201
|
Cui F, Ye Y, Ping J, Sun X. Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron 2020; 156:112085. [PMID: 32275580 DOI: 10.1016/j.bios.2020.112085] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
Abstract
Pathogenic bacterial infections are a significant threat to human safety and health. Recent researches on the application of nanoparticles as imaging, detecting agents have evidenced their huge potential for infectious disease management. Among these nanoparticles, carbon dots (CDs) have attracted much attention as a new and innovative nanoparticle owing to their unique optical and physicochemical properties as well as their higher biosafety. Thus, CDs are becoming superior candidates for imaging and detection of pathogenic bacteria. This review provides an overview of research advances and the mechanisms in the imaging and detection pathogenic bacteria such as "switch on" sensor, "on-off" sensor, förster resonance energy transfer (FRET), etc. Further, our discussion extends to exploring the antibacterial effects of CDs, which is considered to be a potentially promising antibacterial agent. This review would provide the basis and the direction for the further commercial applications of CDs in imaging, detecting and eliminating pathogenic bacteria. The challenges associated with CDs in monitoring of pathogenic bacteria and future directions in this field are also presented.
Collapse
Affiliation(s)
- Fangchao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
202
|
Luo Y, Ge M, Lin H, He R, Yuan X, Yang C, Wang W, Zhang X. Anti-Infective Application of Graphene-Like Silicon Nanosheets via Membrane Destruction. Adv Healthc Mater 2020; 9:e1901375. [PMID: 31894648 DOI: 10.1002/adhm.201901375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/16/2019] [Indexed: 12/19/2022]
Abstract
The increasing problem of bacterial resistance to the currently effective antibiotics has resulted in the need for increasingly potent therapeutics to eradicate pathogenic microorganisms. 2D nanomaterials (2D NMs) have unique physical and chemical properties that make them attractive candidates for biomedical applications. Recently, the application of 2D NMs as antibacterial agents has attracted significant attention. Herein, a novel 2D graphene-like silicon nanosheet (GS NS) antimicrobial agent is fabricated from pristine silicon crystals by ultrasonication, which results in a highly exfoliated planar morphology and a significantly larger surface area as compared with bulk silicon. The GS NSs exhibit remarkable in vitro broad-spectrum bactericidal activity against Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus because of a close interaction with the bacteria, which leads to highly efficient membrane destruction. The in vivo studies demonstrate that the local administration of GS NSs effectively mitigates implant-related infection by reducing the bacterial burden of the extracted samples and accelerating the remission of local inflammation. Based on these encouraging results, GS NSs are expected to be a useful new member of the 2D NMs family, with the potential of effectively killing pathogenic bacteria in clinical applications.
Collapse
Affiliation(s)
- Yao Luo
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xiangwei Yuan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Chao Yang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Wei Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| |
Collapse
|
203
|
Hsiao PF, Anbazhagan R, Tsai HC, Rajakumari krishnamoorthi, Lin SJ, Lin SY, Lee KY, Kao CY, Chen RS, Lai JY. Fabrication of electroactive polypyrrole-tungsten disulfide nanocomposite for enhanced in vivo drug release in mice skin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110330. [DOI: 10.1016/j.msec.2019.110330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/07/2019] [Accepted: 10/14/2019] [Indexed: 11/30/2022]
|
204
|
Luo Y, Ge M, Lin H, He R, Yuan X, Yang C, Wang W, Zhang X. Anti‐Infective Application of Graphene‐Like Silicon Nanosheets via Membrane Destruction. Adv Healthc Mater 2020; 9. [DOI: doi.org/10.1002/adhm.201901375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 09/08/2023]
Abstract
AbstractThe increasing problem of bacterial resistance to the currently effective antibiotics has resulted in the need for increasingly potent therapeutics to eradicate pathogenic microorganisms. 2D nanomaterials (2D NMs) have unique physical and chemical properties that make them attractive candidates for biomedical applications. Recently, the application of 2D NMs as antibacterial agents has attracted significant attention. Herein, a novel 2D graphene‐like silicon nanosheet (GS NS) antimicrobial agent is fabricated from pristine silicon crystals by ultrasonication, which results in a highly exfoliated planar morphology and a significantly larger surface area as compared with bulk silicon. The GS NSs exhibit remarkable in vitro broad‐spectrum bactericidal activity against Gram (−) Escherichia coli and Gram (+) Staphylococcus aureus because of a close interaction with the bacteria, which leads to highly efficient membrane destruction. The in vivo studies demonstrate that the local administration of GS NSs effectively mitigates implant‐related infection by reducing the bacterial burden of the extracted samples and accelerating the remission of local inflammation. Based on these encouraging results, GS NSs are expected to be a useful new member of the 2D NMs family, with the potential of effectively killing pathogenic bacteria in clinical applications.
Collapse
Affiliation(s)
- Yao Luo
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renke He
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xiangwei Yuan
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Chao Yang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Wei Wang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xianlong Zhang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| |
Collapse
|
205
|
Li P, Liu S, Zhang G, Yang X, Cao W, Gong X, Xing X. Design of pH-Responsive Dissociable Nanosystem Based on Carbon Dots with Enhanced Anti-biofilm Property and Excellent Biocompatibility. ACS APPLIED BIO MATERIALS 2020; 3:1105-1115. [DOI: 10.1021/acsabm.9b01053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peili Li
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gaoke Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xu Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiwei Cao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuedong Gong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
206
|
Anand A, Manavalan G, Mandal RP, Chang HT, Chiou YR, Huang CC. Carbon Dots for Bacterial Detection and Antibacterial Applications-A Minireview. Curr Pharm Des 2020; 25:4848-4860. [DOI: 10.2174/1381612825666191216150948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
:
The prevention and treatment of various infections caused by microbes through antibiotics are becoming
less effective due to antimicrobial resistance. Researches are focused on antimicrobial nanomaterials to inhibit
bacterial growth and destroy the cells, to replace conventional antibiotics. Recently, carbon dots (C-Dots) become
attractive candidates for a wide range of applications, including the detection and treatment of pathogens. In addition
to low toxicity, ease of synthesis and functionalization, and high biocompatibility, C-Dots show excellent
optical properties such as multi-emission, high brightness, and photostability. C-Dots have shown great potential
in various fields, such as biosensing, nanomedicine, photo-catalysis, and bioimaging. This review focuses on the
origin and synthesis of various C-Dots with special emphasis on bacterial detection, the antibacterial effect of CDots,
and their mechanism.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gopinathan Manavalan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Chiou
- Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
207
|
Li P, Liu S, Cao W, Zhang G, Yang X, Gong X, Xing X. Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance and eradicate mature biofilms. Chem Commun (Camb) 2020; 56:2316-2319. [DOI: 10.1039/c9cc09223d] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Carbon quantum dots derived from gentamicin sulfate show low drug resistance, eradication of mature Staphylococcus aureus biofilm and low toxicity to mammalian cells.
