201
|
Lajoie DM, Cordes MHJ. Spider, bacterial and fungal phospholipase D toxins make cyclic phosphate products. Toxicon 2015; 108:176-80. [PMID: 26482933 DOI: 10.1016/j.toxicon.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 11/26/2022]
Abstract
Phospholipase D (PLD) toxins from sicariid spiders, which cause disease in mammals, were recently found to convert their primary substrates, sphingomyelin and lysophosphatidylcholine, to cyclic phospholipids. Here we show that two PLD toxins from pathogenic actinobacteria and ascomycete fungi, which share distant homology with the spider toxins, also generate cyclic phospholipids. This shared function supports divergent evolution of the PLD toxins from a common ancestor and suggests the importance of cyclic phospholipids in pathogenicity.
Collapse
Affiliation(s)
- Daniel M Lajoie
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
202
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
203
|
Beligni MV, Bagnato C, Prados MB, Bondino H, Laxalt AM, Munnik T, Ten Have A. The diversity of algal phospholipase D homologs revealed by biocomputational analysis. JOURNAL OF PHYCOLOGY 2015; 51:943-962. [PMID: 26986890 DOI: 10.1111/jpy.12334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/09/2015] [Indexed: 06/05/2023]
Abstract
Phospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD-PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae. To fill this gap in knowledge, we performed a biocomputational analysis by means of HMMER iterative profiling, using most eukaryotic algae genomes available. Phylogenetic analysis revealed that algae exhibit very few eukaryotic-type PLDs but possess, instead, many bacteria-like PLDs. Among algae eukaryotic-type PLDs, we identified C2-PLDs and PXPH-like PLDs. In addition, the dinoflagellate Alexandrium tamarense features several proteins phylogenetically related to oomycete PLDs. Our phylogenetic analysis also showed that algae bacteria-like PLDs (proteins with putative PLD activity) fall into five clades, three of which are novel lineages in eukaryotes, composed almost entirely of algae. Specifically, Clade II is almost exclusive to diatoms, whereas Clade I and IV are mainly represented by proteins from prasinophytes. The other two clades are composed of mitochondrial PLDs (Clade V or Mito-PLDs), previously found in mammals, and a subfamily of potentially secreted proteins (Clade III or SP-PLDs), which includes a homolog formerly characterized in rice. In addition, our phylogenetic analysis shows that algae have non-PLD members within the bacteria-like HKD superfamily with putative cardiolipin synthase and phosphatidylserine/phosphatidylglycerophosphate synthase activities. Altogether, our results show that eukaryotic algae possess a moderate number of PLDs that belong to very diverse phylogenetic groups.
Collapse
Affiliation(s)
- María Verónica Beligni
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Carolina Bagnato
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Río Negro, Mitre 630. S. C. de Bariloche 8400, Río Negro, Argentina
| | - María Belén Prados
- Instituto de Energía y Desarrollo Sustentable - Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, S. C. de Bariloche 8400, Río Negro, Argentina
| | - Hernán Bondino
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Ana María Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Teun Munnik
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, NL-1098 XH, the Netherlands
| | - Arjen Ten Have
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| |
Collapse
|
204
|
De Cicco M, Rahim MSA, Dames SA. Regulation of the Target of Rapamycin and Other Phosphatidylinositol 3-Kinase-Related Kinases by Membrane Targeting. MEMBRANES 2015; 5:553-75. [PMID: 26426064 PMCID: PMC4703999 DOI: 10.3390/membranes5040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase-related kinases (PIKKs) play vital roles in the regulation of cell growth, proliferation, survival, and consequently metabolism, as well as in the cellular response to stresses such as ionizing radiation or redox changes. In humans six family members are known to date, namely mammalian/mechanistic target of rapamycin (mTOR), ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), suppressor of morphogenesis in genitalia-1 (SMG-1), and transformation/transcription domain-associated protein (TRRAP). All fulfill rather diverse functions and most of them have been detected in different cellular compartments including various cellular membranes. It has been suggested that the regulation of the localization of signaling proteins allows for generating a locally specific output. Moreover, spatial partitioning is expected to improve the reliability of biochemical signaling. Since these assumptions may also be true for the regulation of PIKK function, the current knowledge about the regulation of the localization of PIKKs at different cellular (membrane) compartments by a network of interactions is reviewed. Membrane targeting can involve direct lipid-/membrane interactions as well as interactions with membrane-anchored regulatory proteins, such as, for example, small GTPases, or a combination of both.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Munirah S Abd Rahim
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Sonja A Dames
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.
| |
Collapse
|
205
|
Stahl J, Bergmann H, Göttig S, Ebersberger I, Averhoff B. Acinetobacter baumannii Virulence Is Mediated by the Concerted Action of Three Phospholipases D. PLoS One 2015; 10:e0138360. [PMID: 26379240 PMCID: PMC4574555 DOI: 10.1371/journal.pone.0138360] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter baumannii causes a broad range of opportunistic infections in humans. Its success as an emerging pathogen is due to a combination of increasing antibiotic resistance, environmental persistence and adaptation to the human host. To date very little is known about the molecular basis of the latter. Here we demonstrate that A. baumannii can use phosphatidylcholine, an integral part of human cell membranes, as sole carbon and energy source. We report on the identification of three phospholipases belonging to the PLD superfamily. PLD1 and PLD2 appear restricted to the bacteria and display the general features of bacterial phospholipases D. They possess two PLDc_2 PFAM domains each encompassing the HxKx4Dx6GS/GGxN (HKD) motif necessary for forming the catalytic core. The third candidate, PLD3, is found in bacteria as well as in eukaryotes and harbours only one PLDc_2 PFAM domain and one conserved HKD motif, which however do not overlap. Employing a markerless mutagenesis system for A. baumannii ATCC 19606T, we generated a full set of PLD knock-out mutants. Galleria mellonella infection studies as well as invasion experiments using A549 human lung epithelial cells revealed that the three PLDs act in a concerted manner as virulence factors and are playing an important role in host cell invasion.
Collapse
Affiliation(s)
- Julia Stahl
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger Bergmann
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
206
|
Khatoon H, Mansfeld J, Schierhorn A, Ulbrich-Hofmann R. Purification, sequencing and characterization of phospholipase D from Indian mustard seeds. PHYTOCHEMISTRY 2015; 117:65-75. [PMID: 26057230 DOI: 10.1016/j.phytochem.2015.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Phospholipase D (PLD; E.C. 3.1.4.4) is widespread in plants where it fulfills diverse functions in growth and in the response to stresses. The enzyme occurs in multiple forms that differ in their biochemical properties. In the present paper PLD from medicinally relevant Indian mustard seeds was purified by Ca(2+)-mediated hydrophobic interaction and anion exchange chromatography to electrophoretic homogeneity. Based on mass-spectrometric sequence analysis of tryptic protein fragments, oligonucleotide primers for cloning genomic DNA fragments that encoded the enzyme were designed and used to derive the complete amino acid sequence of this PLD. The sequence data, as well as the molecular properties (molecular mass of 92.0 kDa, pI 5.39, maximum activity at pH 5.5-6.0 and Ca(2+) ion concentrations ⩾60 mM), allowed the assignment of this enzyme to the class of α-type PLDs. The apparent kinetic parameters Vmax and Km, determined for the hydrolysis of phosphatidylcholine (PC) in an aqueous mixed-micellar system were 356±15 μmol min(-1) mg(-1) and 1.84±0.17 mM, respectively. Phosphate analogs such as NaAlF4 and Na3VO4 displayed strong inhibition of the enzyme. Phosphatidylinositol 4,5-bisphosphate had a strong activating effect at 2-10 mM CaCl2. PLD was inactivated at temperatures >45 °C. The enzyme exhibited the highest activity toward PC followed by phosphatidylethanolamine and phosphatidylglycerol. PCs with short-chain fatty acids were better substrates than PCs with long fatty acid chains. Lyso-PC was not accepted as substrate.
