalent organic frameworks membrane via polyethylene glycol-assisted space-confined strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
233
|
Ding N, Zhou T, Weng W, Lin Z, Liu S, Maitarad P, Wang C, Guo J. Multivariate Synthetic Strategy for Improving Crystallinity of Zwitterionic Squaraine-Linked Covalent Organic Frameworks with Enhanced Photothermal Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201275. [PMID: 35585681 DOI: 10.1002/smll.202201275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) offer a designable platform to explore porous polyelectrolyte frameworks with periodic ionic skeletons and uniform pore channels. However, the crystallinity of ionized 2D COF is often far from satisfactory as the electrostatic assembly of structures impedes the ordered layered arrangement. Here, a multivariate synthetic strategy to synthesize a highly crystalline squaraine (SQ)-linked zwitterionic 2D COF is proved. A neutral aldehyde monomer copolymerizes with squaric acid (SA) and amines in a controlled manner, resulting in the ionized COF with linkage heterogeneity in one tetragonal framework. Thus, the zwitterions of SQ are spatially isolated to minimize the electrostatic interaction and maintain the highly ordered layered stacking. With the addition of 85%-90% SA (relative to a total of aldehydes and SA), a fully SQ-linked zwitterionic 2D COF is achieved by the in-situ conversion of imine to SQ linkages. Such a highly crystalline SQ-linked COF promotes absorptivity in a full spectrum and photothermal conversion performances, and in turn, it exhibits enhanced solar-to-vapor generation with an efficiency of as high as 92.19%. These results suggest that synthetically regulating charge distribution is desirable to constitute a family of new crystalline polyelectrolyte frameworks.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ting Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Weijun Weng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zheng Lin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shujing Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
234
|
Yao B, He Y, Wang S, Sun H, Liu X. Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction. Int J Mol Sci 2022; 23:ijms23116036. [PMID: 35682721 PMCID: PMC9181101 DOI: 10.3390/ijms23116036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Oxygen evolution reaction (OER) plays a pivotal role in the development of renewable energy methods, such as water-splitting devices and the use of Zn–air batteries. First-row transition metal complexes are promising catalyst candidates due to their excellent electrocatalytic performance, rich abundance, and cheap price. Metalloporphyrins are a class of representative high-efficiency complex catalysts owing to their structural and functional characteristics. However, OER based on porphyrin systems previously have been paid little attention in comparison to the well-described oxygen reduction reaction (ORR), hydrogen evolution reaction, and CO2 reduction reaction. Recently, porphyrin-based systems, including both small molecules and porous polymers for electrochemical OER, are emerging. Accordingly, this review summarizes the recent advances of porphyrin-based systems for electrochemical OER. Firstly, the electrochemical OER for water oxidation is discussed, which shows various methodologies to achieve catalysis from homogeneous to heterogeneous processes. Subsequently, the porphyrin-based catalytic systems for bifunctional oxygen electrocatalysis including both OER and ORR are demonstrated. Finally, the future development of porphyrin-based catalytic systems for electrochemical OER is briefly prospected.
Collapse
|
235
|
Gao Y, Dong C, Zhang F, Ma H, Li Y. Low cross‐linked polyimide aerogel with imidazole for
CO
2
adsorption. J Appl Polym Sci 2022. [DOI: 10.1002/app.52681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yangfeng Gao
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Chao Dong
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Fan Zhang
- Weifang Hongrun New Materials Co., Ltd Weifang China
| | - Hongwei Ma
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Yang Li
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| |
Collapse
|
236
|
Zhang T, Gregoriou VG, Gasparini N, Chochos CL. Porous organic polymers in solar cells. Chem Soc Rev 2022; 51:4465-4483. [PMID: 35583184 DOI: 10.1039/d2cs00123c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Owing to their unique porosity and large surface area, porous organic polymers (POPs) have shown their presence in numerous novel applications. The tunability and functionality of both the pores and backbone of the material enable its suitability in photovoltaic devices. The porosity induced host-guest configurations as well as periodic donor-acceptor structures benefit the charge separation and charge transfer in photophysical processes. The role of POPS in other critical device components, such as hole transporting layers and electrodes, has also been demonstrated. Herein, this review will primarily focus on the recent progress made in applying POPs for solar cell device performance enhancement, covering organic solar cells, perovskite solar cells, and dye-sensitized solar cells. Based on the efforts in recent years in unraveling POP's photophysical process and its relevance with device performances, an in-depth analysis will be provided to address the gradual shift of attention from an entirely POP-based active layer to other device functional components. Combining the insights from device physics, material synthesis, and microfabrication, we aim to unfold the fundamental limitations and challenges of POPs and shed light on future research directions.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, UK
| | - Vasilis G Gregoriou
- Advent Technologies SA, Stadiou Street, Platani, Rio, Patras 26504, Greece. .,National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, UK
| | - Christos L Chochos
- Advent Technologies SA, Stadiou Street, Platani, Rio, Patras 26504, Greece. .,Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
237
|
Xue C, Peng M, Zhang Z, Han X, Wang Q, Li C, Liu H, Li T, Yu N, Ren Y. Conjugated Boron Porous Polymers Having Strong p−π* Conjugation for Amine Sensing and Absorption. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Min Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Xue Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Conger Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
238
|