Collapse
Affiliation(s)
- Peili Li
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Shuai Liu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Weiwei Cao
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Gaoke Zhang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xu Yang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xuedong Gong
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xiaodong Xing
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|
208
|
Zhang M, Cheng J, Sun Z, Kong H, Zhang Y, Wang S, Wang X, Zhao Y, Qu H. Protective Effects of Carbon Dots Derived from Phellodendri Chinensis Cortex Carbonisata against Deinagkistrodon acutus Venom-Induced Acute Kidney Injury. NANOSCALE RESEARCH LETTERS 2019; 14:377. [PMID: 31845094 PMCID: PMC6915193 DOI: 10.1186/s11671-019-3198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/31/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND As an emerging nanomaterial, carbon dots (CDs) have been the focus of tremendous attention for biomedical applications. However, little information is available on their bioactivity of inhibiting acute kidney injury (AKI) induced by snake venom. METHODS This study reports the development of a green, one-step pyrolysis process to synthesize CDs using Phellodendri Chinensis Cortex (PCC) as the sole precursor, and their potential application as a protectant against Deinagkistrodon acutus (D. acutus) venom-induced AKI was investigated for the first time. The AKI model was established by injecting D. acutus venom into the abdominal cavity of mice and the potential protective effects of PCC Carbonisata-CDs (PCCC-CDs) on renal abnormalities including dysfunction, inflammatory reactions, tissue damage, and thrombocytopenia at six time points (1, 3, and 12 h, and 1, 2, and 5 days) were investigated. RESULTS These results demonstrated that PCCC-CDs significantly inhibited the kidney dysfunction (reduced serum creatinine (SCR), blood urea nitrogen (BUN), urinary total protein (UTP), and microalbuminuria (MALB) concentrations) and the production of chemoattractant (monocyte chemotactic protein 1 (MCP-1)), proinflammatory cytokines (interleukin (IL)-1β), and anti-inflammatory cytokine (IL-10) in response to intraperitoneal injection of D. acutus venom. The beneficial effect of PCCC-CDs on the envenomed mice was similar to that on the change in renal histology and thrombocytopenia. CONCLUSIONS These results demonstrated the remarkable protective effects of PCCC-CDs against AKI induced by D. acutus venom, which would not only broaden the biomedical applications of CDs but also provide a potential target for the development of new therapeutic drugs for AKI induced by D. acutus snakebite envenomation.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ziwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Suna Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoke Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
209
|
Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901316. [PMID: 31832313 PMCID: PMC6891914 DOI: 10.1002/advs.201901316] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Indexed: 05/02/2023]
Abstract
Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.
Collapse
Affiliation(s)
- Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health35 Convent DrBethesda20892MDUSA
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- State Key Laboratory of Applied OpticsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| |
Collapse
|
210
|
Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, Tian L, Jan SU, Boddula R, Guo B, Liu Q, Gong JR. Antibacterial Carbon-Based Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804838. [PMID: 30379355 DOI: 10.1002/adma.201804838] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/30/2018] [Indexed: 05/19/2023]
Abstract
The emergence and global spread of bacterial resistance to currently available antibiotics underscore the urgent need for new alternative antibacterial agents. Recent studies on the application of nanomaterials as antibacterial agents have demonstrated their great potential for management of infectious diseases. Among these antibacterial nanomaterials, carbon-based nanomaterials (CNMs) have attracted much attention due to their unique physicochemical properties and relatively higher biosafety. Here, a comprehensive review of the recent research progress on antibacterial CNMs is provided, starting with a brief description of the different kinds of CNMs with respect to their physicochemical characteristics. Then, a detailed introduction to the various mechanisms underlying antibacterial activity in these materials is given, including physical/mechanical damage, oxidative stress, photothermal/photocatalytic effect, lipid extraction, inhibition of bacterial metabolism, isolation by wrapping, and the synergistic effect when CNMs are used in combination with other antibacterial materials, followed by a summary of the influence of the physicochemical properties of CNMs on their antibacterial activity. Finally, the current challenges and an outlook for the development of more effective and safer antibacterial CNMs are discussed.
Collapse
Affiliation(s)
- Qi Xin
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
| | - Hameed Shah
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Asmat Nawaz
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Xie
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
| | - Muhammad Zain Akram
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aisha Batool
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangqiu Tian
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Saad Ullah Jan
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rajender Boddula
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Beidou Guo
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Liu
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Ru Gong
- Chinese Academy of Sciences (CAS) Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
211
|
Dong B, Li H, Mujtaba Mari G, Yu X, Yu W, Wen K, Ke Y, Shen J, Wang Z. Fluorescence immunoassay based on the inner-filter effect of carbon dots for highly sensitive amantadine detection in foodstuffs. Food Chem 2019; 294:347-354. [DOI: 10.1016/j.foodchem.2019.05.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 01/06/2023]
|
212
|
Revisiting fluorescent carbon nanodots for environmental, biomedical applications and puzzle about fluorophore impurities. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
213
|
Yang H, Lu F, Zhan X, Tian M, Yuan Z, Lu C. A Eu 3+-inspired fluorescent carbon nanodot probe for the sensitive visualization of anthrax biomarker by integrating EDTA chelation. Talanta 2019; 208:120368. [PMID: 31816769 DOI: 10.1016/j.talanta.2019.120368] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
The rapid and sensitive visualization of 2,6-dipicolinic acid (DPA, a unique anthrax biomarker) is essential to prevent anthrax disease or biological terrorist attack. In this study, a Eu3+-labeled ethylenediaminetetraacetic acid loaded hyperbranched polyethyleneimine carbon nanodot (hPEI-CD-EDTA-Eu3+) nanoprobe has been proposed for the ratiometric DPA detection. The sensing mechanism is based on the rapid DPA-Eu3+ chelation within 30 s and subsequent enhanced fluorescence emission through the antenna effect. With the introduction of EDTA chelating unit, the resulted fluorescence of Eu3+-complex is greatly enhanced, which endows sensitive DPA perception. By employing hPEI-CD as the internal reference, ratiometric DPA sensing is realized with a good linearity in the concentration range from 1.0 to 100 nM, with a limit of detection of 190 pM (S/N = 3). The specific chelation affinity between Eu3+ and DPA provides satisfying selectivity over other amino acids and ions. Using nanoprobe-loaded polyvinylidene fluoride paper as the analytical device, point-of-care DPA visualization is achieved. Furthermore, the practical application of designed paper device is validated by the visual detection of metabolic DPA-release from Bacillus subtilis spores.
Collapse
Affiliation(s)
- Hongwei Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fengniu Lu
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Ibaraki, Japan
| | - Xingxiao Zhan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
214
|
Mao JY, Lin FY, Chu HW, Harroun SG, Lai JY, Lin HJ, Huang CC. In situ synthesis of core-shell carbon nanowires as a potent targeted anticoagulant. J Colloid Interface Sci 2019; 552:583-596. [PMID: 31163388 DOI: 10.1016/j.jcis.2019.05.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
Abstract
We have developed a one-pot synthesis of bio-carbon nanowires from the natural product sodium alginate at low temperature, without using any catalyst, for anticoagulation applications. Sodium alginate is carbonized and sulfated/sulfonated in situ by solid state heating of a mixture of sodium alginate and ammonium sulfite. By regulating the heating temperature and the ratio of ammonium sulfite to sodium alginate, we modulated the degree of sulfation/sulfonation and carbonization, as well as the morphology of the carbon nanomaterials. The core-shell sulfated/sulfonated bio-carbon nanowires (CNWsAlg@SOx) made by the reaction of a mixture of ammonium sulfite and sodium alginate with a mass ratio of 5 (ammonium sulfite to sodium alginate) at 165 °C for 3 h, exhibit strong inhibition of thrombin activity due to their ultrahigh binding affinity towards it (dissociation constant (Kd) = 8.7 × 10-11 M). The possible formation mechanism of the carbon nanowires has been proposed. The thrombin-clotting time delay caused by CNWsAlg@SOx is ∼ 170 times longer than that caused by sodium alginate. Hemolysis and cytotoxicity assays demonstrated the high biocompatibility of CNWsAlg@SOx. Furthermore, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays further reveal that CNWsAlg@SOx have a much stronger anticoagulation activity than sodium alginate and naturally sulfated polysaccharides (e.g., fucoidan). Our results suggest that the low-temperature prepared, cost-effective, and highly biocompatible CNWsAlg@SOx show great potential as an efficient anticoagulant for the prevention and treatment of diseases associated with thrombosis.
