201
|
Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Anal Bioanal Chem 2015; 408:2793-811. [DOI: 10.1007/s00216-015-9240-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
|
202
|
Feng C, Ding HM, Ren CL, Ma YQ. Designing new strategy for controlling DNA orientation in biosensors. Sci Rep 2015; 5:14415. [PMID: 26400770 PMCID: PMC4585838 DOI: 10.1038/srep14415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/27/2015] [Indexed: 01/04/2023] Open
Abstract
Orientation controllable DNA biosensors hold great application potentials in recognizing small molecules and detecting DNA hybridization. Though electric field is usually used to control the orientation of DNA molecules, it is also of great importance and significance to seek for other triggered methods to control the DNA orientation. Here, we design a new strategy for controlling DNA orientation in biosensors. The main idea is to copolymerize DNA molecules with responsive polymers that can show swelling/deswelling transitions due to the change of external stimuli, and then graft the copolymers onto an uncharged substrate. In order to highlight the responsive characteristic, we take thermo-responsive polymers as an example, and reveal multi-responsive behavior and the underlying molecular mechanism of the DNA orientation by combining dissipative particle dynamics simulation and molecular theory. Since swelling/deswelling transitions can be also realized by using other stimuli-responsive (like pH and light) polymers, the present strategy is universal, which can enrich the methods of controlling DNA orientation and may assist with the design of the next generation of biosensors.
Collapse
Affiliation(s)
- Chao Feng
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hong-ming Ding
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Chun-lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yu-qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
203
|
Mahshid SS, Camiré S, Ricci F, Vallée-Bélisle A. A Highly Selective Electrochemical DNA-Based Sensor That Employs Steric Hindrance Effects to Detect Proteins Directly in Whole Blood. J Am Chem Soc 2015; 137:15596-9. [DOI: 10.1021/jacs.5b04942] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sahar Sadat Mahshid
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sébastien Camiré
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
204
|
Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. Biosens Bioelectron 2015; 77:174-81. [PMID: 26406458 DOI: 10.1016/j.bios.2015.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors.
Collapse
|
205
|
Aoki H. Electrochemical Label-Free Nucleotide Sensors. Chem Asian J 2015; 10:2560-73. [PMID: 26227073 DOI: 10.1002/asia.201500449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/20/2015] [Indexed: 11/10/2022]
Abstract
Numerous researchers have devoted a great deal of effort over the last few decades to the development of electrochemical oligonucleotide detection techniques, owing to their advantages of simple design, inherently small dimensions, and low power requirements. Their simplicity and rapidity of detection makes label-free oligonucleotide sensors of great potential use as first-aid screening tools in the analytical field of environmental measurements and healthcare management. This review article covers label-free oligonucleotide sensors, focusing specifically on topical electrochemical techniques, including intrinsic redox reaction of bases, conductive polymers, the use of electrochemical indicators, and highly ordered probe structures.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial, Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
206
|
Pérez WI, Soto Y, Ramirez-Vick JE, Meléndez E. Nanostructured gold dsDNA sensor for early detection of breast cancer by beta protein 1 (BP 1). J Electroanal Chem (Lausanne) 2015; 751:49-56. [PMID: 26161048 DOI: 10.1016/j.jelechem.2015.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Beta protein 1 (BP1) is a homeobox protein expressed in 80% of breast cancer cells in either estrogen receptor (ER) positive or ER negative breast cancer. However, it is barely detectable in normal breast tissues. In this project we present an electrochemical DNA nanostructured gold biosensor for detection of BP1. The gold sensor is first electrochemically nanostructured in 0.5 M sulfuric acid to reach superior conductivity, larger surface area, and higher stability. Nanostructured gold surface was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The nanostructured gold sensor is then modified with double-stranded (ds) DNA mapping the genomic sequence that contains the binding site for BP1. A redox-active probe (methylene blue) was intercalated in dsDNA to monitor the binding event of BP1. A linear correlation of the electrochemical response by concentration of BP1 was obtained (R2 = 0.998) with a limit of detection of 1.2 nM. This nanostructured gold dsDNA sensor is shown to be sensitive, selective, stable, and reusable allowing for its potential clinical use.
Collapse
Affiliation(s)
- Wanda I Pérez
- Department of Chemistry, University of Puerto Rico, PO Box 9019 Mayagüez, PR 00681
| | - Yarelys Soto
- Industrial Biotechnology Program, University of Puerto Rico, PO Box 9019 Mayagüez, PR 00681
| | - Jaime E Ramirez-Vick
- Engineering Science and Materials Department, University of Puerto Rico, PO Box 9019 Mayagüez, PR 00681
| | - Enrique Meléndez
- Department of Chemistry, University of Puerto Rico, PO Box 9019 Mayagüez, PR 00681
| |
Collapse
|
207
|
Zhao T, Liu R, Ding X, Zhao J, Yu H, Wang L, Xu Q, Wang X, Lou X, He M, Xiao Y. Nanoprobe-Enhanced, Split Aptamer-Based Electrochemical Sandwich Assay for Ultrasensitive Detection of Small Molecules. Anal Chem 2015; 87:7712-9. [PMID: 26171721 DOI: 10.1021/acs.analchem.5b01178] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms.