Collapse
Affiliation(s)
- Hafeeza Khatoon
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Johanna Mansfeld
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Angelika Schierhorn
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Renate Ulbrich-Hofmann
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany.
| |
Collapse
|
207
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|
208
|
Role of phospholipases D1 and 2 in astroglial proliferation: effects of specific inhibitors and genetic deletion. Eur J Pharmacol 2015; 761:398-404. [DOI: 10.1016/j.ejphar.2015.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/11/2015] [Accepted: 05/08/2015] [Indexed: 01/08/2023]
|
209
|
Kang DW, Choi CY, Cho YH, Tian H, Di Paolo G, Choi KY, Min DS. Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells. ACTA ACUST UNITED AC 2015; 212:1219-37. [PMID: 26122663 PMCID: PMC4516794 DOI: 10.1084/jem.20141254] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Kang et al. show that genetic or pharmacological inactivation of the enzyme phospholipase D1 (PLD1) disrupts colitis-associated intestinal tumorigenesis by suppressing the self-renewal capacity of colon cancer stem cells. Expression of the Wnt target gene phospholipase D1 (PLD1) is up-regulated in various carcinomas, including colorectal cancer (CRC). However, the mechanistic significance of its elevated expression in intestinal tumorigenesis remains unknown. In this study, we show that genetic and pharmacological targeting of PLD1 disrupts spontaneous and colitis-associated intestinal tumorigenesis in ApcMin/+ and azoxymethane/dextran sodium sulfate mice models. Intestinal epithelial cell–specific PLD1 overexpression in ApcMin/+ mice accelerated tumorigenesis with increased proliferation and nuclear β-catenin levels compared with ApcMin/+ mice. Moreover, PLD1 inactivation suppressed the self-renewal capacity of colon cancer–initiating cells (CC-ICs) by decreasing expression of β-catenin via E2F1-induced microRNA (miR)-4496 up-regulation. Ultimately, low expression of PLD1 coupled with a low level of CC-IC markers was predictive of a good prognosis in CRC patients, suggesting in vivo relevance. Collectively, our data reveal that PLD1 has a crucial role in intestinal tumorigenesis via its modulation of the E2F1–miR-4496–β-catenin signaling pathway. Modulation of PLD1 expression and activity represents a promising therapeutic strategy for the treatment of intestinal tumorigenesis.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Chi Yeol Choi
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea
| | - Yong-Hee Cho
- Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| | - Huasong Tian
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
210
|
DeYonker NJ, Webster CE. A Theoretical Study of Phosphoryl Transfers of Tyrosyl-DNA Phosphodiesterase I (Tdp1) and the Possibility of a "Dead-End" Phosphohistidine Intermediate. Biochemistry 2015; 54:4236-47. [PMID: 26121557 DOI: 10.1021/acs.biochem.5b00396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) is a DNA repair enzyme conserved across eukaryotes that catalyzes the hydrolysis of the phosphodiester bond between the tyrosine residue of topoisomerase I and the 3'-phosphate of DNA. Atomic level details of the mechanism of Tdp1 are proposed and analyzed using a fully quantum mechanical, geometrically constrained model. The structural basis for the computational model is the vanadate-inhibited crystal structure of human Tdp1 (hTdp1, Protein Data Bank entry 1RFF ). Density functional theory computations are used to acquire thermodynamic and kinetic data along the catalytic pathway, including the phosphoryl transfer and subsequent hydrolysis. Located transition states and intermediates along the reaction coordinate suggest an associative phosphoryl transfer mechanism with five-coordinate phosphorane intermediates. Similar to both theoretical and experimental results for phospholipase D, the proposed mechanism for hTdp1 also includes the thermodynamically favorable possibility of a four-coordinate phosphohistidine "dead-end" product.
Collapse
Affiliation(s)
- Nathan J DeYonker
- ‡Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152, United States
| | - Charles Edwin Webster
- †Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States.,‡Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152, United States
| |
Collapse
|
211
|
Mathews TP, Hill S, Rose KL, Ivanova PT, Lindsley CW, Brown HA. Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas. ACS Chem Biol 2015; 10:1258-68. [PMID: 25646564 DOI: 10.1021/cb500772c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer cells reorganize their metabolic pathways to fuel demanding rates of proliferation. Oftentimes, these metabolic phenotypes lie downstream of prominent oncogenes. The lipid signaling molecule phosphatidic acid (PtdOH), which is produced by the hydrolytic enzyme phospholipase D (PLD), has been identified as a critical regulatory molecule for oncogenic signaling in many cancers. In an effort to identify novel regulatory mechanisms for PtdOH, we screened various cancer cell lines, assessing whether treatment of cancer models with PLD inhibitors altered production of intracellular metabolites. Preliminary findings lead us to focus on how deoxyribonucleoside triphosphates (dNTPs) are altered upon PLD inhibitor treatment in gliomas. Using a combination of proteomics and small molecule intracellular metabolomics, we show herein that PtdOH acutely regulates the production of these pyrimidine metabolites through activation of CAD via mTOR signaling pathways independently of Akt. These changes are responsible for decreases in dNTP production after PLD inhibitor treatment. Our data identify a novel regulatory role for PLD activity in specific cancer types.
Collapse
Affiliation(s)
- Thomas P. Mathews
- Department of Pharmacology
and The Vanderbilt Ingram Cancer Center, ‡The Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University Medical Center, §Department of Chemistry, ∥The Vanderbilt Institute
of Chemical Biology, ⊥The Vanderbilt Mass Spectrometry Research Center, and #Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Salisha Hill
- Department of Pharmacology
and The Vanderbilt Ingram Cancer Center, ‡The Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University Medical Center, §Department of Chemistry, ∥The Vanderbilt Institute
of Chemical Biology, ⊥The Vanderbilt Mass Spectrometry Research Center, and #Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kristie L. Rose
- Department of Pharmacology
and The Vanderbilt Ingram Cancer Center, ‡The Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University Medical Center, §Department of Chemistry, ∥The Vanderbilt Institute
of Chemical Biology, ⊥The Vanderbilt Mass Spectrometry Research Center, and #Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pavlina T. Ivanova
- Department of Pharmacology
and The Vanderbilt Ingram Cancer Center, ‡The Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University Medical Center, §Department of Chemistry, ∥The Vanderbilt Institute
of Chemical Biology, ⊥The Vanderbilt Mass Spectrometry Research Center, and #Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department of Pharmacology
and The Vanderbilt Ingram Cancer Center, ‡The Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University Medical Center, §Department of Chemistry, ∥The Vanderbilt Institute
of Chemical Biology, ⊥The Vanderbilt Mass Spectrometry Research Center, and #Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - H. Alex Brown
- Department of Pharmacology
and The Vanderbilt Ingram Cancer Center, ‡The Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University Medical Center, §Department of Chemistry, ∥The Vanderbilt Institute
of Chemical Biology, ⊥The Vanderbilt Mass Spectrometry Research Center, and #Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
212
|
Nelson RK, Frohman MA. Physiological and pathophysiological roles for phospholipase D. J Lipid Res 2015; 56:2229-37. [PMID: 25926691 DOI: 10.1194/jlr.r059220] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 11/20/2022] Open
Abstract
Individual members of the mammalian phospholipase D (PLD) superfamily undertake roles that extend from generating the second messenger signaling lipid, phosphatidic acid, through hydrolysis of the membrane phospholipid, phosphatidylcholine, to functioning as an endonuclease to generate small RNAs and facilitating membrane vesicle trafficking through seemingly nonenzymatic mechanisms. With recent advances in genome-wide association studies, RNA interference screens, next-generation sequencing approaches, and phenotypic analyses of knockout mice, roles for PLD family members are being uncovered in autoimmune, infectious neurodegenerative, and cardiovascular disease, as well as in cancer. Some of these disease settings pose opportunities for small molecule inhibitory therapeutics, which are currently in development.
