201
|
Molecular generation by Fast Assembly of (Deep)SMILES fragments. J Cheminform 2021; 13:88. [PMID: 34775976 PMCID: PMC8591910 DOI: 10.1186/s13321-021-00566-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, in silico molecular design is regaining interest. To generate on a computer molecules with optimized properties, scoring functions can be coupled with a molecular generator to design novel molecules with a desired property profile. RESULTS In this article, a simple method is described to generate only valid molecules at high frequency ([Formula: see text] molecule/s using a single CPU core), given a molecular training set. The proposed method generates diverse SMILES (or DeepSMILES) encoded molecules while also showing some propensity at training set distribution matching. When working with DeepSMILES, the method reaches peak performance ([Formula: see text] molecule/s) because it relies almost exclusively on string operations. The "Fast Assembly of SMILES Fragments" software is released as open-source at https://github.com/UnixJunkie/FASMIFRA . Experiments regarding speed, training set distribution matching, molecular diversity and benchmark against several other methods are also shown.
Collapse
|
202
|
Liu X, Ye K, van Vlijmen HWT, Emmerich MTM, IJzerman AP, van Westen GJP. DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology. J Cheminform 2021; 13:85. [PMID: 34772471 PMCID: PMC8588612 DOI: 10.1186/s13321-021-00561-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022] Open
Abstract
In polypharmacology drugs are required to bind to multiple specific targets, for example to enhance efficacy or to reduce resistance formation. Although deep learning has achieved a breakthrough in de novo design in drug discovery, most of its applications only focus on a single drug target to generate drug-like active molecules. However, in reality drug molecules often interact with more than one target which can have desired (polypharmacology) or undesired (toxicity) effects. In a previous study we proposed a new method named DrugEx that integrates an exploration strategy into RNN-based reinforcement learning to improve the diversity of the generated molecules. Here, we extended our DrugEx algorithm with multi-objective optimization to generate drug-like molecules towards multiple targets or one specific target while avoiding off-targets (the two adenosine receptors, A1AR and A2AAR, and the potassium ion channel hERG in this study). In our model, we applied an RNN as the agent and machine learning predictors as the environment. Both the agent and the environment were pre-trained in advance and then interplayed under a reinforcement learning framework. The concept of evolutionary algorithms was merged into our method such that crossover and mutation operations were implemented by the same deep learning model as the agent. During the training loop, the agent generates a batch of SMILES-based molecules. Subsequently scores for all objectives provided by the environment are used to construct Pareto ranks of the generated molecules. For this ranking a non-dominated sorting algorithm and a Tanimoto-based crowding distance algorithm using chemical fingerprints are applied. Here, we adopted GPU acceleration to speed up the process of Pareto optimization. The final reward of each molecule is calculated based on the Pareto ranking with the ranking selection algorithm. The agent is trained under the guidance of the reward to make sure it can generate desired molecules after convergence of the training process. All in all we demonstrate generation of compounds with a diverse predicted selectivity profile towards multiple targets, offering the potential of high efficacy and low toxicity.
Collapse
Affiliation(s)
- Xuhan Liu
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Kai Ye
- School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning W Rd, Xi'an, China
| | - Herman W T van Vlijmen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.,Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Michael T M Emmerich
- Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
203
|
Imrie F, Hadfield TE, Bradley AR, Deane CM. Deep generative design with 3D pharmacophoric constraints. Chem Sci 2021; 12:14577-14589. [PMID: 34881010 PMCID: PMC8580048 DOI: 10.1039/d1sc02436a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Generative models have increasingly been proposed as a solution to the molecular design problem. However, it has proved challenging to control the design process or incorporate prior knowledge, limiting their practical use in drug discovery. In particular, generative methods have made limited use of three-dimensional (3D) structural information even though this is critical to binding. This work describes a method to incorporate such information and demonstrates the benefit of doing so. We combine an existing graph-based deep generative model, DeLinker, with a convolutional neural network to utilise physically-meaningful 3D representations of molecules and target pharmacophores. We apply our model, DEVELOP, to both linker and R-group design, demonstrating its suitability for both hit-to-lead and lead optimisation. The 3D pharmacophoric information results in improved generation and allows greater control of the design process. In multiple large-scale evaluations, we show that including 3D pharmacophoric constraints results in substantial improvements in the quality of generated molecules. On a challenging test set derived from PDBbind, our model improves the proportion of generated molecules with high 3D similarity to the original molecule by over 300%. In addition, DEVELOP recovers 10× more of the original molecules compared to the baseline DeLinker method. Our approach is general-purpose, readily modifiable to alternate 3D representations, and can be incorporated into other generative frameworks. Code is available at https://github.com/oxpig/DEVELOP.
Collapse
Affiliation(s)
- Fergus Imrie
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford Oxford OX1 3LB UK
| | - Thomas E Hadfield
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford Oxford OX1 3LB UK
| | - Anthony R Bradley
- Exscientia Ltd The Schrödinger Building, Oxford Science Park Oxford OX4 4GE UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford Oxford OX1 3LB UK
| |
Collapse
|
204
|
Deep Learning Applied to Ligand-Based De Novo Drug Design. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2390:273-299. [PMID: 34731474 DOI: 10.1007/978-1-0716-1787-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the latest years, the application of deep generative models to suggest virtual compounds is becoming a new and powerful tool in drug discovery projects. The idea behind this review is to offer an updated view on de novo design approaches based on artificial intelligent (AI) algorithms, with a particular focus on ligand-based methods. We start this review by reporting a brief overview of the most relevant de novo design approaches developed before the use of AI techniques. We then describe the nowadays most common neural network architectures employed in ligand-based de novo design, together with an up-to-date list of more than 100 deep generative models found in the literature (2017-2020). In order to show how deep generative approaches are applied into drug discovery context, we report all the now available studies in which generated compounds have been synthetized and their biological activity tested. Finally, we discuss what we envisage as beneficial future directions for further application of deep generative models in de novo drug design.
Collapse
|
205
|
Abstract
Within the context of the latest resurgence in the application of artificial intelligence approaches, deep learning has undergone a renaissance over recent years. These methods have been applied to a number of problems in computational chemistry. Compared to other machine learning approaches, the practical performance advantages of deep neural networks are often unclear. However, deep learning does appear to offer a number of other advantages such as the facile incorporation of multitask learning and the enhancement of generative modeling. The high complexity of contemporary network architectures represents a potentially significant barrier to their future adoption due to the costs of training such models and challenges in interpreting their predictions. When combined with the relative paucity of very large datasets, it is interesting to reflect on whether deep learning is likely to have the kind of transformational impact on computational chemistry that it is commonly held to have had in other domains such as image recognition.
Collapse
|
206
|
Deng J, Yang Z, Ojima I, Samaras D, Wang F. Artificial intelligence in drug discovery: applications and techniques. Brief Bioinform 2021; 23:6420092. [PMID: 34734228 DOI: 10.1093/bib/bbab430] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/02/2021] [Accepted: 09/18/2021] [Indexed: 12/23/2022] Open
Abstract
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated.