Collapse
Affiliation(s)
- Tao Zhao
- †Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Ran Liu
- †Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Xiaofan Ding
- †Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Juncai Zhao
- †Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Haixiang Yu
- ‡Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Lei Wang
- †Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Qing Xu
- †Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Xuan Wang
- †Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Xinhui Lou
- †Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Miao He
- §School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Xiao
- ‡Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
208
|
Xiong E, Zhang X, Liu Y, Zhou J, Yu P, Li X, Chen J. Ultrasensitive Electrochemical Detection of Nucleic Acids Based on the Dual-Signaling Electrochemical Ratiometric Method and Exonuclease III-Assisted Target Recycling Amplification Strategy. Anal Chem 2015; 87:7291-6. [DOI: 10.1021/acs.analchem.5b01402] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Erhu Xiong
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhang
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yunqing Liu
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jiawan Zhou
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Peng Yu
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaoyu Li
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinhua Chen
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
209
|
Li F, Yu Z, Xu Y, Ma H, Zhang G, Song Y, Yan H, He X. Using the synergism strategy for highly sensitive and specific electrochemical sensing of Streptococcus pneumoniae Lyt-1 gene sequence. Anal Chim Acta 2015; 886:175-81. [DOI: 10.1016/j.aca.2015.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
210
|
Zhou W, Huang PJJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2015; 139:2627-40. [PMID: 24733714 DOI: 10.1039/c4an00132j] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are single-stranded nucleic acids that selectively bind to target molecules. Most aptamers are obtained through a combinatorial biology technique called SELEX. Since aptamers can be isolated to bind to almost any molecule of choice, can be readily modified at arbitrary positions and they possess predictable secondary structures, this platform technology shows great promise in biosensor development. Over the past two decades, more than one thousand papers have been published on aptamer-based biosensors. Given this progress, the application of aptamer technology in biomedical diagnosis is still in a quite preliminary stage. Most previous work involves only a few model aptamers to demonstrate the sensing concept with limited biomedical impact. This Critical Review aims to summarize progress that might enable practical applications of aptamers for biological samples. First, general sensing strategies based on the unique properties of aptamers are summarized. Each strategy can be coupled to various signaling methods. Among these, a few detection methods including fluorescence lifetime, flow cytometry, upconverting nanoparticles, nanoflare technology, magnetic resonance imaging, electronic aptamer-based sensors, and lateral flow devices have been discussed in more detail since they are more likely to work in a complex sample matrix. The current limitations of this field include the lack of high quality aptamers for clinically important targets. In addition, the aptamer technology has to be extensively tested in a clinical sample matrix to establish reliability and accuracy. Future directions are also speculated to overcome these challenges.
Collapse
Affiliation(s)
- Wenhu Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Central South University, Tongzipo Road #172, Changsha 410013, Hunan, PR China.
| | | | | | | |
Collapse
|
211
|
Lockett MR, Smith LM. Carbon Substrates: A Stable Foundation for Biomolecular Arrays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:263-285. [PMID: 26048550 PMCID: PMC6287745 DOI: 10.1146/annurev-anchem-071114-040146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since their advent in the early 1990s, microarray technologies have developed into a powerful and ubiquitous platform for biomolecular analysis. Microarrays consist of three major elements: the substrate upon which they are constructed, the chemistry employed to attach biomolecules, and the biomolecules themselves. Although glass substrates and silane-based attachment chemistries are used for the vast majority of current microarray platforms, these materials suffer from severe limitations in stability, due to hydrolysis of both the substrate material itself and of the silyl ether linkages employed for attachment. These limitations in stability compromise assay performance and render impossible many potential microarray applications. We describe here a suite of alternative carbon-based substrates and associated attachment chemistries for microarray fabrication. The substrates themselves, as well as the carbon-carbon bond-based attachment chemistries, offer greatly increased chemical stability, enabling a myriad of novel applications.
Collapse
Affiliation(s)
- Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| | | |
Collapse
|
212
|
Idros N, Ho MY, Pivnenko M, Qasim MM, Xu H, Gu Z, Chu D. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles. SENSORS 2015; 15:12891-905. [PMID: 26046595 PMCID: PMC4507664 DOI: 10.3390/s150612891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/11/2023]
Abstract
This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine–TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface (λpeak) and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10−12 to 10−4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range.
Collapse
Affiliation(s)
- Noorhayati Idros
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Lot 106, 108 & 110, Tingkat 1, Block A, Taman Pertiwi Indah, Jalan Kangar-Alor Setar, Seriab 01000 Kangar, Perlis, Malaysia.
| | - Man Yi Ho
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
- Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, UK.
| | - Mike Pivnenko
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Malik M Qasim
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Hua Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou 2, Nanjing 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou 2, Nanjing 210096, China.
| | - Daping Chu
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| |
Collapse
|
213
|
Li XM, Luo J, Zhang NB, Wei QL. Nucleic acid quantification using nicking–displacement, rolling circle amplification and bio-bar-code mediated triple-amplification. Anal Chim Acta 2015; 881:117-23. [DOI: 10.1016/j.aca.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 02/07/2023]
|
214
|
Chiba J, Aoki S, Yamamoto J, Iwai S, Inouye M. Deformable nature of various damaged DNA duplexes estimated by an electrochemical analysis on electrodes. Chem Commun (Camb) 2015; 50:11126-8. [PMID: 25105179 DOI: 10.1039/c4cc04513k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report bending flexibility of damaged duplexes possessing an apurinic/apyrimidinic (AP) site analogue, a cyclobutane pyrimidine dimer (CPD), and a pyrimidine(6-4)pyrimidone photoproduct (6-4PP). Based on the electrochemical evaluation on electrodes, the duplex flexibilities of the lesions increased in the following order: CPD < AP < 6-4PP. We discussed the possibility that the emerging local flexibility might be a good sign for UV-damaged DNA-binding proteins on duplexes.