Collapse
Affiliation(s)
- Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan
| | - Fu-Yin Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
215
|
Abstract
Purpose: The aim of the current review was to summarize the current applications, the latest advances and importantly, highlight research gaps in the use of quantum dots in the eye. Quantum dots are nanoscale semiconductor crystals with characteristic size and tunable optical properties, which deliver bright and stable fluorescence suitable for bioimaging and labelling. Methods: A systematic search was conducted following the PRISMA guidelines. This review systematically searched published data to summarize the characteristics and applications of quantum dots in ophthalmology. Two hundred and eighty published articles were initially selected for this review following searches using the criteria quantum dots AND nanoparticles AND ophthalmology in the databases PubMed, MEDLINE, Scopus, Embase and Web of Science. Results: After duplicates were removed, a total of 22 eligible articles were included for the review. Quantum dots potentially provide a range of diagnostic and therapeutic applications in ophthalmology. Quantum dots offer visible and near-infrared emission, which is highly desirable for bioimaging, due to reduced light scattering and low tissue absorption. Their applications include in vivo bioimaging, labelling of cells and tissues, delivery of genes or drugs and as antimicrobial composites. Conclusion: Quantum dots have been used in ophthalmology for bioimaging, electrical stimulation and tracking of gene/stems cells, and ocular lymphatics. However, there is no detailed description of their desirable characteristics for use in ophthalmology, and there is limited information about their cytotoxicity to ocular cells and tissues.
Collapse
Affiliation(s)
- Sidra Sarwat
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Maitreyee Roy
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| |
Collapse
|
216
|
Arcudi F, Đorđević L, Prato M. Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Acc Chem Res 2019; 52:2070-2079. [PMID: 31335113 DOI: 10.1021/acs.accounts.9b00249] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past decades, considerable efforts have been devoted to synthesizing nanostructured materials with specific properties that ultimately shape their function. In the carbon nanotechnology era, for nanomaterials such as fullerenes, carbon nanotubes, and graphene, the main focus has been on the organic functionalization of these nanostructures, in order to tailor their processability and applicability. Carbon-based dots, quasi-spherical nanoparticles with a shape under 10 nm, have popped up into this context especially due to their versatile synthesis and intriguing properties, mainly their fluorescence emission. Even though they were discovered through the top-down route of cutting large carbon nanostructures, in recent years the ease and flexibility of the bottom-up synthesis have allowed this carbon-based class of nanomaterials to advance at a striking pace. However, the fast speed of research and publication rate have caused a few issues that affect their classification, purity criteria, and fluorescence mechanisms. As these are being progressively addressed, the true potential and applicability of this nanomaterial has started to unravel. In this Ariticle, we describe our efforts toward the synthesis, purification, characterization, and applications of carbon nanodots. Special attention was dedicated to designing and customizing the optoelectronic properties of these nanomaterials, as well as their applications in hybrid and composite systems. Our approach is centered on a bottom-up, microwave-assisted hydrothermal synthesis. We have successfully exploited a multicomponent synthetic approach, using arginine and ethylenediamine as starting materials. By controlling the reaction conditions, in just 3 min, blue-emitting carbon nanodots become accessible. We have improved this approach by designing and tuning the emissive, electrochemical, and chiroptical properties of these nanoforms. On the other hand, we have used postfunctionalization reactions as a tool for conjugation with suitable partners and for further tuning the surface chemistry. The combination of these two approaches has produced a number of carbon nanodots that can be investigated in fields ranging from biology to materials chemistry and in applications spanning from nanomedicine to energy conversion.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Via Licio Giorgieri 1, University of Trieste, 34127 Trieste, Italy
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Via Licio Giorgieri 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Via Licio Giorgieri 1, University of Trieste, 34127 Trieste, Italy
- Carbon Bionanotechnology Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|
217
|
Feng X, Kang W, Wu X, Wang S, Liu F. Quantitative Detection and Real-Time Monitoring of Endogenous mRNA at the Single Live Cell Level Using a Ratiometric Molecular Beacon. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28752-28761. [PMID: 31329405 DOI: 10.1021/acsami.9b12394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Messenger ribonucleic acid (mRNA) plays an important role in various cellular processes. however, traditional techniques cannot realize mRNA detections in live cells as they rely on mRNA purification or cell fixation. To achieve real-time and quantitative mRNA detections at a single live cell level, a single-strand stem-loop-structured ratiometric molecular beacon (RMB) composed of the phosphorothioate-modified loop domain on the 2'-O-methyl RNA backbone with a reporter dye, quencher, and reference dye is proposed to detect the Hsp27 mRNA as a modeled endogenous mRNA. When the RMB hybridizes with the target, the stem-loop structure opens, causing separation of the reporter dye and the quencher and restores the reporter fluorescent signals; therefore, the Hsp27 mRNA can be quantitatively detected according to the ratio of the reporter fluorescent signal to the reference fluorescent signal. Both the phosphorothioate and 2'-O-methyl RNA modifications obviously reduce the nonspecific opening, and the additional reference dye ensures the detection precision using co-localization analysis. Not only does this remove the false-positive signal caused by the nuclease degradation-generated RMB fragment, but it also corrects variations caused by direct measurement of reporter fluorescence intensities at a single cell level owing to inhomogeneity in probe delivery. The designed RMB could detect the Hsp27 mRNA with high signal-to-noise ratio and sensitivity as well as excellent specificity and antidegradation capability proved in vitro and in live cells. Furthermore, it was successfully adopted in subcellular localization, quantitative copy number measurements, and even real-time monitoring of Hsp27 mRNA in live cells, demonstrating that the proposed RMB can be a potential quantitative endogenous mRNA detection tool, especially at a single live cell level.
Collapse
Affiliation(s)
- Xufei Feng
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| | - Wenjie Kang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| | - Xuping Wu
- The Second Hospital of Nanjing , Nanjing University of Chinese Medicine , Nanjing 210003 , China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
- Computational Optics Laboratory, School of Science , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
218
|
Ren N, Sun R, Xia K, Zhang Q, Li W, Wang F, Zhang X, Ge Z, Wang L, Fan C, Zhu Y. DNA-Based Hybrid Hydrogels Sustain Water-Insoluble Ophthalmic Therapeutic Delivery against Allergic Conjunctivitis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26704-26710. [PMID: 31264833 DOI: 10.1021/acsami.9b08652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clinical need for treating allergic conjunctivitis (AC) is rapidly increasing. However, AC-relevant anti-inflammatory compounds are generally difficult to solubilize in water, thus limiting their therapeutic potential. Solubility-improved eye drop formulations of these compounds have poor bioavailability and a short retention time in ophthalmic tissues. Herein, we report a DNA/poly(lactic-co-glycolicacid) (PLGA) hybrid hydrogel (HDNA) for water-insoluble ophthalmic therapeutic delivery. PLGA pre-encapsulation enables loading of water-insoluble therapeutics. HDNA's porous structure is capable of sustained delivery of therapeutics. Dexamethasone (DEX), with demonstrated activities in attenuating inflammatory symptom in AC, was used as a model system. The designed HDNA hybrid hydrogels significantly improved the DEX accumulation and mediated the gradual DEX release in ophthalmic cells and tissues. Using the HDNA-DEX complexes, potent efficacy in two animal models of AC was acquired. Given this performance, demonstrable biocompatibility, and biodegradability of DNA hydrogel, the HDNA-based ophthalmic therapeutic delivery system enables novel treatment paradigms, which will have widespread applications in the treatment of various eye diseases.