Collapse
Affiliation(s)
- Jianyuan Deng
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Zhibo Yang
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11790, USA
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA
| | - Fusheng Wang
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA.,Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA
| |
Collapse
|
207
|
Li Y, Pei J, Lai L. Structure-based de novo drug design using 3D deep generative models. Chem Sci 2021; 12:13664-13675. [PMID: 34760151 PMCID: PMC8549794 DOI: 10.1039/d1sc04444c] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Deep generative models are attracting much attention in the field of de novo molecule design. Compared to traditional methods, deep generative models can be trained in a fully data-driven way with little requirement for expert knowledge. Although many models have been developed to generate 1D and 2D molecular structures, 3D molecule generation is less explored, and the direct design of drug-like molecules inside target binding sites remains challenging. In this work, we introduce DeepLigBuilder, a novel deep learning-based method for de novo drug design that generates 3D molecular structures in the binding sites of target proteins. We first developed Ligand Neural Network (L-Net), a novel graph generative model for the end-to-end design of chemically and conformationally valid 3D molecules with high drug-likeness. Then, we combined L-Net with Monte Carlo tree search to perform structure-based de novo drug design tasks. In the case study of inhibitor design for the main protease of SARS-CoV-2, DeepLigBuilder suggested a list of drug-like compounds with novel chemical structures, high predicted affinity, and similar binding features to those of known inhibitors. The current version of L-Net was trained on drug-like compounds from ChEMBL, which could be easily extended to other molecular datasets with desired properties based on users' demands and applied in functional molecule generation. Merging deep generative models with atomic-level interaction evaluation, DeepLigBuilder provides a state-of-the-art model for structure-based de novo drug design and lead optimization. DeepLigBuilder, a novel deep generative model for structure-based de novo drug design, directly generates 3D structures of drug-like compounds in the target binding site.![]()
Collapse
Affiliation(s)
- Yibo Li
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Luhua Lai
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China .,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China .,BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
208
|
Hu L, Yang Y, Zheng S, Xu J, Ran T, Chen H. Kinase Inhibitor Scaffold Hopping with Deep Learning Approaches. J Chem Inf Model 2021; 61:4900-4912. [PMID: 34586824 DOI: 10.1021/acs.jcim.1c00608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein kinase family contains many promising drug targets. Many kinase inhibitors target the ATP-binding pocket, leading to approved drugs in past decades. Scaffold hopping is an effective approach for drug design. The kinase ATP-binding pocket is highly conserved, crossing the whole kinase family. This provides an opportunity to develop a scaffold hopping approach to explore diversified scaffolds among various kinase inhibitors. In this work, we report the SyntaLinker-Hybrid scheme for kinase inhibitor scaffold hopping. With this scheme, we replace molecular fragments bound at the conserved kinase hinge region with deep generative models. Thus, we are able to generate new kinase-inhibitor-like structures hybridizing the privileged fragments against the hinge region. We demonstrate that this scheme allows generation of kinase-inhibitor-like molecules with novel scaffolds, while retaining the binding features of existing kinase inhibitors. This work can be employed in lead identification against kinase targets.
Collapse
Affiliation(s)
- Lizhao Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Yuyao Yang
- Center of Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou 510530, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Shuangjia Zheng
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Ting Ran
- Center of Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou 510530, China
| | - Hongming Chen
- Center of Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou 510530, China
| |
Collapse
|
209
|
Bagal V, Aggarwal R, Vinod PK, Priyakumar UD. MolGPT: Molecular Generation Using a Transformer-Decoder Model. J Chem Inf Model 2021; 62:2064-2076. [PMID: 34694798 DOI: 10.1021/acs.jcim.1c00600] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Application of deep learning techniques for de novo generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug design. The representation of molecules in SMILES notation as a string of characters enables the usage of state of the art models in natural language processing, such as Transformers, for molecular design in general. Inspired by generative pre-training (GPT) models that have been shown to be successful in generating meaningful text, we train a transformer-decoder on the next token prediction task using masked self-attention for the generation of druglike molecules in this study. We show that our model, MolGPT, performs on par with other previously proposed modern machine learning frameworks for molecular generation in terms of generating valid, unique, and novel molecules. Furthermore, we demonstrate that the model can be trained conditionally to control multiple properties of the generated molecules. We also show that the model can be used to generate molecules with desired scaffolds as well as desired molecular properties by conditioning the generation on scaffold SMILES strings of desired scaffolds and property values. Using saliency maps, we highlight the interpretability of the generative process of the model.
Collapse
Affiliation(s)
- Viraj Bagal
- International Institute of Information Technology, Hyderabad 500 032, India.,Indian Institute of Science Education and Research, Pune 411 008, India
| | - Rishal Aggarwal
- International Institute of Information Technology, Hyderabad 500 032, India
| | - P K Vinod
- International Institute of Information Technology, Hyderabad 500 032, India
| | - U Deva Priyakumar
- International Institute of Information Technology, Hyderabad 500 032, India
| |
Collapse
|
210
|
Kang B, Seok C, Lee J. MOLGENGO: Finding Novel Molecules with Desired Electronic Properties by Capitalizing on Their Global Optimization. ACS OMEGA 2021; 6:27454-27465. [PMID: 34693166 PMCID: PMC8529683 DOI: 10.1021/acsomega.1c04347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The discovery of novel and favorable fluorophores is critical for understanding many chemical and biological studies. High-resolution biological imaging necessitates fluorophores with diverse colors and high quantum yields. The maximum oscillator strength and its corresponding absorption wavelength of a molecule are closely related to the quantum yields and the emission spectrum of fluorophores, respectively. Thus, the core step to design favorable fluorophore molecules is to optimize the desired electronic transition properties of molecules. Here, we present MOLGENGO, a new molecular property optimization algorithm, to discover novel and favorable fluorophores with machine learning and global optimization. This study reports novel molecules from MOLGENGO with high oscillator strength and absorption wavelength close to 200, 400, and 600 nm. The results of MOLGENGO simulations have the potential to be candidates for new fluorophore frameworks.
Collapse
Affiliation(s)
- Beomchang Kang
- Department
of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chaok Seok
- Department
of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Juyong Lee
- Department
of Chemistry, Division of Chemistry and Biochemistry, Kangwon National University, 24341 Chuncheon, Republic of
Korea
| |
Collapse
|
211
|
Tong X, Liu X, Tan X, Li X, Jiang J, Xiong Z, Xu T, Jiang H, Qiao N, Zheng M. Generative Models for De Novo Drug Design. J Med Chem 2021; 64:14011-14027. [PMID: 34533311 DOI: 10.1021/acs.jmedchem.1c00927] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Artificial intelligence (AI) is booming. Among various AI approaches, generative models have received much attention in recent years. Inspired by these successes, researchers are now applying generative model techniques to de novo drug design, which has been considered as the "holy grail" of drug discovery. In this Perspective, we first focus on describing models such as recurrent neural network, autoencoder, generative adversarial network, transformer, and hybrid models with reinforcement learning. Next, we summarize the applications of generative models to drug design, including generating various compounds to expand the compound library and designing compounds with specific properties, and we also list a few publicly available molecular design tools based on generative models which can be used directly to generate molecules. In addition, we also introduce current benchmarks and metrics frequently used for generative models. Finally, we discuss the challenges and prospects of using generative models to aid drug design.
Collapse
Affiliation(s)
- Xiaochu Tong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaohong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaoqin Tan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jiaxin Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhaoping Xiong
- Laboratory of Health Intelligence, Huawei Technologies Co., Ltd, Shenzhen 518100, China
| | | | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Nan Qiao
- Laboratory of Health Intelligence, Huawei Technologies Co., Ltd, Shenzhen 518100, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
212
|
High-confidence structural annotation of metabolites absent from spectral libraries. Nat Biotechnol 2021; 40:411-421. [PMID: 34650271 PMCID: PMC8926923 DOI: 10.1038/s41587-021-01045-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Untargeted metabolomics experiments rely on spectral libraries for structure annotation, but, typically, only a small fraction of spectra can be matched. Previous in silico methods search in structure databases but cannot distinguish between correct and incorrect annotations. Here we introduce the COSMIC workflow that combines in silico structure database generation and annotation with a confidence score consisting of kernel density P value estimation and a support vector machine with enforced directionality of features. On diverse datasets, COSMIC annotates a substantial number of hits at low false discovery rates and outperforms spectral library search. To demonstrate that COSMIC can annotate structures never reported before, we annotated 12 natural bile acids. The annotation of nine structures was confirmed by manual evaluation and two structures using synthetic standards. In human samples, we annotated and manually validated 315 molecular structures currently absent from the Human Metabolome Database. Application of COSMIC to data from 17,400 metabolomics experiments led to 1,715 high-confidence structural annotations that were absent from spectral libraries.