Collapse
Affiliation(s)
- Rochelle K Nelson
- Graduate Program in Physiology and Biophysics Stony Brook University, Stony Brook, NY
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY
| |
Collapse
|
213
|
Chevalier F, Maréchal É. [How independent pharmacological screenings in plants and humans led to the discovery of a new family of lipid metabolism inhibitors]. Med Sci (Paris) 2015; 31:320-7. [PMID: 25855286 DOI: 10.1051/medsci/20153103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In eukaryotic cells, phosphatidic acid (PA) and diacylglycerol (DAG), are at the origin of all membrane glycerolipids. Their interconversion is achieved by dephosphorylation of PA and phosphorylation of DAG: they form therefore a metabolic hub. PA and DAG are also known to be versatile signaling molecules. Two independent pharmacological screenings conducted on plant and human targets, led to the discovery of a new family of compounds acting on enzymes binding to either PA or DAG, in biological contexts that seemed initially independent. On the one hand, in plants, monogalactosyldiacylglycerol synthases (MGDG synthases or MGD) are responsible for the synthesis of MGDG, which is the most profuse lipid of photosynthetic membranes, and thus essential for metabolism and development. MGD use DAG as substrate. On the other hand, in mammals, phospholipases D (PLD), that produce PA, are involved in a variety of signaling cascades that control a broad spectrum of cellular functions, and play a role in the development of cancers. The two independent pharmacological screenings described in this review aimed to identify inhibitory molecules of either MGD of the plant model Arabidopsis, or human PLD. In both cases, the obtained molecules are piperidinyl-benzimidazolone derivatives, thereby allowing to propose this family of molecules as a novel source of inspiration for the search of compounds interfering with glycerolipid metabolism, that could be useful for other biological and therapeutics contexts.
Collapse
Affiliation(s)
- Florian Chevalier
- Laboratoire de physiologie cellulaire végétale, UMR 5168, CNRS-CEA-INRA-université Grenoble Alpes, 17 rue des Martyrs, 38054 Grenoble Cedex, France
| | - Éric Maréchal
- Laboratoire de physiologie cellulaire végétale, UMR 5168, CNRS-CEA-INRA-université Grenoble Alpes, 17 rue des Martyrs, 38054 Grenoble Cedex, France
| |
Collapse
|
214
|
Lajoie DM, Roberts SA, Zobel-Thropp PA, Delahaye JL, Bandarian V, Binford GJ, Cordes MHJ. Variable Substrate Preference among Phospholipase D Toxins from Sicariid Spiders. J Biol Chem 2015; 290:10994-1007. [PMID: 25752604 DOI: 10.1074/jbc.m115.636951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/31/2022] Open
Abstract
Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used (31)P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.
Collapse
Affiliation(s)
- Daniel M Lajoie
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Sue A Roberts
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | | | - Jared L Delahaye
- the Department of Biology, Lewis and Clark College, Portland, Oregon 97219
| | - Vahe Bandarian
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Greta J Binford
- the Department of Biology, Lewis and Clark College, Portland, Oregon 97219
| | - Matthew H J Cordes
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| |
Collapse
|
215
|
Scott SA, Spencer CT, O’Reilly MC, Brown KA, Lavieri RR, Cho CH, Jung DI, Larock RC, Brown HA, Lindsley CW. Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes. ACS Chem Biol 2015; 10:421-32. [PMID: 25384256 PMCID: PMC4336625 DOI: 10.1021/cb500828m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field.
Collapse
Affiliation(s)
| | | | | | | | | | - Chul-Hee Cho
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Dai-Il Jung
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Richard C. Larock
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | | |
Collapse
|
216
|
Frohman MA. The phospholipase D superfamily as therapeutic targets. Trends Pharmacol Sci 2015; 36:137-44. [PMID: 25661257 DOI: 10.1016/j.tips.2015.01.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 01/03/2023]
Abstract
The phospholipase D (PLD) lipid-signaling enzyme superfamily has long been studied for its roles in cell communication and a wide range of cell biological processes. With the advent of loss-of-function genetic mouse models that have revealed that PLD1 and PLD2 ablation is overtly tolerable, small-molecule PLD1/2 inhibitors that do not cause unacceptable clinical toxicity, a PLD2 polymorphism that has been linked to altered physiology, and growing delineation of processes that are subtly altered in mice lacking PLD1/2 activity, the stage is being set for assessment of PLD1/2 inhibition for therapeutic purposes. Based on findings to date, PLD1/2 inhibition may be of more utility in acute rather than chronic settings, although this generalization will depend on the specific risks and benefits in each disease setting.
Collapse
Affiliation(s)
- Michael A Frohman
- Department of Pharmacological Sciences and the Center for Developmental Genetics, 438 Centers for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794-5140, USA.
| |
Collapse
|
217
|
Babenko NA, Kharchenko VS. Modulation of Insulin Sensitivity of Hepatocytes by the Pharmacological Downregulation of Phospholipase D. Int J Endocrinol 2015; 2015:794838. [PMID: 26089893 PMCID: PMC4458285 DOI: 10.1155/2015/794838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background. The role of phospholipase D (PLD) as a positive modulator of glucose uptake activation by insulin in muscle and adipose cells has been demonstrated. The role of PLD in the regulation of glucose metabolism by insulin in the primary hepatocytes has been determined in this study. Methods. For this purpose, we studied effects of inhibitors of PLD on glucose uptake and glycogen synthesis stimulation by insulin. To determine the PLD activity, the method based on determination of products of transphosphatidylation reaction, phosphatidylethanol or phosphatidylbutanol, was used. Results. Inhibition of PLD by a general antagonist (1-butanol) or specific inhibitor, halopemide, or N-hexanoylsphingosine, or by cellular ceramides accumulated in doxorubicin-treated hepatocytes decreased insulin-stimulated glucose metabolism. Doxorubicin-induced hepatocytes resistance to insulin action could be abolished by inhibition of ceramide production. Halopemide could nullify this effect. Addition of propranolol, as well as inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) (wortmannin, LY294002) or suppressors of Akt phosphorylation/activity, luteolin-7-O-glucoside or apigenin-7-O-glucoside, to the culture media could block cell response to insulin action. Conclusion. PLD plays an important role in the insulin signaling in the hepatocytes. PLD is activated downstream of PI3-kinase and Akt and is highly sensitive to ceramide content in the liver cells.
Collapse
Affiliation(s)
- Nataliya A. Babenko
- Department of Physiology of Ontogenesis, Biology Research Institute, Karazin Kharkov National University, Svobody Square 4, Kharkov 61022, Ukraine
- *Nataliya A. Babenko:
| | - Vitalina S. Kharchenko
- Department of Physiology of Ontogenesis, Biology Research Institute, Karazin Kharkov National University, Svobody Square 4, Kharkov 61022, Ukraine
| |
Collapse
|
218
|
Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 2015; 22:20-8. [PMID: 25565029 PMCID: PMC4450863 DOI: 10.1038/nsmb.2931] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022]
Abstract
Since its relatively recent discovery, RNA interference (RNAi) has emerged as a potent, specific and ubiquitous means of gene regulation. Through a number of pathways that are conserved in eukaryotes from yeast to humans, small noncoding RNAs direct molecular machinery to silence gene expression. In this Review, we focus on mechanisms and structures that govern RNA silencing in higher organisms. In addition to highlighting recent advances, we discuss parallels and differences among RNAi pathways. Together, the studies reviewed herein reveal the versatility and programmability of RNA-induced silencing complexes and emphasize the importance of both upstream biogenesis and downstream silencing factors.
