201
|
Farashishiko A, Plush SE, Maier KB, Dean Sherry A, Woods M. Crosslinked shells for nano-assembled capsules: a new encapsulation method for smaller Gd 3+-loaded capsules with exceedingly high relaxivities. Chem Commun (Camb) 2017; 53:6355-6358. [PMID: 28555682 PMCID: PMC5580261 DOI: 10.1039/c7cc00123a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nano-assembled capsules can incorporate large payloads of high relaxivity Gd3+, permitting the development of highly detectable molecular imaging agents for MRI. A new encapsulating shell, based upon cross-linked peptides, is found to afford smaller capsules (127 nm average diameter) with exceptionally high per-Gd3+ relaxivities (70.7 s-1 mmolal-1).
Collapse
Affiliation(s)
- Annah Farashishiko
- Department of Chemistry, Portland State University, 1719 SW 10th Ave, Portland, OR 97201, USA.
| | | | | | | | | |
Collapse
|
202
|
Kondo T, Kimura Y, Yamada H, Aoyama Y. Polymeric 1 H MRI Probes for Visualizing Tumor In Vivo. CHEM REC 2017; 17:555-568. [PMID: 28387472 DOI: 10.1002/tcr.201600144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Indexed: 11/09/2022]
Abstract
Magnetic resonance imaging (MRI) has become a prominent non- or low-invasive imaging technique, providing high-resolution, three-dimensional images as well as physiological information about tissues. Low-molecular-weight Gd-MRI contrast agents (CAs), such as Gd-DTPA (DTPA: diethylenetriaminepentaacetic acid), are commonly used in the clinical diagnosis, while macromolecular Gd-MRI CAs have several advantages over low-molecular-weight Gd-MRI CAs, which help minimize the dose of CAs and the risk of side effects. Accordingly, we developed chiral dendrimer Gd-MRI CAs, which showed high r1 values. The association constant values (Ka ) of S-isomeric dendrimer CAs to bovine serum albumin (BSA) were higher than those of R-isomeric dendrimer CAs. Besides, based on a totally new concept, we developed 13 C/15 N-enriched multiple-resonance NMR/MRI probes, which realized highly selective observation of the probes and analysis of metabolic reactions of interest. This account summarizes our recent study on developing both chiral dendrimer Gd-MRI CAs, and self-traceable 13 C/15 N-enriched phosphorylcholine polymer probes for early detection of tumors.
Collapse
Affiliation(s)
- Teruyuki Kondo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158510, JAPAN
| | - Yu Kimura
- Research and Educational Unit of Leaders for Integrated Medical Systems, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158510, JAPAN
| | - Hisatsugu Yamada
- Field of Bioresource Chemistry and Technology, Graduate School of Bioscience and Bioindustry, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, 7708506, JAPAN
| | - Yasuhiro Aoyama
- Professor emeritus, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158510, JAPAN
| |
Collapse
|
203
|
Wang L, Lin H, Ma L, Jin J, Shen T, Wei R, Wang X, Ai H, Chen Z, Gao J. Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T 1-T 2 dual-mode contrast agents for accurate liver tumor imaging. NANOSCALE 2017; 9:4516-4523. [PMID: 28317976 DOI: 10.1039/c7nr01134b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Magnetic resonance contrast agents with T1-T2 dual mode contrast capability have attracted considerable interest because they offer complementary and synergistic diagnostic information, leading to high imaging sensitivity and accurate diagnosis. Here, we reported a facile strategy to construct albumin based nanoparticles loaded with hydrophobic gadolinium chelates by hydrophobic interaction for magnetic resonance imaging (MRI). We synthesized a glycyrrhetinic acid-containing Gd-DOTA derivative (GGD) and loaded GGD molecules into BSA nanoparticles to form GGD-BSA nanoparticles (GGD-BSA NPs). The large size and porous structure endow GGD-BSA NPs with geometrical confinement, which restricts the tumbling of GGD and the diffusion of surrounding water molecules. As a result, GGD-BSA NPs exhibit ultrahigh T1 and T2 relaxivities, which are approximately 8-fold higher than those of gadolinium-based clinical contrast agents at 0.5 T. Besides, due to the intrinsic properties of their components, GGD-BSA NPs show good biocompatibility in vitro and in vivo, which warrants their great potential in clinical translation. Furthermore, GGD-BSA NPs show remarkable sensitivity in noninvasive detection of liver tumors by self-confirmed T1-T2 dual-mode contrast-enhanced MRI. All of these merits make GGD-BSA NPs a potential candidate for fruitful biomedical and preclinical applications.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lingceng Ma
- Department of Electronic Science and Fujian Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianbin Jin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Taipeng Shen
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruixue Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaomin Wang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Hua Ai
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhong Chen
- Department of Electronic Science and Fujian Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
204
|
Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and19F Magnetic Resonance Imaging. Chembiochem 2017; 18:951-959. [DOI: 10.1002/cbic.201700071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/26/2022]
|
205
|
Craciun I, Gunkel-Grabole G, Belluati A, Palivan CG, Meier W. Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine (Lond) 2017; 12:811-817. [PMID: 28322116 DOI: 10.2217/nnm-2016-0413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MRI is a sought-after, noninvasive tool in medical diagnostics, yet the direct application of contrast agents to tissue suffers from several drawbacks. Hosting the contrast agents in polymeric nanocarriers can solve many of these issues while creating additional benefit through exploitation of the intrinsic characteristics of the polymeric carriers. In this report, the versatility is highlighted with recent examples of dendritic and hyperbranched polymers, polymer nanoparticles and micelles, and polymersomes as multifunctional bioresponsive nanocarriers for MRI contrast agents.