Collapse
|
213
|
Cincilla G, Masoni S, Blobel J. Individual and collective human intelligence in drug design: evaluating the search strategy. J Cheminform 2021; 13:80. [PMID: 34635158 PMCID: PMC8507178 DOI: 10.1186/s13321-021-00556-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
In recent years, individual and collective human intelligence, defined as the knowledge, skills, reasoning and intuition of individuals and groups, have been used in combination with computer algorithms to solve complex scientific problems. Such approach was successfully used in different research fields such as: structural biology, comparative genomics, macromolecular crystallography and RNA design. Herein we describe an attempt to use a similar approach in small-molecule drug discovery, specifically to drive search strategies of de novo drug design. This is assessed with a case study that consists of a series of public experiments in which participants had to explore the huge chemical space in silico to find predefined compounds by designing molecules and analyzing the score associate with them. Such a process may be seen as an instantaneous surrogate of the classical design-make-test cycles carried out by medicinal chemists during the drug discovery hit to lead phase but not hindered by long synthesis and testing times. We present first findings on (1) assessing human intelligence in chemical space exploration, (2) comparing individual and collective human intelligence performance in this task and (3) contrasting some human and artificial intelligence achievements in de novo drug design.
Collapse
Affiliation(s)
- Giovanni Cincilla
- Molomics, Barcelona Science Park, c/Baldiri i Reixac 4-12, 08028, Barcelona, Spain.
| | - Simone Masoni
- Molomics, Barcelona Science Park, c/Baldiri i Reixac 4-12, 08028, Barcelona, Spain.
| | - Jascha Blobel
- Molomics, Barcelona Science Park, c/Baldiri i Reixac 4-12, 08028, Barcelona, Spain.
| |
Collapse
|
214
|
Leguy J, Glavatskikh M, Cauchy T, Da Mota B. Scalable estimator of the diversity for de novo molecular generation resulting in a more robust QM dataset (OD9) and a more efficient molecular optimization. J Cheminform 2021; 13:76. [PMID: 34600576 PMCID: PMC8487551 DOI: 10.1186/s13321-021-00554-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023] Open
Abstract
Chemical diversity is one of the key term when dealing with machine learning and molecular generation. This is particularly true for quantum chemical datasets. The composition of which should be done meticulously since the calculation is highly time demanding. Previously we have seen that the most known quantum chemical dataset QM9 lacks chemical diversity. As a consequence, ML models trained on QM9 showed generalizability shortcomings. In this paper we would like to present (i) a fast and generic method to evaluate chemical diversity, (ii) a new quantum chemical dataset of 435k molecules, OD9, that includes QM9 and new molecules generated with a diversity objective, (iii) an analysis of the diversity impact on unconstrained and goal-directed molecular generation on the example of QED optimization. Our innovative approach makes it possible to individually estimate the impact of a solution to the diversity of a set, allowing for effective incremental evaluation. In the first application, we will see how the diversity constraint allows us to generate more than a million of molecules that would efficiently complete the reference datasets. The compounds were calculated with DFT thanks to a collaborative effort through the QuChemPedIA@home BOINC project. With regard to goal-directed molecular generation, getting a high QED score is not complicated, but adding a little diversity can cut the number of calls to the evaluation function by a factor of ten.
Collapse
Affiliation(s)
- Jules Leguy
- Univ Angers, LERIA, SFR MATHSTIC, 49000, Angers, France
| | - Marta Glavatskikh
- Univ Angers, LERIA, SFR MATHSTIC, 49000, Angers, France.,Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, 49000, Angers, France
| | - Thomas Cauchy
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, 49000, Angers, France.
| | - Benoit Da Mota
- Univ Angers, LERIA, SFR MATHSTIC, 49000, Angers, France.
| |
Collapse
|
215
|
Gantzer P, Creton B, Nieto-Draghi C. Comparisons of Molecular Structure Generation Methods Based on Fragment Assemblies and Genetic Graphs. J Chem Inf Model 2021; 61:4245-4258. [PMID: 34405674 DOI: 10.1021/acs.jcim.1c00803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of quantitative structure-property relationships (QSPRs) helps in predicting molecular properties for several decades, while the automatic design of new molecular structures is still emerging. The choice of algorithms to generate molecules is not obvious and is related to several factors such as the desired chemical diversity (according to an initial dataset's content) and the level of construction (the use of atoms, fragments, pattern-based methods). In this paper, we address the problem of molecular structure generation by revisiting two approaches: fragment-based methods (FMs) and genetic-based methods (GMs). We define a set of indices to compare generation methods on a specific task. New indices inform about the explored data space (coverage), compare how the data space is explored (representativeness), and quantifies the ratio of molecules satisfying requirements (generation specificity) without the use of a database composed of real chemicals as a reference. These indices were employed to compare generations of molecules fulfilling the desired property criterion, evaluated by QSPR.
Collapse
Affiliation(s)
- Philippe Gantzer
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Benoit Creton
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Carlos Nieto-Draghi
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| |
Collapse
|
216
|
Brown N, Ertl P, Lewis R, Luksch T, Reker D, Schneider N. Artificial intelligence in chemistry and drug design. J Comput Aided Mol Des 2021; 34:709-715. [PMID: 32468207 DOI: 10.1007/s10822-020-00317-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nathan Brown
- BenevolentAI, 4-8 Maple Street, London, W1T 5HD, UK
| | - Peter Ertl
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Richard Lewis
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland.
| | | | - Daniel Reker
- Koch Institute for Integrative Cancer Research and MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA. .,Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA,, 02115, USA.
| | - Nadine Schneider
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| |
Collapse
|
217
|
Kim J, Park S, Min D, Kim W. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. Int J Mol Sci 2021; 22:9983. [PMID: 34576146 PMCID: PMC8470987 DOI: 10.3390/ijms22189983] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Drug discovery based on artificial intelligence has been in the spotlight recently as it significantly reduces the time and cost required for developing novel drugs. With the advancement of deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based methodologies are emerging at all steps of drug development processes. In particular, pharmaceutical chemists have faced significant issues with regard to selecting and designing potential drugs for a target of interest to enter preclinical testing. The two major challenges are prediction of interactions between drugs and druggable targets and generation of novel molecular structures suitable for a target of interest. Therefore, we reviewed recent deep-learning applications in drug-target interaction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive summary of a variety of drug and protein representations, DL models, and commonly used benchmark datasets or tools for model training and testing. Finally, we present the remaining challenges for the promising future of DL-based DTI prediction and de novo drug design.
Collapse
Affiliation(s)
- Jintae Kim
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
| | - Sera Park
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
| | - Dongbo Min
- Computer Vision Lab, Department of Computer Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Wankyu Kim
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
- System Pharmacology Lab, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
218
|
Kwon Y, Kang S, Choi YS, Kim I. Evolutionary design of molecules based on deep learning and a genetic algorithm. Sci Rep 2021; 11:17304. [PMID: 34453086 PMCID: PMC8397714 DOI: 10.1038/s41598-021-96812-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Evolutionary design has gained significant attention as a useful tool to accelerate the design process by automatically modifying molecular structures to obtain molecules with the target properties. However, its methodology presents a practical challenge-devising a way in which to rapidly evolve molecules while maintaining their chemical validity. In this study, we address this limitation by developing an evolutionary design method. The method employs deep learning models to extract the inherent knowledge from a database of materials and is used to effectively guide the evolutionary design. In the proposed method, the Morgan fingerprint vectors of seed molecules are evolved using the techniques of mutation and crossover within the genetic algorithm. Then, a recurrent neural network is used to reconstruct the final fingerprints into actual molecular structures while maintaining their chemical validity. The use of deep neural network models to predict the properties of these molecules enabled more versatile and efficient molecular evaluations to be conducted by using the proposed method repeatedly. Four design tasks were performed to modify the light-absorbing wavelengths of organic molecules from the PubChem library.
Collapse
Affiliation(s)
- Youngchun Kwon
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Seokho Kang
- Department of Industrial Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Youn-Suk Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Inkoo Kim
- Data and Information Technology Center, Samsung Electronics Co. Ltd., 1-2 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| |
Collapse
|
219
|
Peng SP, Yang XY, Zhao Y. Molecular Conditional Generation and Property Analysis of Non-Fullerene Acceptors with Deep Learning. Int J Mol Sci 2021; 22:9099. [PMID: 34445805 PMCID: PMC8396663 DOI: 10.3390/ijms22169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
The proposition of non-fullerene acceptors (NFAs) in organic solar cells has made great progress in the raise of power conversion efficiency, and it also broadens the ways for searching and designing new acceptor molecules. In this work, the design of novel NFAs with required properties is performed with the conditional generative model constructed from a convolutional neural network (CNN). The temporal CNN is firstly trained to be a good string-based molecular conditional generative model to directly generate the desired molecules. The reliability of generated molecular properties is then demonstrated by a graph-based prediction model and evaluated with quantum chemical calculations. Specifically, the global attention mechanism is incorporated in the prediction model to pool the extracted information of molecular structures and provide interpretability. By combining the generative and prediction models, thousands of NFAs with required frontier molecular orbital energies are generated. The generated new molecules essentially explore the chemical space and enrich the database of transformation rules for molecular design. The conditional generation model can also be trained to generate the molecules from molecular fragments, and the contribution of molecular fragments to the properties is subsequently predicted by the prediction model.