Collapse
Affiliation(s)
- J Chiba
- Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | |
Collapse
|
215
|
Feng L, Lyu Z, Offenhäusser A, Mayer D. Multi-level logic gate operation based on amplified aptasensor performance. Angew Chem Int Ed Engl 2015; 54:7693-7. [PMID: 25959438 DOI: 10.1002/anie.201502315] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 11/09/2022]
Abstract
Conventional electronic circuits can perform multi-level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon-based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer-based multi-level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer-target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer-linked redox probes and solution-phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi-level logic operation, which has the potential to simplify an otherwise complex diagnosis to a "yes" or "no" decision.
Collapse
Affiliation(s)
- Lingyan Feng
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Zhaozi Lyu
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Andreas Offenhäusser
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Dirk Mayer
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany).
| |
Collapse
|
216
|
Logisches Mehrschrittgatter auf Basis eines Aptamersensors mit verstärktem Sensorsignal. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
217
|
Petty JT, Sergev OO, Kantor AG, Rankine IJ, Ganguly M, David FD, Wheeler SK, Wheeler JF. Ten-atom silver cluster signaling and tempering DNA hybridization. Anal Chem 2015; 87:5302-9. [PMID: 25923963 DOI: 10.1021/acs.analchem.5b01265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Silver clusters with ∼10 atoms are molecules, and specific species develop within DNA strands. These molecular metals have sparsely organized electronic states with distinctive visible and near-infrared spectra that vary with cluster size, oxidation, and shape. These small molecules also act as DNA adducts and coordinate with their DNA hosts. We investigated these characteristics using a specific cluster-DNA conjugate with the goal of developing a sensitive and selective biosensor. The silver cluster has a single violet absorption band (λ(max) = 400 nm), and its single-stranded DNA host has two domains that stabilize this cluster and hybridize with target oligonucleotides. These target analytes transform the weakly emissive violet cluster to a new chromophore with blue-green absorption (λ(max) = 490 nm) and strong green emission (λ(max) = 550 nm). Our studies consider the synthesis, cluster size, and DNA structure of the precursor violet cluster-DNA complex. This species preferentially forms with relatively low amounts of Ag(+), high concentrations of the oxidizing agent O2, and DNA strands with ≳20 nucleotides. The resulting aqueous and gaseous forms of this chromophore have 10 silvers that coalesce into a single cluster. This molecule is not only a chromophore but also an adduct that coordinates multiple nucleobases. Large-scale DNA conformational changes are manifested in a 20% smaller hydrodynamic radius and disrupted nucleobase stacking. Multidentate coordination also stabilizes the single-stranded DNA and thereby inhibits hybridization with target complements. These observations suggest that the silver cluster-DNA conjugate acts like a molecular beacon but is distinguished because the cluster chromophore not only sensitively signals target analytes but also stringently discriminates against analogous competing analytes.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Orlin O Sergev
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Andrew G Kantor
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Ian J Rankine
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Mainak Ganguly
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Frederic D David
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Sandra K Wheeler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - John F Wheeler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
218
|
Hsieh K, Ferguson BS, Eisenstein M, Plaxco KW, Soh HT. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc Chem Res 2015; 48:911-20. [PMID: 25785632 DOI: 10.1021/ar500456w] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The capacity to achieve rapid, sensitive, specific, quantitative, and multiplexed genetic detection of pathogens via a robust, portable, point-of-care platform could transform many diagnostic applications. And while contemporary technologies have yet to effectively achieve this goal, the advent of microfluidics provides a potentially viable approach to this end by enabling the integration of sophisticated multistep biochemical assays (e.g., sample preparation, genetic amplification, and quantitative detection) in a monolithic, portable device from relatively small biological samples. Integrated electrochemical sensors offer a particularly promising solution to genetic detection because they do not require optical instrumentation and are readily compatible with both integrated circuit and microfluidic technologies. Nevertheless, the development of generalizable microfluidic electrochemical platforms that integrate sample preparation and amplification as well as quantitative and multiplexed detection remains a challenging and unsolved technical problem. Recognizing this unmet need, we have developed a series of microfluidic electrochemical DNA sensors that have progressively evolved to encompass each of these critical functionalities. For DNA detection, our platforms employ label-free, single-step, and sequence-specific electrochemical DNA (E-DNA) sensors, in which an electrode-bound, redox-reporter-modified DNA "probe" generates a current change after undergoing a hybridization-induced conformational change. After successfully integrating E-DNA sensors into a microfluidic chip format, we