Collapse
Affiliation(s)
- Ning Ren
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Rui Sun
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Kai Xia
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Qi Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Wei Li
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Fei Wang
- Joint Research Center for Precision Medicine , Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital , Shanghai 201499 , China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine , Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital , Shanghai 201499 , China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Ying Zhu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| |
Collapse
|
219
|
Sun Y, Lu F, Yang H, Ding C, Yuan Z, Lu C. Fluorescent sensor array for separation-free dopamine analogue discrimination via polyethyleneimine-mediated self-polymerization reaction. NANOSCALE 2019; 11:12889-12897. [PMID: 31245804 DOI: 10.1039/c9nr03643a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effective discrimination of dopamine (DA) analogues is an enduring challenge because of their very tiny structural differences, and thus a separation technique is generally required during the conventional analysis. In this study, a hyperbranched polyethyleneimine (hPEI)-based fluorescent sensor array has been constructed for the separation-free and effective differentiation of four DA analogues. The discrimination includes two steps: firstly, the formation of fluorescent polymer nanoparticles (FPNs) with diverse emission profiles via hPEI-mediated self-polymerization reaction of DA analogues and secondly, the linear discriminant analysis of fluorescence patterns of the formed FPNs for the differentiation of DA analogues. The hPEI-assisted self-polymerization reaction of DA analogues and substitution group mediated optical properties of the resulted FPNs enable an excellent discrimination of four DA analogues at a concentration of 1.0 μM when linear discriminant analysis and hierarchical cluster analysis are smartly combined. Additionally, binary, tertiary and even quaternary mixtures of analogues can also be well distinguished with the proposed sensor array. The practicability of this established sensor array is validated by a high accuracy (100%) evaluation of 88 blind samples containing a single analogue or a mixture of two, three or four analogues.
Collapse
Affiliation(s)
- Ye Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fengniu Lu
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Hongwei Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Caifeng Ding
- Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
220
|
Abstract
Carbon dots (or carbon quantum dots) are small (less than 10 nm) and luminescent carbon nanoparticles with some form of surface passivation. As an emerging class of nanomaterials, carbon dots have found wide applications in medicine, bioimaging, sensing, electronic devices, and catalysis. In this review, we focus on the recent advancements of carbon dots for sensing and killing microorganisms, including bacteria, fungi, and viruses. Synthesis, functionalization, and a toxicity profile of these carbon dots are presented. We also discuss the underlying mechanisms of carbon dot-based sensing and killing of microorganisms.
Collapse
|
221
|
Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:897-909. [DOI: 10.1016/j.msec.2019.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 01/01/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
|
222
|
|
223
|
Zhao F, Gu W, Zhou J, Liu Q, Chong Y. Solar-excited graphene quantum dots for bacterial inactivation via generation of reactive oxygen species. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:67-80. [PMID: 30983511 DOI: 10.1080/10590501.2019.1591701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoscale photocatalysts have attracted abundant research attention in the solar-activated disinfection. In this work, we find that solar irradiation significantly improves the antimicrobial activity of graphene quantum dots (GQDs), accompanied by severe oxidative stress and membrane damage. By using electron spin resonance (ESR) technique, we confirm that different reactive oxygen species (ROS), including singlet oxygen (1O2), hydroxyl radical (•OH), and superoxide anion (O2•-) were generated by GQDs upon irradiation with simulated sunlight. Additionally, these generated ROS will further facilitate lipid peroxidation of cell membrane and suppress bacterial antioxidant systems, enhancing the phototoxicity of GQDs. These findings will bring major advancements of GQDs in applications of solar-driven bacterial disinfection.
Collapse
Affiliation(s)
- Fangdong Zhao
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , China
| | - Wei Gu
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , China
| | - Jian Zhou
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , China
| | - Qiang Liu
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , China
| | - Yu Chong
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , China
| |
Collapse
|
224
|
Biotechnological applications of nanostructured hybrids of polyamine carbon quantum dots and iron oxide nanoparticles. Amino Acids 2019; 52:301-311. [PMID: 30941575 DOI: 10.1007/s00726-019-02721-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
The combination of different nanomaterials has been investigated during the past few decades and represents an exciting challenge for the unexpected emerging properties of the resulting nano-hybrids. Spermidine (Spd), a biogenic polyamine, has emerged as a useful functional monomer for the development of carbon quantum dots (CQDs). Herein, an electrostatically stabilized ternary hybrid, constituted of iron oxide-DNA (the core) and spermidine carbon quantum dots (CQDSpds, the shell), was self-assembled and fully characterized. The as-obtained nano-hybrid was tested on HeLa cells to evaluate its biocompatibility as well as cellular uptake. Most importantly, besides being endowed by the magnetic features of the core, it displayed drastically enhanced fluorescence properties in comparison with parent CQDSpds and it is efficiently internalized by HeLa cells. This novel ternary nano-hybrid with multifaceted properties, ranging from fluorescence to superparamagnetism, represents an interesting option for cell tracking.
Collapse
|
225
|
Walia S, Shukla AK, Sharma C, Acharya A. Engineered Bright Blue- and Red-Emitting Carbon Dots Facilitate Synchronous Imaging and Inhibition of Bacterial and Cancer Cell Progression via 1O2-Mediated DNA Damage under Photoirradiation. ACS Biomater Sci Eng 2019; 5:1987-2000. [DOI: 10.1021/acsbiomaterials.9b00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shanka Walia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Ashish K. Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
226
|
Zhao C, Wang X, Wu L, Wu W, Zheng Y, Lin L, Weng S, Lin X. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids Surf B Biointerfaces 2019; 179:17-27. [PMID: 30928801 DOI: 10.1016/j.colsurfb.2019.03.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is becoming more and more serious and has become a potential hazard to human life and health. The fabrication of some new antibacterial substances against resistant bacteria is demanded. With the wide application and research of carbon nanomaterials, nitrogen-doped carbon quantum dots (NCQDs) were synthesized by a one-step chemical route herein. The particle size of NCQDs in the range of 2-5 nm were characterized by transmission electron microscopy (TEM), atomic force microscopy, and dynamic light scattering. The functional groups and optical properties of NCQDs were investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Disk-diffusion tests showed that the NCQDs had specific antibacterial activity against Staphylococcus. TEM showed that the NCQDs could destroy the cell structure of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) but could not combat Escherichia coli. The antibacterial mechanism may be that positively charged NCQDs firstly interacted with the negatively charged bacteria, and then specifically anchored on some specific sites on the surface of Staphylococcus. The NCQDs were applied to treat wounds infected with MRSA and showed the same therapeutic effect as vancomycin. Photomicrographs of hematoxylin-eosin-stained histological sections showed that the NCQDs at concentrations effectively killing S. aureus and MRSA caused negligible toxicity to the main rat organs, including heart, liver, spleen, lung, and kidney. Thus, the NCQDs can be developed as a promising antibacterial agent for Staphylococcus. And the NCQDs are likely to treat local infections caused by Staphylococcus clinically, especially S. aureus and MRSA.
Collapse
Affiliation(s)
- Chengfei Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xuewen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lina Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wen Wu
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
227
|
Devi P, Saini S, Kim KH. The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron 2019; 141:111158. [PMID: 31323605 DOI: 10.1016/j.bios.2019.02.059] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 02/23/2019] [Indexed: 12/22/2022]
Abstract
Carbon quantum dots (CQDs) have emerged as a potential material in the diverse fields of biomedical applications due to their numerous advantageous properties including fluorescence, water solubility, biocompatibility, low toxicity, small size and ease of modification, inexpensive scale-up production, and versatile conjugation with other nanoparticles. Thus, CQDs became a preferable choice in various biomedical applications such as nanocarriers for drugs, therapeutic genes, photosensitizers, and antibacterial molecules. Further, their potentials have also been verified in multifunctional diagnostic platforms, cellular and bacterial bio-imaging, development of theranostics nanomedicine, etc. This review provides a concise insight into the progress and evolution in the field of CQD research with respect to methods/materials available in bio-imaging, theranostics, cancer/gene therapy, diagnostics, etc. Further, our discussion is extended to explore the role of CQDs in nanomedicine which is considered to be the future of biomedicine. This study will thus help biomedical researchers in tapping the potential of CQDs to overcome various existing technological challenges.