Collapse
Affiliation(s)
| | | | - Yi Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.-P.P.); (X.-Y.Y.)
| |
Collapse
|
220
|
Grant LL, Sit CS. De novo molecular drug design benchmarking. RSC Med Chem 2021; 12:1273-1280. [PMID: 34458735 DOI: 10.1039/d1md00074h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
De novo molecular design for drug discovery is a growing field. Deep neural networks (DNNs) are becoming more widespread in their use for machine learning models. As more DNN models are proposed for molecular design, benchmarking methods are crucial for the comparision and validation of these models. This review looks at recently proposed benchmarking methods Fréchet ChemNet Distance, GuacaMol and Molecular Sets (MOSES), and provides a commentary on their future potential applications in de novo molecular drug design and possible next steps for further validation of these benchmarking methods.
Collapse
|
221
|
Abstract
Machine learning can be used to make sense of healthcare data. Probabilistic machine learning models help provide a complete picture of observed data in healthcare. In this review, we examine how probabilistic machine learning can advance healthcare. We consider challenges in the predictive model building pipeline where probabilistic models can be beneficial, including calibration and missing data. Beyond predictive models, we also investigate the utility of probabilistic machine learning models in phenotyping, in generative models for clinical use cases, and in reinforcement learning.
Collapse
Affiliation(s)
- Irene Y Chen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | | | - Marzyeh Ghassemi
- Vector Institute, Toronto, Ontario M5G 1M1, Canada; .,Institute for Medical and Evaluative Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rajesh Ranganath
- Department of Computer Science, Courant Institute, New York University, New York, NY 10012, USA.,Center for Data Science, New York University, New York, NY 10012, USA.,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
222
|
|
223
|
Current Status of Baricitinib as a Repurposed Therapy for COVID-19. Pharmaceuticals (Basel) 2021; 14:ph14070680. [PMID: 34358107 PMCID: PMC8308612 DOI: 10.3390/ph14070680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of the COVID-19 pandemic has mandated the instant (re)search for potential drug candidates. In response to the unprecedented situation, it was recognized early that repurposing of available drugs in the market could timely save lives, by skipping the lengthy phases of preclinical and initial safety studies. BenevolentAI’s large knowledge graph repository of structured medical information suggested baricitinib, a Janus-associated kinase inhibitor, as a potential repurposed medicine with a dual mechanism; hindering SARS-CoV2 entry and combatting the cytokine storm; the leading cause of mortality in COVID-19. However, the recently-published Adaptive COVID-19 Treatment Trial-2 (ACTT-2) positioned baricitinib only in combination with remdesivir for treatment of a specific category of COVID-19 patients, whereas the drug is not recommended to be used alone except in clinical trials. The increased pace of data output in all life sciences fields has changed our understanding of data processing and manipulation. For the purpose of drug design, development, or repurposing, the integration of different disciplines of life sciences is highly recommended to achieve the ultimate benefit of using new technologies to mine BIG data, however, the final say remains to be concluded after the drug is used in clinical practice. This review demonstrates different bioinformatics, chemical, pharmacological, and clinical aspects of baricitinib to highlight the repurposing journey of the drug and evaluates its placement in the current guidelines for COVID-19 treatment.
Collapse
|
224
|
Häse F, Aldeghi M, Hickman RJ, Roch LM, Christensen M, Liles E, Hein JE, Aspuru-Guzik A. Olympus: a benchmarking framework for noisy optimization and experiment planning. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abedc8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Research challenges encountered across science, engineering, and economics can frequently be formulated as optimization tasks. In chemistry and materials science, recent growth in laboratory digitization and automation has sparked interest in optimization-guided autonomous discovery and closed-loop experimentation. Experiment planning strategies based on off-the-shelf optimization algorithms can be employed in fully autonomous research platforms to achieve desired experimentation goals with the minimum number of trials. However, the experiment planning strategy that is most suitable to a scientific discovery task is a priori unknown while rigorous comparisons of different strategies are highly time and resource demanding. As optimization algorithms are typically benchmarked on low-dimensional synthetic functions, it is unclear how their performance would translate to noisy, higher-dimensional experimental tasks encountered in chemistry and materials science. We introduce Olympus, a software package that provides a consistent and easy-to-use framework for benchmarking optimization algorithms against realistic experiments emulated via probabilistic deep-learning models. Olympus includes a collection of experimentally derived benchmark sets from chemistry and materials science and a suite of experiment planning strategies that can be easily accessed via a user-friendly Python interface. Furthermore, Olympus facilitates the integration, testing, and sharing of custom algorithms and user-defined datasets. In brief, Olympus mitigates the barriers associated with benchmarking optimization algorithms on realistic experimental scenarios, promoting data sharing and the creation of a standard framework for evaluating the performance of experiment planning strategies.
Collapse
|
225
|
Papadopoulos K, Giblin KA, Janet JP, Patronov A, Engkvist O. De novo design with deep generative models based on 3D similarity scoring. Bioorg Med Chem 2021; 44:116308. [PMID: 34280849 DOI: 10.1016/j.bmc.2021.116308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/25/2023]
Abstract
We have demonstrated the utility of a 3D shape and pharmacophore similarity scoring component in molecular design with a deep generative model trained with reinforcement learning. Using Dopamine receptor type 2 (DRD2) as an example and its antagonist haloperidol 1 as a starting point in a ligand based design context, we have shown in a retrospective study that a 3D similarity enabled generative model can discover new leads in the absence of any other information. It can be efficiently used for scaffold hopping and generation of novel series. 3D similarity based models were compared against 2D QSAR based, indicating a significant degree of orthogonality of the generated outputs and with the former having a more diverse output. In addition, when the two scoring components are combined together for training of the generative model, it results in more efficient exploration of desirable chemical space compared to the individual components.
Collapse
Affiliation(s)
| | - Kathryn A Giblin
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jon Paul Janet
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Atanas Patronov
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ola Engkvist
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
226
|
Bilsland AE, McAulay K, West R, Pugliese A, Bower J. Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction. J Chem Inf Model 2021; 61:2547-2559. [PMID: 34029470 DOI: 10.1021/acs.jcim.0c01226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fragment-based hit identification (FBHI) allows proportionately greater coverage of chemical space using fewer molecules than traditional high-throughput screening approaches. However, effectively exploiting this advantage is highly dependent on the library design. Solubility, stability, chemical complexity, chemical/shape diversity, and synthetic tractability for fragment elaboration are all critical aspects, and molecule design remains a time-consuming task for computational and medicinal chemists. Artificial neural networks have attracted considerable attention in automated de novo design applications and could also prove useful for fragment library design. Chemical autoencoders are neural networks consisting of encoder and decoder parts, which respectively compress and decompress molecular representations. The decoder is applied to samples drawn from the space of compressed representations to generate novel molecules that can be scored for properties of interest. Here, we report an autoencoder model using a recurrent neural network architecture, which was trained using 486,565 fragments curated from commercial sources, to simultaneously reconstruct both SMILES and chemical fingerprints. To explore its utility in fragment design, we applied transfer learning to the fingerprint decoder layers to train a classifier using 66 frequent hitter fragments identified from our screening campaigns. Using a particle swarm optimization sampling approach, we compare the performance of this "dual" model to an architecture encoding SMILES only. The dual model produced valid SMILES with improved features, considering a range of properties including aromatic ring counts, heavy atom count, synthetic accessibility, and a new fragment complexity score we term Feature Complexity (FeCo). Additionally, we demonstrate that generative performance is further enhanced by use of a simple syntax-correction procedure during training, in which invalid and undesirable SMILES are spiked into the training set. Finally, we used the syntax-corrected model to generate a library of novel candidate privileged fragments.