Collapse
Affiliation(s)
- Jonathan J. Ipsaro
- W. M. Keck Structural Biology Laboratory Howard Hughes Medical Institute Cold Spring Harbor Laboratory Cold Spring Harbor, NY 11724
| | - Leemor Joshua-Tor
- W. M. Keck Structural Biology Laboratory Howard Hughes Medical Institute Cold Spring Harbor Laboratory Cold Spring Harbor, NY 11724
| |
Collapse
|
219
|
O'Reilly MC, Scott SA, Brown HA, Lindsley CW. Further evaluation of novel structural modifications to scaffolds that engender PLD isoform selective inhibition. Bioorg Med Chem Lett 2014; 24:5553-5557. [PMID: 25466173 DOI: 10.1016/j.bmcl.2014.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
This Letter describes the on-going SAR efforts based on two scaffolds, a PLD1-biased piperidinyl benzimidazolone and a PLD2-biased piperidinyl triazaspirone, with the goal of enhancing PLD inhibitory potency and isoform selectivity. Here, we found that addition of an α-methyl moiety within the PLD2-biased piperidinyl triazaspirone scaffold abolished PLD2 preference, while the incorporation of substituents onto the piperidine moiety of the PLD1-biased piperidinyl benzimidazolone, or replacement with a bioisosteric [3.3.0] core, generally retained PLD1 preference, but at diminished significance. The SAR uncovered within these two allosteric PLD inhibitor series further highlights the inherent challenges of developing isoform selective PLD inhibitors.
Collapse
Affiliation(s)
- Matthew C O'Reilly
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University/ Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
220
|
Martínez-Martínez N, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA. Phospholipase D2 is involved in the formation of Golgi tubules and ArfGAP1 recruitment. PLoS One 2014; 9:e111685. [PMID: 25354038 PMCID: PMC4213061 DOI: 10.1371/journal.pone.0111685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules.
Collapse
Affiliation(s)
- Narcisa Martínez-Martínez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - José Ballesta
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
221
|
Mahankali M, Alter G, Gomez-Cambronero J. Mechanism of enzymatic reaction and protein-protein interactions of PLD from a 3D structural model. Cell Signal 2014; 27:69-81. [PMID: 25308783 DOI: 10.1016/j.cellsig.2014.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The phospholipase D (PLD) superfamily catalyzes the hydrolysis of cell membrane phospholipids generating the key intracellular lipid second messenger phosphatidic acid. However, there is not yet any resolved structure either from a crystallized protein or from NMR of any mammalian PLDs. We propose here a 3D model of the PLD2 by combining homology and ab initio 3 dimensional structural modeling methods, and docking conformation. This model is in agreement with the biochemical and physiological behavior of PLD in cells. For the lipase activity, the N- and C-terminal histidines of the HKD motifs (His 442/His 756) form a catalytic pocket, which accommodates phosphatidylcholine head group (but not phosphatidylethanolamine or phosphatidyl serine). The model explains the mechanism of the reaction catalysis, with nucleophilic attacks of His 442 and water, the latter aided by His 756. Further, the secondary structure regions superimposed with bacterial PLD crystal structure, which indicated an agreement with the model. It also explains protein-protein interactions, such as PLD2-Rac2 transmodulation (with a 1:2 stoichiometry) and PLD2 GEF activity both relevant for cell migration, as well as the existence of binding sites for phosphoinositides such as PIP2. These consist of R236/W238 and R557/W563 and a novel PIP2 binding site in the PH domain of PLD2, specifically R210/R212/W233. In each of these, the polar inositol ring is oriented towards the basic amino acid Arginine. Since tumor-aggravating properties have been found in mice overexpressing PLD2 enzyme, the 3D model of PLD2 will be also useful, to a large extent, in developing pharmaceuticals to modulate its in vivo activity.
Collapse
Affiliation(s)
- Madhu Mahankali
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University School of Medicine, Dayton, OH 45435, USA
| | - Gerald Alter
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University School of Medicine, Dayton, OH 45435, USA
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University School of Medicine, Dayton, OH 45435, USA.
| |
Collapse
|
222
|
McDavid S, Bauer MB, Brindley RL, Jewell ML, Currie KPM. Butanol isomers exert distinct effects on voltage-gated calcium channel currents and thus catecholamine secretion in adrenal chromaffin cells. PLoS One 2014; 9:e109203. [PMID: 25275439 PMCID: PMC4183593 DOI: 10.1371/journal.pone.0109203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022] Open
Abstract
Butanol (C4H10OH) has been used both to dissect the molecular targets of alcohols/general anesthetics and to implicate phospholipase D (PLD) signaling in a variety of cellular functions including neurotransmitter and hormone exocytosis. Like other primary alcohols, 1-butanol is a substrate for PLD and thereby disrupts formation of the intracellular signaling lipid phosphatidic acid. Because secondary and tertiary butanols do not undergo this transphosphatidylation, they have been used as controls for 1-butanol to implicate PLD signaling. Recently, selective pharmacological inhibitors of PLD have been developed and, in some cases, fail to block cellular functions previously ascribed to PLD using primary alcohols. For example, exocytosis of insulin and degranulation of mast cells are blocked by primary alcohols, but not by the PLD inhibitor FIPI. In this study we show that 1-butanol reduces catecholamine secretion from adrenal chromaffin cells to a much greater extent than tert-butanol, and that the PLD inhibitor VU0155056 has no effect. Using fluorescent imaging we show the effect of these drugs on depolarization-evoked calcium entry parallel those on secretion. Patch-clamp electrophysiology confirmed the peak amplitude of voltage-gated calcium channel currents (ICa) is inhibited by 1-butanol, with little or no block by secondary or tert-butanol. Detailed comparison shows for the first time that the different butanol isomers exert distinct, and sometimes opposing, effects on the voltage-dependence and gating kinetics of ICa. We discuss these data with regard to PLD signaling in cellular physiology and the molecular targets of general anesthetics.
Collapse
Affiliation(s)
- Sarah McDavid
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mary Beth Bauer
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rebecca L. Brindley
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mark L. Jewell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kevin P. M. Currie
- Department of Anesthesiology, Department of Pharmacology, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
223
|
Dunbar KL, Chekan JR, Cox CL, Burkhart BJ, Nair SK, Mitchell DA. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat Chem Biol 2014; 10:823-9. [PMID: 25129028 PMCID: PMC4167974 DOI: 10.1038/nchembio.1608] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/19/2014] [Indexed: 11/24/2022]
Abstract
Despite intensive research, the cyclodehydratase responsible for azoline biogenesis in thiazole/oxazole-modified microcin (TOMM) natural products remains enigmatic. The collaboration of two proteins, C and D, is required for cyclodehydration. The C protein is homologous to E1 ubiquitin-activating enzymes, whereas the D protein is within the YcaO superfamily. Recent studies have demonstrated that TOMM YcaOs phosphorylate amide carbonyl oxygens to facilitate azoline formation. Here we report the X-ray crystal structure of an uncharacterized YcaO from Escherichia coli (Ec-YcaO). Ec-YcaO harbors an unprecedented fold and ATP-binding motif. This motif is conserved among TOMM YcaOs and is required for cyclodehydration. Furthermore, we demonstrate that the C protein regulates substrate binding and catalysis and that the proline-rich C terminus of the D protein is involved in C protein recognition and catalysis. This study identifies the YcaO active site and paves the way for the characterization of the numerous YcaO domains not associated with TOMM biosynthesis.