Collapse
Affiliation(s)
- Ioana Craciun
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Gesine Gunkel-Grabole
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
206
|
Sun W, Thies S, Zhang J, Peng C, Tang G, Shen M, Pich A, Shi X. Gadolinium-Loaded Poly(N-vinylcaprolactam) Nanogels: Synthesis, Characterization, and Application for Enhanced Tumor MR Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3411-3418. [PMID: 28067034 DOI: 10.1021/acsami.6b14219] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the synthesis of poly(N-vinylcaprolactam) nanogels (PVCL NGs) loaded with gadolinium (Gd) for tumor MR imaging applications. The PVCL NGs were synthesized via precipitation polymerization using the monomer N-vinylcaprolactam (VCL), the comonomer acrylic acid (AAc), and the degradable cross-linker 3,9-divinyl-2,4,8,10-tetraoxaspiro-[5,5]-undecane (VOU) in aqueous solution, followed by covalently binding with 2,2',2″-(10-(4-((2-aminoethyl)amino)-1-carboxy-4-oxobutyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (NH2-DOTA-GA)/Gd complexes. We show that the formed Gd-loaded PVCL NGs (PVCL-Gd NGs) having a size of 180.67 ± 11.04 nm are water dispersible, colloidally stable, uniform in size distribution, and noncytotoxic in a range of the studied concentrations. The PVCL-Gd NGs also display a r1 relaxivity (6.38-7.10 mM-1 s-1), which is much higher than the clinically used Gd chelates. These properties afforded the use of the PVCL-Gd NGs as an effective positive contrast agent for enhanced MR imaging of cancer cells in vitro as well as a subcutaneous tumor model in vivo. Our study suggests that the developed PVCL-Gd NGs could be applied as a promising contrast agent for T1-weighted MR imaging of diverse biosystems.
Collapse
Affiliation(s)
- Wenjie Sun
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Sabrina Thies
- DWI-Leibniz-Institute for Interactive Materials e.V., Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry, RWTH Aachen University , 52056 Aachen, Germany
| | - Jiulong Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072, People's Republic of China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072, People's Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V., Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry, RWTH Aachen University , 52056 Aachen, Germany
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| |
Collapse
|
207
|
Wan C, Zhan Y, Xue R, Wu Y, Li X, Pei F. Gd-DTPA-induced dynamic metabonomic changes in rat biofluids. Magn Reson Imaging 2017; 44:15-25. [PMID: 28095303 DOI: 10.1016/j.mri.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The purposes of this study were (1) to detect the dynamic metabonomic changes induced by gadopentetate dimeglumine (Gd-DTPA) and (2) to investigate the potential metabolic disturbances associated with the pathogenesis of nephrogenic systemic fibrosis (NSF) at the early stage. METHODS A nuclear magnetic resonance (NMR)-based metabolomics approach was used to investigate the urinary and serum metabolic changes induced by a single tail vein injection of Gd-DTPA (dosed at 2 and 5mmol/kg body weight) in rats. Urine and serum samples were collected on days 1, 2 and 7 after dosing. RESULTS Metabolic responses of rats to Gd-DTPA administration were systematic involving changes in lipid metabolism, glucose metabolism, TCA cycle, amino acid metabolism and gut microbiota functions. Urinary and serum metabonomic recovery could be observed in both the 2 and 5mmol/kg body weight group, but the metabolic effects of high-dosed (5mmol/kg body weight) Gd-DTPA lasted longer. It is worth noting that hyperlipidemia was observed after Gd-DTPA injection, and nicotinate might play a role in the subsequent self-recovery of lipid metabolism. The disturbance of tyrosine, glutamate and gut microbiota metabolism might associate with the progression of NSF. CONCLUSION These findings offered essential information about the metabolic changes induced by Gd-DTPA, and could be potentially important for investigating the pathogenesis of NSF at the early stage. Moreover, the recovery of rats administrated with Gd-DTPA may have implications in the treatment of early stage NSF.
Collapse
Affiliation(s)
- Chuanling Wan
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road 19, Beijing 100049, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road 19, Beijing 100049, China
| | - Rong Xue
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| | - Yijie Wu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China.
| | - Fengkui Pei
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| |
Collapse
|
208
|
Wang L, Lin H, Ma L, Sun C, Huang J, Li A, Zhao T, Chen Z, Gao J. Geometrical confinement directed albumin-based nanoprobes as enhanced T1 contrast agents for tumor imaging. J Mater Chem B 2017; 5:8004-8012. [DOI: 10.1039/c7tb02005h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a facile strategy to assemble geometrically confined albumin-based nanoparticles as T1 contrast agents for sensitive tumor imaging.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Lengceng Ma
- Department of Electronic Science and Fujian Key Laboratory of Plasma and Magnetic Resonance
- Xiamen University
- Xiamen 361005
- China
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jiaqi Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Tian Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Zhong Chen
- Department of Electronic Science and Fujian Key Laboratory of Plasma and Magnetic Resonance
- Xiamen University
- Xiamen 361005
- China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
209
|
Bañobre-López M, Bran C, Rodríguez-Abreu C, Gallo J, Vázquez M, Rivas J. A colloidally stable water dispersion of Ni nanowires as an efficient T2-MRI contrast agent. J Mater Chem B 2017; 5:3338-3347. [DOI: 10.1039/c7tb00574a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colloidally stable dispersion of anisotropic Ni nanowires in water has been achieved showing good performance as a T2-contrast agent in MRI.
Collapse
Affiliation(s)
- Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Cristina Bran
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - Carlos Rodríguez-Abreu
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
- Instituto de Química Avanzada de Cataluña
| | - Juan Gallo
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Manuel Vázquez
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - José Rivas
- Department of Applied Physics
- Technological Research Institute
- Nanotechnology and Magnetism Lab
- Universidade de Santiago de Compostela
- Spain
| |
Collapse
|
210
|
Dzhardimalieva GI, Uflyand IE. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers. Dalton Trans 2017; 46:10139-10176. [DOI: 10.1039/c7dt01916e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
211
|
Zhan Y, Xue R, Zhang M, Wan C, Li X, Pei F, Sun C, Liu L. Synthesis and Evaluation of a Biocompatible Macromolecular Gadolinium Compound as a Liver-Specific Contrast Agent for MRI. Aust J Chem 2017. [DOI: 10.1071/ch16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new macromolecular biocompatible gadolinium chelate complex (PAI-N2-DOTA-Gd) as a liver-specific magnetic resonance imaging (MRI) contrast agent was synthesised and evaluated. An aspartic acid–isoleucine copolymer was chemically linked with Gd-DOTA via ethylenediamine to give PAI-N2-DOTA-Gd. In vitro, the T1-relaxivity of PAI-N2-DOTA-Gd (14.38 mmol–1⋅L⋅s–1, 0.5 T) was much higher than that of the clinically used Gd-DOTA (4.96 mmol–1⋅L⋅s–1, 0.5 T), with obvious imaging signal enhancement. In the imaging experiments in vivo, PAI-N2-DOTA-Gd exhibited good liver selectivity, and had a greater intensity enhancement (68.8 ± 5.6 %) and a longer imaging window time (30–70 min), compared to Gd-DOTA (21.1 ± 5.3 %, 10–30 min). Furthermore, the in vivo histological studies of PAI-N2-DOTA-Gd showed a low acute toxicity and desirable biocompatibility. The results of this study indicate that PAI-N2-DOTA-Gd is a feasible liver-specific contrast agent for MRI.