Collapse
Affiliation(s)
- Alan E Bilsland
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
| | - Kirsten McAulay
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
| | - Ryan West
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
| | - Angelo Pugliese
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
- BioAscent Discovery Ltd., Bo'Ness Road, Newhouse, Lanarkshire ML1 5UH, U.K
| | - Justin Bower
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
| |
Collapse
|
227
|
Alshehri AS, You F. Paradigm Shift: The Promise of Deep Learning in Molecular Systems Engineering and Design. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.700717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The application of deep learning to a diverse array of research problems has accelerated progress across many fields, bringing conventional paradigms to a new intelligent era. Just as the roles of instrumentation in the old chemical revolutions, we reinforce the necessity for integrating deep learning in molecular systems engineering and design as a transformative catalyst towards the next chemical revolution. To meet such research needs, we summarize advances and progress across several key elements of molecular systems: molecular representation, property estimation, representation learning, and synthesis planning. We further spotlight recent advances and promising directions for several deep learning architectures, methods, and optimization platforms. Our perspective is of interest to both computational and experimental researchers as it aims to chart a path forward for cross-disciplinary collaborations on synthesizing knowledge from available chemical data and guiding experimental efforts.
Collapse
|
228
|
Boniolo F, Dorigatti E, Ohnmacht AJ, Saur D, Schubert B, Menden MP. Artificial intelligence in early drug discovery enabling precision medicine. Expert Opin Drug Discov 2021; 16:991-1007. [PMID: 34075855 DOI: 10.1080/17460441.2021.1918096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Precision medicine is the concept of treating diseases based on environmental factors, lifestyles, and molecular profiles of patients. This approach has been found to increase success rates of clinical trials and accelerate drug approvals. However, current precision medicine applications in early drug discovery use only a handful of molecular biomarkers to make decisions, whilst clinics gear up to capture the full molecular landscape of patients in the near future. This deep multi-omics characterization demands new analysis strategies to identify appropriate treatment regimens, which we envision will be pioneered by artificial intelligence.Areas covered: In this review, the authors discuss the current state of drug discovery in precision medicine and present our vision of how artificial intelligence will impact biomarker discovery and drug design.Expert opinion: Precision medicine is expected to revolutionize modern medicine; however, its traditional form is focusing on a few biomarkers, thus not equipped to leverage the full power of molecular landscapes. For learning how the development of drugs can be tailored to the heterogeneity of patients across their molecular profiles, artificial intelligence algorithms are the next frontier in precision medicine and will enable a fully personalized approach in drug design, and thus ultimately impacting clinical practice.
Collapse
Affiliation(s)
- Fabio Boniolo
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,School of Medicine, Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Emilio Dorigatti
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Statistical Learning and Data Science, Department of Statistics, Ludwig Maximilian Universität München, Munich, Germany
| | - Alexander J Ohnmacht
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Dieter Saur
- School of Medicine, Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Michael P Menden
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany.,German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
229
|
Meyers J, Fabian B, Brown N. De novo molecular design and generative models. Drug Discov Today 2021; 26:2707-2715. [PMID: 34082136 DOI: 10.1016/j.drudis.2021.05.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 02/09/2023]
Abstract
Molecular design strategies are integral to therapeutic progress in drug discovery. Computational approaches for de novo molecular design have been developed over the past three decades and, recently, thanks in part to advances in machine learning (ML) and artificial intelligence (AI), the drug discovery field has gained practical experience. Here, we review these learnings and present de novo approaches according to the coarseness of their molecular representation: that is, whether molecular design is modeled on an atom-based, fragment-based, or reaction-based paradigm. Furthermore, we emphasize the value of strong benchmarks, describe the main challenges to using these methods in practice, and provide a viewpoint on further opportunities for exploration and challenges to be tackled in the upcoming years.
Collapse
Affiliation(s)
| | | | - Nathan Brown
- BenevolentAI, 4-8 Maple Street, London W1T 5HD, UK
| |
Collapse
|
230
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
231
|
Zhang J, Mercado R, Engkvist O, Chen H. Comparative Study of Deep Generative Models on Chemical Space Coverage. J Chem Inf Model 2021; 61:2572-2581. [PMID: 34015916 DOI: 10.1021/acs.jcim.0c01328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, deep molecular generative models have emerged as promising methods for de novo molecular design. Thanks to the rapid advance of deep learning techniques, deep learning architectures such as recurrent neural networks, variational autoencoders, and adversarial networks have been successfully employed for constructing generative models. Recently, quite a few metrics have been proposed to evaluate these deep generative models. However, many of these metrics cannot evaluate the chemical space coverage of sampled molecules. This work presents a novel and complementary metric for evaluating deep molecular generative models. The metric is based on the chemical space coverage of a reference dataset-GDB-13. The performance of seven different molecular generative models was compared by calculating what fraction of the structures, ring systems, and functional groups could be reproduced from the largely unseen reference set when using only a small fraction of GDB-13 for training. The results show that the performance of the generative models studied varies significantly using the benchmark metrics introduced herein, such that the generalization capabilities of the generative models can be clearly differentiated. In addition, the coverages of GDB-13 ring systems and functional groups were compared between the models. Our study provides a useful new metric that can be used for evaluating and comparing generative models.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, P. R. China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou 510530, P. R. China
| | - Rocío Mercado
- Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Ola Engkvist
- Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Hongming Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou 510530, P. R. China
| |
Collapse
|
232
|
Steinmann C, Jensen JH. Using a genetic algorithm to find molecules with good docking scores. PEERJ PHYSICAL CHEMISTRY 2021. [DOI: 10.7717/peerj-pchem.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A graph-based genetic algorithm (GA) is used to identify molecules (ligands) with high absolute docking scores as estimated by the Glide software package, starting from randomly chosen molecules from the ZINC database, for four different targets: Bacillus subtilis chorismate mutase (CM), human β2-adrenergic G protein-coupled receptor (β2AR), the DDR1 kinase domain (DDR1), and β-cyclodextrin (BCD). By the combined use of functional group filters and a score modifier based on a heuristic synthetic accessibility (SA) score our approach identifies between ca 500 and 6,000 structurally diverse molecules with scores better than known binders by screening a total of 400,000 molecules starting from 8,000 randomly selected molecules from the ZINC database. Screening 250,000 molecules from the ZINC database identifies significantly more molecules with better docking scores than known binders, with the exception of CM, where the conventional screening approach only identifies 60 compounds compared to 511 with GA+Filter+SA. In the case of β2AR and DDR1, the GA+Filter+SA approach finds significantly more molecules with docking scores lower than −9.0 and −10.0. The GA+Filters+SA docking methodology is thus effective in generating a large and diverse set of synthetically accessible molecules with very good docking scores for a particular target. An early incarnation of the GA+Filter+SA approach was used to identify potential binders to the COVID-19 main protease and submitted to the early stages of the COVID Moonshot project, a crowd-sourced initiative to accelerate the development of a COVID antiviral.