subsequently incorporated on-chip genetic amplification techniques including polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to enable genetic detection at clinically relevant target concentrations. To maximize the potential point-of-care utility of our platforms, we have further integrated sample preparation via immunomagnetic separation, which allowed the detection of influenza virus directly from throat swabs and developed strategies for the multiplexed detection of related bacterial strains from the blood of septic mice. Finally, we developed an alternative electrochemical detection platform based on real-time LAMP, which not is only capable of detecting across a broad dynamic range of target concentrations, but also greatly simplifies quantitative measurement of nucleic acids. These efforts represent considerable progress toward the development of a true sample-in-answer-out platform for genetic detection of pathogens at the point of care. Given the many advantages of these systems, and the growing interest and innovative contributions from researchers in this field, we are optimistic that iterations of these systems will arrive in clinical settings in the foreseeable future.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, ‡Institute
for Collaborative Biotechnologies, §Interdepartmental Program in Biomolecular
Science and Engineering, ∥Department of Chemistry and Biochemistry, and ⊥Materials
Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - B. Scott Ferguson
- Department of Mechanical Engineering, ‡Institute
for Collaborative Biotechnologies, §Interdepartmental Program in Biomolecular
Science and Engineering, ∥Department of Chemistry and Biochemistry, and ⊥Materials
Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael Eisenstein
- Department of Mechanical Engineering, ‡Institute
for Collaborative Biotechnologies, §Interdepartmental Program in Biomolecular
Science and Engineering, ∥Department of Chemistry and Biochemistry, and ⊥Materials
Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W. Plaxco
- Department of Mechanical Engineering, ‡Institute
for Collaborative Biotechnologies, §Interdepartmental Program in Biomolecular
Science and Engineering, ∥Department of Chemistry and Biochemistry, and ⊥Materials
Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - H. Tom Soh
- Department of Mechanical Engineering, ‡Institute
for Collaborative Biotechnologies, §Interdepartmental Program in Biomolecular
Science and Engineering, ∥Department of Chemistry and Biochemistry, and ⊥Materials
Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
219
|
Dallaire AM, Patskovsky S, Vallée-Bélisle A, Meunier M. Electrochemical plasmonic sensing system for highly selective multiplexed detection of biomolecules based on redox nanoswitches. Biosens Bioelectron 2015; 71:75-81. [PMID: 25889347 DOI: 10.1016/j.bios.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Indexed: 02/01/2023]
Abstract
In this paper, we present the development of a nanoswitch-based electrochemical surface plasmon resonance (eSPR) transducer for the multiplexed and selective detection of DNA and other biomolecules directly in complex media. To do so, we designed an experimental set-up for the synchronized measurements of electrochemical and electro-plasmonic responses to the activation of multiple electrochemically labeled structure-switching biosensors. As a proof of principle, we adapted this strategy for the detection of DNA sequences that are diagnostic of two pathogens (drug-resistant tuberculosis and Escherichia coli) by using methylene blue-labeled structure-switching DNA stem-loop. The experimental sensitivity of the switch-based eSPR sensor is estimated at 5 nM and target detection is achieved within minutes. Each sensor is reusable several times with a simple 8M urea washing procedure. We then demonstrated the selectivity and multiplexed ability of these switch-based eSPR by simultaneously detecting two different DNA sequences. We discuss the advantages of the proposed eSPR approach for the development of highly selective sensor devices for the rapid and reliable detection of multiple molecular markers in complex samples.
Collapse
Affiliation(s)
- Anne-Marie Dallaire
- Laser Processing and Plasmonics Laboratory, École Polytechnique de Montréal, Department of Engineering Physics, C.P. 6079, succ. Centre-Ville, Montréal, QC, Canada H3C 3A7
| | - Sergiy Patskovsky
- Laser Processing and Plasmonics Laboratory, École Polytechnique de Montréal, Department of Engineering Physics, C.P. 6079, succ. Centre-Ville, Montréal, QC, Canada H3C 3A7
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors and Nanomachines, Université de Montréal, Department of Chemistry, C.P. 6128, succ. Centre-Ville, Montréal, QC, Canada H3C 3J7.
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory, École Polytechnique de Montréal, Department of Engineering Physics, C.P. 6079, succ. Centre-Ville, Montréal, QC, Canada H3C 3A7.
| |
Collapse
|
220
|
Leung KH, He HZ, He B, Zhong HJ, Lin S, Wang YT, Ma DL, Leung CH. Label-free luminescence switch-on detection of hepatitis C virus NS3 helicase activity using a G-quadruplex-selective probe. Chem Sci 2015; 6:2166-2171. [PMID: 28808523 PMCID: PMC5539802 DOI: 10.1039/c4sc03319a] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 12/16/2022] Open
Abstract
A series of luminescent Ir(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The Ir(iii) complex 9, [Ir(phq)2(phen)]PF6 (where phq = 2-phenylquinoline; phen = 1,10-phenanthroline), exhibited high luminescence in the presence of G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a label-free G-quadruplex-based assay for hepatitis C virus NS3 helicase activity in aqueous solution. Moreover, the application of the assay for screening potential helicase inhibitors was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for helicase activity.