Electrospun Donor/Acceptor Nanofibers for Efficient Photocatalytic Hydrogen Evolution. NANOMATERIALS 2022; 12:nano12091535. [PMID: 35564245 PMCID: PMC9101664 DOI: 10.3390/nano12091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
We prepared a series of one-dimensional conjugated-material-based nanofibers with different morphologies and donor/acceptor (D/A) compositions by electrospinning for efficient photocatalytic hydrogen evolution. It was found that homogeneous D/A heterojunction nanofibers can be obtained by electrospinning, and the donor/acceptor ratio can be easily controlled. Compared with the single-component-based nanofibers, the D/A-based nanofibers showed a 34-fold increase in photocatalytic efficiency, attributed to the enhanced exciton dissociation in the nanofibrillar body. In addition, the photocatalytic activity of these nanofibers can be easily optimized by modulating the diameter. The results show that the diameter of the nanofibers can be conveniently controlled by the electrospinning feed rate, and the photocatalytic effect increases with decreasing fiber diameter. Consequently, the nanofibers with the smallest diameter exhibit the most efficient photocatalytic hydrogen evolution, with the highest release rate of 24.38 mmol/(gh). This work provides preliminary evidence of the advantages of the electrospinning strategy in the construction of D/A nanofibers with controlled morphology and donor/acceptor composition, enabling efficient hydrogen evolution.
Collapse
|
239
|
Dong X, Hao H, Zhang F, Lang X. Combining Brønsted base and photocatalysis into conjugated microporous polymers: Visible light-induced oxidation of thiols into disulfides with oxygen. J Colloid Interface Sci 2022; 622:1045-1053. [PMID: 35594638 DOI: 10.1016/j.jcis.2022.04.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
Numerous applications in visible light photocatalysis have been found over conjugated microporous polymers (CMPs) whose function could be rationally designed at the molecular level. In this context, the oxidation of thiols into disulfides entails proton and electron transfer and thus requires both Brønsted base and photocatalysis, which could be both combined into CMPs. With carbazole as a Brønsted base and an electron donor, CMPs were constructed to implement the synergistic deprotonation and oxidation of thiols into disulfides in ethanol (C2H5OH). Gratifyingly, the bifunctional CMPs could activate molecular oxygen (O2) to superoxide anion (O2•-) and promote the blue light-induced selective oxidation of thiols into symmetrical disulfides with high efficiency in C2H5OH. More remarkably, the highly selective formation of unsymmetrical disulfides could also be achieved without adding a Brønsted base. This work highlights the feasibility of combining cooperative photocatalysis into CMPs for versatile chemical transformations.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huimin Hao
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
240
|
Triphenylamine-based conjugated microporous polymers as dye adsorbents and supercapacitors. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
241
|
Shi K, Yao H, Wang T, Song Y, Wei Y, Zhang S, Guan S. Crosslinked porous porphyrin-based polyimides based on terminal alkynyl groups for high carbon dioxide selectivity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
242
|
Holda AK, Perera S, Emanuelsson Patterson EA. Photocatalytic membranes containing homocoupled conjugated microporous poly(phenylene butadiynylene) for chemical-free degradation of organic micropollutants. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
243
|
Jiang W, Wu Y, Zhang X, Chen D, Ma Y, Yang W. Novel Bismaleimide Porous Polymer Microsphere by Self-Stabilized Precipitation Polymerization and Its Application for Catalytic Microreactors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenxing Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingxue Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
244
|
Wang Y, Zhao Y, Li Z. Two-Dimensional Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromol Rapid Commun 2022; 43:e2200108. [PMID: 35477941 DOI: 10.1002/marc.202200108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Indexed: 11/07/2022]
Abstract
In the context of energy crisis and global warming, developing clean and sustainable energy is receiving increasing attention. Photocatalytic process including water splitting, CO2 reduction, coenzyme regeneration, etc., provides an ideal way to utilize renewable solar resources. The photocatalyst plays a central role in photocatalytic processes. Organic porous polymers have recently gained extensive attention in photocatalysis. Covalent organic frameworks (COFs), as one of the organic porous polymers, have the characteristics of high crystallinity, porosity and structural designability that make them perfect platforms for photocatalysis. In this minireview, the recent progresses of 2D COFs as photocatalysts were summarized including our recent work. The synthesis of the diversified structures of the COFs including the different linkages was first introduced. Then, the photocatalytic applications of the 2D COFs including photocatalytic hydrogen evolution, CO2 conversion, coenzyme regeneration and other traditional organic reaction were then discussed. Finally, conclusions and prospects were provided in the last section. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuancheng Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingjie Zhao
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
245
|
Wang H, Mao M, Wang C. Storing Mg Ions in Polymers: A Perspective. Macromol Rapid Commun 2022; 43:e2200198. [PMID: 35445475 DOI: 10.1002/marc.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Indexed: 11/07/2022]
Abstract
The electrochemical performance of rechargeable Mg batteries (RMBs) is primarily determined by the cathodes. However, the strong interaction between highly polarized Mg2+ and the host lattice is a big challenge for inorganic cathode materials. While endowed with weak interaction with Mg2+ , organic polymers are capable of fast reaction kinetics. Besides, with the advantages of light weight, abundance, low cost, and recyclability, polymers are deemed as ideal cathode materials for RMBs. Although polymer cathodes have remarkably progressed in recent years, there are still significant challenges to overcome before reaching practical application. In this perspective, the challenges faced by polymer cathodes are critically focused, followed by the retrospection of efforts devoted to design polymers. Some feasible strategies are proposed to explore new structures and chemistries for the practical application of polymer cathodes in RMBs.