Collapse
Affiliation(s)
- Casper Steinmann
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jan H. Jensen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
233
|
Thomas M, Smith RT, O'Boyle NM, de Graaf C, Bender A. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study. J Cheminform 2021; 13:39. [PMID: 33985583 PMCID: PMC8117600 DOI: 10.1186/s13321-021-00516-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Deep generative models have shown the ability to devise both valid and novel chemistry, which could significantly accelerate the identification of bioactive compounds. Many current models, however, use molecular descriptors or ligand-based predictive methods to guide molecule generation towards a desirable property space. This restricts their application to relatively data-rich targets, neglecting those where little data is available to sufficiently train a predictor. Moreover, ligand-based approaches often bias molecule generation towards previously established chemical space, thereby limiting their ability to identify truly novel chemotypes. In this work, we assess the ability of using molecular docking via Glide-a structure-based approach-as a scoring function to guide the deep generative model REINVENT and compare model performance and behaviour to a ligand-based scoring function. Additionally, we modify the previously published MOSES benchmarking dataset to remove any induced bias towards non-protonatable groups. We also propose a new metric to measure dataset diversity, which is less confounded by the distribution of heavy atom count than the commonly used internal diversity metric. With respect to the main findings, we found that when optimizing the docking score against DRD2, the model improves predicted ligand affinity beyond that of known DRD2 active molecules. In addition, generated molecules occupy complementary chemical and physicochemical space compared to the ligand-based approach, and novel physicochemical space compared to known DRD2 active molecules. Furthermore, the structure-based approach learns to generate molecules that satisfy crucial residue interactions, which is information only available when taking protein structure into account. Overall, this work demonstrates the advantage of using molecular docking to guide de novo molecule generation over ligand-based predictors with respect to predicted affinity, novelty, and the ability to identify key interactions between ligand and protein target. Practically, this approach has applications in early hit generation campaigns to enrich a virtual library towards a particular target, and also in novelty-focused projects, where de novo molecule generation either has no prior ligand knowledge available or should not be biased by it.
Collapse
Affiliation(s)
- Morgan Thomas
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Robert T Smith
- Computational Chemistry, Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Noel M O'Boyle
- Computational Chemistry, Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Chris de Graaf
- Computational Chemistry, Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK.
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
234
|
Green H, Koes DR, Durrant JD. DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Chem Sci 2021; 12:8036-8047. [PMID: 34194693 PMCID: PMC8208308 DOI: 10.1039/d1sc00163a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Machine learning has been increasingly applied to the field of computer-aided drug discovery in recent years, leading to notable advances in binding-affinity prediction, virtual screening, and QSAR. Surprisingly, it is less often applied to lead optimization, the process of identifying chemical fragments that might be added to a known ligand to improve its binding affinity. We here describe a deep convolutional neural network that predicts appropriate fragments given the structure of a receptor/ligand complex. In an independent benchmark of known ligands with missing (deleted) fragments, our DeepFrag model selected the known (correct) fragment from a set over 6500 about 58% of the time. Even when the known/correct fragment was not selected, the top fragment was often chemically similar and may well represent a valid substitution. We release our trained DeepFrag model and associated software under the terms of the Apache License, Version 2.0.
Collapse
Affiliation(s)
- Harrison Green
- Department of Biological Sciences, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - David R Koes
- Department of Computational and Systems Biology, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
235
|
Kunkel C, Margraf JT, Chen K, Oberhofer H, Reuter K. Active discovery of organic semiconductors. Nat Commun 2021; 12:2422. [PMID: 33893287 PMCID: PMC8065160 DOI: 10.1038/s41467-021-22611-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/15/2021] [Indexed: 01/16/2023] Open
Abstract
The versatility of organic molecules generates a rich design space for organic semiconductors (OSCs) considered for electronics applications. Offering unparalleled promise for materials discovery, the vastness of this design space also dictates efficient search strategies. Here, we present an active machine learning (AML) approach that explores an unlimited search space through consecutive application of molecular morphing operations. Evaluating the suitability of OSC candidates on the basis of charge injection and mobility descriptors, the approach successively queries predictive-quality first-principles calculations to build a refining surrogate model. The AML approach is optimized in a truncated test space, providing deep methodological insight by visualizing it as a chemical space network. Significantly outperforming a conventional computational funnel, the optimized AML approach rapidly identifies well-known and hitherto unknown molecular OSC candidates with superior charge conduction properties. Most importantly, it constantly finds further candidates with highest efficiency while continuing its exploration of the endless design space.
Collapse
Affiliation(s)
- Christian Kunkel
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Johannes T Margraf
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Ke Chen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany.
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
| |
Collapse
|
236
|
Nigam A, Pollice R, Krenn M, Gomes GDP, Aspuru-Guzik A. Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES. Chem Sci 2021; 12:7079-7090. [PMID: 34123336 PMCID: PMC8153210 DOI: 10.1039/d1sc00231g] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Inverse design allows the generation of molecules with desirable physical quantities using property optimization. Deep generative models have recently been applied to tackle inverse design, as they possess the ability to optimize molecular properties directly through structure modification using gradients. While the ability to carry out direct property optimizations is promising, the use of generative deep learning models to solve practical problems requires large amounts of data and is very time-consuming. In this work, we propose STONED - a simple and efficient algorithm to perform interpolation and exploration in the chemical space, comparable to deep generative models. STONED bypasses the need for large amounts of data and training times by using string modifications in the SELFIES molecular representation. First, we achieve non-trivial performance on typical benchmarks for generative models without any training. Additionally, we demonstrate applications in high-throughput virtual screening for the design of drugs, photovoltaics, and the construction of chemical paths, allowing for both property and structure-based interpolation in the chemical space. Overall, we anticipate our results to be a stepping stone for developing more sophisticated inverse design models and benchmarking tools, ultimately helping generative models achieve wider adoption.
Collapse
Affiliation(s)
- AkshatKumar Nigam
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
| | - Robert Pollice
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
| | - Mario Krenn
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
- Vector Institute for Artificial Intelligence Toronto Canada
| | - Gabriel Dos Passos Gomes
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
- Vector Institute for Artificial Intelligence Toronto Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR) 661 University Ave Toronto Ontario M5G Canada
| |
Collapse
|
237
|
Abstract
Introduction: Artificial Intelligence (AI) has become a component of our everyday lives, with applications ranging from recommendations on what to buy to the analysis of radiology images. Many of the techniques originally developed for other fields such as language translation and computer vision are now being applied in drug discovery. AI has enabled multiple aspects of drug discovery including the analysis of high content screening data, and the design and synthesis of new molecules.Areas covered: This perspective provides an overview of the application of AI in several areas relevant to drug discovery including property prediction, molecule generation, image analysis, and organic synthesis planning.Expert opinion: While a variety of machine learning methods are now being routinely used to predict biological activity and ADME properties, methods of representing molecules continue to evolve. Molecule generation methods are relatively new and unproven but hold the potential to access new, unexplored areas of chemical space. The application of AI in drug discovery will continue to benefit from dedicated research, as well as AI developments in other fields. With this pairing algorithmic advancements and high-quality data, the impact of AI in drug discovery will continue to grow in the coming years.
Collapse
Affiliation(s)
| | - Regina Barzilay
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| |
Collapse
|
238
|
Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov 2021; 16:949-959. [PMID: 33779453 DOI: 10.1080/17460441.2021.1909567] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Artificial intelligence (AI) has inspired computer-aided drug discovery. The widespread adoption of machine learning, in particular deep learning, in multiple scientific disciplines, and the advances in computing hardware and software, among other factors, continue to fuel this development. Much of the initial skepticism regarding applications of AI in pharmaceutical discovery has started to vanish, consequently benefitting medicinal chemistry.Areas covered: The current status of AI in chemoinformatics is reviewed. The topics discussed herein include quantitative structure-activity/property relationship and structure-based modeling, de novo molecular design, and chemical synthesis prediction. Advantages and limitations of current deep learning applications are highlighted, together with a perspective on next-generation AI for drug discovery.Expert opinion: Deep learning-based approaches have only begun to address some fundamental problems in drug discovery. Certain methodological advances, such as message-passing models, spatial-symmetry-preserving networks, hybrid de novo design, and other innovative machine learning paradigms, will likely become commonplace and help address some of the most challenging questions. Open data sharing and model development will play a central role in the advancement of drug discovery with AI.