Collapse
Affiliation(s)
- Kyle L. Dunbar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan R. Chekan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Courtney L. Cox
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brandon J. Burkhart
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Satish K. Nair
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
224
|
Lindsley CW. 2013 Philip S. Portoghese Medicinal Chemistry Lectureship: drug discovery targeting allosteric sites. J Med Chem 2014; 57:7485-98. [PMID: 25180768 PMCID: PMC4174999 DOI: 10.1021/jm5011786] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 02/06/2023]
Abstract
The identification of sites on receptors topographically distinct from the orthosteric sites, so-called allosteric sites, has heralded novel approaches and modes of pharmacology for target modulation. Over the past 20 years, our understanding of allosteric modulation has grown significantly, and numerous advantages, as well as caveats (e.g., flat structure-activity relationships, species differences, "molecular switches"), have been identified. For multiple receptors and proteins, numerous examples have been described where unprecedented levels of selectivity are achieved along with improved physiochemical properties. While not a panacea, these novel approaches represent exciting opportunities for tool compound development to probe the pharmacology and therapeutic potential of discrete molecular targets, as well as new medicines. In this Perspective, in commemoration of the 2013 Philip S. Portoghese Medicinal Chemistry Lectureship ( Lindsley , C. W. Adventures in allosteric drug discovery . Presented at the 246th National Meeting of the American Chemical Society, Indianapolis, IN, September 10, 2013 ; The 2013 Portoghese Lectureship ), several vignettes of drug discovery campaigns targeting novel allosteric mechanisms will be recounted, along with lessons learned and guidelines that have emerged for successful lead optimization.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Departments of Pharmacology
and Chemistry, Vanderbilt Center for Neuroscience Drug Discovery,
Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
225
|
O'Reilly MC, Oguin TH, Scott SA, Thomas PG, Locuson CW, Morrison RD, Daniels JS, Brown HA, Lindsley CW. Discovery of a highly selective PLD2 inhibitor (ML395): a new probe with improved physiochemical properties and broad-spectrum antiviral activity against influenza strains. ChemMedChem 2014; 9:2633-7. [PMID: 25210004 DOI: 10.1002/cmdc.201402333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 11/10/2022]
Abstract
Further chemical optimization of the halopemide-derived family of dual phospholipase D1/2 (PLD1/2) inhibitors afforded ML395 (VU0468809), a potent, >80-fold PLD2 selective allosteric inhibitor (cellular PLD1, IC50 >30,000 nM; cellular PLD2, IC50 =360 nM). Moreover, ML395 possesses an attractive in vitro DMPK profile, improved physiochemical properties, ancillary pharmacology (Eurofins Panel) cleaner than any other reported PLD inhibitor, and has been found to possess interesting activity as an antiviral agent in cellular assays against a range of influenza strains (H1, H3, H5 and H7).
Collapse
Affiliation(s)
- Matthew C O'Reilly
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, TN 37232-6600 (USA)
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid. Proc Natl Acad Sci U S A 2014; 111:13547-52. [PMID: 25197053 DOI: 10.1073/pnas.1407160111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Membrane lipids serve as second messengers and docking sites for proteins and play central roles in cell signaling. A major question about lipid signaling is whether diffusible lipids can selectively target specific proteins. One family of lipid-regulated membrane proteins is the TWIK-related K channel (TREK) subfamily of K2P channels: TREK1, TREK2, and TWIK-related arachdonic acid stimulated K(+) channel (TRAAK). We investigated the regulation of TREK channels by phosphatidic acid (PA), which is generated by phospholipase D (PLD) via hydrolysis of phosphatidylcholine. Even though all three of the channels are sensitive to PA, we found that only TREK1 and TREK2 are potentiated by PLD2 and that none of these channels is modulated by PLD1, indicating surprising selectivity. We found that PLD2, but not PLD1, directly binds to the C terminus of TREK1 and TREK2, but not to TRAAK. The results have led to a model for selective lipid regulation by localization of phospholipid enzymes to specific effector proteins. Finally, we show that regulation of TREK channels by PLD2 occurs natively in hippocampal neurons.
Collapse
|
227
|
Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem 2014; 289:22557-22566. [PMID: 24990944 PMCID: PMC4132763 DOI: 10.1074/jbc.r114.574152] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipase D (PLD) enzymes play a double vital role in cells: they maintain the integrity of cellular membranes and they participate in cell signaling including intracellular protein trafficking, cytoskeletal dynamics, cell migration, and cell proliferation. The particular involvement of PLD in cell migration is accomplished: (a) through the actions of its enzymatic product of reaction, phosphatidic acid, and its unique shape-binding role on membrane geometry; (b) through a particular guanine nucleotide exchange factor (GEF) activity (the first of its class assigned to a phospholipase) in the case of the mammalian isoform PLD2; and (c) through protein-protein interactions with a wide network of molecules: Wiskott-Aldrich syndrome protein (WASp), Grb2, ribosomal S6 kinase (S6K), and Rac2. Further, PLD interacts with a variety of kinases (PKC, FES, EGF receptor (EGFR), and JAK3) that are activated by it, or PLD becomes the target substrate. Out of these myriads of functions, PLD is becoming recognized as a major player in cell migration, cell invasion, and cancer metastasis. This is the story of the evolution of PLD from being involved in a large number of seemingly unrelated cellular functions to its most recent role in cancer signaling, a subfield that is expected to grow exponentially.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University School of Medicine, Dayton, Ohio 45435.
| |
Collapse
|
228
|
Oguin TH, Sharma S, Stuart AD, Duan S, Scott SA, Jones CK, Daniels JS, Lindsley CW, Thomas PG, Brown HA. Phospholipase D facilitates efficient entry of influenza virus, allowing escape from innate immune inhibition. J Biol Chem 2014; 289:25405-17. [PMID: 25065577 DOI: 10.1074/jbc.m114.558817] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lipid metabolism plays a fundamental role during influenza virus replication, although key regulators of lipid-dependent trafficking and virus production remain inadequately defined. This report demonstrates that infection by influenza virus stimulates phospholipase D (PLD) activity and that PLD co-localizes with influenza during infection. Both chemical inhibition and RNA interference of PLD delayed viral entry and reduced viral titers in vitro. Although there may be contributions by both major isoenzymes, the effects on viral infectivity appear to be more dependent on the PLD2 isoenzyme. In vivo, PLD2 inhibition reduced virus titer and correlated with significant increases in transcription of innate antiviral effectors. The reduction in viral titer downstream of PLD2 inhibition was dependent on Rig-I (retinoic acid-inducible gene-1), IRF3, and MxA (myxovirus resistance gene A) but not IRF7. Inhibition of PLD2 accelerated the accumulation of MxA in foci as early as 30 min postinfection. Together these data suggest that PLD facilitates the rapid endocytosis of influenza virus, permitting viral escape from innate immune detection and effectors that are capable of limiting lethal infection.
Collapse
Affiliation(s)
- Thomas H Oguin
- From the Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India
| | - Amanda D Stuart
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Susu Duan
- From the Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678
| | | | - Carrie K Jones
- Departments of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0697
| | - J Scott Daniels
- Departments of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0697
| | - Craig W Lindsley
- Departments of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0697 Department of Chemistry and The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Paul G Thomas
- From the Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678,
| | - H Alex Brown
- Departments of Pharmacology and Department of Chemistry and The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, and Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600,
| |
Collapse
|
229
|
Phospholipase D2 downregulation induces cellular senescence through a reactive oxygen species-p53-p21Cip1/WAF1
pathway. FEBS Lett 2014; 588:3251-8. [DOI: 10.1016/j.febslet.2014.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 11/23/2022]
|
230
|
Brandenburg LO, Pufe T, Koch T. Role of phospholipase d in g-protein coupled receptor function. MEMBRANES 2014; 4:302-18. [PMID: 24995811 PMCID: PMC4194036 DOI: 10.3390/membranes4030302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/09/2023]
Abstract
Prolonged agonist exposure of many G-protein coupled receptors induces a rapid receptor phosphorylation and uncoupling from G-proteins. Resensitization of these desensitized receptors requires endocytosis and subsequent dephosphorylation. Numerous studies show the involvement of phospholipid-specific phosphodiesterase phospholipase D (PLD) in the receptor endocytosis and recycling of many G-protein coupled receptors e.g., opioid, formyl or dopamine receptors. The PLD hydrolyzes the headgroup of a phospholipid, generally phosphatidylcholine (PC), to phosphatidic acid (PA) and choline and is assumed to play an important function in cell regulation and receptor trafficking. Protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families regulate the two mammalian PLD isoforms 1 and 2. Mammalian and yeast PLD are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. The PA product is an intracellular lipid messenger. PLD and PA activities are implicated in a wide range of physiological processes and diseases including inflammation, diabetes, oncogenesis or neurodegeneration. This review discusses the characterization, structure, and regulation of PLD in the context of membrane located G-protein coupled receptor function.