Collapse
Affiliation(s)
- Haoxiang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minglei Mao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengliang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
246
|
Cao Z, Wang M, Gao H, Li L, Ren S. Porous Organic Polymers via Diels-Alder Reaction for the Removal of Cr(VI) from Aqueous Solutions. ACS Macro Lett 2022; 11:447-451. [PMID: 35575316 DOI: 10.1021/acsmacrolett.2c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Diels-Alder reaction is striking as a prominent synthetic tool for the rapid construction of complex molecular frameworks, but the synthesis of porous organic polymers (POPs) via the Diels-Alder reaction is rare. Herein, we report the solvothermal synthesis of a new type of POPs (DA-POPs) via the furan/alkynyl Diels-Alder reaction. These polymers show favorable porous properties and high specific surface areas (up to 1041 m2·g-1). Meanwhile, the high porosity in conjuction of ether bridges in the DA-POPs enable a fine adsorption performance for the removal of Cr(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Zuolin Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Mengyang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Huimin Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| |
Collapse
|
247
|
Nagendra B, Daniel C, Rizzo P, Guerra G. c
‐perpendicular orientation in thin
nanoporous‐crystalline
poly(2,6‐dimethyl‐1,4‐phenylene)oxide films. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baku Nagendra
- Dipartimento di Chimica e Biologia, INSTM Research Unit Università degli Studi di Salerno Fisciano Italy
| | - Christophe Daniel
- Dipartimento di Chimica e Biologia, INSTM Research Unit Università degli Studi di Salerno Fisciano Italy
| | - Paola Rizzo
- Dipartimento di Chimica e Biologia, INSTM Research Unit Università degli Studi di Salerno Fisciano Italy
| | - Gaetano Guerra
- Dipartimento di Chimica e Biologia, INSTM Research Unit Università degli Studi di Salerno Fisciano Italy
| |
Collapse
|
248
|
Wang X, Yang J, Shi X, Zhang Z, Yin C, Wang Y. Electrosynthesis of Ionic Covalent Organic Frameworks for Charge-Selective Separation of Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107108. [PMID: 35218138 DOI: 10.1002/smll.202107108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as potent material platforms for engineering advanced membranes to tackle challenging separation demands. However, the synthesis of COF membranes is currently hampered by suboptimal productivity and harsh synthesis conditions, especially for ionic COFs with perdurable charges. Herein, ionic COFs with charged nanochannels are electrically synthesized on conductive supports to rapidly construct composite membranes for charge-selective separations of small molecules. The intrinsic charging nature and strong charge intensity of ionic COFs are demonstrated to collectively dominate the membrane growth. Spontaneous repairing to diminish defects under the applied electric field is observed, in favor of generating well-grown COF membranes. Altering electrosynthetic conditions realizes the precise control over the membrane thickness and thus the separation ability. Electrically synthesized ionic COF membranes exhibit remarkable molecular separation performances due to their relatively ordered and charged nanochannels. With these charge-selective pathways, the membranes enable the efficient sieving of charged and neutral molecules with analogous structures. This study reveals an electrical route to synthesizing COF thin films, and showcases the great potential of ionic nanochannels in precise separation based on charge selectivity.
Collapse
Affiliation(s)
- Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jingying Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
249
|
Two-stage polymerization towards C–C bonded Conjugated microporous polymer membranes with excellent nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
250
|
Pourebrahimi S, Pirooz M. Synthesis of a novel freestanding conjugated triazine-based microporous membrane through superacid-catalyzed polymerization for superior CO2 separation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|