Collapse
Affiliation(s)
- Ka-Ho Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hong-Zhang He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Bingyong He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| |
Collapse
|
221
|
Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 2015; 66:345-9. [DOI: 10.1016/j.bios.2014.11.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
|
222
|
Frequency response analysis of potential-modulated orientation changes of a DNA self assembled layer using spatially resolved fluorescence measurements. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.09.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
223
|
Lao YH, Phua KKL, Leong KW. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS NANO 2015; 9:2235-54. [PMID: 25731717 DOI: 10.1021/nn507494p] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aptamer nanomedicine, including therapeutic aptamers and aptamer nanocomplexes, is beginning to fulfill its potential in both clinical trials and preclinical studies. Especially in oncology, aptamer nanomedicine may perform better than conventional or antibody-based chemotherapeutics due to specificity compared to the former and stability compared to the latter. Many proof-of-concept studies on applying aptamers to drug delivery, gene therapy, and cancer imaging have shown promising efficacy and impressive safety in vivo toward translation. Yet, there remains ample room for improvement and critical barriers to be addressed. In this review, we will first introduce the recent progress in clinical trials of aptamer nanomedicine, followed by a discussion of the barriers at the design and in vivo application stages. We will then highlight recent advances and engineering strategies proposed to tackle these barriers. Aptamer cancer nanomedicine has the potential to address one of the most important healthcare issues of the society.
Collapse
Affiliation(s)
- Yeh-Hsing Lao
- †Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | | | - Kam W Leong
- †Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| |
Collapse
|
224
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
225
|
Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosens Bioelectron 2015; 64:566-71. [DOI: 10.1016/j.bios.2014.09.080] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 12/27/2022]
|
226
|
Qian Y, Tang D, Du L, Zhang Y, Zhang L, Gao F. A novel signal-on electrochemical DNA sensor based on target catalyzed hairpin assembly strategy. Biosens Bioelectron 2015; 64:177-81. [DOI: 10.1016/j.bios.2014.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
|
227
|
Casanova-Moreno J, Bizzotto D. A Method for Determining the Actual Rate of Orientation Switching of DNA Self-Assembled Monolayers Using Optical and Electrochemical Frequency Response Analysis. Anal Chem 2015; 87:2255-63. [DOI: 10.1021/ac503919a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Casanova-Moreno
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Advanced
Materials and Process Engineering Laboratory, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - D. Bizzotto
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Advanced
Materials and Process Engineering Laboratory, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
228
|
Macazo F, Karpel RL, White RJ. Monitoring cooperative binding using electrochemical DNA-based sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:868-75. [PMID: 25517392 PMCID: PMC4303326 DOI: 10.1021/la504083c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/15/2014] [Indexed: 05/20/2023]
Abstract
Electrochemical DNA-based (E-DNA) sensors are utilized to detect a variety of targets including complementary DNA, small molecules, and proteins. These sensors typically employ surface-bound single-stranded oligonucleotides that are modified with a redox-active molecule on the distal 3' terminus. Target-induced flexibility changes of the DNA probe alter the efficiency of electron transfer between the redox active methylene blue and the electrode surface, allowing for quantitative detection of target concentration. While numerous studies have utilized the specific and sensitive abilities of E-DNA sensors to quantify target concentration, no studies to date have demonstrated the ability of this class of collision-based sensors to elucidate biochemical-binding mechanisms such as cooperativity. In this study, we demonstrate that E-DNA sensors fabricated with various lengths of surface-bound oligodeoxythymidylate [(dT)n] sensing probes are able to quantitatively distinguish between cooperative and noncooperative binding of a single-stranded DNA-binding protein. Specifically, we demonstrate that oligo(dT) E-DNA sensors are able to quantitatively detect nM levels (50 nM-4 μM) of gene 32 protein (g32p). Furthermore, the sensors exhibit signal that is able to distinguish between the cooperative binding of the full-length g32p and the noncooperative binding of the core domain (*III) fragment to single-stranded DNA. Finally, we demonstrate that this binding is both probe-length- and ionic-strength-dependent. This study illustrates a new quantitative property of this powerful class of biosensor and represents a rapid and simple methodology for understanding protein-DNA binding mechanisms.
Collapse
Affiliation(s)
- Florika
C. Macazo
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| | - Richard L. Karpel
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| | - Ryan J. White
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
- E-mail:
| |
Collapse
|
229
|
Daniel C, Roupioz Y, Livache T, Buhot A. On the use of aptamer microarrays as a platform for the exploration of human prothrombin/thrombin conversion. Anal Biochem 2015; 473:66-71. [PMID: 25582304 DOI: 10.1016/j.ab.2014.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/07/2014] [Accepted: 12/24/2014] [Indexed: 11/28/2022]
Abstract
Microarrays are particular biosensors with multiple grafted probes that are generally used for parallel and simultaneous detection of various targets. In this study, we used microarrays with aptamer probes in order to follow up the different biomolecular interactions of a single enzyme, the thrombin protein, involved in the complex coagulation cascade. More precisely, thanks to label-free surface plasmon resonance imaging, we were able to monitor in real time an important step in the firing of the coagulation cascade in situ-the enzymatic transformation of prothrombin into thrombin, catalyzed by factor Xa. We were also able to appraise the influence of other biochemical factors and their corresponding inhibiting or enhancing behaviors on thrombin activation. Our study opens the door for the development of a complete microarray-based platform not only for the whole coagulation cascade analysis but also for novel drug screening assays in pharmacology.