Collapse
Affiliation(s)
- José Jiménez-Luna
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Francesca Grisoni
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Nils Weskamp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riss, Germany
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
239
|
Molecular optimization by capturing chemist's intuition using deep neural networks. J Cheminform 2021; 13:26. [PMID: 33743817 PMCID: PMC7980633 DOI: 10.1186/s13321-021-00497-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
A main challenge in drug discovery is finding molecules with a desirable balance of multiple properties. Here, we focus on the task of molecular optimization, where the goal is to optimize a given starting molecule towards desirable properties. This task can be framed as a machine translation problem in natural language processing, where in our case, a molecule is translated into a molecule with optimized properties based on the SMILES representation. Typically, chemists would use their intuition to suggest chemical transformations for the starting molecule being optimized. A widely used strategy is the concept of matched molecular pairs where two molecules differ by a single transformation. We seek to capture the chemist’s intuition from matched molecular pairs using machine translation models. Specifically, the sequence-to-sequence model with attention mechanism, and the Transformer model are employed to generate molecules with desirable properties. As a proof of concept, three ADMET properties are optimized simultaneously: logD, solubility, and clearance, which are important properties of a drug. Since desirable properties often vary from project to project, the user-specified desirable property changes are incorporated into the input as an additional condition together with the starting molecules being optimized. Thus, the models can be guided to generate molecules satisfying the desirable properties. Additionally, we compare the two machine translation models based on the SMILES representation, with a graph-to-graph translation model HierG2G, which has shown the state-of-the-art performance in molecular optimization. Our results show that the Transformer can generate more molecules with desirable properties by making small modifications to the given starting molecules, which can be intuitive to chemists. A further enrichment of diverse molecules can be achieved by using an ensemble of models.
Collapse
|
240
|
Kwon Y, Lee J. MolFinder: an evolutionary algorithm for the global optimization of molecular properties and the extensive exploration of chemical space using SMILES. J Cheminform 2021; 13:24. [PMID: 33736687 PMCID: PMC7977239 DOI: 10.1186/s13321-021-00501-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
Here, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse molecules with desired properties efficiently without any training and a large molecular database. Compared with recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outperforms in terms of both the optimization of a given target property and the generation of a set of diverse and novel molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representation is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. We believe that our results shed light on new possibilities for advances in molecule optimization methods.
Collapse
Affiliation(s)
- Yongbeom Kwon
- Department of Chemistry, Division of Chemistry and Biochemistry, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, 24341, Republic of Korea.,Arontier Inc., 15F, 241, Gangnam-daero, Seocho-gu, Seoul, 06735, Republic of Korea
| | - Juyong Lee
- Department of Chemistry, Division of Chemistry and Biochemistry, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
241
|
Li X, Fourches D. SMILES Pair Encoding: A Data-Driven Substructure Tokenization Algorithm for Deep Learning. J Chem Inf Model 2021; 61:1560-1569. [PMID: 33715361 DOI: 10.1021/acs.jcim.0c01127] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simplified molecular input line entry system (SMILES)-based deep learning models are slowly emerging as an important research topic in cheminformatics. In this study, we introduce SMILES pair encoding (SPE), a data-driven tokenization algorithm. SPE first learns a vocabulary of high-frequency SMILES substrings from a large chemical dataset (e.g., ChEMBL) and then tokenizes SMILES based on the learned vocabulary for the actual training of deep learning models. SPE augments the widely used atom-level tokenization by adding human-readable and chemically explainable SMILES substrings as tokens. Case studies show that SPE can achieve superior performances on both molecular generation and quantitative structure-activity relationship (QSAR) prediction tasks. In particular, the SPE-based generative models outperformed the atom-level tokenization model in the aspects of novelty, diversity, and ability to resemble the training set distribution. The performance of SPE-based QSAR prediction models were evaluated using 24 benchmark datasets where SPE consistently either did match or outperform atom-level and k-mer tokenization. Therefore, SPE could be a promising tokenization method for SMILES-based deep learning models. An open-source Python package SmilesPE was developed to implement this algorithm and is now freely available at https://github.com/XinhaoLi74/SmilesPE.
Collapse
Affiliation(s)
- Xinhao Li
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
242
|
Mercado R, Rastemo T, Lindelöf E, Klambauer G, Engkvist O, Chen H, Jannik Bjerrum E. Graph networks for molecular design. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abcf91] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
243
|
Abstract
Background: The novel coronavirus SARS-CoV-2 has severely affected the health and economy of several countries. Multiple studies are in progress to design novel therapeutics against the potential target proteins in SARS-CoV-2, including 3CL protease, an essential protein for virus replication. Materials & methods: In this study we employed deep neural network-based generative and predictive models for de novo design of small molecules capable of inhibiting the 3CL protease. The generative model was optimized using transfer learning and reinforcement learning to focus around the chemical space corresponding to the protease inhibitors. Multiple physicochemical property filters and virtual screening score were used for the final screening. Conclusion: We have identified 33 potential compounds as ideal candidates for further synthesis and testing against SARS-CoV-2.
Collapse
|
244
|
Koerstz M, Christensen AS, Mikkelsen KV, Nielsen MB, Jensen JH. High throughput virtual screening of 230 billion molecular solar heat battery candidates. PEERJ PHYSICAL CHEMISTRY 2021. [DOI: 10.7717/peerj-pchem.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dihydroazulene/vinylheptafulvene (DHA/VHF) thermocouple is a promising candidate for thermal heat batteries that absorb and store solar energy as chemical energy without the need for insulation. However, in order to be viable the energy storage capacity and lifetime of the high energy form (i.e., the free energy barrier to the back reaction) of the canonical parent compound must be increased significantly to be of practical use. We use semiempirical quantum chemical methods, machine learning, and density functional theory to virtually screen over 230 billion substituted DHA molecules to identify promising candidates. We identify a molecule with a predicted energy density of 0.38 kJ/g, which is significantly larger than the 0.14 kJ/g computed for the parent compound. The free energy barrier to the back reaction is 11 kJ/mol higher than the parent compound, which should correspond to a half-life of about 10 days—4 months. This is considerably longer than the 3–39 h (depending on solvent) observed for the parent compound and sufficiently long for many practical applications. Our paper makes two main important contributions: (1) a novel and generally applicable methodological approach that makes screening of huge libraries for properties involving chemical reactivity with modest computational resources, and (2) a clear demonstration that the storage capacity of the DHA/VHF thermocouple cannot be increased to >0.5 kJ/g by combining simple substituents.
Collapse
Affiliation(s)
- Mads Koerstz
- Department of Chemistry, University of Copenhagen, Copenhagen, Danmark, Denmark
| | | | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Danmark, Denmark
| | | | - Jan H. Jensen
- Department of Chemistry, University of Copenhagen, Copenhagen, Danmark, Denmark
| |
Collapse
|
245
|
Schultz KJ, Colby SM, Yesiltepe Y, Nuñez JR, McGrady MY, Renslow RS. Application and assessment of deep learning for the generation of potential NMDA receptor antagonists. Phys Chem Chem Phys 2021; 23:1197-1214. [PMID: 33355332 DOI: 10.1039/d0cp03620j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uncompetitive antagonists of the N-methyl d-aspartate receptor (NMDAR) have demonstrated therapeutic benefit in the treatment of neurological diseases such as Parkinson's and Alzheimer's, but some also cause dissociative effects that have led to the synthesis of illicit drugs. The ability to generate NMDAR antagonists in silico is therefore desirable for both new medication development and preempting and identifying new designer drugs. Recently, generative deep learning models have been applied to de novo drug design as a means to expand the amount of chemical space that can be explored for potential drug-like compounds. In this study, we assess the application of a generative model to the NMDAR to achieve two primary objectives: (i) the creation and release of a comprehensive library of experimentally validated NMDAR phencyclidine (PCP) site antagonists to assist the drug discovery community and (ii) an analysis of both the advantages conferred by applying such generative artificial intelligence models to drug design and the current limitations of the approach. We apply, and provide source code for, a variety of ligand- and structure-based assessment techniques used in standard drug discovery analyses to the deep learning-generated compounds. We present twelve candidate antagonists that are not available in existing chemical databases to provide an example of what this type of workflow can achieve, though synthesis and experimental validation of these compounds are still required.
Collapse
Affiliation(s)
| | - Sean M Colby
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Jamie R Nuñez
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Ryan S Renslow
- Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
246
|
Mouchlis VD, Afantitis A, Serra A, Fratello M, Papadiamantis AG, Aidinis V, Lynch I, Greco D, Melagraki G. Advances in de Novo Drug Design: From Conventional to Machine Learning Methods. Int J Mol Sci 2021; 22:1676. [PMID: 33562347 PMCID: PMC7915729 DOI: 10.3390/ijms22041676] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
. De novo drug design is a computational approach that generates novel molecular structures from atomic building blocks with no a priori relationships. Conventional methods include structure-based and ligand-based design, which depend on the properties of the active site of a biological target or its known active binders, respectively. Artificial intelligence, including machine learning, is an emerging field that has positively impacted the drug discovery process. Deep reinforcement learning is a subdivision of machine learning that combines artificial neural networks with reinforcement-learning architectures. This method has successfully been employed to develop novel de novo drug design approaches using a variety of artificial networks including recurrent neural networks, convolutional neural networks, generative adversarial networks, and autoencoders. This review article summarizes advances in de novo drug design, from conventional growth algorithms to advanced machine-learning methodologies and highlights hot topics for further development.