Collapse
Affiliation(s)
- Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| | - Thomas Koch
- Department of Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| |
Collapse
|
231
|
Kang DW, Choi KY, Min DS. Functional regulation of phospholipase D expression in cancer and inflammation. J Biol Chem 2014; 289:22575-22582. [PMID: 24990948 DOI: 10.1074/jbc.r114.569822] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholipase D (PLD) regulates downstream effectors by generating phosphatidic acid. Growing links of dysregulation of PLD to human disease have spurred interest in therapeutics that target its function. Aberrant PLD expression has been identified in multiple facets of complex pathological states, including cancer and inflammatory diseases. Thus, it is important to understand how the signaling network of PLD expression is regulated and contributes to progression of these diseases. Interestingly, small molecule PLD inhibitors can suppress PLD expression as well as enzymatic activity of PLD and have been shown to be effective in pathological mice models, suggesting the potential for use of PLD inhibitors as therapeutics against cancer and inflammation. Here, we summarize recent scientific developments regarding the regulation of PLD expression and its role in cancer and inflammatory processes.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, and; Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735,; Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
232
|
Park KE, Kim JD, Nagashima Y, Kako K, Daitoku H, Matsui M, Park GG, Fukamizu A. Detection of choline and phosphatidic acid (PA) catalyzed by phospholipase D (PLD) using MALDI-QIT-TOF/MS with 9-aminoacridine matrix. Biosci Biotechnol Biochem 2014; 78:981-8. [PMID: 25036123 DOI: 10.1080/09168451.2014.910102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC), the most abundant phospholipids of plasma membrane, resulting in the production of choline and phosphatidic acid (PA). Choline is a precursor of the neurotransmitter acetylcholine, whereas PA functions as an intracellular lipid mediator of diverse biological functions. For assessing PLD activity in vitro, PLD-derived choline has been often analyzed with radioactive or non-radioactive methods. In this study, we have developed a new method for detecting choline and PA with MALDI-QIT-TOF/MS by using 9-aminoacridine as a matrix. The standard calibration curves showed that choline and PA could be detected with linearity over the range from 0.05 and 1 pmol, respectively. Importantly, this method enables the concomitant detection of choline and PA as a reaction product of PC hydrolysis by PLD2 proteins. Thus, our simple and direct method would be useful to characterize the enzymatic properties of PLD, thereby providing insight into mechanisms of PLD activation.
Collapse
Affiliation(s)
- Kyung-Eui Park
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Jiang F, Waterfield N, Yang J, Yang G, Jin Q. A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host Microbe 2014; 15:600-10. [DOI: 10.1016/j.chom.2014.04.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/28/2014] [Accepted: 03/21/2014] [Indexed: 02/06/2023]
|
234
|
Moser R, Aktas M, Fritz C, Narberhaus F. Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Mol Microbiol 2014; 92:959-72. [DOI: 10.1111/mmi.12603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Roman Moser
- Microbial Biology; Ruhr University Bochum; Bochum Germany
| | - Meriyem Aktas
- Microbial Biology; Ruhr University Bochum; Bochum Germany
| | | | | |
Collapse
|
235
|
Wakelam MJO. The uses and limitations of the analysis of cellular phosphoinositides by lipidomic and imaging methodologies. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1102-7. [PMID: 24769341 DOI: 10.1016/j.bbalip.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
The advent of mass spectrometric methods has facilitated the determination of multiple molecular species of cellular lipid classes including the polyphosphoinositides, though to date methods to analyse and quantify each of the individual three PtdInsP and three PtdInsP2 species are lacking. The use of imaging methods has allowed intracellular localization of the phosphoinositide classes but this methodology does not determine the acyl structures. The range of molecular species suggests a greater complexity in polyphosphoinositide signaling than yet defined but elucidating this will require further method development to be achieved. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
|
236
|
Krzystanek M, Krzystanek E, Trzeciak HI, Małecki A, Krupka-Matuszczyk I, Janas-Kozik M, Rybakowski JK. Effects of olanzapine and paroxetine on phospholipase D activity in the rat brain. Pharmacol Rep 2014; 65:724-9. [PMID: 23950596 DOI: 10.1016/s1734-1140(13)71051-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 02/02/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Phospholipase D (PLD) plays a key role in a second messenger system producing phosphatidic acid, mediating, among others, serotonin 5-HT2 receptor activity. The aim of the study was to evaluate a possible effect of atypical antipsychotic drug, olanzapine (OLZ), and selective serotonin reuptake inhibitor (SSRI) antidepressant, paroxetine (PX), on oleate-activated PLD activity in plasma membranes isolated from rat brain cortex. METHODS PLD activity was determined using a fluorometric assay. Ritanserin was used to determine the 5-HT receptor mode of action. RESULTS A single dose of 10 mmol/kg OLZ produced no change in rat brain cortex PLD activity, 20 mmol/kg OLZ caused a nonsignificant decrease, and long-term (21 days) administration of OLZ resulted in a 41.9% decrease in PLD activity. Single doses of PX significantly decreased PLD activity: 10 mmol/kg - by 28.6%; 20 mmol/kg - by 31.5%, and long-term (21 days) administration of PX - by 39.5%. CONCLUSION The study indicates that the 5-HT2 receptor-mediated inhibition of oleate-activated PLD may be a common part of the mechanisms of action of OLZ and PX.
Collapse
Affiliation(s)
- Marek Krzystanek
- Department and Clinic of Psychiatry and Psychotherapy, Medical University of Silesia, Katowice, Poland.
| | | | | | | | | | | | | |
Collapse
|
237
|
Shaughnessy R, Retamal C, Oyanadel C, Norambuena A, López A, Bravo-Zehnder M, Montecino FJ, Metz C, Soza A, González A. Epidermal growth factor receptor endocytic traffic perturbation by phosphatidate phosphohydrolase inhibition: new strategy against cancer. FEBS J 2014; 281:2172-89. [PMID: 24597955 DOI: 10.1111/febs.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/02/2014] [Accepted: 02/26/2014] [Indexed: 01/11/2023]
Abstract
Epidermal growth factor receptor (EGFR) exaggerated (oncogenic) function is currently targeted in cancer treatment with drugs that block receptor ligand binding or tyrosine kinase activity. Because endocytic trafficking is a crucial regulator of EGFR function, its pharmacological perturbation might provide a new anti-tumoral strategy. Inhibition of phosphatidic acid (PA) phosphohydrolase (PAP) activity has been shown to trigger PA signaling towards type 4 phosphodiesterase (PDE4) activation and protein kinase A inhibition, leading to internalization of empty/inactive EGFR. Here, we used propranolol, its l- and d- isomers and desipramine as PAP inhibitors to further explore the effects of PAP inhibition on EGFR endocytic trafficking and its consequences on EGFR-dependent cancer cell line models. PAP inhibition not only made EGFR inaccessible to stimuli but also prolonged the signaling lifetime of ligand-activated EGFR in recycling endosomes. Strikingly, such endocytic perturbations applied in acute/intermittent PAP inhibitor treatments selectively impaired cell proliferation/viability sustained by an exaggerated EGFR function. Phospholipase D inhibition with FIPI (5-fluoro-2-indolyl des-chlorohalopemide) and PDE4 inhibition with rolipram abrogated both the anti-tumoral and endocytic effects of PAP inhibition. Prolonged treatments with a low concentration of PAP inhibitors, although without detectable endocytic effects, still counteracted cell proliferation, induced apoptosis and decreased anchorage-independent growth of cells bearing EGFR oncogenic influences. Overall, our results show that PAP inhibitors can counteract EGFR oncogenic traits, including receptor overexpression or activating mutations resistant to current tyrosine kinase inhibitors, perturbing EGFR endocytic trafficking and perhaps other as yet unknown processes, depending on treatment conditions. This puts PAP activity forward as a new suitable target against EGFR-driven malignancy.