Collapse
Affiliation(s)
- Camille Daniel
- Université Grenoble Alpes, INAC-SPrAM, F-38000 Grenoble, France; Centre National de la Recherche Scientifique (CNRS), SPrAM, F-38000 Grenoble, France; Centre d'Etudes Atomiques (CEA), INAC-SPrAM, F-38000 Grenoble, France
| | - Yoann Roupioz
- Université Grenoble Alpes, INAC-SPrAM, F-38000 Grenoble, France; Centre National de la Recherche Scientifique (CNRS), SPrAM, F-38000 Grenoble, France; Centre d'Etudes Atomiques (CEA), INAC-SPrAM, F-38000 Grenoble, France.
| | - Thierry Livache
- Université Grenoble Alpes, INAC-SPrAM, F-38000 Grenoble, France; Centre National de la Recherche Scientifique (CNRS), SPrAM, F-38000 Grenoble, France; Centre d'Etudes Atomiques (CEA), INAC-SPrAM, F-38000 Grenoble, France
| | - Arnaud Buhot
- Université Grenoble Alpes, INAC-SPrAM, F-38000 Grenoble, France; Centre National de la Recherche Scientifique (CNRS), SPrAM, F-38000 Grenoble, France; Centre d'Etudes Atomiques (CEA), INAC-SPrAM, F-38000 Grenoble, France
| |
Collapse
|
230
|
Abstract
We describe design parameters for the synthesis and analytical application of a label-free RNA molecular beacon, termed Spinach.ST. The RNA aptamer Spinach fluoresces upon binding the small-molecule fluorophore DFHBI ((Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one). Spinach has been reengineered by extending its 5'- and 3'-ends to create Spinach.ST, which is predicted to fold into an inactive conformation that fails to bind DHFBI. Hybridization of a trigger oligonucleotide to a designed toehold on Spinach.ST initiates toehold-mediated strand displacement and restores the DFHBI-binding, fluorescence-enhancing conformation of Spinach. The versatile Spinach.ST sensor can detect DNA or RNA trigger sequences and can readily distinguish single-nucleotide mismatches in the trigger toehold. Primer design techniques are described that augment amplicons produced by enzymatic amplification with Spinach.ST triggers. Interaction between these triggers and Spinach.ST molecular beacons leads to the real-time, sequence-specific quantitation of these amplicons. The use of Spinach.ST with isothermal amplification reactions such as nucleic acid sequence-based amplification (NASBA) may enable point-of-care applications. The same design principles could also be used to adapt Spinach reporters to the assay of nonnucleic acid analytes in trans.
Collapse
|
231
|
Blanchard DJM, Cservenyi TZ, Manderville RA. Dual fluorescent deoxyguanosine mimics for FRET detection of G-quadruplex folding. Chem Commun (Camb) 2015; 51:16829-31. [DOI: 10.1039/c5cc07154b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Replacement of deoxyguanosine (dG) nucleobases within G-tetrads of G-quadruplex folding oligonucleotides with donor (D)/acceptor (A) fluorescent 8aryldG residues provides diagnostic FRET signalling for G-quadruplex detection.
Collapse
Affiliation(s)
| | - Thomas Z. Cservenyi
- Departments of Chemistry & Toxicology
- University of Guelph
- Guelph
- Canada N1G 2w1
| | | |
Collapse
|
232
|
Shi L, Chu Z, Liu Y, Jin W. Facile fabrication of a three-dimensional gold nanowire array for high-performance electrochemical sensing. J Mater Chem B 2015; 3:3134-3140. [DOI: 10.1039/c5tb00266d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A three-dimensional gold nanowire array (3D GNA) was successfully prepared with a facile template-assisted approach, in order to construct an ultrasensitive electrochemical biosensor.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemistry and Chemical Engineering
- Nanjing Tech. University
- Nanjing 210009
- P. R. China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemistry and Chemical Engineering
- Nanjing Tech. University
- Nanjing 210009
- P. R. China
| | - Yu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemistry and Chemical Engineering
- Nanjing Tech. University
- Nanjing 210009
- P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemistry and Chemical Engineering
- Nanjing Tech. University
- Nanjing 210009
- P. R. China
| |
Collapse
|
233
|
Qin X, Xu A, Liu L, Deng W, Chen C, Tan Y, Fu Y, Xie Q, Yao S. Ultrasensitive electrochemical immunoassay of proteins based on in situ duple amplification of gold nanoparticle biolabel signals. Chem Commun (Camb) 2015; 51:8540-3. [DOI: 10.1039/c5cc01439e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An electrochemical sandwich immunoassay method that can be sensitive to a few protein molecules (human immunoglobulin G or human prostate-specific antigen) is reported based on in situ duple amplification of gold nanoparticle biolabel signals.
Collapse
Affiliation(s)
- Xiaoli Qin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Aigui Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Ling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Yingchun Fu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
| |
Collapse
|
234
|
Liu S, Liu T, Wang L. Label-free, isothermal and ultrasensitive electrochemical detection of DNA and DNA 3′-phosphatase using a cascade enzymatic cleavage strategy. Chem Commun (Camb) 2015; 51:176-9. [DOI: 10.1039/c4cc08140d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A label-free, isothermal and cascade enzymatic cleavage strategy was developed for the ultrasensitive electrochemical detection of DNA and DNA 3′-phosphatase.
Collapse
Affiliation(s)
- Shufeng Liu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Tao Liu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Li Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
235
|
Liu S, Cheng C, Gong H, Wang L. Programmable Mg2+-dependent DNAzyme switch by the catalytic hairpin DNA assembly for dual-signal amplification toward homogeneous analysis of protein and DNA. Chem Commun (Camb) 2015; 51:7364-7. [DOI: 10.1039/c5cc01649e] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The catalytic hairpin DNA assembly-programmed Mg2+-dependent DNAzyme switch was proposed for dual-signal amplified detection of protein and DNA.