Collapse
|
212
|
Li X, Sun L, Wei X, Luo Q, Cai H, Xiao X, Zhu H, Luo K. Stimuli-responsive biodegradable and gadolinium-based poly[N-(2-hydroxypropyl) methacrylamide] copolymers: their potential as targeting and safe magnetic resonance imaging probes. J Mater Chem B 2017; 5:2763-2774. [PMID: 32264163 DOI: 10.1039/c6tb03253b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Functionalized and biodegradable block pHPMA copolymer–gadolinium conjugates demonstrated good biocompatibility, high T1 relaxivity, and enhanced tumor signal intensity for MRI.
Collapse
Affiliation(s)
- Xue Li
- Laboratory of Stem Cell Biology
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu
| | - Ling Sun
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Xiaoli Wei
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Hao Cai
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Xueyang Xiao
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| |
Collapse
|
213
|
Zu G, Kuang Y, Dong J, Cao Y, Wang K, Liu M, Luo L, Pei R. Multi-arm star-branched polymer as an efficient contrast agent for tumor-targeted magnetic resonance imaging. J Mater Chem B 2017; 5:5001-5008. [DOI: 10.1039/c7tb01202k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Contrast agents with high efficiency and safety are excellent candidates as magnetic resonance imaging probes.
Collapse
Affiliation(s)
- Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Ye Kuang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Jingjin Dong
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Kewei Wang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Liqiang Luo
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|
214
|
Wallat JD, Czapar AE, Wang C, Wen AM, Wek KS, Yu X, Steinmetz NF, Pokorski JK. Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules 2016; 18:103-112. [PMID: 27992176 DOI: 10.1021/acs.biomac.6b01389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Improved imaging of cancerous tissue has the potential to aid prognosis and improve patient outcome through longitudinal imaging of treatment response and disease progression. While nuclear imaging has made headway in cancer imaging, fluorinated tracers that enable magnetic resonance imaging (19F MRI) hold promise, particularly for repeated imaging sessions because nonionizing radiation is used. Fluorine MRI detects molecular signatures by imaging a fluorinated tracer and takes advantage of the spatial and anatomical resolution afforded by MRI. This manuscript describes a fluorous polymeric nanoparticle that is capable of 19F MR imaging and fluorescent tracking for in vitro and in vivo monitoring of immune cells and cancerous tissue. The fluorous particle is derived from low-molecular-weight amphiphilic copolymers that self-assemble into micelles with a hydrodynamic diameter of 260 nm. The polymer is MR-active at concentrations as low as 2.1 mM in phantom imaging studies. The fluorinated particle demonstrated rapid uptake into immune cells for potential cell-tracking or delineation of the tumor microenvironment and showed negligible toxicity. Systemic administration indicates significant uptake into two tumor types, triple-negative breast cancer and ovarian cancer, with little accumulation in off-target tissue. These results indicate a robust platform imaging agent capable of immune cell tracking and systemic disease monitoring with exceptional uptake of the nanoparticle in multiple cancer models.
Collapse
Affiliation(s)
- Jaqueline D Wallat
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Anna E Czapar
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Charlie Wang
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Kristen S Wek
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States.,Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| |
Collapse
|
215
|
Gündüz S, Savić T, Toljić Đ, Angelovski G. Preparation and In Vitro Characterization of Dendrimer-based Contrast Agents for Magnetic Resonance Imaging. J Vis Exp 2016:54776. [PMID: 28060285 PMCID: PMC5226353 DOI: 10.3791/54776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Paramagnetic complexes of gadolinium(III) with acyclic or macrocyclic chelates are the most commonly used contrast agents (CAs) for magnetic resonance imaging (MRI). Their purpose is to enhance the relaxation rate of water protons in tissue, thus increasing the MR image contrast and the specificity of the MRI measurements. Current clinically approved contrast agents are low molecular weight molecules that are rapidly cleared from the body. The use of dendrimers as carriers of paramagnetic chelators can play an important role in the future development of more efficient MRI contrast agents. Specifically, the increase in local concentration of the paramagnetic species results in a higher signal contrast. Furthermore, this CA provides a longer tissue retention time due to its high molecular weight and size. Here, we demonstrate a convenient procedure for the preparation of macromolecular MRI contrast agents based on poly(amidoamine) (PAMAM) dendrimers with monomacrocyclic DOTA-type chelators (DOTA - 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate). The chelating unit was appended by exploiting the reactivity of the isothiocyanate (NCS) group towards the amine surface groups of the PAMAM dendrimer to form thiourea bridges. Dendrimeric products were purified and analyzed by means of nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. Finally, high resolution MR images were recorded and the signal contrasts obtained from the prepared dendrimeric and the commercially available monomeric agents were compared.
Collapse
Affiliation(s)
- Serhat Gündüz
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics
| | - Tanja Savić
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics
| | - Đorđe Toljić
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics;
| |
Collapse
|
216
|
Jackson AW, Chandrasekharan P, Ramasamy B, Goggi J, Chuang KH, He T, Robins EG. Octreotide Functionalized Nano-Contrast Agent for Targeted Magnetic Resonance Imaging. Biomacromolecules 2016; 17:3902-3910. [PMID: 27936729 DOI: 10.1021/acs.biomac.6b01256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization has been employed to synthesize branched block copolymer nanoparticles possessing 1,4,7,10-tetraazacyclododecane-N,N,'N,″N,‴-tetraacetic acid (DO3A) macrocycles within their cores and octreotide (somatostatin mimic) cyclic peptides at their periphery. These polymeric nanoparticles have been chelated with Gd3+ and applied as magnetic resonance imaging (MRI) nanocontrast agents. This nanoparticle system has an r1 relaxivity of 8.3 mM-1 s-1, which is 3 times the r1 of commercial gadolinium-based contrast agents (GBCAs). The in vitro targeted binding efficiency of these nanoparticles shows 5 times greater affinity to somatostatin receptor type 2 (SSTR2) with Ki = 77 pM (compared to somatostatin with Ki = 0.385 nM). We have also evaluated the tumor targeting molecular imaging ability of these branched copolymer nanoparticle in vivo using nude/NCr mice bearing AR42J rat pancreatic tumor (SSTR2 positive) and A549 human lung carcinoma tumor (SSTR2 negative) xenografts.