Collapse
Affiliation(s)
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus;
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (M.F.); (D.G.)
- BioMEdiTech Institute, Tampere University, 33520 Tampere, Finland
| | - Michele Fratello
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (M.F.); (D.G.)
- BioMEdiTech Institute, Tampere University, 33520 Tampere, Finland
| | - Anastasios G. Papadiamantis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus;
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Vassilis Aidinis
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Fleming 34, 16672 Athens, Greece;
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (M.F.); (D.G.)
- BioMEdiTech Institute, Tampere University, 33520 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Finnish Center for Alternative Methods (FICAM), Tampere University, 33520 Tampere, Finland
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, 16672 Vari, Greece
| |
Collapse
|
247
|
Bort W, Baskin II, Gimadiev T, Mukanov A, Nugmanov R, Sidorov P, Marcou G, Horvath D, Klimchuk O, Madzhidov T, Varnek A. Discovery of novel chemical reactions by deep generative recurrent neural network. Sci Rep 2021; 11:3178. [PMID: 33542271 PMCID: PMC7862614 DOI: 10.1038/s41598-021-81889-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
The "creativity" of Artificial Intelligence (AI) in terms of generating de novo molecular structures opened a novel paradigm in compound design, weaknesses (stability & feasibility issues of such structures) notwithstanding. Here we show that "creative" AI may be as successfully taught to enumerate novel chemical reactions that are stoichiometrically coherent. Furthermore, when coupled to reaction space cartography, de novo reaction design may be focused on the desired reaction class. A sequence-to-sequence autoencoder with bidirectional Long Short-Term Memory layers was trained on on-purpose developed "SMILES/CGR" strings, encoding reactions of the USPTO database. The autoencoder latent space was visualized on a generative topographic map. Novel latent space points were sampled around a map area populated by Suzuki reactions and decoded to corresponding reactions. These can be critically analyzed by the expert, cleaned of irrelevant functional groups and eventually experimentally attempted, herewith enlarging the synthetic purpose of popular synthetic pathways.
Collapse
Affiliation(s)
- William Bort
- Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France
| | - Igor I Baskin
- Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France
- Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, 420008, Kazan, Russia
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Timur Gimadiev
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Artem Mukanov
- Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, 420008, Kazan, Russia
| | - Ramil Nugmanov
- Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, 420008, Kazan, Russia
| | - Pavel Sidorov
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Gilles Marcou
- Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France
| | - Dragos Horvath
- Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France
| | - Olga Klimchuk
- Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France
| | - Timur Madzhidov
- Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, 420008, Kazan, Russia
| | - Alexandre Varnek
- Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan.
| |
Collapse
|
248
|
Santana MVS, Silva-Jr FP. De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning. BMC Chem 2021; 15:8. [PMID: 33531083 PMCID: PMC7852053 DOI: 10.1186/s13065-021-00737-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
The global pandemic of coronavirus disease (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) created a rush to discover drug candidates. Despite the efforts, so far no vaccine or drug has been approved for treatment. Artificial intelligence offers solutions that could accelerate the discovery and optimization of new antivirals, especially in the current scenario dominated by the scarcity of compounds active against SARS-CoV-2. The main protease (Mpro) of SARS-CoV-2 is an attractive target for drug discovery due to the absence in humans and the essential role in viral replication. In this work, we developed a deep learning platform for de novo design of putative inhibitors of SARS-CoV-2 main protease (Mpro). Our methodology consists of 3 main steps: (1) training and validation of general chemistry-based generative model; (2) fine-tuning of the generative model for the chemical space of SARS-CoV- Mpro inhibitors and (3) training of a classifier for bioactivity prediction using transfer learning. The fine-tuned chemical model generated > 90% valid, diverse and novel (not present on the training set) structures. The generated molecules showed a good overlap with Mpro chemical space, displaying similar physicochemical properties and chemical structures. In addition, novel scaffolds were also generated, showing the potential to explore new chemical series. The classification model outperformed the baseline area under the precision-recall curve, showing it can be used for prediction. In addition, the model also outperformed the freely available model Chemprop on an external test set of fragments screened against SARS-CoV-2 Mpro, showing its potential to identify putative antivirals to tackle the COVID-19 pandemic. Finally, among the top-20 predicted hits, we identified nine hits via molecular docking displaying binding poses and interactions similar to experimentally validated inhibitors.
Collapse
Affiliation(s)
- Marcos V S Santana
- LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Floriano P Silva-Jr
- LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil.
| |
Collapse
|
249
|
Thakkar A, Chadimová V, Bjerrum EJ, Engkvist O, Reymond JL. Retrosynthetic accessibility score (RAscore) - rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chem Sci 2021; 12:3339-3349. [PMID: 34164104 DOI: 10.26434/chemrxiv.13019993.v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Computer aided synthesis planning (CASP) is part of a suite of artificial intelligence (AI) based tools that are able to propose synthesis routes to a wide range of compounds. However, at present they are too slow to be used to screen the synthetic feasibility of millions of generated or enumerated compounds before identification of potential bioactivity by virtual screening (VS) workflows. Herein we report a machine learning (ML) based method capable of classifying whether a synthetic route can be identified for a particular compound or not by the CASP tool AiZynthFinder. The resulting ML models return a retrosynthetic accessibility score (RAscore) of any molecule of interest, and computes at least 4500 times faster than retrosynthetic analysis performed by the underlying CASP tool. The RAscore should be useful for pre-screening millions of virtual molecules from enumerated databases or generative models for synthetic accessibility and produce higher quality databases for virtual screening of biological activity.
Collapse
Affiliation(s)
- Amol Thakkar
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg 431 50 Sweden
- Department of Chemistry and Biochemistry, University of Bern Bern CH-3012 Switzerland
| | - Veronika Chadimová
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg 431 50 Sweden
| | | | - Ola Engkvist
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg 431 50 Sweden
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern Bern CH-3012 Switzerland
| |
Collapse
|
250
|
Thakkar A, Chadimová V, Bjerrum EJ, Engkvist O, Reymond JL. Retrosynthetic accessibility score (RAscore) - rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chem Sci 2021; 12:3339-3349. [PMID: 34164104 PMCID: PMC8179384 DOI: 10.1039/d0sc05401a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Computer aided synthesis planning (CASP) is part of a suite of artificial intelligence (AI) based tools that are able to propose synthesis routes to a wide range of compounds. However, at present they are too slow to be used to screen the synthetic feasibility of millions of generated or enumerated compounds before identification of potential bioactivity by virtual screening (VS) workflows. Herein we report a machine learning (ML) based method capable of classifying whether a synthetic route can be identified for a particular compound or not by the CASP tool AiZynthFinder. The resulting ML models return a retrosynthetic accessibility score (RAscore) of any molecule of interest, and computes at least 4500 times faster than retrosynthetic analysis performed by the underlying CASP tool. The RAscore should be useful for pre-screening millions of virtual molecules from enumerated databases or generative models for synthetic accessibility and produce higher quality databases for virtual screening of biological activity. The retrosynthetic accessibility score (RAscore) is based on AI driven retrosynthetic planning, and is useful for rapid scoring of synthetic feasability and pre-screening of large datasets of virtual/generated molecules.![]()
Collapse
Affiliation(s)
- Amol Thakkar
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg 431 50 Sweden .,Department of Chemistry and Biochemistry, University of Bern Bern CH-3012 Switzerland
| | - Veronika Chadimová
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg 431 50 Sweden
| | | | - Ola Engkvist
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg 431 50 Sweden
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern Bern CH-3012 Switzerland
| |
Collapse
|