Collapse
Affiliation(s)
- Shufeng Liu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Chuanbin Cheng
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Hongwei Gong
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Li Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
236
|
Tsortos A, Grammoustianou A, Lymbouridou R, Papadakis G, Gizeli E. The detection of multiple DNA targets with a single probe using a conformation-sensitive acoustic sensor. Chem Commun (Camb) 2015; 51:11504-7. [DOI: 10.1039/c5cc03436a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acoustic sensing of DNA targets using a single probe that produces hybridization products of different conformations.
Collapse
|
237
|
Yu ZL, Casanova-Moreno J, Guryanov I, Maran F, Bizzotto D. Influence of Surface Structure on Single or Mixed Component Self-Assembled Monolayers via in Situ Spectroelectrochemical Fluorescence Imaging of the Complete Stereographic Triangle on a Single Crystal Au Bead Electrode. J Am Chem Soc 2014; 137:276-88. [DOI: 10.1021/ja5104475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Ivan Guryanov
- Department
of Chemistry, University of Padova, 35122 Padova, Italy
| | - Flavio Maran
- Department
of Chemistry, University of Padova, 35122 Padova, Italy
| | | |
Collapse
|
238
|
Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham MC. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens Bioelectron 2014; 68:49-54. [PMID: 25569871 DOI: 10.1016/j.bios.2014.12.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
We report a label-free aptasensor to make direct detection of prostate specific antigen (PSA, a biomarker of prostate cancer) using a quinone-containing conducting copolymer acting as redox transducer and grafting matrix for immobilization of the short aptamer strands. It is shown that capture of PSA generates a current decrease (signal-off) measured by Square Wave Voltammetry. This current decrease is specific for PSA above a limit of quantification in the ng mL(-1) range. The change in current is used to determine the PSA-aptamer dissociation constant K(D), of ca. 2.6 nM. To consolidate the proof of concept, a heterogeneous competitive exchange with a complementary DNA strand which breaks PSA-aptamer interactions is studied. This double-check followed by a current increase provides full assurance of a perfectly specific recognition.
Collapse
Affiliation(s)
- M Souada
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - B Piro
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France.
| | - S Reisberg
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - G Anquetin
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - V Noël
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - M C Pham
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
239
|
Liu J, Wagan S, Dávila Morris M, Taylor J, White RJ. Achieving reproducible performance of electrochemical, folding aptamer-based sensors on microelectrodes: challenges and prospects. Anal Chem 2014; 86:11417-24. [PMID: 25337781 PMCID: PMC4238692 DOI: 10.1021/ac503407e] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Combining specific recognition capabilities
with the excellent
spatiotemporal resolution of small electrodes represents a promising
methodology in bioanalytical and chemical sensing. In this paper,
we report the development of reproducible electrochemical, aptamer-based
(E-AB) sensors on a gold microelectrode platform. Specifically, we
develop microscale sensors (25 μm diameter) for two representative
small molecule targets–adenosine triphosphate and tobramycin.
Furthermore, we report on the challenges encountered at this size
scale including small-magnitude signals and interference from the
irreversible reduction of dissolved oxygen and present methods to
circumvent these challenges. Through the electrochemical deposition
of dendritic gold nanostructures, we demonstrate microscale sensors
with improved performance by increasing signal-to-noise and consequently
sensitivity. Finally, we report on the use of the nonspecific adsorption
of serum proteins as an additional layer of surface passivation for
stable sensor performance. The sensor development here represents
general guidelines for fabricating electrochemical, folding aptamer-based
sensors on small-scale electrodes.
Collapse
Affiliation(s)
- Juan Liu
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | | | | | | | | |
Collapse
|
240
|
Sun XY, Liu B, Sun YF, Yu Y. DNA-length-dependent fluorescent sensing based on energy transfer in self-assembled multilayers. Biosens Bioelectron 2014; 61:466-70. [DOI: 10.1016/j.bios.2014.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/23/2022]
|
241
|
Feng L, Sivanesan A, Lyu Z, Offenhäusser A, Mayer D. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. Biosens Bioelectron 2014; 66:62-8. [PMID: 25460883 DOI: 10.1016/j.bios.2014.10.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.
Collapse
Affiliation(s)
- Lingyan Feng
- Peter-Grünberg-Institute, PGI-8, Research Center Jülich, JARA-Fundamentals of Future Information Technology, Jülich 52425, Germany
| | - Arumugam Sivanesan
- Peter-Grünberg-Institute, PGI-8, Research Center Jülich, JARA-Fundamentals of Future Information Technology, Jülich 52425, Germany
| | - Zhaozi Lyu
- Peter-Grünberg-Institute, PGI-8, Research Center Jülich, JARA-Fundamentals of Future Information Technology, Jülich 52425, Germany
| | - Andreas Offenhäusser
- Peter-Grünberg-Institute, PGI-8, Research Center Jülich, JARA-Fundamentals of Future Information Technology, Jülich 52425, Germany
| | - Dirk Mayer
- Peter-Grünberg-Institute, PGI-8, Research Center Jülich, JARA-Fundamentals of Future Information Technology, Jülich 52425, Germany.