Collapse
Affiliation(s)
- Alexander W Jackson
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A* Star), 1 Pesek Road, Jurong Island, Singapore , 627833
| | - Prashant Chandrasekharan
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667
| | - Boominathan Ramasamy
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667
| | - Julian Goggi
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , 117456
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , 117456.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , 117599
| | - Tao He
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A* Star), 1 Pesek Road, Jurong Island, Singapore , 627833
| | - Edward G Robins
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , 117599
| |
Collapse
|
217
|
Sousa F, Sanavio B, Saccani A, Tang Y, Zucca I, Carney TM, Mastropietro A, Jacob Silva PH, Carney RP, Schenk K, Omrani AO, Huang P, Yang L, Rønnow HM, Stellacci F, Krol S. Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent. Bioconjug Chem 2016; 28:161-170. [DOI: 10.1021/acs.bioconjchem.6b00577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fernanda Sousa
- Nanomedicine
Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, AMADEOLAB, Via G.A. Amadeo 42, 20133 Milan, Italy
- IFOM The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Barbara Sanavio
- Nanomedicine
Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, AMADEOLAB, Via G.A. Amadeo 42, 20133 Milan, Italy
| | - Alessandra Saccani
- Nanomedicine
Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, AMADEOLAB, Via G.A. Amadeo 42, 20133 Milan, Italy
| | - Yun Tang
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Department
of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Ileana Zucca
- Laboratory
of Experimental Imaging, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Tamara M. Carney
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Alfonso Mastropietro
- Laboratory
of Experimental Imaging, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Paulo H. Jacob Silva
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Randy P. Carney
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Kurt Schenk
- Laboratory
of X-ray Diffraction, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Arash O. Omrani
- Laboratory
for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Ping Huang
- Laboratory
for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lin Yang
- Laboratory
for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Henrik M. Rønnow
- Laboratory
for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Francesco Stellacci
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Silke Krol
- Nanomedicine
Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, AMADEOLAB, Via G.A. Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
218
|
Superparamagnetic Fe 3O 4-PEG 2K-FA@Ce6 Nanoprobes for in Vivo Dual-mode Imaging and Targeted Photodynamic Therapy. Sci Rep 2016; 6:36187. [PMID: 27824072 PMCID: PMC5099938 DOI: 10.1038/srep36187] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
The development of targeted nanoprobes is a promising approach to cancer diagnostics and therapy. In the present work, a novel multifunctional photo/magnet-diagnostic nanoprobe (MNPs-PEG2K-FA@Ce6) has been developed. This nanoprobe is built using folic acid (FA), bifunctional polyethylene glycol (PEG2K) and photosensitizer chlorin e6 (Ce6). The MNPs-PEG2K-FA@Ce6 nanoprobes are superparamagnetic, can be synthesized on a large scale by a one-pot hydrothermal process without further surface modification and are stable in an aqueous environment for eight months. Compared with free Ce6 nanoprobes in vitro studies, the MNPs-PEG2K-FA@Ce6 nanoprobes significantly enhance cellular uptake efficiency and promote the effectiveness of photodynamic therapy (PDT) with the assistance of 633 nm laser irradiation. The unique nanoprobes show superior penetration and a retention time of more than six days with less accumulation in the liver allowing highly effective tumor recognition and monitoring. Additionally, there was little damage to healthy organs or tissues. These exciting new nanoprobes could be potential building blocks to develop new clinical therapies and translational medicine.
Collapse
|
219
|
Structural regulation of self-assembled iron oxide/polymer microbubbles towards performance-tunable magnetic resonance/ultrasonic dual imaging agents. J Colloid Interface Sci 2016; 482:95-104. [DOI: 10.1016/j.jcis.2016.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/01/2023]
|
220
|
Liu Q, Song L, Chen S, Gao J, Zhao P, Du J. A superparamagnetic polymersome with extremely high T 2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials 2016; 114:23-33. [PMID: 27837682 DOI: 10.1016/j.biomaterials.2016.10.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 11/28/2022]
Abstract
Improving the relaxivity of magnetic resonance imaging (MRI) contrast agents is an important challenge for cancer theranostics. Herein we report the design, synthesis, characterization, theoretical analysis and in vivo tests of a superparamagnetic polymersome as a new MRI contrast agent with extremely high T2 relaxivity (611.6 mM-1s-1). First, a noncytotoxic cancer-targeting polymersome is synthesized based on a biodegradable diblock copolymer, folic acid-poly(l-glutamic acid)-block-poly(ε-caprolactone) [FA-PGA-b-PCL]. Then, ultra-small superparamagnetic iron oxide nanoparticles (SPIONs) are in situ generated in the hydrophilic PGA coronas of polymersomes to afford magnetic polymersomes. The in vivo MRI assay revealed prominent negative contrast enhancement of magnetic polymersomes at a very low Fe dose of 0.011 mmol/kg. Moreover, this cancer-targeting magnetic polymersome can effectively encapsulate and deliver anticancer drug to inhibit the tumor growth, demonstrating promising theranostic applications in biomedicine.
Collapse
Affiliation(s)
- Qiuming Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Liwen Song
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Shuai Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jingyi Gao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Peiyu Zhao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Jianzhong Du
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
221
|
Culver KSB, Shin YJ, Rotz MW, Meade TJ, Hersam MC, Odom TW. Shape-Dependent Relaxivity of Nanoparticle-Based T1 Magnetic Resonance Imaging Contrast Agents. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:22103-22109. [PMID: 28008338 PMCID: PMC5172589 DOI: 10.1021/acs.jpcc.6b08362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gold nanostars functionalized with Gd(III) have shown significant promise as contrast agents for magnetic resonance imaging (MRI) because of their anisotropic, branched shape. However, the size and shape polydispersity of as-synthesized gold nanostars have precluded efforts to develop a rigorous relationship between the gold nanostar structure (e.g., number of branches) and relaxivity of surface-bound Gd(III). This paper describes the use of a centrifugal separation method that can produce structurally refined populations of gold nanostars and is compatible with Gd(III) functionalization. Combined transmission electron microscopy and relaxivity analyses revealed that the increased number of nanostar branches was correlated with enhanced relaxivity. By identifying the underlying relaxivity mechanisms for Gd(III)-functionalized gold nanostars, we can inform the design of high-performance MRI contrast agents.