Collapse
Affiliation(s)
- Pooja Devi
- Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India.
| | - Shefali Saini
- Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
228
|
Otis G, Bhattacharya S, Malka O, Kolusheva S, Bolel P, Porgador A, Jelinek R. Selective Labeling and Growth Inhibition of Pseudomonas aeruginosa by Aminoguanidine Carbon Dots. ACS Infect Dis 2019; 5:292-302. [PMID: 30589261 DOI: 10.1021/acsinfecdis.8b00270] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is a highly virulent bacterium, particularly associated with the spread of multidrug resistance. Here we show that carbon dots (C-dots), synthesized from aminoguanidine and citric acid precursors, can selectively stain and inhibit the growth of P. aeruginosa strains. The aminoguanidine-C-dots were shown both to target P. aeruginosa bacterial cells and also to inhibit biofilm formation by the bacteria. Mechanistic analysis points to interactions between aminoguanidine residues on the C-dots' surface and P. aeruginosa lipopolysaccharide moieties as the likely determinants for both antibacterial and labeling activities. Indeed, the application of biomimetic membrane assays reveals that LPS-promoted insertion and bilayer permeation constitute the primary factors in the anti- P. aeruginosa effect of the aminoguanidine-C-dots. The aminoguanidine C-dots are easy to prepare in large quantities and are inexpensive and biocompatible and thus may be employed as a useful vehicle for selective staining and antibacterial activity against P. aeruginosa.
Collapse
|
229
|
Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. J Colloid Interface Sci 2019; 536:112-126. [DOI: 10.1016/j.jcis.2018.10.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
230
|
Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi SM, Mandegary A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. J Adv Res 2019; 18:81-93. [PMID: 30828478 PMCID: PMC6383136 DOI: 10.1016/j.jare.2019.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, carbon dots (CDs) have attracted great attention due to their superior properties, such as biocompatibility, fluorescence, high quantum yield, and uniform distribution. These characteristics make CDs interesting for bioimaging, therapeutic delivery, optogenetics, and theranostics. Photoluminescence (PL) properties enable CDs to act as imaging-trackable gene nanocarriers, while cationic CDs with high transfection efficiency have been applied for plasmid DNA and siRNA delivery. In this review, we have highlighted the precursors, structure and properties of positively charged CDs to demonstrate the various applications of these materials for nucleic acid delivery. Additionally, the potential of CDs as trackable gene delivery systems has been discussed. Although there are several reports on cellular and animal approaches to investigating the potential clinical applications of these nanomaterials, further systematic multidisciplinary approaches are required to examine the pharmacokinetic and biodistribution patterns of CDs for potential clinical applications.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Dadashzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Moghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71345-1583, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosseinali Sassan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Seyed-Mojtaba Sohrevardi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Silences, Yazd, Iran
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
231
|
Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 2019; 48:428-446. [DOI: 10.1039/c7cs00807d] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial-infections are mostly due to bacteria in their biofilm-mode of growth. Nanotechnology-based antimicrobials possess excellent potential in biofilm-infection control, overcoming the biological barriers of biofilms.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials, Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials, Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Linzhu Su
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials, Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen
- Department of Biomedical Engineering
- 9713 AV Groningen
- The Netherlands
| | - Paul C. Jutte
- University of Groningen and University Medical Center of Groningen
- Department of Orthopaedic Surgery
- 9700 RB Groningen
- The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen
- Department of Orthodontics
- 9700 RB Groningen
- The Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen
- Department of Biomedical Engineering
- 9713 AV Groningen
- The Netherlands
| |
Collapse
|
232
|
Li J, Tang K, Yu J, Wang H, Tu M, Wang X. Nitrogen and chlorine co-doped carbon dots as probe for sensing and imaging in biological samples. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181557. [PMID: 30800391 PMCID: PMC6366224 DOI: 10.1098/rsos.181557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/27/2018] [Indexed: 05/20/2023]
Abstract
A facile one-step hydrothermal synthesis approach was proposed to prepare nitrogen and chlorine co-doped carbon dots (CDs) using l-ornithine hydrochloride as the sole precursor. The configuration and component of CDs were characterized by transmission electron microscopy and X-ray photoelectron and Fourier transform infrared spectroscopies. The obtained CDs (Orn-CDs) with a mean diameter of 2.1 nm were well monodispersed in aqueous solutions. The as-prepared CDs exhibited a bright blue fluorescence with a high yield of 60%, good photostability and low cytotoxicity. The emission of Orn-CDs could be selectively and effectively suppressed by Fe3+. Thus, a quantitative assay of Fe3+ was realized by this nanoprobe with a detection limit of 95.6 nmol l-1 in the range of 0.3-50 µmol l-1. Furthermore, ascorbic acid could recover the fluorescence of Orn-CDs suppressed by Fe3+, owing to the transformation of Fe3+ to Fe2+ by ascorbic acid. The limit of detection for ascorbic acid was 137 nmol l-1 in the range of 0.5-10 µmol l-1. In addition, the established method was successfully applied for Fe3+ and ascorbic acid sensing in human serum and urine specimens and for imaging of Fe3+ in living cells. Orn-CD-based sensing platform showed its potential to be used for biomedicine-related study because it is cost-effective, easily scalable and can be used without additional functionalization and sample pre-treatment.
Collapse
Affiliation(s)
- Jin Li
- Department of Reproductive Medicine, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou 441300, People's Republic of China
| | - Kai Tang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| | - Jianxin Yu
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| | - Mingli Tu
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| | - Xiaobo Wang
- Department of Reproductive Medicine, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou 441300, People's Republic of China
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| |
Collapse
|
233
|
Nekoueian K, Amiri M, Sillanpää M, Marken F, Boukherroub R, Szunerits S. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev 2019; 48:4281-4316. [DOI: 10.1039/c8cs00445e] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon-based quantum particles, especially spherical carbon quantum dots (CQDs) and nanosheets like graphene quantum dots (GQDs), are an emerging class of quantum dots with unique properties owing to their quantum confinement effect.