Collapse
Affiliation(s)
- Ronan Shaughnessy
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Schumann J, Basiouni S, Gück T, Fuhrmann H. Treating canine atopic dermatitis with unsaturated fatty acids: the role of mast cells and potential mechanisms of action. J Anim Physiol Anim Nutr (Berl) 2014; 98:1013-20. [DOI: 10.1111/jpn.12181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Affiliation(s)
- J. Schumann
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - S. Basiouni
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
- Department of Clinical Pathology; Faculty of Veterinary Medicine; Benha University; Moshtohor Toukh Qalioubeya Egypt
| | - T. Gück
- Hills Pet Nutrition; Hamburg Germany
| | - H. Fuhrmann
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| |
Collapse
|
239
|
Discovery of compounds blocking the proliferation of Toxoplasma gondii and Plasmodium falciparum in a chemical space based on piperidinyl-benzimidazolone analogs. Antimicrob Agents Chemother 2014; 58:2586-97. [PMID: 24550329 DOI: 10.1128/aac.01445-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum. In T. gondii, motility and apical complex integrity appeared to be unaffected, whereas cell division was inhibited at compound 1 concentrations in the micromolar range. In P. falciparum, the proliferation of erythrocytic stages was inhibited, without any delayed death phenotype. We then explored a library of 250 analogs in two steps. We selected 114 compounds with a 50% inhibitory concentration (IC50) cutoff of 2 μM for at least one species and determined in vitro selectivity indexes (SI) based on toxicity against K-562 human cells. We identified compounds with high gains in the IC50 (in the 100 nM range) and SI (up to 1,000 to 2,000) values. Isobole analyses of two of the most active compounds against P. falciparum indicated that their interactions with artemisinin were additive. Here, we propose the use of structure-activity relationship (SAR) models, which will be useful for designing probes to identify the target compound(s) and optimizations for monotherapy or combined-therapy strategies.
Collapse
|
240
|
Liu C, Huang D, Yang T, Cremer PS. Monitoring phosphatidic acid formation in intact phosphatidylcholine bilayers upon phospholipase D catalysis. Anal Chem 2014; 86:1753-9. [PMID: 24456402 PMCID: PMC3983022 DOI: 10.1021/ac403580r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/15/2014] [Indexed: 12/25/2022]
Abstract
We have monitored the production of the negatively charged lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid acid (POPA), in supported lipid bilayers via the enzymatic hydrolysis of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC), a zwitterionic lipid. Experiments were performed with phospholipase D (PLD) in a Ca(2+) dependent fashion. The strategy for doing this involved using membrane-bound streptavidin as a biomarker for the charge on the membrane. The focusing position of streptavidin in electrophoretic-electroosmotic focusing (EEF) experiments was monitored via a fluorescent tag on this protein. The negative charge increased during these experiments due to the formation of POPA lipids. This caused the focusing position of streptavidin to migrate toward the negatively charged electrode. With the use of a calibration curve, the amount of POPA generated during this assay could be read out from the intact membrane, an objective that has been otherwise difficult to achieve because of the lack of unique chromophores on PA lipids. On the basis of these results, other enzymatic reactions involving the change in membrane charge could also be monitored in a similar way. This would include phosphorylation, dephosphorylation, lipid biosynthesis, and additional phospholipase reactions.
Collapse
Affiliation(s)
- Chunming Liu
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Da Huang
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Tinglu Yang
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Paul S. Cremer
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| |
Collapse
|
241
|
Stahelin RV. A new model of interfacial kinetics for phospholipases. Biophys J 2014; 105:1-2. [PMID: 23823217 DOI: 10.1016/j.bpj.2013.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 01/09/2023] Open
Affiliation(s)
- Robert V Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, Indiana, USA.
| |
Collapse
|
242
|
Scott SA, Mathews TP, Ivanova PT, Lindsley CW, Brown HA. Chemical modulation of glycerolipid signaling and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1060-84. [PMID: 24440821 DOI: 10.1016/j.bbalip.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields-ranging from neuroscience and cancer to diabetes and obesity-have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas P Mathews
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
243
|
Giusti LA, Medeiros M, Ferreira NL, Mora JR, Fiedler HD. Polymers containing imidazole groups as nanoreactors for hydrolysis of esters. J PHYS ORG CHEM 2014. [DOI: 10.1002/poc.3263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luciano A. Giusti
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Michelle Medeiros
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Natasha Londero Ferreira
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - José R. Mora
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Haidi D. Fiedler
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| |
Collapse
|
244
|
Zhang F, Wang Z, Lu M, Yonekubo Y, Liang X, Zhang Y, Wu P, Zhou Y, Grinstein S, Hancock JF, Du G. Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Mol Cell Biol 2014; 34:84-95. [PMID: 24164897 PMCID: PMC3911278 DOI: 10.1128/mcb.00987-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/22/2013] [Accepted: 10/21/2013] [Indexed: 01/14/2023] Open
Abstract
The Ras-extracellular signal-regulated kinase (ERK) cascade is an important signaling module in cells. One regulator of the Ras-ERK cascade is phosphatidic acid (PA) generated by phospholipase D (PLD) and diacylglycerol kinase (DGK). Using a newly developed PA biosensor, PASS (phosphatidic acid biosensor with superior sensitivity), we found that PA was generated sequentially by PLD and DGK in epidermal growth factor (EGF)-stimulated HCC1806 breast cancer cells. Inhibition of PLD2, one of the two PLD members, was sufficient to eliminate most of the PA production, whereas inhibition of DGK decreased PA production only at the later stages of EGF stimulation, suggesting that PLD2 precedes DGK activation. The temporal production of PA by PLD2 is important for the nuclear activation of ERK. While inhibition of both PLD and DGK had no effect on the overall ERK activity, inhibition of PLD2 but not PLD1 or DGK blocked the nuclear ERK activity in several cancer cell lines. The decrease of active ERK in the nucleus inhibited the activation of Elk1, c-fos, and Fra1, the ERK nuclear targets, leading to decreased proliferation of HCC1806 cells. Together, these findings reveal that PA production by PLD2 determines the output of ERK in cancer cell growth factor signaling.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maryia Lu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yoshiya Yonekubo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiao Liang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Shanghai Institute of Digestive Disease, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueqiang Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
245
|
Bruntz RC, Taylor HE, Lindsley CW, Brown HA. Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. J Biol Chem 2013; 289:600-16. [PMID: 24257753 DOI: 10.1074/jbc.m113.532978] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The lack of innovative drug targets for glioblastoma multiforme (GBM) limits patient survival to approximately 1 year following diagnosis. The pro-survival kinase Akt provides an ideal target for the treatment of GBM as Akt signaling is frequently activated in this cancer type. However, the central role of Akt in physiological processes limits its potential as a therapeutic target. In this report, we show that the lipid-metabolizing enzyme phospholipaseD(PLD) is a novel regulator of Akt inGBM.Studies using a combination of small molecule PLD inhibitors and siRNA knockdowns establish phosphatidic acid, the product of the PLD reaction, as an essential component for the membrane recruitment and activation of Akt. Inhibition of PLD enzymatic activity and subsequent Akt activation decreases GBM cell viability by specifically inhibiting autophagic flux. We propose a mechanism whereby phosphorylation of beclin1 by Akt prevents binding of Rubicon (RUN domain cysteine-rich domain containing beclin1-interacting protein), an interaction known to inhibit autophagic flux. These findings provide a novel framework through which Akt inhibition can be achieved without directly targeting the kinase.