Collapse
Affiliation(s)
- Kayla S. B. Culver
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu Jin Shin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew W. Rotz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J. Meade
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Authors. . Phone: 847-491-2481. . Phone: 847-491-2696. Phone: 847-491-7674
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Authors. . Phone: 847-491-2481. . Phone: 847-491-2696. Phone: 847-491-7674
| | - Teri W. Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Authors. . Phone: 847-491-2481. . Phone: 847-491-2696. Phone: 847-491-7674
| |
Collapse
|
222
|
Vithanarachchi SM, Foley CD, Trimpin S, Ewing JR, Ali MM, Allen MJ. Myelin-targeted, texaphyrin-based multimodal imaging agent for magnetic resonance and optical imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:492-505. [PMID: 27596704 DOI: 10.1002/cmmi.1711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/18/2016] [Accepted: 08/01/2016] [Indexed: 12/15/2022]
Abstract
Reliable methods of imaging myelin are essential to investigate the causes of demyelination and to study drugs that promote remyelination. Myelin-specific compounds can be developed into imaging probes to detect myelin with various imaging techniques. The development of multimodal myelin-specific imaging probes enables the use of orthogonal imaging techniques to accurately visualize myelin content and validate experimental results. Here, we describe the synthesis and application of multimodal myelin-specific imaging agents for light microscopy and magnetic resonance imaging. The imaging agents were synthesized by incorporating the structural features of luxol fast blue MBS, a myelin-specific histological stain, into texaphyrins coordinated to GdIII . These new complexes demonstrated absorption of visible light, emission of near-IR light, and relaxivity values greater than clinically approved contrast agents for magnetic resonance imaging. These properties enable the use of optical imaging and magnetic resonance imaging for visualization of myelin. We performed section- and en block-staining of ex vivo mouse brains to investigate the specificity for myelin of the new compounds. Images obtained from light microscopy and magnetic resonance imaging demonstrate that our complexes are retained in white matter structures and enable detection of myelin. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sashiprabha M Vithanarachchi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, 48202, MI, USA.,Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka
| | - Casey D Foley
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, 48202, MI, USA
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, 48202, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Meser M Ali
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, 48202, MI, USA
| |
Collapse
|
223
|
|
224
|
Kuźnik N, Tomczyk MM. Multiwalled carbon nanotube hybrids as MRI contrast agents. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1086-103. [PMID: 27547627 PMCID: PMC4979685 DOI: 10.3762/bjnano.7.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/07/2016] [Indexed: 05/09/2023]
Abstract
Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories.
Collapse
Affiliation(s)
- Nikodem Kuźnik
- Silesian University of Technology, Faculty of Chemistry, M. Strzody 9, 44-100 Gliwice, Poland
| | - Mateusz Michał Tomczyk
- Silesian University of Technology, Faculty of Chemistry, M. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
225
|
Frangville C, Li Y, Billotey C, Talham DR, Taleb J, Roux P, Marty JD, Mingotaud C. Assembly of Double-Hydrophilic Block Copolymers Triggered by Gadolinium Ions: New Colloidal MRI Contrast Agents. NANO LETTERS 2016; 16:4069-4073. [PMID: 27224089 DOI: 10.1021/acs.nanolett.6b00664] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mixing double-hydrophilic block copolymers containing a poly(acrylic acid) block with gadolinium ions in water leads to the spontaneous formation of polymeric nanoparticles. With an average diameter near 20 nm, the nanoparticles are exceptionally stable, even after dilution and over a large range of pH and ionic strength. High magnetic relaxivities were measured in vitro for these biocompatible colloids, and in vivo magnetic resonance imaging on rats demonstrates the potential utility of such polymeric assemblies.
Collapse
Affiliation(s)
- Camille Frangville
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Yichen Li
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Claire Billotey
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Daniel R Talham
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Jacqueline Taleb
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Patrick Roux
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| |
Collapse
|
226
|
Gambino G, Tei L, Carniato F, Botta M. Amphiphilic Ditopic Bis-Aqua Gd-AAZTA-like Complexes Enhance Relaxivity of Lipidic MRI Nanoprobes. Chem Asian J 2016; 11:2139-43. [DOI: 10.1002/asia.201600669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Giuseppe Gambino
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale; Viale T. Michel 11 15121 Alessandria Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale; Viale T. Michel 11 15121 Alessandria Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale; Viale T. Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale; Viale T. Michel 11 15121 Alessandria Italy
| |
Collapse
|
227
|
Blanco-Andujar C, Walter A, Cotin G, Bordeianu C, Mertz D, Felder-Flesch D, Begin-Colin S. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine (Lond) 2016; 11:1889-910. [DOI: 10.2217/nnm-2016-5001] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools.
Collapse
Affiliation(s)
- Cristina Blanco-Andujar
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Aurelie Walter
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Geoffrey Cotin
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Catalina Bordeianu
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Damien Mertz
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Delphine Felder-Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Sylvie Begin-Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| |
Collapse
|
228
|
Randolph LM, LeGuyader CLM, Hahn ME, Andolina CM, Patterson JP, Mattrey RF, Millstone JE, Botta M, Scadeng M, Gianneschi NC. Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped nanoparticle MRI contrast agents. Chem Sci 2016; 7:4230-4236. [PMID: 30155069 PMCID: PMC6013922 DOI: 10.1039/c6sc00342g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
A Gd3+-coordinated polymerizable analogue of the MRI contrast agent Gd-DOTA was used to prepare amphiphilic block copolymers, with hydrophilic blocks composed entirely of the polymerized contrast agent. The resulting amphiphilic block copolymers assemble into nanoparticles (NPs) of spherical- or fibril-shape, each demonstrating enhanced relaxivity over Gd-DOTA. As an initial examination of their behavior in vivo, intraperitoneal (IP) injection of NPs into live mice was performed, showing long IP residence times, observed by MRI. Extended residence times for particles of well-defined morphology may represent a valuable design paradigm for treatment or diagnosis of peritoneal malignances.
Collapse
Affiliation(s)
- Lyndsay M Randolph
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Clare L M LeGuyader
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Michael E Hahn
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Christopher M Andolina
- Department of Chemistry , University of Pittsburgh , 4200 Fifth Ave , Pittsburgh , PA 15260 , USA
| | - Joseph P Patterson
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| | - Robert F Mattrey
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Jill E Millstone
- Department of Chemistry , University of Pittsburgh , 4200 Fifth Ave , Pittsburgh , PA 15260 , USA
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Alessandria , Italy
| | - Miriam Scadeng
- Department of Radiology , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA
| | - Nathan C Gianneschi
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr., La Jolla , San Diego , CA 92093 , USA . ;
| |
Collapse
|
229
|
One-pot synthesis of multisubstituted imidazoles catalyzed by Dendrimer-PWAn nanoparticles under solvent-free conditions and ultrasonic irradiation. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2613-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
230
|
Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK. The evolution of gadolinium based contrast agents: from single-modality to multi-modality. NANOSCALE 2016; 8:10491-10510. [PMID: 27159645 DOI: 10.1039/c6nr00267f] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Ruiqing Liu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Hui Peng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia.