Collapse
Affiliation(s)
- Khadijeh Nekoueian
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
- Department of Green Chemistry
| | - Mandana Amiri
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Mika Sillanpää
- Department of Green Chemistry
- School of Engineering Science
- Lappeenranta University of Technology
- Finland
| | - Frank Marken
- Department of Chemistry
- University of Bath
- Bath BA2 7AY
- UK
| | | | | |
Collapse
|
234
|
Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview. NANOSCALE HORIZONS 2019; 4:117-137. [PMID: 32254148 DOI: 10.1039/c8nh00174j] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to the increasing global population, growing contamination of water and air, and wide spread of infectious diseases, antibiotics are extensively used as a major antibacterial drug. However, many microbes have developed resistance to antibiotics through mutation over time. As an alternative to antibiotics, antimicrobial nanomaterials have attracted great attention due to their advantageous properties and unique mechanisms of action toward microbes. They inhibit bacterial growth and destroy cells through complex mechanisms, making it difficult for bacteria to develop drug resistance, though some health concerns related to biocompatibility remain for practical applications. Among various antibacterial nanomaterials, carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates due to the ease of production and functionalization, high dispersibility in aqueous media, and promising biocompatibility. The antibacterial properties of these nanomaterials can be easily adjusted by surface modification. They are promising materials for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes. Though many studies have reported excellent antibacterial activity of carbon nanomaterials, their impact on the environment and living organisms is of concern due to the accumulatory and cytotoxic effects. In this review, we discuss antimicrobial applications of the functional carbon nanomaterials (GO and C-Dots), their antibacterial mechanisms, factors affecting antibacterial activity, and concerns regarding cytotoxicity.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | | | | | | | | |
Collapse
|
235
|
Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
236
|
Role of carbon quantum dots in titania based photoelectrodes: Upconversion or others? J Colloid Interface Sci 2018; 529:396-403. [DOI: 10.1016/j.jcis.2018.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/30/2018] [Accepted: 06/18/2018] [Indexed: 11/23/2022]
|
237
|
Gao Q, Zhang X, Yin W, Ma D, Xie C, Zheng L, Dong X, Mei L, Yu J, Wang C, Gu Z, Zhao Y. Functionalized MoS 2 Nanovehicle with Near-Infrared Laser-Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteria-Infected Wound Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802290. [PMID: 30307703 DOI: 10.1002/smll.201802290] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/17/2018] [Indexed: 05/22/2023]
Abstract
The rising dangers of bacterial infections have created an urgent need for the development of a new generation of antibacterial nanoagents and therapeutics. A new near-infrared 808 nm laser-mediated nitric oxide (NO)-releasing nanovehicle (MoS2 -BNN6) is reported through the simple assembly of α-cyclodextrin-modified MoS2 nanosheets with a heat-sensitive NO donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6) for the rapid and effective treatment of three typical Gram-negative and Gram-positive bacteria (ampicillin-resistant Escherichia coli, heat-resistant Escherichia faecalis, and pathogen Staphylococcus aureus). This MoS2 -BNN6 nanovehicle has good biocompatibility and can be captured by bacteria to increase opportunities of NO diffusion to the bacterial surface. Once stimulated by 808 nm laser irradiation, the MoS2 -BNN6 nanovehicle not only exhibits photothermal therapy (PTT) efficacy but also can precisely control NO release, generating oxidative/nitrosative stress. The temperature-enhanced catalytic function of MoS2 induced by 808 nm laser irradiation simultaneously accelerates the oxidation of glutathione. This acceleration disrupts the balance of antioxidants, ultimately resulting in significant DNA damage to the bacteria. Within 10 min, the MoS2 -BNN6 with enhanced PTT/NO synergetic antibacterial function achieves >97.2% inactivation of bacteria. The safe synergetic therapy strategy can also effectively repair wounds through the formation of collagen fibers and elimination of inflammation during tissue reconstruction.
Collapse
Affiliation(s)
- Qin Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Xiao Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongqing Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Zheng
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinghua Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Linqiang Mei
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Yu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
238
|
Xiao L, Sun H. Novel properties and applications of carbon nanodots. NANOSCALE HORIZONS 2018; 3:565-597. [PMID: 32254112 DOI: 10.1039/c8nh00106e] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the most recent decade, carbon dots have drawn intensive attention and triggered substantial investigation. Carbon dots manifest superior merits, including excellent biocompatibility both in vitro and in vivo, resistance to photobleaching, easy surface functionalization and bio-conjugation, outstanding colloidal stability, eco-friendly synthesis, and low cost. All of these endow them with the great potential to replace conventional unsatisfactory fluorescent heavy metal-containing semiconductor quantum dots or organic dyes. Even though the understanding of their photoluminescence mechanism is still controversial, carbon dots have already exhibited many versatile applications. In this article, we summarize and review the recent progress achieved in the field of carbon dots, and provide a comprehensive summary and discussion on their synthesis methods and emission mechanisms. We also present the applications of carbon dots in bioimaging, drug delivery, microfluidics, light emitting diode (LED), sensing, logic gates, and chiral photonics, etc. Some unaddressed issues, challenges, and future prospects of carbon dots are also discussed. We envision that carbon dots will eventually have great commercial utilization and will become a strong competitor to some currently used fluorescent materials. It is our hope that this review will provide insights into both the fundamental research and practical applications of carbon dots.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|
239
|
Song Z, Wang H, Wu Y, Gu J, Li S, Han H. Fabrication of Bis-Quaternary Ammonium Salt as an Efficient Bactericidal Weapon Against Escherichia coli and Staphylococcus aureus. ACS OMEGA 2018; 3:14517-14525. [PMID: 30411069 PMCID: PMC6217699 DOI: 10.1021/acsomega.8b01265] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/25/2018] [Indexed: 05/19/2023]
Abstract
Combating bacterial pathogens has become a global concern, especially the emergence of drug-resistant bacteria have made conventional antibiotics lose their efficiency. This grim situation suggests the necessity to explore novel antibacterial agents with favorable safety and strong antibacterial activity. Here, we took the advantage of quaternary ammonium compounds and synthesized a long-chain high-molecular organic bis-quaternary ammonium salt (BQAS) with a broad-spectrum bactericidal activity through a facile one-pot reaction. The bactericidal effect of BQAS was evaluated by two bacterial human pathogens: Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive), which are the major cause of diarrheal infections in children and adults. Our experimental results indicate that the bactericidal activity of BQAS is linked to the strong contact between the positively charged quaternary ammonium groups and the bacterial cells, thus leading to a temporary and locally high concentration of reactive oxygen species, which subsequently triggers oxidative stress and membrane damage in the bacteria. This mechanism was further confirmed by several assays, such as the membrane permeabilization assay, fluorescent-based cell live/dead test, scanning electron microscopy, transmission electron microscopy, together with the lactate dehydrogenase release assay, which all indicated that BQAS induced damage to the cytoplasmic membrane and the leakage of intracellular fluid containing essential molecules. The excellent bactericidal activity of BQAS suggests its great application potential as a promising candidate against the rapid emergence of drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Zhiyong Song
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huajuan Wang
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yang Wu
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangjiang Gu
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuojun Li
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Heyou Han
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
240
|
Li H, Huang J, Song Y, Zhang M, Wang H, Lu F, Huang H, Liu Y, Dai X, Gu Z, Yang Z, Zhou R, Kang Z. Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26936-26946. [PMID: 30039700 DOI: 10.1021/acsami.8b08832] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The infection of bacteria and fungus is one of the most challenging global threats to human health. With the recent advancement in nanoscience and nanotechnology, much progress has been achieved in the development of antimicrobial nanomedicine; however, these nanomaterial-based antibacterial agents still suffer from potential biological toxicity, poor degradation, and various secondary pollution. Here, we demonstrate the fabrication of low-toxic and degradable carbon dots (CDs) from vitamin C by one-step electrochemical method. These newly generated CDs display a strong broad-spectrum antibacterial activity and antifungal activity even at low concentrations, as they destroy the bacterial walls during the diffusive entrance, perturb secondary structures of DNA/RNAs of bacteria and fungus, and inhibit important gene expressions to finally kill the bacteria and fungus. We also show that these well-characterized CDs can be completely degraded into CO2, CO and H2O under visible light in air (or at very mild temperature, about 37 °C).