Collapse
|
246
|
Burkhardt U, Wojcik B, Zimmermann M, Klein J. Phospholipase D is a target for inhibition of astroglial proliferation by ethanol. Neuropharmacology 2013; 79:1-9. [PMID: 24262632 DOI: 10.1016/j.neuropharm.2013.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/01/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022]
Abstract
The proliferation of astrocytes during early brain development is driven by growth factors and is accompanied by the activation of phospholipase D (PLD). Ethanol disrupts PLD signaling in astrocytes, a process which may contribute to delayed brain growth of fetuses exposed to alcohol during pregnancy. We here report that insulin-like growth factor 1 (IGF-1) is a strong mitogen for rat astrocytes (EC50 0.2 μg/ml) and a strong stimulator of astroglial PLD activity; both effects are inhibited by ethanol and 1-butanol, but not t-butanol, suggesting participation of PLD. Downregulation of PLD1 and exposure to the PLD1 inhibitor VU0359595 attenuated PLD activity and strongly reduced the mitogenic activity of serum and IGF-1. The PLD2 inhibitor VU0285655-1 also reduced PLD activity but had lesser effects on IGF-1-driven proliferation. PLD2 down-regulation affected serum - but not IGF-1-induced proliferation. In separate experiments, alcohol treatment of murine astrocytes taken from PLD-deficient animals revealed an insensitivity of PLD1(-/-) cells to 1-butanol whereas PLD2(-/-) cells were not affected. We conclude that astroglial proliferation induced by IGF-1 is critically dependent on the PLD signaling pathway, with a stronger contribution from PLD1 than PLD2. The teratogenic effects of ethanol may be explained, at least in part, by disruption of the IGF1-PLD signaling pathway.
Collapse
Affiliation(s)
- Ute Burkhardt
- Department of Pharmacology, College of Pharmacy, Biocenter N260, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Bartosch Wojcik
- Department of Pharmacology, College of Pharmacy, Biocenter N260, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Martina Zimmermann
- Department of Pharmacology, College of Pharmacy, Biocenter N260, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jochen Klein
- Department of Pharmacology, College of Pharmacy, Biocenter N260, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
247
|
Identification of new sphingomyelinases D in pathogenic fungi and other pathogenic organisms. PLoS One 2013; 8:e79240. [PMID: 24223912 PMCID: PMC3815110 DOI: 10.1371/journal.pone.0079240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/27/2013] [Indexed: 02/06/2023] Open
Abstract
Sphingomyelinases D (SMases D) or dermonecrotic toxins are well characterized in Loxosceles spider venoms and have been described in some strains of pathogenic microorganisms, such as Corynebacterium sp. After spider bites, the SMase D molecules cause skin necrosis and occasional severe systemic manifestations, such as acute renal failure. In this paper, we identified new SMase D amino acid sequences from various organisms belonging to 24 distinct genera, of which, 19 are new. These SMases D share a conserved active site and a C-terminal motif. We suggest that the C-terminal tail is responsible for stabilizing the entire internal structure of the SMase D Tim barrel and that it can be considered an SMase D hallmark in combination with the amino acid residues from the active site. Most of these enzyme sequences were discovered from fungi and the SMase D activity was experimentally confirmed in the fungus Aspergillus flavus. Because most of these novel SMases D are from organisms that are endowed with pathogenic properties similar to those evoked by these enzymes alone, they might be associated with their pathogenic mechanisms.
Collapse
|
248
|
Abstract
The presence of druggable, topographically distinct allosteric sites on a wide range of receptor families has offered new paradigms for small molecules to modulate receptor function. Moreover, ligands that target allosteric sites offer significant advantages over the corresponding orthosteric ligands in terms of selectivity, including subtype selectivity within receptor families, and can also impart improved physicochemical properties. However, allosteric ligands are not a panacea. Many chemical issues (e.g., flat structure-activity relationships) and pharmacological issues (e.g., ligand-biased signaling) that are allosteric centric have emerged. Notably, the fact that allosteric sites are less evolutionarily conserved leads to improved selectivity; however, this can also lead to species differences that can hinder safety assessment. Many allosteric ligands possess molecular switches, wherein a small structural change (chemical or metabolic) can modulate the mode of pharmacology or receptor subtype selectivity. As the field has matured, as described here, key principles and strategies have emerged for the design of ligands/drugs for allosteric sites.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600;
| | | | | | | |
Collapse
|
249
|
Whiley L, Sen A, Heaton J, Proitsi P, García-Gómez D, Leung R, Smith N, Thambisetty M, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Lovestone S, Legido-Quigley C. Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease. Neurobiol Aging 2013; 35:271-8. [PMID: 24041970 DOI: 10.1016/j.neurobiolaging.2013.08.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/03/2013] [Indexed: 01/31/2023]
Abstract
Abberant lipid metabolism is implicated in Alzheimer's disease (AD) pathophysiology, but the connections between AD and lipid metabolic pathways are not fully understood. To investigate plasma lipids in AD, a multiplatform screen (n = 35 by liquid chromatography-mass spectrometry and n = 35 by nuclear magnetic resonance) was developed, which enabled the comprehensive analysis of plasma from 3 groups (individuals with AD, individuals with mild cognitive impairment (MCI), and age-matched controls). This screen identified 3 phosphatidylcholine (PC) molecules that were significantly diminished in AD cases. In a subsequent validation study (n = 141), PC variation in a bigger sample set was investigated, and the same 3 PCs were found to be significantly lower in AD patients: PC 16:0/20:5 (p < 0.001), 16:0/22:6 (p < 0.05), and 18:0/22:6 (p < 0.01). A receiver operating characteristic (ROC) analysis of the PCs, combined with apolipoprotein E (ApoE) data, produced an area under the curve predictive value of 0.828. Confirmatory investigations into the background biochemistry indiciated no significant change in plasma levels of 3 additional PCs of similar structure, total choline containing compounds or total plasma omega fatty acids, adding to the evidence that specific PCs play a role in AD pathology.
Collapse
Affiliation(s)
- Luke Whiley
- Institute of Pharmaceutical Science and Institute of Psychiatry, Kings's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
DeYonker NJ, Webster CE. Phosphoryl transfers of the phospholipase D superfamily: a quantum mechanical theoretical study. J Am Chem Soc 2013; 135:13764-74. [PMID: 24007383 DOI: 10.1021/ja4042753] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The HKD-containing Phospholipase D superfamily catalyzes the cleavage of the headgroup of phosphatidylcholine to produce phosphatidic acid and choline. The mechanism of this cleavage process is studied theoretically. The geometric basis of our models is the X-ray crystal structure of the five-coordinate phosphohistidine intermediate from Streptomyces sp . Strain PMF (PDB Code = 1V0Y ). Hybrid ONIOM QM:QM methodology with Density Functional Theory (DFT) and semiempirical PM6 (DFT:PM6) is used to acquire thermodynamic and kinetic data for the initial phosphoryl transfer, subsequent hydrolysis, and finally, the formation of the experimentally observed ″dead-end″ phosphohistidine product (PDB Code = 1V0W ). The model contains nineteen amino acid residues (including the two highly conserved HKD-motifs), four explicit water molecules, and the substrate. Via computations, the persistence of the short-lived five-coordinate phosphorane intermediate on the minutes times scale is rationalized. This five-coordinate phosphohistidine intermediate energetically exists between the hydrolysis event and ″substrate reorganization″ (the reorganization of the in vitro model substrate within the active site). Computations directly support the thermodynamic favorability of the in vitro four-coordinate phosphohistidine product. In vivo, the activation energy of substrate reorganization is too high, perhaps due to a combination of substrate immobility when embedded in the lipid bilayer, as well as its larger steric bulk compared to the compound used in the in vitro substrate soaks. On this longer time scale, the enzyme will migrate along the lipid membrane toward its next substrate target, rather than promote the formation of the dead-end product.
Collapse
Affiliation(s)
- Nathan J DeYonker
- The Department of Chemistry, The University of Memphis , 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, United States
| | | |
Collapse
|