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Andrew K Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
231
|
Zhang Y, Zou T, Guan M, Zhen M, Chen D, Guan X, Han H, Wang C, Shu C. Synergistic Effect of Human Serum Albumin and Fullerene on Gd-DO3A for Tumor-Targeting Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11246-11254. [PMID: 27097822 DOI: 10.1021/acsami.5b12848] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A macromolecular magnetic resonance imaging (MRI) contrast agent was successfully synthesized by conjugating the gadolinium/1,4,7,10-tetraazacyclododecane-1,4,7-tetracetic acid complex (Gd-DO3A) with 6,6-phenyl-C61 butyric acid (PC61BA) and upon further modification with human serum albumin (HSA). The final product, PC61BA-(Gd-DO3A)/HSA, has a high stability and exhibits a much higher relaxivity (r1 = 89.1 mM(-1) s(-1) at 0.5 T, 300 K) than Gd-DO3A (r1 = 4.7 mM(-1) s(-1)) does under the same condition, producing the synergistic positive effect of HSA and C60 on the relaxivity of Gd-DO3A. The in vivo MR images of PC61BA-(Gd-DO3A)/HSA-treated tumor-bearing mice show strong signal enhancement for the tumor area due to the enhanced permeability and retention effect. The maximum accumulation of PC61BA-(Gd-DO3A)/HSA at the tumor site was achieved at 4 h postinjection, which may guide surgery. The results from the hematology and histological observations indicate that PC61BA-(Gd-DO3A)/HSA has no obvious toxicity in vivo. These unique properties of PC61BA-(Gd-DO3A)/HSA enable them to be highly efficient for tumor-targeting MRI in vivo, possibly providing a good solution for tumor diagnosis.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Toujun Zou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Mirong Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Daiqin Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiangping Guan
- Department of Radiology, Peking University Third Hospital , Beijing 100083, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital , Beijing 100083, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Chunying Shu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
232
|
Angelovski G. What We Can Really Do with Bioresponsive MRI Contrast Agents. Angew Chem Int Ed Engl 2016; 55:7038-46. [DOI: 10.1002/anie.201510956] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Goran Angelovski
- MR Neuroimaging Agents; Max Planck Institute for Biological Cybernetics; Spemannstrasse 41 72076 Tübingen Germany
| |
Collapse
|
233
|
Angelovski G. Biosensitive Kontrastmittel für die Magnetresonanztomographie - was wir mit ihnen wirklich tun können. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Goran Angelovski
- MRT-Kontrastmittel für Neuroimaging; Max-Planck-Institut für biologische Kybernetik; Spemannstraße 41 72076 Tübingen Deutschland
| |
Collapse
|
234
|
Sun L, Li X, Wei X, Luo Q, Guan P, Wu M, Zhu H, Luo K, Gong Q. Stimuli-Responsive Biodegradable Hyperbranched Polymer–Gadolinium Conjugates as Efficient and Biocompatible Nanoscale Magnetic Resonance Imaging Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10499-512. [PMID: 27043102 DOI: 10.1021/acsami.6b00980] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Sun
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xue Li
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoli Wei
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Luo
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pujun Guan
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Wu
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kui Luo
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center
(HMRRC), Department of Radiology, West China Hospital and ‡Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
235
|
Lesniak WG, Oskolkov N, Song X, Lal B, Yang X, Pomper M, Laterra J, Nimmagadda S, McMahon MT. Salicylic Acid Conjugated Dendrimers Are a Tunable, High Performance CEST MRI NanoPlatform. NANO LETTERS 2016; 16:2248-53. [PMID: 26910126 PMCID: PMC4890470 DOI: 10.1021/acs.nanolett.5b04517] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a novel MRI contrast mechanism that is well suited for imaging, however, existing small molecule CEST agents suffer from low sensitivity. We have developed salicylic acid conjugated dendrimers as a versatile, high performance nanoplatform. In particular, we have prepared nanocarriers based on generation 5-poly(amidoamine) (PAMAM) dendrimers with salicylic acid covalently attached to their surface. The resulting conjugates produce strong CEST contrast 9.4 ppm from water with the proton exchange tunable from ∼1000 s(-1) to ∼4500 s(-1) making these dendrimers well suited for sensitive detection. Furthermore, we demonstrate that these conjugates can be used for monitoring convection enhanced delivery into U87 glioblastoma bearing mice, with the contrast produced by these nanoparticles persisting for over 1.5 h and distributed over ∼50% of the tumors. Our results demonstrate that SA modified dendrimers present a promising new nanoplatform for medical applications.
Collapse
Affiliation(s)
- Wojciech G. Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Nikita Oskolkov
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Xiaolei Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Bachchu Lal
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Xing Yang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Martin Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - John Laterra
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21287, United States
| |
Collapse
|
236
|
Phukan B, Patel AB, Mukherjee C. A water-soluble and water-coordinated Mn(II) complex: synthesis, characterization and phantom MRI image study. Dalton Trans 2016; 44:12990-4. [PMID: 26135518 DOI: 10.1039/c5dt01781e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ligand H4bedik was reacted with MnCl2·4H2O at pH ∼ 6.5 to give a highly water-soluble and water-coordinated Mn(ii) complex (). The complex was found to show r1 = 3.11 mM(-1) s(-1) per Mn(ii) at 1.4 T and 6.26 mM(-1) s(-1) per Mn(ii) at 14.1 T at 25 °C, pH = 7.4. In addition to r1, the r2 at 14.1 T was found to be 132.78 mM(-1) s(-1) per Mn(ii) at 25 °C, pH = 7.4.
Collapse
Affiliation(s)
- Bedika Phukan
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | | | | |
Collapse
|
237
|
Frangville C, Gallois M, Li Y, Nguyen HH, Lauth-de Viguerie N, Talham DR, Mingotaud C, Marty JD. Hyperbranched polymer mediated size-controlled synthesis of gadolinium phosphate nanoparticles: colloidal properties and particle size-dependence on MRI relaxivity. NANOSCALE 2016; 8:4252-4259. [PMID: 26837663 DOI: 10.1039/c5nr05064b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hyperbranched polymers based on the poly(amidoamine), HyPAM, were used to synthesize gadolinium phosphate nanowires under mild conditions. Control of the average particle size was obtained by adjusting polymer concentration. Proton relaxivity measurements reveal an optimum particle size, reaching relaxivity values as high as 55 ± 9 mM(-1) s(-1) for r1 and 67 ± 11 mM(-1) s(-1) for r2. The colloidal stability of these hybrid systems were optimized through the use of functionalized core-shell polymers containing PEG segments and C18-PEG segments, structures which also offer the possibility of imparting additional function into the polymer-particle hybrids.