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Lu
- School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing 100029 , China
| | | | | | | | | | | | - Ruhong Zhou
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | | |
Collapse
|
241
|
Feng T, Zhu S, Zeng Q, Lu S, Tao S, Liu J, Yang B. Supramolecular Cross-Link-Regulated Emission and Related Applications in Polymer Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12262-12277. [PMID: 29164859 DOI: 10.1021/acsami.7b14857] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Involvement of clear photoluminescence (PL) mechanism in specific chemical structure is at the forefront of carbon dots (CDs). Supramolecular interaction exists in plenty of materials, offering an inherent way to administrate the optical and photophysical properties, especially in terms of newly developed polymer carbon dots (PCDs). However, supramolecular-interaction-derived PL regulation is always ignored in the shadow of many kinds of PL factors, and we still have a limited understanding on the distinct chemical structure and mechanism of supramolecular effect in PCDs. Herein, several distinct photoluminescent phenomena of PCDs under aqueous and solid state are reviewed in terms of supramolecular cross-linking, with highly emphasizing the importance of supramolecular cross-link-enhanced emission (SCEE) effects, and the regulated function of supramolecular interaction's intensity and types between PCDs for special PL behaviors of PCDs. In addition, we categorize the photoluminescent phenomena in PCDs into the following aspects: supramolecular cross-link-enhanced dilute-solution-state emission, concentration-controlled multicolor emission, supramolecular regulation for quenching-resistant solid-state fluorescence, as well as supramolecular cross-link-assisted room-temperature- phosphorescence (RTP) under solid states. Furthermore, the applications of PCDs in light-emitting diodes (LED), solar cells, and anticounterfeiting and data encryption, etc., are presented, based on the distinct supramolecular cross-link-regulated photoluminescent phenomena, especially the solid-state emission. Finally, a brief outlook is given, highlighting the currently existing problems and development direction of supramolecular cross-link-regulated emission in PCDs.
Collapse
Affiliation(s)
- Tanglue Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , 35 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Siyu Lu
- College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Kexue Road , Zhengzhou 450001 , China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Junjun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
242
|
Liu Y, Ding Y, Gou H, Huang X, Zhang G, Zhang Q, Liu Y, Meng Z, Xi K, Jia X. Room temperature synthesis of pH-switchable polyaniline quantum dots as a turn-on fluorescent probe for acidic biotarget labeling. NANOSCALE 2018; 10:6660-6670. [PMID: 29582868 DOI: 10.1039/c8nr00381e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The synthesis of well-defined light-element-derived quantum dots (LEQDs) with advanced optical properties under mild conditions is highly desirable yet challenging. Here, a polyaniline (PANI) structure is introduced into carbon-rich LEQDs to yield well-defined, fluorescent polyaniline quantum dots (PAQDs), PAQD24, through a one-pot room temperature reaction. The mild synthetic conditions effectively minimize the defects introduced during the conventional synthesis and endow PAQD24 with desirable optical properties, including a narrow emission band (full width at half maximum = 55 nm), an optimal quantum yield of 32.5% and two-photon fluorescence. Furthermore, the bandgap of PAQD24 is highly sensitive toward pH variations in the near-neutral region, due to the proton doping and dedoping of the PANI structure. Such unique properties together with its fine bio-compatibility enable the application of this material as a turn-on fluorescent probe for the labeling of acidic biotargets from sub-cellular to organ levels, providing potential applications in diagnosis and surgery guidance for certain diseases.
Collapse
Affiliation(s)
- Yanfeng Liu
- School of Chemistry & Chemical Engineering, Nanjing University, Jiangsu Province, Nanjing, Qixia District, Xianlin Road No. 163, Postcode: 210023, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Zhang H, Zhang B, Di C, Ali MC, Chen J, Li Z, Si J, Zhang H, Qiu H. Label-free fluorescence imaging of cytochrome c in living systems and anti-cancer drug screening with nitrogen doped carbon quantum dots. NANOSCALE 2018; 10:5342-5349. [PMID: 29509193 DOI: 10.1039/c7nr08987b] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As an important biomarker for the early stage of apoptosis, cytochrome c (Cyt c) has been recognized as a key component of the intrinsic apoptotic pathway. Fluorescence imaging tools enabling detection of Cyt c in apoptotic signaling have been rarely explored, though they are critical for cell biology and clinical theranostics. Here, we designed a novel label-free N-doped carbon dot (N-doped CD)-based nanosensor that enables fluorescence activation imaging of Cyt c release in cell apoptosis. The inner filter effect of Cyt c towards N-doped CDs enabled quantitative Cyt c measurement. The nanosensor exhibited high sensitivity and selectivity, rapid response, good cell-membrane permeability and low cytotoxicity. All these features are favorable for in situ visualization of Cyt c for apoptosis research. Notably, the developed nanosensor was successfully applied to monitor intracellular release of Cyt c, and to visualize Cyt c in living zebrafish for the first time. Moreover, it also provided a viable platform for cell-based screening of apoptosis-inducing compounds. In virtue of these advantages and potential, the developed assay not only holds great significance for the better understanding of certain diseases at the cellular level, but also provides an invaluable platform for apoptotic studies and screening of anti-cancer drugs toward drug development.
Collapse
Affiliation(s)
- Haijuan Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Xu T, Xu X, Gu Y, Fang L, Cao F. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery. Int J Nanomedicine 2018; 13:917-937. [PMID: 29491707 PMCID: PMC5815481 DOI: 10.2147/ijn.s148104] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. Purpose The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. Materials and methods CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). Results CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. Conclusions The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site.
Collapse
Affiliation(s)
- Tingting Xu
- School of Pharmacy, China Pharmaceutical University.,Nanjing Chia Tai Tian Qing Pharmaceutical Co., Ltd
| | - Xiaoyue Xu
- School of Pharmacy, China Pharmaceutical University
| | - Yan Gu
- School of Pharmacy, China Pharmaceutical University
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Feng Cao
- School of Pharmacy, China Pharmaceutical University
| |
Collapse
|
245
|
Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater 2018; 65:123-136. [PMID: 29128534 DOI: 10.1016/j.actbio.2017.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/15/2017] [Accepted: 11/07/2017] [Indexed: 01/25/2023]
Abstract
To offer an ideal hospitable environment for corneal keratocyte growth, the carrier materials can be functionalized with incorporation of signaling molecules to regulate cell biological events. This study reports, for the first time, the development of gelatin/ascorbic acid (AA) cryogels for keratocyte carriers in vitro and in vivo. The cryogel samples were fabricated by blending of gelatin with varying amounts of AA (0-300 mg) and carbodiimide cross-linking via cryogelation technique. Hydrophilic AA content in the carriers was found to significantly affect cross-linking degree and pore dimension of cryogels, thereby dictating their mechanical and biological stability and AA release profile. The cryogel carriers with low-to-moderate AA loadings were well tolerated by rabbit keratocyte cultures and anterior segment eye tissues, demonstrating good ocular biocompatibility. Although higher incorporated AA level contributed to enhanced metabolic activity and biosynthetic capacity of keratocytes grown on cryogel matrices, the presence of excessive amounts of AA molecules could lead to toxic effect and limit cell proliferation and matrix production. The cytoprotective activity against oxidative stress was shown to be strongly dependent on AA release, which further determined cell culture performance and tissue reconstruction efficiency. With the optimum AA content in carrier materials, intrastromally implanted cell/cryogel constructs exhibited better capability to enhance tissue matrix regeneration and transparency maintenance as well as to mitigate corneal damage in an alkali burn-induced animal model. It is concluded that understanding of antioxidant molecule-mediated structure-property-function interrelationships in gelatin/AA cryogels is critical to designing carrier materials for potential use in corneal stromal tissue engineering. STATEMENT OF SIGNIFICANCE Multifunctional cryogel material can offer an ideal hospitable environment for cell-mediated tissue reconstruction. To our knowledge, this is the first report describing the use of gelatin/ascorbic acid (AA) cryogels as keratocyte carriers for corneal stromal tissue engineering. The AA loading during cryogel fabrication is found to have a significant effect on cross-linking degree and pore dimension, mechanical and biological stability, ocular biocompatibility, cell culture performance, and cytoprotective activity, giving comprehensive insight into fine-tuning the structure-property-function interrelationships of keratocyte carrier material. Using an alkali burn-induced animal model, we present evidence that with the optimum AA loading into cryogel materials, intrastromally implanted cell/carrier constructs exhibited better capability to enhance tissue matrix regeneration and transparency maintenance as well as to mitigate corneal damage.