| |
Collapse
|
242
|
Ping J, Zhou Y, Wu Y, Papper V, Boujday S, Marks RS, Steele TWJ. Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens Bioelectron 2014; 64:373-85. [PMID: 25261843 DOI: 10.1016/j.bios.2014.08.090] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/14/2014] [Accepted: 08/27/2014] [Indexed: 11/28/2022]
Abstract
Graphene and graphene-like two-dimensional nanomaterials have aroused tremendous research interest in recent years due to their unique electronic, optical, and mechanical properties associated with their planar structure. Aptamers have exhibited many advantages as molecular recognition elements for sensing devices compared to traditional antibodies. The marriage of two-dimensional nanomaterials and aptamers has emerged many ingenious aptasensing strategies for applications in the fields of clinical diagnosis and food safety. This review highlights current advances in the development and application of two-dimensional nanomaterials-based aptasensors with the focus on two main signal-transducing mechanisms, i.e. electrochemical and optical. A special attention is paid to graphene, a one-atom thick layer of graphite with exceptional properties, representing a fastgrowing field of research. In view of the unique properties of two-dimensional nanostructures and their inherent advantages of synthetic aptamers, we expect that high-performance two-dimensional nanomaterials-based aptasensing devices will find extensive applications in environmental monitoring, biomedical diagnostics, and food safety.
Collapse
Affiliation(s)
- Jianfeng Ping
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yubin Zhou
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuanyuan Wu
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Vladislav Papper
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Souhir Boujday
- Sorbonne Universités, UPMC, Univ Paris 6, UMR CNRS 7197, Laboratoire de Réactivité de Surface, F-75005 Paris, France; CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Robert S Marks
- Department of Biotechnology Engineering, and The Ilse Katz Center for Meso and Nanoscale Science, Faculty of Engineering Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Terry W J Steele
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
243
|
Ashby J, Schachermeyer S, Duan Y, Jimenez LA, Zhong W. Probing and quantifying DNA–protein interactions with asymmetrical flow field-flow fractionation. J Chromatogr A 2014; 1358:217-24. [DOI: 10.1016/j.chroma.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022]
|
244
|
Simultaneous Electroreduction of Different Diazonium Salts for Direct Electrochemical DNA Biosensor Development. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
245
|
A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy. Biosens Bioelectron 2014; 59:365-9. [DOI: 10.1016/j.bios.2014.03.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/12/2023]
|
246
|
Lu L, Shiu-Hin Chan D, Kwong DWJ, He HZ, Leung CH, Ma DL. Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem Sci 2014. [DOI: 10.1039/c4sc02032d] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
247
|
|
248
|
Ma ZY, Pan JB, Lu CY, Zhao WW, Xu JJ, Chen HY. Folding-based photoelectrochemical biosensor: binding-induced conformation change of a quantum dot-tagged DNA probe for mercury(ii) detection. Chem Commun (Camb) 2014; 50:12088-90. [DOI: 10.1039/c4cc05373g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
249
|
Zhuang J, Tang D, Lai W, Chen G, Yang H. Immobilization-Free Programmable Hairpin Probe for Ultrasensitive Electronic Monitoring of Nucleic Acid Based on a Biphasic Reaction Mode. Anal Chem 2014; 86:8400-7. [DOI: 10.1021/ac501986k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Junyang Zhuang
- Institute of Nanomedicine
and Nanobiosensing, MOE Key Laboratory of Analysis and Detection for
Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Dianping Tang
- Institute of Nanomedicine
and Nanobiosensing, MOE Key Laboratory of Analysis and Detection for
Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Wenqiang Lai
- Institute of Nanomedicine
and Nanobiosensing, MOE Key Laboratory of Analysis and Detection for
Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Guonan Chen
- Institute of Nanomedicine
and Nanobiosensing, MOE Key Laboratory of Analysis and Detection for
Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Huanghao Yang
- Institute of Nanomedicine
and Nanobiosensing, MOE Key Laboratory of Analysis and Detection for
Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| |
Collapse
|
250
|
Bhadra S, Ellington AD. A Spinach molecular beacon triggered by strand displacement. RNA (NEW YORK, N.Y.) 2014; 20:1183-1194. [PMID: 24942625 PMCID: PMC4105745 DOI: 10.1261/rna.045047.114] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
We have re-engineered the fluorescent RNA aptamer Spinach to be activated in a sequence-dependent manner. The original Spinach aptamer was extended at its 5'- and 3'-ends to create Spinach.ST, which is predicted to fold into an inactive conformation and thus prevent association with the small molecule fluorophore DFHBI. Hybridization of a specific trigger oligonucleotide to a designed toehold leads to toehold-initiated strand displacement and refolds Spinach into the active, fluorophore-binding conformation. Spinach.ST not only specifically detects its target oligonucleotide but can discriminate readily against single-nucleotide mismatches. RNA amplicons produced during nucleic acid sequence-based amplification (NASBA) of DNA or RNA targets could be specifically detected and reported in real-time by conformational activation of Spinach.ST generated by in vitro transcription. In order to adapt any target sequence to detection by a Spinach reporter we used a primer design technique that brings together otherwise distal toehold sequences via hairpin formation. The same techniques could potentially be used to adapt common Spinach reporters to non-nucleic acid analytes, rather than by making fusions between aptamers and Spinach.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|