Collapse
Affiliation(s)
- Camille Frangville
- Laboratoire IMRCP, Université de Toulouse, CNRS UMR 5623, UPS, 31062 Toulouse, France.
| | - Maylis Gallois
- Laboratoire IMRCP, Université de Toulouse, CNRS UMR 5623, UPS, 31062 Toulouse, France.
| | - Yichen Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA.
| | - Hong Hanh Nguyen
- Laboratoire IMRCP, Université de Toulouse, CNRS UMR 5623, UPS, 31062 Toulouse, France.
| | | | - Daniel R Talham
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA.
| | - Christophe Mingotaud
- Laboratoire IMRCP, Université de Toulouse, CNRS UMR 5623, UPS, 31062 Toulouse, France.
| | - Jean-Daniel Marty
- Laboratoire IMRCP, Université de Toulouse, CNRS UMR 5623, UPS, 31062 Toulouse, France.
| |
Collapse
|
238
|
Huang Y, Hu H, Li RQ, Yu B, Xu FJ. Versatile Types of MRI-Visible Cationic Nanoparticles Involving Pullulan Polysaccharides for Multifunctional Gene Carriers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3919-3927. [PMID: 26841955 DOI: 10.1021/acsami.5b11016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Owing to the low cytotoxicity and excellent biocompatibility, polysaccharides are good candidates for the development of promising biomaterials. In this paper, a series of magnetic resonance imaging (MRI)-visible cationic polymeric nanoparticles involving liver cell-targeting polysaccharides were flexibly designed for multifunctional gene delivery systems. The pullulan-based vector (PuPGEA) consisting of one liver cell-targeting pullulan backbone and ethanolamine-functionalized poly(glycidyl methacrylate) (denoted by BUCT-PGEA) side chains with abundant hydroxyl units and secondary amine was first prepared by atom transfer radical polymerization. The resultant cationic nanoparticles (PuPGEA-GdL or PuPGEA-GdW) with MRI functions were produced accordingly by assembling PuPGEA with aminophenylboronic acid-modified Gd-DTPA (GdL) or GdW10O36(9-) (GdW) via the corresponding etherification or electrostatic interaction. The properties of the PuPGEA-GdL and PuPGEA-GdW nanoparticles including pDNA condensation ability, cytotoxicity, gene transfection, cellular uptake, and in vitro and in vivo MRI were characterized in details. Such kinds of cationic nanoparticles exhibited good performances in gene transfection in liver cells. PuPGEA-GdW demonstrated much better MRI abilities. The present design of PuPGEA-based cationic nanoparticles with the liver cell-targeting polysaccharides and MRI contrast agents would shed light on the exploration of tumor-targetable multifunctional gene delivery systems.
Collapse
Affiliation(s)
- Yajun Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Hao Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Rui-Quan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029 China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| |
Collapse
|
239
|
Carron S, Bloemen M, Vander Elst L, Laurent S, Verbiest T, Parac-Vogt TN. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe. Chemistry 2016; 22:4521-7. [DOI: 10.1002/chem.201504731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Sophie Carron
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F/200D 3001 Leuven Belgium
| | - Maarten Bloemen
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F/200D 3001 Leuven Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry; University of Mons; Place du Parc 23 7000 Mons Belgium
- Center for Microscopy and Molecular Imaging (CMMI); 6041 Gosselies Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry; University of Mons; Place du Parc 23 7000 Mons Belgium
- Center for Microscopy and Molecular Imaging (CMMI); 6041 Gosselies Belgium
| | - Thierry Verbiest
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F/200D 3001 Leuven Belgium
| | | |
Collapse
|
240
|
Ni K, Zhao Z, Zhang Z, Zhou Z, Yang L, Wang L, Ai H, Gao J. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T(1) contrast ability. NANOSCALE 2016; 8:3768-74. [PMID: 26814592 DOI: 10.1039/c5nr08402d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM(-1) s(-1). Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.
Collapse
Affiliation(s)
- Kaiyuan Ni
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Harris M, Vander Elst L, Laurent S, Parac-Vogt TN. Magnetofluorescent micelles incorporating Dy(III)-DOTA as potential bimodal agents for optical and high field magnetic resonance imaging. Dalton Trans 2016; 45:4791-801. [PMID: 26865457 DOI: 10.1039/c5dt04801j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dysprosium(iii) was coordinated to four 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) bisamide derivatives functionalized with amphiphilic p-dodecylaniline and p-tetradecylaniline in a differing cis- and trans-orientation. The complexes were assembled into mono-disperse micelles having size distribution maxima ranging from 10 to 15 nm and the magnetic and optical properties of the micelles were examined in detail. The micelles show characteristic Dy(iii) emission with quantum yields reaching 0.8%. The transverse relaxivity r2 per Dy(iii) ion at 500 MHz and 310 K reaches maximum values of ca. 20 s(-1) mM(-1) which is a large increase when compared to a value of 0.8 s(-1) mM(-1) observed for Dy(III)-DTPA. The micelles were stable in water when incubated at 37 °C for 1 week and showed no relaxivity decrease when measured in the presence of 4% (w/v) human serum albumin. The efficient T2 relaxation, especially at strong magnetic fields, is sustained by the high magnetic moment of the dysprosium(iii) ion, the coordination of water molecules and long rotational correlation times.
Collapse
Affiliation(s)
- Michael Harris
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
242
|
Barlas FB, Demir B, Guler E, Senisik AM, Arican HA, Unak P, Timur S. Multimodal theranostic assemblies: double encapsulation of protoporphyrine-IX/Gd3+in niosomes. RSC Adv 2016. [DOI: 10.1039/c5ra26737d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Theranostically engineered protoporphyrin IX/Gd3+encapsulated niosomes were prepared and used as multimodal theranostic agent.