Collapse
|
246
|
Chen S, Li Q, Wang X, Yang YW, Gao H. Multifunctional bacterial imaging and therapy systems. J Mater Chem B 2018; 6:5198-5214. [DOI: 10.1039/c8tb01519h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced antibacterial materials are classified and introduced, and their applications in multimodal imaging and therapy are reviewed.
Collapse
Affiliation(s)
- Shuai Chen
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Qiaoying Li
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xin Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying-Wei Yang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
247
|
Wang J, Williamson GS, Lancina MG, Yang H. Mildly Cross-Linked Dendrimer Hydrogel Prepared via Aza-Michael Addition Reaction for Topical Brimonidine Delivery. J Biomed Nanotechnol 2017; 13:1089-1096. [PMID: 29479294 PMCID: PMC5819351 DOI: 10.1166/jbn.2017.2436] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, we developed a mildly cross-linked dendrimer hydrogel (mcDH) via aza-Michael addition of polyamidoamine (PAMAM) dendrimer G5 and polyethylene glycol diacrylate (PEG-DA, Mn=575 g/mol). We chose the antiglaucoma drug brimonidine tartrate as a model drug and developed a new antiglaucoma drug formulation on the basis of mcDH. Cytotoxicity of the mcDH formulation to NIH3T3 fibroblasts, in vitro drug release kinetics and ex vivo drug permeability across the rabbit cornea were examined. We also studied interactions between PAMAM dendrimer and the drug using 1H NMR spectroscopy for a mechanistic understanding of brimonidine release from the mcDH. mcDH was found to be efficient unionizing brimonidine tartrate to form and encapsulate brimonidine free base for sustained release and enhanced corneal permeation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Geoffrey S. Williamson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Michael G. Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
248
|
Chu HW, Mao JY, Lien CW, Hsu PH, Li YJ, Lai JY, Chiu TC, Huang CC. Pulse laser-induced fragmentation of carbon quantum dots: a structural analysis. NANOSCALE 2017; 9:18359-18367. [PMID: 29143845 DOI: 10.1039/c7nr07639h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon quantum dots (CQDs) have attracted enormous interest in recent years owing to their low cytotoxicity, excellent biocompatibility and strong fluorescence. They have been successfully employed in sensor, bio-imaging, and drug carrier applications. A complete understanding of their core-surface structure is essential for tuning their physical and chemical properties for various applications. Conventional characterizations of CQDs are conducted with electron microscopy or spectroscopy, such as transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. However, these techniques cannot fully resolve the core-surface structure of CQDs. In this study, we attempt to analyze the structures of CQDs by laser desorption/ionization mass spectrometry (LDI-MS) using three model CQDs synthesized from citric acid (CA-CQDs), diammonium citrate (AC-CQDs) and spermidine trihydrochloride (Spd-CQDs). Both CA-CQDs and AC-CQDs produced anionic carbon cluster ions ([Cn]-, n = 4-9) during the laser desorption/ionization process. Additionally, AC-CQDs produced fragments containing C, N, and O that appeared at m/z values of 41.999, 91.015, and 107.008, which were identified by 15N isotopes as [CNO]-, [CH3N2O3]-, and [CH3N2O4]-, respectively. By contrast, subjecting Spd-CQDs to the same analysis did not yield carbon cluster ions ([Cn]-); instead, strong chlorine-associated ions with a unique isotopic pattern were observed, strongly implying that Spd-CQDs contain chlorine. The lack of carbon cluster ion formation in nitrogen- and chlorine-doped Spd-CQDs indicates that nitrogen and chlorine are abundantly and homogenously doped in the CQDs. We also found a shot-dependent fragmentation behavior for AC-CQDs that produces nitrogen- and oxygen-containing ions and carbon cluster ions ([Cn]-) during initial fragmentation of the surface, with a gradual destruction of the nanocrystalline carbon core after additional shots. These results suggest that LDI-MS can be used as a tool for analyzing the core-surface structure of CQDs, particularly when it contains a heteroatom doped carbon core with various surface functional groups containing nitrogen, oxygen and halogens.
Collapse
Affiliation(s)
- Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Harroun SG, Lai JY, Huang CC, Tsai SK, Lin HJ. Reborn from the Ashes: Turning Organic Molecules to Antimicrobial Carbon Quantum Dots. ACS Infect Dis 2017; 3:777-779. [PMID: 28933816 DOI: 10.1021/acsinfecdis.7b00150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using polyamines as the initial organic raw material and by applying simple pyrolysis methods, super cationic carbon quantum dots (CQDs) can easily be made. Since polyamines are natural products and the synthesis procedure is green, these polyamine-derived CQDs display low toxicity and high biocompatibility but possess high antibacterial activity. In addition, polyamine-derived CQDs display other unique properties, such as facilitation of wound healing and passage through the tight junction, which make them a very promising bactericide in future clinical applications.
Collapse
Affiliation(s)
- Scott G. Harroun
- Department
of Chemistry, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3C 3J7, Canada
| | - Jui-Yang Lai
- Institute
of Biochemical and Biomedical Engineering, Chang Gung University, 259 Wenhua 1st Road, Taoyuan, 33302, Taiwan
- Department
of Ophthalmology, Chang Gung Memorial Hospital, 5 Fuxing Street, Taoyuan, 33305, Taiwan
- Department
of Materials Engineering, Ming Chi University of Technology, 84 Gungjuan
Road, New Taipei City, 24301, Taiwan
| | - Chih-Ching Huang
- Department
of Bioscience and Biotechnology, National Taiwan Ocean University, 2 Beining Road, Keelung, 20224, Taiwan
- Center
of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining
Road, Keelung, 20224, Taiwan
- School of
Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100
Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Shou-Kuan Tsai
- Department
of Bioscience and Biotechnology, National Taiwan Ocean University, 2 Beining Road, Keelung, 20224, Taiwan
| | - Han-Jia Lin
- Department
of Bioscience and Biotechnology, National Taiwan Ocean University, 2 Beining Road, Keelung, 20224, Taiwan
- Center
of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining
Road, Keelung, 20224, Taiwan
| |
Collapse
|
250
|
Gevrekci AÖ. The roles of polyamines in microorganisms. World J Microbiol Biotechnol 2017; 33:204. [PMID: 29080149 DOI: 10.1007/s11274-017-2370-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Polyamines are small polycations that are well conserved in all the living organisms except Archae, Methanobacteriales and Halobacteriales. The most common polyamines are putrescine, spermidine and spermine, which exist in varying concentrations in different organisms. They are involved in a variety of cellular processes such as gene expression, cell growth, survival, stress response and proliferation. Therefore, diverse regulatory pathways are evolved to ensure strict regulation of polyamine concentration in the cells. Polyamine levels are kept under strict control by biosynthetic pathways as well as cellular uptake driven by specific transporters. Reverse genetic studies in microorganisms showed that deletion of the genes in polyamine metabolic pathways or depletion of polyamines have negative effects on cell survival and proliferation. The protein products of these genes are also used as drug targets against pathogenic protozoa. These altogether confirm the significant roles of polyamines in the cells. This mini-review focuses on the differential concentrations of polyamines and their cellular functions in different microorganisms. This will provide an insight about the diverse evolution of polyamine metabolism and function based on the physiology and the ecological context of the microorganisms.
Collapse
Affiliation(s)
- Aslıhan Örs Gevrekci
- Department of Psychology, Faculty of Science and Letters, Başkent University, Ankara, Turkey.
| |
Collapse
|