Collapse
Affiliation(s)
- F. Baris Barlas
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir
- Turkey
| | - Bilal Demir
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir
- Turkey
| | - Emine Guler
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir
- Turkey
| | | | - H. Armagan Arican
- Sifa University
- Vocational School of Health Services
- Radiotheraphy Department
- Izmir
- Turkey
| | - Perihan Unak
- Institute of Nuclear Sciences
- Ege University
- Izmir
- Turkey
| | - Suna Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir
- Turkey
| |
Collapse
|
243
|
Simão T, Chevallier P, Lagueux J, Côté MF, Rehbock C, Barcikowski S, Fortin MA, Guay D. Laser-synthesized ligand-free Au nanoparticles for contrast agent applications in computed tomography and magnetic resonance imaging. J Mater Chem B 2016; 4:6413-6427. [DOI: 10.1039/c6tb01162d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulsed laser ablation in liquids (PLAL) has emerged as a new green chemistry method, advantageous to produce gold nanoparticles-based contrast agents with strong blood retention and for multimodal imaging.
Collapse
Affiliation(s)
- Teresa Simão
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie Matériaux Télécommunications
- Varennes (QC)
- Canada
| | - Pascale Chevallier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ)
- Axe Médecine Régénératrice
- Quebec City (QC)
- Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA)
| | - Jean Lagueux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ)
- Axe Médecine Régénératrice
- Quebec City (QC)
- Canada
| | - Marie-France Côté
- Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ)
- Axe Médecine Régénératrice
- Quebec City (QC)
- Canada
| | - Christoph Rehbock
- Technical Chemistry I
- University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen CENIDE
- 45141 Essen
- Germany
| | - Stephan Barcikowski
- Technical Chemistry I
- University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen CENIDE
- 45141 Essen
- Germany
| | - Marc-André Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ)
- Axe Médecine Régénératrice
- Quebec City (QC)
- Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA)
| | - Daniel Guay
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie Matériaux Télécommunications
- Varennes (QC)
- Canada
| |
Collapse
|
244
|
Nithyakumar A, Alexander V. Tri- and tetranuclear RuII–GdIII2 and RuII–GdIII3 d–f heterometallic complexes as potential bimodal imaging probes for MRI and optical imaging. NEW J CHEM 2016. [DOI: 10.1039/c5nj03393d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tri- and tetranuclear RuII–GdII2 and RuII–GdIII3 d–f heterometallic complexes, which function as contrast agents for MRI and as optical probes for fluorescence imaging, are reported. In vitro studies using the HeLa cell lines show that these complexes exhibit anticancer activity.
Collapse
Affiliation(s)
- A. Nithyakumar
- Department of Chemistry
- Loyola College
- Chennai 600034
- India
| | - V. Alexander
- Department of Chemistry
- Loyola College
- Chennai 600034
- India
| |
Collapse
|
245
|
Sigg SJ, Santini F, Najer A, Richard PU, Meier WP, Palivan CG. Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu. Chem Commun (Camb) 2016; 52:9937-40. [DOI: 10.1039/c6cc03396b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A gadolinium containing nanoparticle exhibiting a 10-fold higher r1 relaxivity than Dotarem® and further increase in relaxivity in reductive milieu is proposed.
Collapse
Affiliation(s)
- Severin J. Sigg
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - Francesco Santini
- Department of Radiology
- Division of Radiological Physics
- University of Basel Hospital
- 4031 Basel
- Switzerland
| | - Adrian Najer
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | | | | | |
Collapse
|
246
|
Guo C, Sun L, She W, Li N, Jiang L, Luo K, Gong Q, Gu Z. A dendronized heparin–gadolinium polymer self-assembled into a nanoscale system as a potential magnetic resonance imaging contrast agent. Polym Chem 2016. [DOI: 10.1039/c6py00059b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An amphiphilic dendronized heparin–gadolinium conjugate self-assembles into a nanoscale system by a combination of the features of the nanoparticle, dendrimer and heparin. The nanoscale system demonstrates great potential as an efficient and safe MRI contrast agent.
Collapse
Affiliation(s)
- Chunhua Guo
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Ling Sun
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Wenchuan She
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Ning Li
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Lei Jiang
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Kui Luo
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| | - Qiyong Gong
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- 29 Wangjiang Road
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
247
|
Guo C, Hu J, Bains A, Pan D, Luo K, Li N, Gu Z. The potential of peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles as magnetic resonance imaging contrast agents. J Mater Chem B 2016; 4:2322-2331. [DOI: 10.1039/c5tb02709h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles demonstrated potential as MRI contrast imaging probes owing to good biosafety and increased T1 relaxivity.
Collapse
Affiliation(s)
- Chunhua Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jiani Hu
- Department of Radiology
- Wayne State University
- Detroit
- USA
| | - Ashika Bains
- Department of Radiology
- Wayne State University
- Detroit
- USA
| | - Dayi Pan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Kui Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Ning Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
248
|
Yang CT, Padmanabhan P, Gulyás BZ. Gadolinium(iii) based nanoparticles for T1-weighted magnetic resonance imaging probes. RSC Adv 2016. [DOI: 10.1039/c6ra07782j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review summarized the recent progress on Gd(iii)-based nanoparticles asT1-weighted MRI contrast agents and multimodal contrast agents.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| | | | - Balázs Z. Gulyás
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| |
Collapse
|
249
|
Esmaeilpour M, Sardarian A, Javidi J. Dendrimer-encapsulated Pd(0) nanoparticles immobilized on nanosilica as a highly active and recyclable catalyst for the copper- and phosphine-free Sonogashira–Hagihara coupling reactions in water. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01455g] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recyclable dendrimer-encapsulated Pd(0) nanoparticles immobilized on nanosilica in the Sonogashira–Hagihara reaction under copper(i) and phosphine ligand-free conditions in water.
Collapse
Affiliation(s)
| | | | - Jaber Javidi
- Department of Pharmaceutics
- School of Pharmacy
- Shahid Beheshti University of Medical Sciences
- Iran
- Students Research Committee
| |
Collapse
|
250
|
Cao Y, Liu M, Zhang K, Dong J, Zu G, Chen Y, Zhang T, Xiong D, Pei R. Preparation of linear poly(glycerol) as a T1 contrast agent for tumor-targeted magnetic resonance imaging. J Mater Chem B 2016; 4:6716-6725. [DOI: 10.1039/c6tb01514j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Macromolecular contrast agents (CAs) labeled with targeting molecules are gaining remarkable interest as promising materials overcoming the defects of small-molecule CAs.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Min Liu
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Kunchi Zhang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Jingjin Dong
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Guangyue Zu
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Yang Chen
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Tingting Zhang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Dangsheng Xiong
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|